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Abstract: This article studies the strategic access of single-server retrial queue with two types of

customers, where priority is given according to their category. On the basis of this concept, a cognitive-

radio network was developed as retrial queue with energy harvesting. Cognitive radio allows for

a secondary user to opportunistically access the idle spectrum of a primary user (PU). Upon arrival

of a primary user, the service given to the secondary user by the cognitive radio is interrupted, and

the PU band is available for the primary user. After completion of service for the primary user, the PU

band is again available to secondary users. Performance metrics are derived to study the equilibrium

strategies of secondary users. A Stackelberg game was formulated and Nash equilibrium was derived

for the noncooperative strategy of the secondary user. Game-theory concepts are incorporated with

queuing theory ideas to obtain the net benefit for the noncooperative strategy and social benefit for

cooperative strategy. Lastly, analytical results are verified with numerical examples, and the effects

of energy-harvesting rate are discussed.

Keywords: retrial queue; cognitive-radio networks; energy harvesting

1. Introduction

In computer and telecommunication technologies, there exists a phenomenon called
retry that often occurs to obtain a service, i.e., users try for their service while the server is
serving another user. In these circumstances, they enter the waiting pool called orbit and
try for their service after a random time period. These types of queuing systems are called
retrial-queuing systems. For the detailed study about retrial queues one can refer Falin and
Templeton [1]. These features also apply for wireless communication systems.

Currently, cognitive radio (CR) is a promising technology that allows for a user to solve
the problem of spectrum scarcity. CR is an intelligent radio that senses the surrounding
environment, understands a physical situation, decides and adjusts the transmission
parameters according to the environment for the benefit of users. If there is no affirmative
situation for transmission, it embraces it according to the surroundings.

In 1999, Mitola III [2] outlined a new technology that allows for a user to exploit
the unused spectrum. A survey by the Federal Communication Commission in the United
States stated that 70% of the spectrum that was allocated to the user upon their demand
was not used properly. Only 2% of the spectrum was utilised by demanding user. In the
past few decades, software radio has existed in practice, and this defined software radio
gave infrastructural development for CR. A CR network can be fashioned via using CR
by additionally encompassing radio link properties to network-layer functions. The main
objective of CR is to solve the spectrum demand of users and ensure optimal spectrum
usage for users.
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Spectrum sharing in CR networks is mainly classified into two categories. They are
spectrum (1) underlay and (2) overlay. In spectrum underlay, primary and secondary
users simultaneously transmit data through the channel, whereas in the spectrum-overlay
model, secondary users opportunistically access the spectrum that is allocated to primary
users. In this study, the spectrum-overlay model is used for analysing the equilibrium
strategy for a secondary user with energy harvesting.

In CR networks, two types of users are heterogeneous types of customers, i.e., licensed
and unlicensed users. Licensed users are called primary users (PU) and have higher
priority than others do; unlicensed users are called secondary (or cognitive) users and
have lower priority. Whenever primary users need the service or they are interested in
transmitting data through the channel, this is possible due to their high priority. Even
though secondary users are in transmission, primary users have priority to interrupt
the service of secondary users that is given by cognitive-radio systems. If the band is
available, and primary users are not occupied with the band, secondary users can have
the opportunity to transmit data through the channel. During the transmission of packets by
a secondary user, if a primary user arrives, the band is immediately allocated to the primary
user. The secondary user waits in the server until the transmission of the primary user is
over. The secondary user is in service, but they cannot transmit data due to the arrival of
the primary user.

CR networks have many applications in various fields such as transportation, biomed-
ical engineering, fire services, educational services, transfer management, medical services,
and security management. In particular, in real-world situations, some bands are widely
used by the public, whereas others are rarely used. Common bands are the global system
for mobile communication (GSM), which is widely used by the public, and the industry
science medical band (ISM), which is also widely used by the concerning community.
However, some of the bands that are allocated for the purpose of public safety and military
radio systems are rarely used. There are situations where we can apply a CR network to
utilise radio spectrum and avoid spectrum scarcity. In TV bands, a very limited spectrum
is also used, and the remaining (white space) is not properly utilised. CR is an emerging
technology that ensures the utilisation of the maximal spectrum, and allocates the spectrum
for needy customers.

The architecture of CR networks is very complicated since it has various states of
functions such as sensing; allocation and algorithms are also complex. For the understand-
ing of structure and features of CR networks see Parvin et al. [3] A CR system consists
of many nodes for sensing. During the process of sensing a spectrum, a CR network
system consumes much energy to activate its nodes. Consequently, it consumes much
energy for data transmission. In CR networks, energy consumption is also a challenging
issue to users for the successful communication of packets. If a CR network system has
enough energy, it transmits data to the requesting user. Otherwise, the system is not
able to transmit the packet. During spectrum sharing, it is necessary to consider power
consumption since energy is a key factor for data transmission. So, the current study
aims to minimise energy consumption or to harvest energy during transmission. This
energy harvesting can be performed through solar, wind, vibration power, and a radio
frequency (RF) was employed on a CR network [4,5] as charging batteries is very expensive.
Therefore, it is very important to achieve the optimal performance of CR networks through
energy management. In this aspect, energy harvesting is the main goal in the equilibrium
strategies of a CR network system.

