
ar
X

iv
:2

20
3.

16
14

3v
1 

 [
ph

ys
ic

s.
ap

p-
ph

] 
 3

0 
M

ar
 2

02
2

1

On the retrieval of forward-scattered waveforms

from acoustic reflection and transmission data with

the Marchenko equation

Joost van der Neut, Joeri Brackenhoff, Giovanni Meles,

Lele Zhang, Evert Slob, Kees Wapenaar

March 31, 2022

J. van der Neut, E. Slob and K. Wapenaar are with the Department of Geoscience and Engineering, Delft

University of Technology, 2600 GA, Delft, The Netherlands.

J. Brackenhoff is with ETH, 8092, Zürich, Switzerland.
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Abstract

A Green’s function in an acoustic medium can be retrieved from reflection data by solving a multidimensional

Marchenko equation. This procedure requires a-priori knowledge of the initial focusing function, which can be

interpreted as the inverse of a transmitted wavefield as it would propagate through the medium, excluding (multiply)

reflected waveforms. In practice, the initial focusing function is often replaced by a time-reversed direct wave, which

is computed with help of a macro velocity model. Green’s functions that are retrieved under this (direct-wave)

approximation typically lack forward-scattered waveforms and their associated multiple reflections. We examine

whether this problem can be mitigated by incorporating transmission data. Based on these transmission data, we

derive an auxiliary equation for the forward-scattered components of the initial focusing function. We demonstrate

that this equation can be solved in an acoustic medium with mass density contrast and constant propagation velocity.

By solving the auxiliary and Marchenko equation successively, we can include forward-scattered waveforms in our

Green’s function estimates, as we demonstrate with a numerical example.

I. INTRODUCTION

It has been shown that the Green’s function between a horizontal acquisition surface and an arbitrary

location x inside an unknown lossless acoustic medium can be retrieved from a single-sided reflection

response by solving a multidimensional Marchenko equation [1]. This insight has led to numerous

applications in the field of applied geophysics; see [2] for an overview. Besides knowledge of the single-

sided reflection response at an acquisition surface, the Marchenko methodology requires access to the

source signature, which can sometimes be retrieved from the recorded data [3], and an initial estimate of

the transmitted wavefield as it would propagate from the acquisition surface to x in absence of (multiple)

reflections. Typically, this initial estimate is obtained from a macro model of the propagation velocity

[4]. The phase [5], [6] and amplitude [7] of the initial estimate can be updated within the Marchenko

framework.

In theory, the wavefield that is used to initialize the Marchenko scheme should include all forward-

scattered waveforms [8], [9], which are those waveforms that do not (ever) change vertical direction,

while propagating from the (horizontal) acquisition boundary to x. In practice, we typically compute the

initial focusing function in a smooth macro model, which does not contain sharp contrasts. Consequently,

forward-scattered waveforms and their associated multiples will not be accurately reconstructed [10], which

can harm the (Marchenko) imaging process [11]. Another problem is posed by thin-layered structures,

generating multiple reflections with short periods that cannot be resolved due to the finite frequency

content of the data [12]. This problem can be mitigated (at least to some extent) by enforcing energy

conservation and minimum-phase conditions [13], [14], [15].

The Marchenko scheme can also be applied to ultrasonic data [16], [17], [18], opening new ways

for biomedical applications, especially below objects with strong contrast such as the human skull [19].

Hence, the Marchenko equation might be tailored to supplement common biomedical modalities, such as

transcranial wavefield focusing [20], brain imaging [21] or transcranial photoacoustics [22]. Remarkably,

some of the acquisition designs that are common for these applications allow the collection of auxil-

iary transmission data. As the transmission response bears an imprint of the desired forward-scattered

waveforms, these data could be key to improve the initial wavefield estimate which is needed to solve the

Marchenko equation. In this paper, we elaborate on this idea. Unlike the Marchenko scheme of [23], which

has been proposed recently for closed-boundary data, we make a sharp distinction between reflection and

transmission data. We start with a brief derivation of the Marchenko equation for reflection data. By

modifying the derivation slightly, we find an auxiliary equation for the recorded transmissions. Our aim is

to resolve forward-scattered waveforms from this equation, in order to improve the initial wavefield that is

used in the Marchenko equation. In this paper, we consider a medium with density contrast and constant

propagation velocity. By solving the auxiliary (transmission-based) equation and the (reflection-based)

Marchenko equations successively, forward-scattered waveforms and their associated multiples can be

included in our Green’s function estimates, as we demonstrate numerically. As an example of a potential

application for our methodology, we consider Marchenko-based solutions of inverse source problems,
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Fig. 1. Configuration: Volume D is enclosed by horizontal boundaries ∂DU and ∂DL (both extending infinitely in the lateral directions).

The coordinate system is also indicated. The medium is non-reflective above ∂DU . Vertical dipole sources are located at an upper boundary

∂D′

U , at an infinitesimal distance ǫ → 0 above ∂DU , and at the lower boundary ∂D′

L, at an infinitesimal distance ǫ → 0 below ∂DL.

Receivers are located at ∂DU .

which are key in photoacoustic imaging [24]. Applications in media with significant velocity contrast are

more challenging and require additional research to be conducted.

