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ON THE RESTRICTION OF
THE FOURIER TRANSFORM TO CURVES:

ENDPOINT RESULTS AND THE DEGENERATE CASE
BY

MICHAEL CHRIST1

ABSTRACT. For smooth curves T in Rn with certain curvature properties
it is shown that the composition of the Fourier transform in Rn followed by
restriction to T defines a bounded operator from Lp(Rn) to Lq(V) for certain
p, q. The curvature hypotheses are the weakest under which this could hold,
and p is optimal for a range of q. In the proofs the problem is reduced to the
estimation of certain multilinear operators generalizing fractional integrals,
and they are treated by means of rearrangement inequalities and interpolation
between simple endpoint estimates.

1. Introduction. Given a smooth submanifold M of R™ and a smooth positive
measure o on M one may ask for which exponents p and q there is a restriction
estimate

(i-i) / l/(OI«<k<c||/HL.(Rn)
J M

for the Fourier transform of an arbitrary test function / G S(Rn). / denotes the
Fourier transform, and S the class of Schwartz functions. Interest in this problem
is due largely to its intimate connections with Bochner-Riesz multipliers [3, 9, 12]
and certain estimates for wave equations [17]. The first topic of this article is the
case when M is a curve, say M = {ip(t):  \t\ < 1} where iß:  [—1,1] —> Rn is C°°.
The curve is said to be of finite type at t = 0 if {ip'(0),tb"(0).i¡>(l)(0)} spans R"
for some /; it is nondegenerate at 0 if it is of finite type and I — n. By a well-known
homogeneity argument [19],

fjf(m)\qdt<c\\f\]p
can hold for some 0 < 6 and 1 < p only if the curve is of finite type at í = 0. If 0 =
kx < k2 < • • ■ < kn are positive integers, we say that ip is of type k = (k¡,..., kn) at
t = 0 if it is possible to make a linear change of coordinates in R" and a nonsingular
reparametrization of (—1,1) to bring ip into the form ib(t) = (t,tj)2(t).^„(t)),
where ib'j(t) = tk'(l + 0(t)). (Note that under these conventions the nondegenerate
case is k — (0,1,... ,n— 1).)
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224 MICHAEL CHRIST

Our principal result for curves is then

THEOREM 1.1.   Suppose xp: (—1,1) —> Rn is smooth with %p' ̂ 0, of finite type
k at t = 0.   Then there exists 6 > 0 swc/i í/iaí

|/Wí))|«dt<C7||/||«
-6

for all f e S(Rn) î/:
(A) «/; ¿s nondegenerate at t — 0,

/    ,  iiiwi       -\\ ^   -\ .    i ^ n2 + 2n n2 + jfc|n-n(n + |fc|)(l -p    )<g        and    l<p<
n2 + 2n-2      n2 + |fc|n - 2n + T

or
(B) x\) is degenerate at t = 0 and either

(1.2)   (»+W)(i-,-)<,-' — ^^/+2|ti!Ln2;"+l-
or

,i on     ,     , mu,       -u       -i         j        n2 + |fc|n-n n2 + 2n(1.3)     (n+]k])(l-p    )<q        and    —-    '        -7<P<
|fc|n-2n + l n2 + 2n-2'

Here \k\ = J2" %■
The restriction (n + |fc|)(l — p_1) < g"1 is necessary by the usual homogeneity

argument [18, 19], but whether the restrictions on the range of p and the strict
inequality in (1.3) are necessary is not known. In the nondegenerate case only the
endpoint result ^n(n+ 1)(1 — p'1) — q~x is new [14]. One motivation for studying
the endpoint situation is the case of certain noncompact curves: an immediate
consequence of Theorem 1.1 is

COROLLARY 1.2. Let 1 = lx < l2 < ■ ■ ■ < ln be positive integers and I = Y^i lj-
Then

/•oo

|/(íí',...,íí")|''(ií<C||/||«

for all f G S(Rn) if p' = lq and either

,, a\ i j    , ^ nl - n n2 + 2n
(1.4) ln = n    and    1 < p <

nl - 2n + 1       n2 + 2n - 2
or

„,, , ,    ,   „     ^      nl - n (        n2 + 2n
(1.5) ln > n    and    Kp< ——-        < —„--        nl-2n+l      V    n2 + 2n - 2

Now the stipulation p' = lq is necessary, again by homogeneity; only in the
endpoint case is there a restriction estimate.

Previously the degenerate case had not been studied extensively. Partial results
in the special case n = 3 and k2 = 1 were obtained by Ruiz [15].

The strategy of our proof is not new: following Prestini, we ultilize an argument
originating in Fefferman [9] and Carleson and Sjölin [3], based on a change of
variables and the Hausdorff-Young inequality, to reduce (1.1) to an easier problem
concerning estimates for certain positive integral operators.   When n = 2 and M
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RESTRICTION OF THE FOURIER TRANSFORM TO CURVES 225

has nonvanishing curvature, these are the classical fractional integration operators,
and endpoint estimates for (1.1) follow from their well-known mapping properties.
But for nondegenerate curves in dimension 3 or more the operators which arise in
this line of argument had only been treated in a relatively crude way by means of
Holder's inequality [14], so that endpoint estimates were not obtained. Our only
innovation is to view these operators as multilinear versions of fractional integral
operators and to prove optimal estimates for them. This is done in the second
section of the paper.