Antonis Economou and Spyridoula Kanta [6] analysed Markovian single-server
queues with unreliable servers, and identified the Nash equilibrium for information cases,
i.e., a fully observable case and an almost unobservable case; in this paper, the retrial
phenomenon was not considered. Economou and Kanta [7] derived equilibrium customer
strategies and social-profit maximisation problems in the classical retrial-queuing model
with constant retrial policy for observable and unobservable cases. They derived a closed-
form solution for equilibrium, and social-profit maximisation cases. Cuong T. Do et al. [8]
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analysed a noncooperative game for an M/M/1 queuing system with breakdowns, i.e.,
the service interruption of a secondary user was considered as a breakdown, and showed
that the game had an inefficient Nash equilibrium; by imposing admission fees, the so-
cial welfare at the equilibrium point coincided with the social welfare of the socially
optimal strategy. Wang and Zhang [9] analysed strategic joining in M/M/1 retrial and
investigated customers balking strategic behaviour for observable and unobservable cases.
Chang et al. [10] discussed individual and social strategies, and pricing strategy by con-
sidering only one base station for serving primary and secondary users. Secondary
users are dismissed in the system when a primary user arrives.Through game theory,
the decision-making process of whether secondary users would join the queue is studied
in this paper.Wang et al. [11] examined opportunistic spectrum sharing with imperfect
sensing from a game-theory perspective. In this, they modelled the system with con-
stant retrial and server breakdowns, where secondary users followed the carrier-sense
multiple-access (CSMA) protocol with imperfect spectrum sensing. Zhao and Yue [12]
discussed multiple secondary users through the construction of three-dimensional Markov
chain steady-state distribution of the model. They obtained and compared the Nash
equilibrium, and the socially optimal strategy for secondary users for different schemes.
Wang and Li [13] examined noncooperative and cooperative joining strategies of secondary
users in cognitive-radio networks and treated them as M/M/1 retrial queuing systems, but
did not implement the energy-harvesting state; in this, admission fees were imposed on
secondary users to bridge the gap between individual and social strategy. Wang et al. [14]
discussed equilibrium strategies and service pricing in the Internet of Things (IoT) as
an M/G/1 queue with energy harvesting; since IoT systems exist with homogeneous users,
they did not consider service interruption in their model. IoT is considered to be a leader
of the Stackelberg game and a social planner that adjusts the service price to maximise its
and its users’ revenue; the social behaviour of customers in IoT systems was also discussed.
In all the above papers, equilibrium strategies for individually optimal strategies and
optimal social welfare strategies of secondary users (SUs) were imposed with admission
fees by the CR network base station; an individual decision of SUs coincides with a socially
optimal strategy that optimises the total welfare of SUs.

Currently, radio-frequencies (RFs) in energy harvesting are a favourable solution
for power-energy-constrained wireless networks. RFs in CR networks are capable of
converting received RF signals into electricity. In RF-powered CR networks, the energy-
harvesting technique allows for secondary users to harvest and store energy from primary
users if they are neighbours of primary users. Even if they are far away from primary
users, they can transmit data. Due to this, secondary users search for both spectrum holes
for opportunistic access and for the occupied spectrum of a primary user to harvest en-
ergy. The authors in [6–11,13,14] reported equilibrium strategies in CR networks with
different environments. However, no study considered energy harvesting in CR networks.
Wang et al. [14] analysed energy harvesting in the IoT for reliable servers with general
service time. However, in practice, there may be server interruption due to breakdowns or
service priority is given for different categories of arrivals. The present article was prepared
with the implementation of Wang and Li [13] energy harvesting as an additional factor
for consideration in CR networks.

This paper focuses on energy harvesting as a major factor in CR networks, particularly
the performance metrics and equilibrium-joining strategies [15] of secondary users with
the help of queuing theory in addition to a game-theory aspect. A noncooperative game
was formulated, and the Nash equilibrium was identified. The rest of the paper is organised
as follows. Section 2 explains the mathematical formulation and steady-state equations of
the problem, and their solutions. In Section 3, we presents the results with important perfor-
mance metrics and equilibrium-joining strategies. Section 4 discusses the numerical results to
validate our analytical findings. In Section 5, we presents the conclusions.
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2. Materials and Methods

2.1. Mathematical Model

Let us consider a CR system with a single band, which acts as a server and is termed a PU
band. In the system, there are two types of customers: licensed and unlicensed users. Licensed
users are called primary users (PUs), and unlicensed users are called secondary users (SUs). The
PU band serves either a primary or a secondary user, but not both simultaneously. Due to high
priority of primary users, whenever they enter into the cognitive-radio system, the PU band
is allocated to the primary user. Even though the PU band is in transmission for a secondary
user, transmission is interrupted by the arrival of a primary user, and the PU band allocates
the spectrum to the primary user. The interrupted secondary user waits in front of the PU band
instead of entering the orbit. If the PU band entirely completes its transmission for the primary
user, it again allocates the PU band to the secondary user. Once the PU band completes its
service for either a primary or a secondary user, it spends some time for its energy harvesting.
Figure 1 shows this type of system model, i.e., a primary band is being accessed from the base
station. This primary band acts as a server equipped with cognitive radio for primary and
secondary users. The system is capable of energy harvesting through radio-frequency, solar,
or wind power. If primary users are not present in the system, secondary or cognitive users
access the spectrum, and the remaining secondary users enter the orbit and try for their
service through retrials. When primary users enter the system, service for secondary users
is interrupted. After completing the service for the primary user, the interrupted secondary
user’s service continues. During energy-harvesting mode, the PU band does not serve any
more customers, either primary or secondary. Incoming users join the orbit and repeatedly
try for the PU band. After energy consumption takes place, the PU band goes idle, and again
serves new or blocked customers.

Figure 1. Model’s schematic diagram.

In this study, heterogeneous users such as primary and secondary users access
the cognitive-radio system. The arrival pattern of users follows Poisson distribution.
The arrival rates of primary and secondary users are denoted as α and λ, respectively.
Service time follows exponential distribution. Service rates are denoted as β and µ for pri-
mary and secondary users, respectively. If an incoming user finds that the PU band is
not available, i.e., either in serving a primary or a secondary user or in the state of energy
harvesting, they join the retrial orbit by joining probability q. A user in orbit repeatedly
tries for the PU band until they obtain the service that is exponentially distributed; the re-
trial rate is denoted as θ. The rate of retrial increases as the users in orbit increase, that
is, each user in the retrial orbit can independently attempt for the PU band. Other users
decide to leave the system or balk with probability 1-q (q̄). The energy-harvesting rate of
the cognitive-radio system is denoted as η. The sensing of the primary-user band by a user
results in a positive cost per unit time. If a secondary user decides to enter the system,
the waiting time costs some positive amount. Let C be cost per unit time for the delayed
secondary user. Upon successful service, the user obtains the reward, which is denoted
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as R. Let us denote ρ1 = λ
µ , and ρ2 = α

β are the traffic intensities of secondary and primary

users, respectively. For our convenience, we denoted ρ = ρ1(1 + ρ2) and ρθ = µ
θ . Table 1

gives summarization of the above notations. Here, we consider a linear retrial rate from
the orbit to the CR network system. We assumed that the interarrival time of secondary
users, the service time of secondary users, the retrial time, the interarrival time of primary
users, and the service time of primary users are mutually independent. Let us denote
T(q) as the average delay for secondary users who join the orbit; for this entering user,
we identified joining probability q ∈ [0, 1] with the constraint that we have to maximise
benefit argmaxq∈[0,1]S(q̂; q) = q̂.S(q) = q̂[R − CT(q)], where S(q) is the expected benefit
for secondary users if they decide to join the system. Since we are interested in analysing
the behaviour of secondary users, we considered the existence of a symmetric equilibrium
among them. If qe represents the equilibrium, argmaxq̂∈[0.1]S(q̂, q) = qe. Due to the de-
mand for the PU band, there is competitiveness among secondary users, so that each user
behaves to obtain its own benefit. Meanwhile, the CR system provider can fix the reward
and cost for waiting time to obtain their own benefit. Under this situation, we analysed
the noncooperative and cooperative strategies of secondary users.

Table 1. Notations.

Notations Interpretations

λ Arrival rate of secondary user
α Arrival rate of primary user
µ Service rate of secondary user
β Service rate of primary user
θ Retrial rate
η Energy-harvesting rate
q Joining probability
ρ1 Traffic intensity of secondary user
ρ2 Traffic intensity of primary user

ρ
θ

θ
µ

ρ ρ1(1 + ρ2)

2.2. Steady-State Equations

Let S(t) be the state of the PU band at any instant t, and N(t) be the number of
secondary users in the retrial orbit at any time t. Then, S(t) = {0, 1, 2, 3, 4} corresponds to
the states in which the PU band is idle, occupied with a secondary user, a primary user
with one interrupted secondary user, a primary user with no interrupted secondary user, or
in energy harvesting. A CR network system can be considered as a retrial-queuing system,
then the stochastic process {(S(t), N(t)), t ≥ 0} is a two-dimensional continuous-time
Markov chain with state space {0, 1, 2, 3, 4} ×Z

+. The state transition diagram is given by
Figure 2. The balance equations are expressed as

(α + λ + jθ)p(0, j) = ηp(4, j) (1)

(α + µ + λq)p(1, j) = λp(0, j) + (j + 1)θp(0, j + 1) + λqp(1, j − 1) + βp(2, j) (2)

(β + λq)p(2, j) = αp(1, j) + λqp(2, j − 1) (3)

(β + λq)p(3, j) = λqp(3, j − 1) + αp(0, j) (4)

(η + λq)p(4, j) = βp(3, j) + µp(1, j) + λqp(4, j − 1) (5)
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Figure 2. State-transition diagram.

2.3. Steady State Solutions

Theorem 1. In a CR network system, the probabilities that the primary band is idle, occupied with
a secondary user, occupied with a primary user with one interrupted secondary user, occupied with
a primary user with no interrupted secondary user, or in energy harvesting are given by

P0(1) =
η(1 − qρ)− λq

α + λq̄ + η(1 + ρ2 + ρq̄
(6)

P1(1) =
ρ1(αq + η(1 + qρ2)

α + λq̄ + η(1 + ρ2 + ρq̄
(7)

P2(1) =
ρ1ρ2(αq + η(1 + qρ2)

α + λq̄ + η(1 + ρ2 + ρq̄
(8)

P3(1) =
ρ2(η(1 − qρ)− λq

α + λq̄ + η(1 + ρ2 + ρq̄)
(9)

P4(1) =
α(1 − qρ) + λ(1 + qρ2)

α + λq̄ + η(1 + ρ2 + ρq̄)
(10)

Proof. Equations (1)–(5) can be solved by using the generating function techniques. We de-
fine the partial generating function as follows.