While the various technical hypotheses of Theorem 1.1 are not known to be nec-
essary and appear rather unnatural, they arise inevitably from the method of proof.
In §2 we also show that the multilinear operators to which the problem "reduces"
are actually unbounded in all other instances. Nevertheless our counterexamples
fail to provide counterexamples for the restriction problem itself; one can conclude
only that the present line of attack cannot resolve these remaining issues.

Our second topic is the case of manifolds of dimension 2 in R4 satisfying a suit-
able nondegeneracy condition. Prestini [14] has studied the restriction problem for
manifolds of half the dimension of the ambient space, but again without obtaining
endpoint results. The primary motivation for our interest in this special case is the
study [4], where the author has investigated, but not completely settled, a general
conjecture for manifolds of codimension two. One way to view this conjecture is as a
statement that a certain curvature condition is the "right" notion of nondegeneracy
for the restriction problem in codimension two. The case of total dimension four is
exceptional, for then the dimension of the ambient space is an integral multiple of
the dimension of the submanifold. This enables us to prove the conjecture by the
same methods as employed for curves in previous sections of the paper.

In §4 we discuss a variant of a theorem of Helson and Beurling which is related
to the restriction problem, and our final subject is a certain family of multilinear
singular integral operators which complement the "fractional integral" operators
treated in §2.

I would like to thank W. Beckner and L. Carleson for pointing out the relevance
of rearrangement inequalities, which led to a shortened proof of Proposition 2.3.
Thanks also to L. Carleson and P. W. Jones of the Institut Mittag-Leffler for their
hospitality during the final stages of this work, and to the referee for suggestions
regarding the exposition.

2. Multilinear operators and restriction to curves. To commence with
the reduction of Theorem 1.1 to a question about multilinear operators, consider
the formal adjoint of the "restriction operator". Up to a constant factor it is

Af(0 = j   exp(i(x(t),0)f(t)dt.

A surprisingly helpful step, ultimately because of Lemma 2.1, is to assume that /
is supported where t > 0. The case where support(/) c {t < 0} is no different, so
it may be disregarded. Thus

-4/(0= / exp(mt),t;))f(t)dt.
Jo

If p' > 2n then
P/IIP = ]\(Af)n\\pl/n,
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226 MICHAEL CHRIST

and the point is that (A/)(í;)n may be written as a Fourier transform:

(-4/(0)')" - f cxp (i UJTiixA) f[f(Xi)dx,
where x = (xi.xn) S Rn and 0 < xt < 6. Formally change variables by setting
yj = 5Z" i>j(xi)\ this will be justified below. Then

-4/(0" = j exp(i(t,y))F(y)dy = F(Ç),

where F(y) — \\f(x,)\dx/dy\. By the inequality of Hausdorff and Young

II-4/IIP < c||F||r,
where r' = ///n. Reversing the change of variables,

\nrr= I WlfiXi)
J0<x,.xn<6 '

dy
dx

dx.

The nature of the singularities of the integral kernel \dy/dx\x   r is thus the central
issue, and the best that can be said is

LEMMA  2.1.   If i¡) is of type k there exist 6 > 0 and C < oo such that in the
region 0 < x   < x ■<■■■< x ,< è,

dx >^rK'+i-'-n^i<j
where y = ^,t/>(zt).

The proof is deferred until the end of the section. It will show that indeed no
better estimate holds.

To justify the change of variables it suffices to show that in the region 0 < xx <
■ ■ ■ < x„ < o. the map x —» y(x) is injective with nonzero Jacobian. The Jacobian
is nonzero by the lemma, so locally x —> y(x) is a diffeomorphism. The hyperplanes
Hi — \T: YlTi — I an(l 0 < x\ < ■•■ < xn < 6} have disjoint images since
?/i = Ylxi = t. Since x —► y is locally a diffeomorphism, its restriction to each Ht
is an immersion and the images of the Ht locally foliate Rn into hypersurfaces. Ht
is connected (it is convex), so clearly the restriction to any Ht of the map x —> y
is also injective: otherwise the image of Ht would have to cross some other Hs in
the process of intersecting itself, a contradiction. The change of variables, then, is
valid.

The original restriction problem has now been reduced to the task of estimating
certain positive multilinear operations. The best relevant estimates for these are
provided by the next proposition. But first observe that the original problem is only
equivalent to its reduction in the case p' = 2n, by Plancherel's theorem; failure of
the multilinear operations to be bounded does not settle the issue for other values
of p.

Consider first the case of nondegenerate curves. For each i, fc¿ = i — 1 so that
]dy/dx\ > C]~I,<,<„ ]xi — Xj\. Case (A) of Theorem 1.1 follows at once from
the following proposition. (If p. q are the exponents in the theorem and p of the
proposition, they are related by p = r~xq', r^1 = 1 — n(l — p-1)-)
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RESTRICTION OF THE FOURIER TRANSFORM TO CURVES 227

PROPOSITION 2.2.   7/0 < 7 then
r.      n

¡\{f(xi)   1]   ]xi-xi\-idxi---dxn<C]]f\]pl,
¿=1 i<j<n

for all f, if and only if 7 < 2/n, 1 < p < n and p_1 + ^(n — l)/2 = 1.

The restriction p^1 + 7(n —1)/2 — 1 is mandated by homogeneity considerations,
while if 7 > 2/n and f(x) = X|i|<i the integral with respect to dxi,... ,dxn-i is
infinite for each |x„| < 1.

We will show that for any functions f\_, fn, gi 2,gi 3,..., gn_i „,
(2.1)

/n ff fk(xk) [19ij(xi - Xj) dxx ■ ■ ■ dxn
1 i<j

<cniiMipnn^iu
whenever p_1 + \(n — l)g_1 = 1 and 1 < p < n, where || • ||9iT. denotes the usual
Lorentz norm. By the Brascamp-Lieb-Luttinger rearrangement theorem this is
actually no stronger than Proposition 2.1. What follows is one of several possible
proofs of (2.1); for others see [4] and Remark 2 below.

Let Sn denote the permutation group on n letters and let Q — [0, l]nx[0, l]2n(n_1
C Rm, where m = n + \n(n - 1). Sn acts naturally on Q by o(p~l;q~x) —

(Po{iy-iPo(ny%(i),o(2y-)- We write p-1 = (p~\... ,p~%), f for (/i,...,/„),
and so on. Let G be the set of all P = (p-1 ,q~l) G Q for which

T(f,9)<C(P)Y[\\fk\\PkY[\\gl,J]\qi,3,

for all f,g. Let H = {P €Rn: EPfc X + ECi = n)' B^ homogeneity G C H.
Therefore when we speak of an interior point of G, we mean interior with respect
to the topology of H.

The proof is in two steps: first it will be shown that many vertices of Q lie in
G, just because of Fubini's theorem. Then these will be used as endpoints in a
multilinear interpolation procedure. First of all a = (1,..., 1; 0,..., 0) certainly is
in G. So is the vertex Pq with px = 1, all other pk = 00, a¿,¿+i = 1 for each i and
qij = 00 if j' ^ i + 1; Po lies in G by Fubini. Now G is invariant under the natural
action of Sn, so <r(P0) £ G f°r aH °~ G Sn. Let V = {cr(Po): o G Sn}, and let b be
the average of all points in V. By symmetry í>=(¿,...,-;-,...,-). G coincides
with its convex hull by (the proof of) the Riesz-Thörin interpolation theorem, so
b € G, and so is every point on the line segment / joining a to b. This gives (2.1)
with the weak Lq norms replaced by strong-type norms.

We claim that each point in the interior of / lies in the interior of G. This
granted, (2.1) follows by purely formal arguments and interpolation. For given any
k and i, j we may view T(f, g) as the result of applying a linear operator to fk and
testing the outcome against g¿j; all other functions fr,gs,t are fixed and regarded
as part of the operator. Interpolating by the real method then yields

T(f,g)<C\]fk\]Pk,i]]glJq„J,ocl[\\fr\\Pr     I]     llff.A...>
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228 MICHAEL CHRIST

for all (p l.q l) in the interior of G. Repeating this procedure with k fixed and
all possible choices of i, j leads to

n/,») < cii/fciipfc,i n ii/-ii^nii^*n</—'
r^k s,t

again for all (p~x,q~l) in the interior of G. Now fix all ga¡t for the remainder of
the argument. Repeat the above process, with all functions fixed except fk and f,
for some choice oil ^ k. Doing this for each I ^ k gives

(2.2) T(f,g) < CIIMU., I] ||/,||p„oo J! llffMlk..«.
i/fc s,t

The final step is to interpolate yet again, using the fact that (Lp'r° ,Lp'Ti)e,r =
jji.r if r-x = (i _ 9)rQl + 9rx x and 0 < 0 < 1, l<p<oo; this is a special case
of Theorem 5.2.4 of [1]. Alternately freezing all but two of the /'s, proceeding as
above and finally restricting attention to / we find that

r(/,ff)<cniiAiip.»niiwjikoo
whenever p"1 + \(n - l)q~l = 1 and 1 < p < n. This is stronger than (2.1);
the appearance of the Lp,n norms is a general feature of this type of argument for
n-linear operations.

It remains only to verify the claim that each interior point of / lies in the interior
of G. Such a point may be expressed as a convex linear combination of a and
the points of V, in which all coefficients are nonzero. Hence it suffices to show
that the linear span of V — a = {P — a: P E V} is the entire subspace H — a.
Suppose v G Rm were orthogonal to V — a. Then v would be orthogonal to the
difference of any two points of V. Let Po be as above, and let Pi have the same
coordinates except an_2,7,-i = oo and qn-2,n = 1- Po-,P\ G V and all coordinates
of Po — Pi are 0, except that qn-2,n = — 1 and qn-2,n-i = 1- Therefore the n — 2, n
coordinate of v equals the n — 2, n — 1 coordinate, and it follows from the invariance
of V under S„ that v is of the form (ux,..., un; w,..., w). Since (v, Po — a) = 0,
Ei Ui = u\ + (n — l)w. As a result ux = E™ ui — (n — l)w> whence by symmetry
f/i = ■ ■ • = um = w. All coordinates of v being equal, v is orthogonal to H — a.
We have shown that (V — a)1 — (H — a)1, so the proof is complete.