Pi(z) =
∞

∑
j=0

zj p(i, j), i = 0, 1, 2, 3, 4 (11)

Multiplying Equations (1)–(5) by zj and taking the summation over all j, we obtain

(α + λ)P0(z) + θzP
′
0(z) = ηP4(z) (12)

(α + µ + λq)P1(z) = λP0(z) + θP
′
0(z) + λqzP1(z) + βP2(z) (13)

(β + λq)P2(z) = αP1(z) + λqzP2(z) (14)

(β + λq)P3(z) = αP0(z) + λqzP3(z) (15)

(η + λq)P4(z) = βP3(z) + µP1(z) + λqzP4(z) (16)

From (12)–(16), we obtain

P1(z) =
λ(β + λq − λqz)

(α + µ + λq − λqz)(β + λq − λqz)− αβ
P0(z)+

θ(β + λq − λqz)

(α + µ + λq − λqz)(β + λq − λqz)− αβ
P

′
0(z)

(17)
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P2(z) =
αλ

(α + µ + λq − λqz)(β + λq − λqz)− αβ
P0(z)+

αθ

(α + µ + λq − λqz)(β + λq − λqz)− αβ
P

′
0(z)

(18)

P3(z) =
α

β + λq − λqz
P0(z) (19)

P4(z) =
(α + λ)

η
P0(z) +

θz

η
P

′
0(z) (20)

Eliminating P1(z), P2(z), P3(z) and P4(z) in (12)–(16) and using (17)–(20), we can obtain

P
′
0(z) =

αβη(φ(z)χ(z)− αβ) + λµηχ(z)2 − (α + λ)ǫ(z)(φ(z)χ(z)− αβ)

χ(z)(θzǫ(z)(φ(z)χ(z)− αβ)− ηθµχ(z))
P0(z) (21)

where

φ(z) = α + µ + λq − λqz; χ(z) = β + λq − λqz; ǫ(z) = η + λq − λqz

Puttingz → 1, we obtain

P
′
0(1)

P0(1)
=

λq(αβµ + αηλ + βηλ + αηµ + µβλ)

θ(βηµ − αηλq − βηλq − βλµq)
(22)

Remark
Letting α → 0 and µ → 0 (22) becomes P

′
0(1) = −λ

θ P0(1). Letting z → 1, γ → 0

in Equation (81) of [14]—section C, we obtain Π
′
0(1) =

−λ
θ Π0(1). So, in particular, when

α → 0 and µ → 0, our model reduces to a particular model of section C in [14] with a setup
rate γ → 0.

Using (17)–(21), putting z =1, and using normalisation condition ∑
∞
j=0(p(0, j)+ p(1, j)+

p(2, j) + p(3, j) + p(4, j)) = P0(1) + P1(1) + P2(1) + P3(1) + P4(1) = 1 after some simplifi-
cations, we can obtain Equations (6)–(10).

3. Results

Theorem 2. The mean numbers of secondary users in the orbit when the primary band is idle, occupied
with a secondary user, occupied with a primary user with one interrupted secondary user, occupied with
a primary user with no interrupted secondary user, or in energy harvesting are given by

N0 =
ρ1q(α + λ + η(ρ + ρ2))

ρθ(α + λq̄ + η(1 + q̄ρ + ρ2))
(23)

N1 =
ρ1q

ρθ

{ β(ρ1(α + λ)− ρ1θq(ρ + 2ρ2) + η(ρ1ρ + ρ1ρ2 + ρρθ)−
β(α + λq̄ + η(1 + ρ2 + ρq̄))

−

ρ1θq(2λ + η(ρ + ρ1 + ρ2))

β(α + λq̄ + η(1 + ρ2 + ρq̄))
−

ρ1q(α + λ + η(ρ + ρ2))
2

(λq + η(qρ − 1)(α + λq̄ + η(1 + ρ2 + ρq̄))

}

(24)

N2 =
ρ1ρ2q

βρθ

{ β(ρ1(α + λ) + η(ρρ1 + ρ1ρ2 + ρρθ)) + θρ1(η(1 − q(ρ + ρ1))

α + λq̄ + η(1 + ρ2 + ρq̄)
−

q(2λ − α + β(ρ + 2ρ2))

α + λq̄ + η(1 + ρ2 + ρq̄)
−

ρ1q(α + λ + η(ρ + ρ2))
2

(λq + η(qρ − 1)(α + λq̄ + η(1 + ρ2 + ρq̄))

}

(25)
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N3 =
ρ1ρ2q(βµρ1 + β(α + η(ρ + ρ2)) + µ(ηρθ(1 − qρ)− θqρ1))

βρθ(α + λq̄ + η(1 + ρ2 + ρq̄))
(26)

N4 =
ρ1q

βµ

{ βµ(ρ1(2α + λ) + η(ρ + ρθ)(ρ + ρ2) + ρ1(θ(1 − qρ1(ρ + 2ρ2)− ηqρθρ))+)

ρθη(α + λq̄ + η(1 + ρ2 + ρq̄))
+

αβ(α + η(ρ + ρ2)− ρ1θq(2λ + η(ρ + ρ1 + ρ2)))

ρθη(α + λq̄ + η(1 + ρ2 + ρq̄))
−

ρ1q(α + λ + η(ρ + ρ2))
2

ηρθ(λq + η(qρ − 1)(α + λq̄ + η(1 + ρ2 + ρq̄)))

}

(27)

Proof. Differentiating (12)–(16) with respect to z and setting z = 1, we obtain

(α + λ + θ)P
′
0(1) + θP”

0 (1) = ηP
′
4(1) (28)

(α + µ)P
′
1(1) = λP

′
0(1) + θP”

0 (1) + βP
′
2(1) + λqP1(1) (29)

βP
′
2(1) = αP

′
1(1) + λqP2(1) (30)

βP
′
3(1) = αP

′
0(1) + λqP3(1) (31)

ηP
′
4(1) = βP

′
3(1) + µP

′
1(1) + λqP4(1) (32)

Differentiating (21) and inserting z = 1, we obtain

P”
0 (1) =

ρ1q(α + λ + η(ρ + ρ2))

ρθ(λq − η(1 − qρ))
P

′
0(1)+

q2

θ

(α + λ)(ηρλ + ρ1λ(α + β) + 2λ2) + λ2(ηρ + 2ρ2)

αηqρ1 + β(λq − η(1 − qρ1))
P0(1)

(33)

Using (21) and inserting (33) into (28)–(32), we obtain

P
′
0(1) =

ρ1q(α + λ + η(ρ + ρ2))

ρθ(α + λq̄ + η(1 + q̄ρ + ρ2))
(34)

Using (34) and N0 = P
′
0(1), we can obtain Equation (23). Inserting (33) and (34)

in (29)–(32), and using N1 = P
′
1(1), N2 = P

′
2(1), N3 = P

′
3(1) and N4 = P

′
4(1), we can obtain

Equations (24)–(27), which completes the proof.