Case (B) of Theorem 1.1 follows in the same way from Lemma 2.1 and

PROPOSITION 2.3.   Suppose 0 < 7 and 0 = ßi < ß2 < ■ ■■ < ßn- Let

K(x) = Y[(xj -Xi)"1 Y[x~0iXO<x1<-<xn<oc,-
i<3

Then
jHf(xi)K(x)dx<c\\f\];

if and only if 7 < 2/n and either

\<p<n    and    p~l + -(n — 1)7 + n_1 \   ßi — 1,

or
n < p < 00,    p_1 + -(n — 1)7 + n-1 Yj/3,:< 1    and

f is supported in a fixed bounded subset of [0, 00).
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RESTRICTION OF THE FOURIER TRANSFORM TO CURVES 229

The requirement p x + k(n — 1)7 + n ' E A = 1 follows from homogeneity. If
p> n and p_1 + \(n - 1)7 + ra_1 E ßi > L let

/(í) = |í|-1/p|logí|-1/"X0<t<l/2-

In the region 0< xx < ■ ■ ■ < xn and xn < 2xx, K(x) > C|x|-"(1~1/p), f £ Lp, yet

ÍY[f(xl)K(x)dx>C i |x|-n|log|x||-1di = cx).
i„<2i,

If n < p but / is not required to have support in a fixed bounded set, then by
homogeneity p_1 + k(n — 1)7 + n~l E& must be 1, which we have just seen
cannot be.

PROOF. It suffices to treat the case ßx = ■ ■ ■ = ßn > 0: this dominates the
general case because of the restriction x7; < x,+ i- But now that ßi — ■ ■ ■ = ßn, the
result is still true without that restriction, so we drop it and consider

S(/i,...,/n)= /   Ufi(xi)U\xi-*j\-1Jl\xi\-ßdx.
Jr"    i ><j i

We may assume all the /, are nonnegative.   We claim that if 1 < p < n, p_l +
\(n- l)7 + /3= 1 and 0 < 7,/? then

n

(2.3) S(/1,...,/n)<C||/1||,unil/illp-«>-
2

Let /* denote a symmetric nonincreasing rearrangement of /. By the Brascamp-
Lieb-Luttinger rearrangement inequality [2],

s(fi,...,fn)<s(f¡./;).
To verify (2.3), then, it is enough to check it when /,(i) = |i|-1/p for all i > 2.
and /1 G LPi1. By definition of Lp'1 we may assume that fx is the characteristic
function of a set, which by the rearrangement principle may be taken to be an
interval centered at the origin. Finally, by homogeneity, it suffices to check the
single instance /i(£) = X|f|<i- Let

/n tl\xi\-ß-1/p   EI   \xi-xj\-<dx2---dxn.
2 1<»<j

F(xx) = P(l)|x1|-1/'' where q = p'. To see that F(l) < oc, let

g(t) = ]t\-i>-1/p\t-l]-'i

and specify an exponent r by r_1 + i(n — 2)7 = 1. Then 1 < r < n — 1 and g E U'.
Indeed, there is no problem at infinity since

r(ß + p-x +7) > 1 ^0< ß + p-1 +7-r_I = ß + p~l + ^r?7- 1 = ¿7.

Locally r~i < 1 since

and r(ß + p~l) < 1 since

r   ' = 1 - |n,7 + 7 > 7,

r ■l - ß - p"l = 1 - I (n - 1)7 - ß - p'l + h = h > 0.
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230 MICHAEL CHRIST

Trivially 7 < 2/(n - 1), so by Proposition 2.2

r n

Ylgixi)   Jl   \xl-x:)\'1dx2---dxn<C\\g\\rrl~l <oo.
■'    2 Ki<j

So (2.3) holds. But that S(fi,...,fn) < CY[]]fi]]P now follows at once by inter-
polating as in the first step of the proof of Proposition 2.2; again the Lp norm can
be replaced with the Lorentz Lp-n norm.

The case p > n follows at once. For specify 0 > 0 by n_1 = p_1 + <5. It is no
loss of generality to assume that the fixed bounded set on which / is supported is
{\t\ < 1}. Then for any e > 0, g(t) = ]t]-6+£f(t) £ Ln.

s(f, ...,/)=y n s(xi) n ix, - x^-i n n-*-*- dx.
In order to apply the case p = n we must check that there exists e > 0 such that
n_1 + 5 (n - 1)7 + ß + e - 6 = 1 and ß + e - 6 > 0.

n"1 + ¿(n - 1)7 + ß + e - 6 = p"1 + \(n - 1)7 + ß + e,

so e is determined, and

ß + £ - 6 = 1 - n"1 - \(n - 1)7 > 1 - n'1 - \(n - l)2n~l > 0.

Therefore

S(/i,...,/»)<C||ff||S<C||/||»
The deduction of Corollary 1.2 from these propositions is the same as that of

the theorem; the change of variables remains valid in the homogeneous noncompact
case.

REMARKS. 1. Proposition 2.3 has not been stated under the sharpest possible
hypotheses; for instance it holds when p = n, 7 = ßi =0 and ß2 = ■ ■ ■ = ßn — 1.
This case is a multilinear variant of Hardy's inequality

y~l fV\f(x)\dx
Jo

<C\\f\\p,        Kp<oo.P'
p

2. There is no need to appeal to Proposition 2.2 in the proof; instead just proceed
by induction. The argument also establishes Proposition 2.2 itself.

3. It is possible to give a more tedious proof which does not appeal to the
rearrangement principle. First one shows that when n_1 + h(n — 1) + ß = 1,

/ K(x)Y[fi(xi)dx<]\fk]\q\\fn\\p  []   IIAIloo
7^fc,Tl

whenever q = p', I < p < 00, and k < n — 1; this may be reduced to a variant of
the above inequality of Hardy. The result follows from an appropriate interpolation
first when p = n, then for all 1 < p < n.

4.  A "singular integral" version of Proposition 2.2 is discussed in §5.  Different
multilinear "fractional integral" operators are treated in [5, 7, 8].
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The proof of Lemma 2.1 rests on
FACT (Weyl [20, pp.   200-201]).   Let 0 < fci < • • ■ < kn be distinct integers.

kLet det(fci,..., kn) be the determinant of the n x n matrix whose i,j entry is x¿'.
Then all coefficients of the homogeneous symmetric polynomial

det(fci,... ,kn)     _ det(ki,...,kn)(x)D(k)(x) det(0,l,...,n-l)       n¿<;<„(*>
are nonnegative integers.

PROOF OF LEMMA 2.1. Suppose ip'(t) = (l,fa(t),...,(j>n(t)) where 4>i(t)
tki(l + 0(t)). Let

F(x) = det(<t>i(xj))/ fj(^ - Xi) - D(k)(x)
KJ

= (det(^(xJ-))-det(^))    n^-^
i»<j

We claim that for all xx,... ,xn > 0, \F(x)\ < C\x\D(k)(x). In order to establish
this in the case where the <fo are polynomials it is certainly enough to show that for
each monomial xa in the Taylor expansion (about the origin) of F, after rearranging
the indices so that a¿ < aj whenever i < j, we have, for each 1 < I < n,

<*i > £(*¿ - i + !)■
i<l l<l

For D(k)(x) > Yl™ xki~l+l by the fact quoted above, since it is easily computed
that this monomial actually appears in D(k). When the </>, are not polynomials
this still suffices by Taylor's theorem; we leave the details to the reader.

Suppose there exists a monomial Xa (with a¿ < aj whenever i < j) in the
Taylor expansion of F and an / for which the "defect" E¿<;(k¿ — * + 1) — E¿<¿ ai
is positive. Only finitely many terms in the Taylor expansions of the <pk could
possibly give rise to any fixed term xa in F, so it suffices to assume that all the
4>i are polynomials. Then choose a and I for which the defect is maximal. In the
product F(x) n¿<i(xj ~~ x*)i one of the terms to which xa gives rise is f]i-i+,_1.
Since xa has maximal defect, no other term of the product could cancel this one
out. But clearly no such term nx"'+íl aTlses m

F(x) Y\(xj -Xi)= J2 sgn(o) Yl <t>3(xo(])),
i<3 rrÇzSn

so no xa with positive defect could occur with nonzero coefficient in the Taylor
expansion of F.

3. Codimension 2 in R4. For curves in Rn there is a natural notion of non-
degeneracy from the point of view of curvature, namely the condition in hypothesis
(A) of Theorem 1.1. From the point of view of the restriction problem for the
Fourier transform, the natural notion of nondegeneracy is that (1.1) should hold
with 7¿n(n + l)q = p' (for q in some range about which we will not be fussy). Then
Theorem 1.1(A) asserts precisely that these two notions coincide. For manifolds of
codimension one the situation is analogous: nonvanishing scalar curvature is the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



232 MICHAEL CHRIST

natural geometric condition, and it is equivalent to the validity of (1.1) with a cer-
tain optimal exponent p = p(q) for all g in a certain range. (This is a combination
of results of Greenleaf [11], Knapp, Stein and Tomas [19].) Therefore it is natural
to ask for a generalization to the intermediate cases. In the author's previous work
[4] this question was studied in codimension two. A curvature condition of an un-
expected type was shown to be necessary for (1.1) to hold with optimal p, and to
be sufficient under either of two auxiliary hypotheses. We conjectured that it is in
fact sufficient by itself. The case n = 4 is exceptional since then the dimension of
the submanifold divides the dimension of the ambient space, so that the methods
of the preceding sections still apply. This enables us to prove the conjecture in this
special case.

To accomplish this suppose that M C R4 is a smooth submanifold of codimen-
sion two. We work only in some small neighborhood of a given point 0 G M, so
parametrize M = {(x,y;tb~(x,y)): (x,y) E U C R2} where ip: U —> R2, 0 G U,
Vt/»(0) = 0 and ifi(0) = 0. M is equipped with a smooth measure do = d>(x, y) dx dy,
where 4> £ Cg°(U) and </>(0) / 0, 4> > 0. It is known (Prestini [14]) that the re-
striction estimate

(3.1) /   \f(0\qdc<C\\f\\l    forall/GS(R4)
J M

can hold only if 3g < p'. This section's main result, Theorem 3.2, characterizes
geometrically those M for which (3.1) holds for some measure o nonvanishing at the
given point 0 G M, with the best possible value of p ((3g)') for g in a certain range.
Thus the following definition should be regarded as the correct geometric notion
of nondegeneracy for manifolds of dimension two in R4 as far as the restriction
problem is concerned. (The general study of the degenerate case, analogous to case
(B) of Theorem 1.1, is more complicated than for curves, and we do not venture
into those waters.)