Theorem 3. The mean number of secondary users in the orbit is given by

N =
ρ1qρθ(α + λ + η(ρ + ρ2))(α + λ + θ + η(1 + ρ1 + ρ2))

η(α + λq̄ + η(1 + ρ2 + ρq̄))
+

ρ1q(βµqρ1ρ2
2 + βρ(αq + η(1 + qρ2)))− µρ2(λq − η(1 + ρ1q̄))

β(α + λq̄ + η(1 + ρ2 + ρq̄)
−

ρ1q2(η + µ)(βµ(2ρ1ρ2 + ρ1 + ρρ1) + βρ(α + ηρ2) + µρ1(2λ + η(ρ + ρ1 + ρ2))

βη(α + λq̄ + η(1 + ρ2 + ρq̄))
+

ρ1ρ2ρθq(βρ1(α + λ + ηρ − θq(ρ + 2ρ2) + βηρρθ + θqρ1(2λ + η(ρ + ρ1 + ρ2))))

β2(α + λq̄ + η(1 + ρ2 + ρq̄))
−

q2ρ1ρθ(λ + ηρ)(α + λ + η(ρ + ρ2))
2

η(λq + η(qρ − 1)) + (α + λq̄ + η(1 + ρ2 + ρq̄)

(35)

Proof. The expected number of repeating users is given by N = N0 + N1 + N2 + N3 + N4.
Adding (23)–(27), we can obtain the mean number of secondary users in the orbit.
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Theorem 4. The expected waiting time of an arriving secondary user that finds that the primary
band is occupied by either a primary or a secondary user and decides to join the orbit is given by

Tq =
α + λ + θ + η(1 + ρ1 + ρ2)

ηθ
+

βρ(αq + η(1 + qρ2)) + µρ2(βqρ1ρ2 − λq + η(1 + ρ1q̄))

βµ(α + λ + η(ρ + ρ2))
−

q(η + µ)(βµ(2ρ1ρ2 + ρ1 + ρρ1) + βρ(α + ηρ2) + µρ1(2λ + η(ρ + ρ1 + ρ2)))

βµη(α + λ + η(ρ + ρ2))
−

q(λ + ηρ)(α + λ + η(ρ + ρ2))

ηθ(λq + η(qρ − 1))

ρ2(βρ1(α + λ + ηρ − θq(ρ + 2ρ2)) + βηρρθ + θqρ1(2λ + η(ρ + ρ1 + ρ2)))

β2θ(α + λ + η(ρ + ρ2))

(36)

Proof. Effective arrival rate is given by

λe f f = λq(1 − P0) (37)

Substituting (6) in (37), we can obtain

λe f f = λq
α + λ + η(ρ + ρ2)

α + λq̄ + η(1 + ρq̄ + ρ2)
(38)

By Little’s law, we can obtain the mean waiting time Tq of a secondary user in the orbit by

Tq =
N

λe f f
(39)

Inserting (35) and (38) in (39), we obtain the expected waiting time of an arriving
secondary user in the orbit.

3.1. System Stability

If ρ < 1, the system is stable; if ρ > 1, the system is unstable. This is possible because
the denominator of Tq contains term (qρ − 1); if this term gives a positive value, then only
the system is stable. So, qρ < 1 . This is the condition for system stability.

3.2. Noncooperative Strategy

In noncooperative strategy, all secondary users behave for their own benefit without
considering other secondary users and the cognitive-radio system. Depending upon cost C,
which is charged for the waiting time in the orbit, and reward R, received after completion
of the service, either they can enter or balk. Secondary users decide to join the system
if the reward for service exceeds the expected cost in the orbit. Since all secondary users
act for their own benefit, this affects the strategy of other secondary users and of the
cognitive-radio system. On the basis of the behaviour of a secondary user, this system
can be modelled as a symmetrical noncooperative game. Under this competitive situation,
each secondary user is considered to be a player of the game, and our aim was to find the
Nash equilibrium using a game-theory concept.

The expected net benefit of a secondary user who decides to join the system and enters
the system when the primary band is unavailable is given by

S(q) = R − C ∗ T(q) (40)

Inserting (36) in (40), we obtain
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S(q) = R − C ∗
{α + λ + θ + η(1 + ρ1 + ρ2)

ηθ
+

βρ(αq + η(1 + qρ2) + µρ2(βqρ1ρ2 − λq + η(1 + ρ1q̄))

βµ(α + λ + η(ρ + ρ2))

q(η + µ)
{

βµ(2ρ1ρ2 + ρ1 + ρρ1) + βρ(α + ηρ2) + µρ1(2λ + η(ρ + ρ1 + ρ2))

βµη(α + λ + η(ρ + ρ2))

}

−

q(λ + ηρ)(α + λ + η(ρ + ρ2))

ηθ(λq + η(qρ − 1))
+

ρ2

{

βρ1(α + λ + ηρ − θq(ρ + 2ρ2)) + βηρρθ + θqρ1(2λ + η(ρ + ρ1 + ρ2))}
β2θ(α + λ + η(ρ + ρ2))

}

(41)

where R is the reward received after each service, and C is the waiting cost per unit time.