Parametrize the set of unit vectors in R4 normal to M at 0 by 9 E [0,27r]; 9 will
denote either a unit vector in R4 or the corresponding real number, depending on
the context.

DEFINITION 3.1. If M = {(x; ip(x)): x E U C R2} as above with 0 G U and
Vip(0) = 0, then M is nondegenerate at 0 if

detD2MiP(x),9o))\x=0 = 0^^(detD2x{iP(x),9)\x=0)\e=eo^O.

Here D2 denotes the Hessian matrix of second partial derivatives with respect to x
and of course det denotes the determinant. An example of a nondegenerate manifold
is (x,y,x2,y2). There is a natural geometric interpretation: each normal vector 9
determines, together with the two-plane tangent to M at 0, a hyperplane P(9).
det D2(ip(x), 9)\x=o measures the scalar curvature (up to a nonvanishing factor) of
the codimension one manifold in R3 obtained by projecting M locally onto P(9),
and the assumption is that as a function of 9, this scalar curvature has no zeroes
of order greater than one. This interpretation plays no role in our arguments.

THEOREM 3.2.   Suppose that M c R4 is smooth of codimension two and 0 G
M.  Then the following are equivalent:

(3.2) M is nondegenerate at 0.
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(3.3) There exist a smooth measure a on M, nonvanishing at 0, and an exponent
p > 1 such that ||/||l«(m,<t) < C||/IIlp(r4) for all f £ S, where 3g = p'.

(3.4) The inequality in (3.3) holds for all 1 < p < 4/3 and 3g = p'.

In fact the proof will show that (3.3) implies (3.2) if the assumption 3g = p' is
weakened to 3g > p' — 6 for a certain 6 = ¿(g) > 0.

The proof of the following is an exercise in linear algebra and is left to the reader.

LEMMA 3.3. If M = {(x,y;ip(x,y))} is nondegenerate at 0 then it is possible
to make a linear transformation of coordinates in R4 so that either

(3.5) ib(x,y) = (x2-y2,xy) + 0(x,y)3

or

(3.6) iP(x,y) = (x2,y2) + 0(x,y)3.

If M is degenerate at 0 then coordinates may be introduced in which

ijj(x,y) = (x2,0) + O(x,y)3    or    ip(x,y) = (0,0) + 0(x,yf.

The definition of nondegeneracy and a rather more complicated canonical form
for degenerate manifolds of codimension two in higher dimensions may be found in
[4, §3].

PROOF OF THEOREM 3.2. (3.4) implies (3.3) tautologously. If (3.2) fails, ib
may be written as (x2,0) -I- 0(x, y)3 or in an even more degenerate form. In the
first case consider, for £ > 0 small, the function f£ whose Fourier transform is
the characteristic function of the set where ]x,y\ < e, \u\ < £2 and \v\ < e3 with
coordinates (x,y;u,v) in R4. ||/£||l«(aí,<t) > C£2lq for e small, while ||/e||p =
C£7(i-i/p) Thus 2/g > 7(1 — 1/p), so (3.3) fails also. The more degenerate case
follows by the same argument.

To prove that (3.2) implies (3.4) we use the Hausdorff-Young inequality as in
§2 to reduce the study of the adjoint of the restriction operator to estimates for
certain positive operations, which in the present situation are linear rather than
multilinear. The details of this reduction may be found in Prestini [14] and are
omitted here. However it is necessary to compute explicitly the Jacobian of the
resulting change of variables.

Adopt coordinates z — (x,y) on R2 and let i\)(z) = (P(z),Q(z)) £ R2. Consider
the change of coordinates in R4 defined by

(3.7) w = (zx+ z2; P(zx) + P(z2),Q(zx) + Q(z2)).

Then
dw       _ (dP_dQ_ _dP_dQ\     ( dP dQ      dP dQ

d(zi,z2)      \dx2dy2     dy2dx2J      \dyx dx2     dx2 dyx
(dP_dQ_dP_dQ^\      f dP dQ      dP dQ
\dxxdy2      dy2dxx)      \dxxdyx      dyx dxi

it is understood that dP/dxl is a function of z, alone, and so on. When (P(z), Q(z))
= (x2,y2) + 0(z)3,

—^— = (xi - X2)2 - (yi - y2)2 + 0(z)0(zx - z2)2.
a\Zl, z2)
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Assume for the remainder of this paragraph that \zx], \z2] < 6 where 6 > 0 is a
small number. Fix z2 and let u = xi — x2, v = yi — 2/2, and F(u,v) = dw/d(zX:z2).
By the Morse lemma there are coordinates (u',v') with respect to which (locally)
F(u, v) = (u')2 - (v1)2 = (u' - v')(u' + v'). Furthermore u' = u + 0(z2)0(u, v) and
v' = v + 0(z2)0(u,v). If 6 is small enough the implicit function theorem gives

\u' -v'\ ~ \u- it(v)\    and    ]u' + v'\ ~ \u - n(v)\

where £,77 are smooth and also depend smoothly on the parameter z2, and, more-
over, |£(v) — n(v)\ ~ 2|v|.

Recall that on any «r-finite measure space

(3.8) JF(s)A(s,t)ds < C\\F\\P   sup \\A(s, •)!!,,«, + sup ||A(-,i)||r,,

provided 1/g = l/p+ 1/r — 1 and 1 < p, g,r < oo (Strichartz [17]). Together with
a piggyback procedure this gives

LEMMA 3.4. Suppose ip has the form (3.5) or (3.6), andw(zx,Z2) is defined by
(3.7). There exists 6 > 0 such that given any 0 < 7 < 1, r^ = 1, 1/g = 1/p+l/r— 1
and 1 < p,q,r < 00, then

\\f(zi)K(zi,z2)dzi\\q<C\\f\\p,
where

K(zi,z2) = ]dw/d(zx,z2)\   1x\Zl\,\z2\<fi-

PROOF. First suppose we are in the situation of (3.6). Let

Sf(y\,x2,y2) = / f(xi,yi)K(xi,yi,x2,y2)dxi.

By (3.8)

(J\Sf(yx,X2,y2)\qdx2)    " < C (^j \f(xx,yx)\p dxx^j      A(yx,y2)

where

A(yi,y2) = sup ||Ä"(xi,yi,-,2/2)1^,00 +sup||Ä'(-,j/i,x2,y2)||r,oo-
il x2

In order to apply (3.8) again with F(yi) - (/ |/(xi,yi)|pdxi)1/,p we need to verify
that

(3.9) SUp ||A(l/i, -)||r,oo
yi

■sup||A(-,y2)||r,oo < C7 < 00.
>n

In fact A(yi,y2) = A(y2,yx) since K is symmetric in zx,z2, so these last two
expressions are identical.

||i4(-,ltt)||;i00 = 8upA-
A>0

yx: sup||Ä"(xi,j/i,-,y2)||r,c

-fSUp||Ä'(-,J/i,X2,J/2)||r,oo > A \
X2 )
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For fixed x2, y2 we have found that

K(xx,yx,x2,y2) < C\xx - (x2 + £(yi] \xi - (x2 -r¡(yi))\~
so

]\K(;yux2,y2Wr^<C\i(yi)-r,(yi)]-1 <C]yi\~l

where C does not depend on x2,y2. This estimate holds for \\K(xx,yx, •,i/2)||r,oo as
well; to see this go back to the starting point

—- = (xi - x2)2 - (yi - y2)2 + 0(z)0(xi - x2, yi - y2),
d(zi,z2)

freeze xi and y2, and repeat all of the above arguments. Since this form for
dw/d(zi,z2) is invariant under interchanging xi and x2, and is all we used to
estimate ||/i(.,yi, x2, y2)||r,00, the same result is obtained. Thus

P(',î/2)||;,oo < CsupA-r|{yi: 2C|y1|-1/r > A}| < C.
A>0

By Minkowski's integral inequality

/ f(z\)K(zx,z2)dzx     = / ( / Sf(yi,x2,y2)dyiJ   dx2dy2

< /     / ( / S^yuX2'y2^dx2)      dyi)   dy2

<C
/

F(yi)A(yx,-)dyx < C\\F\\qp < C\\f\\qp
by (3.8) and (3.9).

This concludes the proof in the case where ip satisfies (3.6). In case (3.5), one
finds that

JW   , = 2(xi - x2)2 + 2(3/! - y2)2 + 0(z)0(zx - z2)2 > C\zx - z2\2,
a(zi,z2)

so that it is enough to apply well-known estimates for fractional integrals in R2.

4. A related theorem. In a sense nontrivial restriction theorems for the
Fourier transform are made possible by the following negative result:

THEOREM 4.1. Suppose h: Rn —» R" is a C2 diffeomorphism, and define a
linear operator by

(Tff(0 = f(h(0).
If T is bounded on Lp, then either p = 2 or h is a linear transformation plus a
constant.

For suppose n = 2, h is not affine and T is bounded on some Lp, 1 < p < 4/3.
Then there exists ip: ( — 1,1) —> R2 whose image is a curve with nonvanishing
curvature, such that the image of h o iß is a straight line segment. Let q = (3p)'.
Since restriction of the Fourier transform to the curve given by ip maps LP(R2) to
Li,

/' ]f(hoip(t))]qdt= I \(Tf) m))\qdt<C\\Tf\\l<C\\f\\l,
which is absurd.
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This observation arose in a conversation between A. P. Calderón, P. W. Jones
and the author; the following proof is adapted from an argument presented by
Katznelson [13] for the Helson-Beurling theorem, which asserts (when n = 1) that
the same conclusion holds when p = 1 even when h is only assumed to be continuous.
Notice that some regularity assumption on h is needed when 1 < p < oo, as shown
by the example

, , , x     if x < 0,
h{x)=\2x    ifxio,

when n = 1. (Boundedness of T follows from boundedness of the Hilbert transform.)
PROOF. To begin suppose that n = 1 and 1 < p < 2. Assume merely that h

is C1 and that there exists an interval / on which h' is (strictly) monotone; if h
is C2 and no such interval exists, then h is linear. It would suffice to produce a
function / such that ||/||p, ||T/||2 < 1 and HT/Hoo is arbitrarily small. For then
\\Tf% > lir/llillT/H^2 is as large as desired.