Theorem 5. Considering qρ < 1 in the cognitive-radio network system, a Nash equilibrium mixed
strategy exists with entrance probability when secondary users observing the primary band are busy
with the other user, where qe is given by

qe =











0 i f R
C < T(0)

qee i f T(0) < R
C < T(1)

1 i f R
C > T(1)

(42)

qee =
−b +

√
b2 − 4ac

2a
(43)

where a, b, and c are given in Appendix A.1.

T(0) =
α + λ + θ + η(1 + ρ1 + ρ2)

ηθ
+

µρ2(ρ1(α + λ + ηρ) + ηρρ2) + ηθ(βρ + µρ2(1 + ρ1))

βµθ(α + λ + η(ρ + ρ2))

(44)

T(1) =
α + λ + θ + η(1 + ρ1 + ρ2)

ηθ
+

βρ(α + η(1 + ρ2)) + µρ2(βρ1ρ2 − λ + η)

βµ(α + λ + η(ρ + ρ1))
−

(η + µ)
{

βµ(2ρ1ρ2 + ρ1 + ρρ1) + βρ(α + ηρ2) + µρ1(2λ + η(ρ + ρ1 + ρ2))
}

βµη(α + λ + η(ρ + ρ2))
−

q(λ + ηρ)(α + λ + η(ρ + ρ2))

ηθ(λ + η(ρ − 1))
+

ρ2

{

βρ1(α + λ + ηρ − θ(ρ + 2ρ2)) + βηρρθ + θρ1(2λ + η(ρ + ρ1 + ρ2))}
β2θ(α + λ + η(ρ + ρ2))

(45)

Proof. For qρ < 1, S(q) is strictly decreasing and has a unique maximum
S(0) = R − C ∗ T(0)

S(0) = R − C
{α + λ + θ + η(1 + ρ1 + ρ2)

ηθ
+

µρ2(ρ1(α + λ + ηρ) + ηρρ2) + ηθ(βρ + µρ2(1 + ρ1))

βµθ(α + λ + η(ρ + ρ2))

}

(46)

and a unique minimum S(1) = R − C ∗ T(1)
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S(1) = R − C
{α + λ + θ + η(1 + ρ1 + ρ2)

ηθ
+

βρ(α + η(1 + ρ2)) + µρ2(βρ1ρ2 − λ + η)

βµ(α + λ + η(ρ + ρ2))
−

(η + µ)
{

βµ(2ρ1ρ2 + ρ1 + ρρ1) + βρ(α + ηρ2) + µρ1(2λ + η(ρ + ρ1 + ρ2))
}

βµη(α + λ + η(ρ + ρ1))
−

q(λ + ηρ)(α + λ + η(ρ + ρ2))

ηθ(λ + η(ρ − 1))
+

ρ2

{

βρ1(α + λ + ηρ − θ(ρ + 2ρ2)) + βηρρθ + θρ1(2λ + η(ρ + ρ1 + ρ2))
}

β2θ(α + λ + η(ρ + ρ2))

}

(47)

When R
C < T(0), then S(q) is negative for all q; therefore, qe = 0.

When T(0) ≤ R
C ≤ T(1), then there exists a solution for S(q) = 0 that lies in interval

[0, 1], which gives qe for this case.
When R

C > T(1), incoming secondary users obtain the net benefit for all q. Therefore,
qe = 1 in this case.

Theorem 6. Considering ρ ≥ 1 in the cognitive-radio system, a Nash equilibrium mixed strategy
with entrance probability qe when the secondary users observing the primary band is busy with
the other user exists, where qe, is given by

qe =

{

0, i f R
C < T(0)

qee, i f R
C > T(0)

(48)

where T(0) and T(1) were already given in (43) and (44).

3.3. Cooperative Strategy

The social benefit per unit time when all secondary users follow a mixed policy
entered with probability q while observing that the primary band is either occupied with a
primary user or in energy harvesting is given by

Ssoc = λ∗R − CN (49)

where
λ∗ = λP0(1) + λq(P1(1) + P2(1) + P3(1) + P4(1)) (50)

λ∗ =
λ(αq + η(1 + ρ2q))

α + λq̄ + η(1 + ρ2 + ρq̄)
(51)

Inserting (51) and (35) into (49), social benefit per unit time Ssoc is obtained. The max-
imisation of Ssoc(q) over q, that is, finding social optimal joining probability is very tedious
since (35) is very complicated, as it contains q terms in both numerator and denominator.
So, we continued this numerically by using MATLAB. The following algorithm outlines
the maximisation problem for finding social optimal probability q∗.

Step 1: Fix all parameters α, β, λ, µ, θ, η, R and C.
Step 2: Differentiate Ssoc(q) with respect to q.

Step 3: Take S
′
soc(q) = 0

Step 4: Solve S
′
soc(q) = 0 and obtain values for q.

Step 5: Choose possible values for q by inserting condition λ q < η(1 − qρ)
Step 6: Denote q = q∗

4. Discussion

In this section, analytical results are validated with numerical examples due to
the effects of various parameters in the joining behaviour of a noncooperative strat-
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egy. Figures 3–10 show how the values of parameters α, β, λ, µ, θ, η, R and C influence
equilibrium-joining probabilities. Figures 11–14 show the effect of energy-harvesting rate
η on the total mean number of users in the orbit, total waiting time in the orbit and the
net benefit of users when they follow a noncooperative strategy, and the social benefit
of secondary users when they follow a cooperative strategy. Figure 3 shows that joining
probability monotonically decreases with respect to the arrival rate of primary user α. When
α increases, more primary users join the system, and they can immediately obtain the pri-
mary band by interrupting a secondary user no matter whether they are occupied with
the primary band or trying for the primary band in orbit. The interrupted secondary user
waits in front of the primary band; whenever the service for a primary user is completed by
the primary band, the waiting secondary user obtains the primary band. The waiting time
duration in front of the server makes other secondary users in the orbit unable to occupy
the primary band. This congests the orbit more, and secondary users have less interest in
joining the orbit, since waiting time in the orbit adds a waiting cost for a secondary user.
As a result, fewer secondary users try for the primary band. Figure 4 shows that the joining
probability monotone increases with respect to service rate β of primary users. That means
that, if β increases, more primary users are served; if the service rate is increased, then more
primary users leave the system, which makes secondary users easily occupy the primary
band, which reduces the waiting time in orbit and the waiting cost of secondary users. This
leads to more secondary users joining the system.

Figure 3. Equilibrium-joining probabilities vs. α when λ = 0.4, µ = 1, β = 0.5, θ = 0.7, η = 0.5, C = 1, R = 15.
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Figure 4. Equilibrium-joining probabilities vs. β when α = 0.2, λ = 0.4, µ = 1, θ = 0.7, η = 0.5, C = 1, R = 15.

Figure 5. Equilibrium-joining probabilities vs. λ when α = 0.2, µ = 1, β = 0.5, θ = 0.7, η = 0.5, C = 1,

R = 15.

Figure 6. Equilibrium-joining probabilities vs. µ when α = 0.2, β = 0.5, λ = 0.4, θ = 0.7, η = 0.5, C = 1, R = 15.
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Figure 7. Equilibrium-joining probabilities vs. η when λ = 0.4, α = 0.2, µ = 1, β = 0.5, θ = 0.7, C = 1, R = 15.

Figure 8. Equilibrium-joining probabilities vs. θ when α = 0.2, β = 0.5, λ = 0.4, µ = 1, η = 0.5, C = 1, R = 15.

Figure 9. Equilibrium-joining probabilities vs. R when α = 0.2, λ = 0.4, µ = 1, β = 0.5, θ = 0.7, η = 0.5,

C = 1.
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Figure 10. Equilibrium-joining probabilities vs. C when α = 0.2, β = 0.5, λ = 0.4, µ = 1, θ = 0.7, η = 0.5,

R = 15.

Figure 11. Energy-harvesting rate (η) vs. total mean number of users in orbit.

Figure 12. Energy-harvesting rate (η) vs. total waiting in orbit.
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Figure 13. Energy-harvesting rate (η) vs. expected net benefit of secondary users.

Figure 14. Energy-harvesting rate η vs. social benefit.

Figure 5 shows that the joining probability monotone decreases with respect to the ar-
rival rate of secondary users’ λ. When λ increases, arriving secondary users expect that
the orbit is occupied by either a primary or a secondary user. So, they have less interest
in joining the orbit because of the waiting cost in orbit. This makes fewer secondary
users join the system. Figure 6 shows that joining probability monotone increases with
respect to the service rate of µ of secondary users. This can be interpreted as follows:
if more secondary users are served, the system has far fewer primary users and has more
available service for secondary users, reducing the orbit crowd; this reduces waiting time
in orbit and waiting cost. This makes secondary users have much interest in joining
the system.Figure 7 shows that joining probability monotone increases with respect to
energy-harvesting rate. If η is higher, then the cognitive-radio system works for longer. If it
is with energy, the system can serve for a long period of time. Then, if the period for service
is increased, the number of served users is also increased. Since service rate increases,
the system can serve more users. This make the orbit have fewer users. So, more secondary
users decide to join the system. Figure 8 shows that joining probability monotone increases
with respect to retrial rate θ of secondary users. If θ increases, that is, if secondary users
increasingly make attempts for the primary band, then there may be a chance to obtain it.
This makes the orbit have far fewer secondary users. Due to the far fewer secondary users
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in orbit, incoming secondary users join the system without worrying about the waiting
cost. That leads to more secondary users entering the system. Figure 9 shows that joining
probability monotone increases with respect to reward R for each service. If the R reward
gained after the completion of service increases, then secondary users are not bothered
about the waiting time in orbit and can endure the waiting cost there. For a higher value
of R, more secondary users are inclined to join the system. This makes R an increasing
function. Figure 10 shows that joining probability monotone decreases with respect to
the waiting cost of secondary users in the orbit. If C increases, incoming secondary users
are less inclined to join the system. There may be a chance to balk into the system because of
the higher waiting cost. If cost C is increased, the net benefit obtained by a secondary user
is decreased, even though they expect their net benefit to be at the maximum. Therefore,
they have much less interest in joining the system.

Figure 11 explains the effect of energy-harvesting rate η on the total mean number of
secondary users in the orbit for different values of q. If energy-harvesting rate η increases,
then users in orbit decrease. This happens since, if η is increased, more secondary users
obtain power consumption, which makes users in the orbit quickly obtain power consumption.
Therefore, more users are served; this makes the system less congested, and it can transmit data
over a long interval.

Figure 12 shows the effect of energy-harvesting rate η with respect to the total waiting
time of secondary users in the orbit for different values of q. When η increases, the total
waiting time of secondary users in the orbit decreases. When power consumption is quicker,
secondary users take less time in the system and can quickly leave the orbit. This makes
the system more beneficial to secondary users and reduces waiting cost C for them.

Figure 13 indicates the influence of energy-harvesting rate η in the net benefit of sec-
ondary users when they follow a noncooperative strategy. When η increases, S(q) also
increases. Since the power-consumption rate is increased, this make the secondary users
easily obtain power, and makes a user spend less time in system and orbit, so waiting-time
cost C is decreased, but reward R remains as same for each service. This makes it more
beneficial to secondary users.