Choose g £ Cq0, supported on such an inteval / and not identically zero. For
each x G R let

J(x,e) = {£€/: \h'(t) - x\ < e}.
By hypothesis J(x,e) is an interval, possibly empty, and supx |J(x,e)| —> 0 as
£ —» 0. For a large parameter r, define fr by /r(0 = exP(zr0°(0- For any x G R
and any p > 0, writing J — J(r~lx,r~1p) we have

\Tfr(x)\<\\g\UJ\+ f    exp(i(rh(Z)-xO)-g(h(0)dt:.
J i\j

By integration by parts and the hypothesis on h' this is dominated by
C(\J\ + p_1). If p = r1/2 both terms tend to 0 as r —> oo.

When p > 2 it is not sufficient to merely pass to the adjoint operator, since the
Jacobian determinant of h, which might fail to be a multiplier on Lp, then arises.
But if ft-1 satisfies the above hypothesis on some /, let

/r(0 = exp(.VÄ-1(0)ff(Ä-1(0)-

fr —> 0 in L°° as r —> oo, and of course ||/r||2 is independent of r. Hence fr —> 0 in
Lp as r —> oo. Tfr(x) = fo(x — r) has constant Lp norm, so again T is unbounded.

When n > 1 it is only necessary to apply the same argument to /r(0 =
exp(i(v,h(tl)))g(c;) for some v £ Sn~1.

I am indebted to T. Wolff for calling my attention to Katznelson's treatment
[IS].

5. Some multilinear singular integrals. Although Proposition 2.2 is false
at the endpoint 7 = 2/n, a deeper substitute does hold. We restrict our attention
to an a priori inequality, and give only a sketch of the proof, ignoring all questions
concerning the convergence and interpretation of various integrals (which should
be interpreted as principal value integrals).

THEOREM 5.1.   Suppose 7 = 2/n + it, 0 ^ r G R. Let

/n ]\fi{xi)   17   ]xi -x7pdxi ■•■dxn,
2=1 i<j<n
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where xx,..., xn £ R.  Then for all fx,..., fn £ S,

\T1(fx,...Jn)]<C(pi,...,pn,T)l[\\fJ\\pJ

provided E" Pj1 = 1 and 1 < Pj for all j.

Proposition 2.2 follows: interpolate using the analytic family of operations 7 —»
T-y. However the argument given in §2 is more elementary and is useful in other
contexts. The sketch of the proof is based on a powerful theorem due to G. David
and J. Journé [6]:

THEOREM.   Suppose T:  P(R) -> D'(R) is a linear operator,

K£L¡oc(R2\{x = y})    and    (TcM) = j' c¡>(x)i¡,(y)K(x,y)dxdy

for all 4>,ip £ D with disjoint supports. Suppose

]K(x,y)]<B\x-y\-\

\dxK(x,y)\ + \dyK(x,y)] < B(x - y)"2    ifx + y

and
||T(e"«)||BMO + ||T*(e<a:«)||BMO < B    for all £ E R.

Then \\Tf\\p < C(p)S||/||p for all 1 < p < 00 and \]Tf\\x < Cß||/||H> for all
feD.

To obtain our inequality it suffices to show that

\T1(fu---Jn)\<C(p,T)\\fX\\p\\f2\\plf[\\fJ\\oC
3

for all 1 < p < 00. Fix /3,..., fn and set

/7l n^(xj) lZl - Xj]'1 dx3 ■ ■ ■ dxn,
3 l<i<j<n

so that formally

T(fi,-..,fn) =  / /i(xi)/2(x2)K(xi,x2)dx1dx2.

By the David-Journé characterization it suffices to show that
n

(5.1) |T(/i,exp(ii20,/3,...,/n)|<C||/1||ff.nil/illoo
3

for any £ G R, since straightforward computation reveals that K satisfies the first
two hypotheses of their theorem with B = C f]^ 11/ill 00 •

Define a new kernel

L(xx,x3)=ie^    [I   fj(Xj)     H     \zi-Xj\-i H  dx3:
i#l,2,3 !<7<i<n 3^1,3
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The situation is just as above, except that attention has been restricted to the case
when f2 is a character. Repeating the argument reduces our task to establishing
(5.1) in the case when f2,..., fn are all characters. Formally

/ n^P^O^)     II     \x% ~ xi\~~i dx2"- dxn = exp(z'x1S£J)F(£2, ...,£„)
J 2 1<7<J<71

where
77

F(x2,...,xn) = \[]xA-^     YI     \xi-Xj\~i    onR""1.
2 2<Kj<n

F is homogeneous of degree — (n - 1) — i^n(n — l)r and is integrable on the unit
sphere, so F is bounded. Therefore (5.1) holds with ||/||#i replaced by ||/||li.

ADDED IN PROOF. Since this article was written further results concerning the
restrictions of Fourier transforms to curves have been obtained by S. W. Drury and
B. P. Marshall. Moreover I have learned that Theorem 4.1 is known, and is due to
L. Hörmander (Acta Math. 104 (I960)).
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