Figure 14 shows the effect of energy-harvesting rate η with respect to the social benefit
of other secondary users and the cognitive-radio network (CRN) system. When η increases,
Ssoc(q) also increases. As the power-consumption rate is increased, more users quickly
obtain power and service. This makes the CRN systems more efficient, they can serve more
users, and secondary users obtain power for consumption very quickly.

In a cooperative strategy, optimising social strategy makes the expression very com-
plicated. So, results can be compared using both categories in Figures 13 and 14. When
we compare S(q) and Ssoc(q) for q = 0.1, 0.2, 0.3 and 0.4, S(q) is higher than Ssoc(q). By
imposing proper admission fees on secondary users that enter the system makes S(q)
and Ssoc(q) as equal or Ssoc(q) is greater than S(q). From a system-provider point of view,
the system-parameter service rate and energy-harvesting rate can be adjusted according
to parameters that depends on a user to obtain the profit. The remaining parameters all de-
pend only on users. Here, we present a comparison for both probabilities, i.e., equilibrium
joining probability qe and social optimal probability q∗; corresponding values are given
in Appendix A.2 Tables A1 and A2. Usually, individual joining probability qe is greater
than social optimal probability q∗. A graph is presented to compare qe and q∗ against µ

and η in Figures 15 and 16.
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Figure 15. Comparison of qe and q∗ values against η.

Figure 16. Comparison of qe and q∗ values against µ.

5. Conclusions

In this article, a CR network system was presented equipped with energy harvesting,
treated as a retrial queue with two types of customers where priority is given according to
their category. Through generating a function approach, important system performance
metrics were identified. Queuing theory concepts were incorporated with game theory,
and the Nash equilibrium and socially joining strategies of secondary users were identified
when they acted according to noncooperative and cooperative strategies. Results were
validated with numerical examples for different parameters, and the effect of the energy-
harvesting rate on various performance metrics was presented. Numerical observations
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showed that the joining probability of a social optimisation problem was smaller than
the individual optimisation problem. By imposing appropriate values for R and C, a system
provider could obtain an optimal benefit for secondary users. This concept can be extended
with general service time and for more than one server.
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Abbreviations

The following abbreviations are used in this manuscript:

CRN Cognitive radio networks

PUs Primary users

SUs Secondary users

RF Radio Frequency

Appendix A

Appendix A.1. Values of a, b, and c

b = C
{

β2[η3(µρ(ρ(1 − ρ + ρ1 − ρ2) + ρ2(1 + ρ1) + ρ2θ) + η2(µ(αρ(1 − ρ + ρ1)+

λ(2ρ1 + ρ2 − 2ρ2 + 2ρρ1 − ρρ2 + ρ1ρ2)] + θ(ρ1 + ρ2 − ρ1ρ2
2 + ρρ1 + 2ρρ2 + 2ρ1ρ2) + λρ)+

ηµ(λ(α + λ)(1 − ρ + ρ1) + µρ1θ(1 + ρ + 2ρ2) + θ(2αρ + λρ2))) + β[η3µθ(ρ1(ρ1 + ρ)−
ρρ2(1 + ρ1) + ρ2ρ2(ρ1 + ρθ) + β[η2µθ(ρ1(µρ1 + 2λ + µρ + 2ρ2

2ρ + λ(2ρ1 − ρ2 + 2ρ1ρ22+

µρ1ρ2 + ρρ1ρ2)] + βηλρ1(ρ2(αλ + 2µθ + ρ2)− µρ1ρ2θη2[2λ + η(ρ + ρ2)]
}

−

Rβ2η2µθ[η2(ρ(ρ + ρ2) + η(αρ + 2λρ + λρ2) + (λ(α + λ))

(A1)

a = C
{

β2[η3(µ(ρ(1 + ρ1) + ρ2(1 + ρ2 + ρ + ρ1) + ρθ) + η2µ((λ + α)(1 + ρ + ρ1 + 2ρ2)+

θ(ρ + ρ2))) + ηµ(λ + α)(α + λ + θ)]
}

+ Rβ2[η2µθ((α + λ) + η(ρ + ρ2))]
(A2)

c = Cθ
{

β2(η2µρ(ρ(ρ1 + ρ2)− ρ1(1 + ρ2)
2) + [ηµ(λ(ρ1(1 + ρ) + ρ2(ρ − ρ1ρ2 + 2ρ1)+

µρρ1(1 + ρ + 2ρ2) + αρ2)] + β[η3µρ2ρ1) + η2µρ1(λ
2ρ1 + µρ(ρ + ρ1 + ρ2)+

ρρ2(ρ + 2ρ2 − 3λ)) + ηµρ1(λ(2λ + µ(2λ + 3ρ + ρ1 + ρ2) + 2ρ2
2) + ρρ2))]−

µρ1ρ2[η3(1 + ρ1ρ2 + ρ2) + ηλ(2λ + η(ρ1 + ρ2]
}

(A3)

Appendix A.2. Table Values for qe and q∗ vs. µ and η

Table A1. Comparison of qe and q∗ values against energy-harvesting rate µ.

µ 1 2 3 4

qe 0.5816 0.7655 0.8491 0.8969
q∗ 0.2939 0.47687 0.55396 0.5973

Table A2. Comparison of qe and q∗ values against service rate of secondary users η.

η 0.4 0.6 0.8 1 1.2

qe 0.18009 0.372969 0.489358 0.57454 0.64048
q∗ 0.4844 0.6624 0.7901 0.8870 0.9631
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