II. MARCHENKO EQUATION FOR REFLECTION DATA

In this section, we briefly review a recent derivation of the Marchenko-type representation by [25] for

Green’s function retrieval from reflection data. Consider the configuration in Fig. 1. Let x = (x1, x2, x3) be

a location in 3D space, where the x3-axis is pointing downwards. Volume D is bounded by the horizontal

boundaries ∂DU and ∂DL, which are located at depth levels x3,U and x3,L, respectively. A lossless acoustic

medium is characterized by the propagation velocity c (x) and the mass density ρ (x). We emphasize that

all of our methodologies could be extended to include a free surface at the upper boundary [26], or more

generally, to allow arbitrary medium properties above this level [27]. An acoustic pressure field p (x, t)
can be expressed as a function of space x and time t. This field can be transformed to the frequency

domain by the Fourier transform

p (x, ω) =

∫

+∞

−∞

p (x, t) eiωtdt, (1)

where ω is the angular frequency. Wave propagation is assumed to obey the acoustic wave equation

Lp = iωq, (2)

with q (x, ω) being a volume-injection rate density source. Further, operator L is defined as

L = ∂i
1

ρ
∂i +

ω2

ρc2
, (3)

where ∂i is the spatial derivative in the i-direction and Einstein’s summation convention applies. Let

volume D be source-free, such that ∀x ∈ D : q (x, ω) = 0. We assume that the wavefield is recorded at
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∂DU , where it can be decomposed into downgoing constituents p+ and upgoing constituents p−, such that

p = p+ + p−. It has been shown that the wavefield at any location x ∈ D may then be expressed as [25]

p (x, ω) =

∫

∂DU

FU (x,xU , ω) p
− (xU , ω) dxU +

∫

∂DU

F ⋆
U (x,xU , ω) p

+ (xU , ω) dxU . (4)

In this representation, superscript ⋆ denotes complex conjugation and it is assumed that evanescent waves

at and above ∂DU can be neglected. Further, FU is a so-called focusing function, which focuses at the

upper boundary and obeys wave equation (2) with q = 0. This function is subject to the focusing condition

[25]

FU (x,xU , ω)|x3=x3,U
= δ (xH − xH,U) , (5)

where FU is upgoing at and above ∂DU . In (5), δ is a (two-dimensional) Dirac delta distribution and

xH = (x1, x2) denotes the horizontal coordinates. For the wavefield p, we assume that a vertical dipole

source is located at x′

U ∈ ∂D′

U , just above ∂DU (see Fig. 1). This results in the (dipole) Green’s function

Γ (x,x′

U , ω) =
−2

iωρ′U
∂′

3,UG (x,x′

U , ω) , (6)

where ∂′

3,U is a vertical partial derivative applied at x′

U and ρ′U is the density at ∂D′

U . In (6), G (x,x′

U , ω)
is a Green’s function of a monopole source at x′

U , evaluated at x, obeying (2) with q = δ (x− x
′

U). When

x
′

U approaches ∂DU in the limit ǫ = x3,U − x′

3,U → 0 (see Fig. 1), it can be deduced that the downgoing

part of the dipole response obeys [28]

lim
x′

3,U
→x3,U

Γ+ (x,x′

U , ω)

∣

∣

∣

∣

∣

x3=x3,U

= δ
(

xH − x
′

H,U

)

. (7)

When we substitute p (x, ω) = Γ (x,x′

U , ω) into (4) and apply (7), it follows that

Γ (x,x′

U , ω) =

∫

∂DU

FU (x,xU , ω) Γ
− (xU ,x

′

U , ω) dxU + F ⋆
U (x,x′

U , ω) . (8)

In this representation, Γ− (xU ,x
′

U , ω) can be interpreted as the (upgoing) reflection response of the medium

recorded at xU , stemming from a dipole source at x′

U . We wish to express this result in the time domain

with help of the inverse Fourier transform, which is defined for an arbitrary wavefield as the inverse of

(1); that is [29]

p (x, t) =
1

π
ℜ

[
∫

∞

0

p (x, ω) e−iωtdω

]

, (9)

where it is assumed that p (x, t) is real-valued and ℜ denotes the real part. With help of these definitions,

(8) can be rewritten in the time domain as

ΓU = (RU + Z)FU . (10)

In this expression, we have ΓU = Γ (x,x′

U , t), while RU is an operator for multidimensional convolution

with the reflection response Γ− (xU ,x
′

U , t) at the upper boundary, obeying

RUFU =

∫

∂DU

FU (x,xU , t) ∗ Γ
− (xU ,x

′

U , t) dxU , (11)

where ∗ denotes temporal convolution. Further, Z is an operator for time reversal.
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Our goal is to retrieve the focusing function from (10). To achieve this goal, we require some prior

knowledge about the Green’s function Γ (x,x′

U , t). More specifically, we assume that, for each (x,x′

U)-
pair, the traveltime tUd (x,x

′

U) of the first (or direct) arrival of this Green’s function can be estimated

from a macro velocity model [4] (in case of a triplicated wave, tUd is the traveltime of the first onset

[30]). Based on these traveltimes, we design a window operator ΘU (also referred to as a projector [31])

that removes all arrivals at t ≥ tUd − tǫ (note that our window is not symmetric in time, in contrast to

various previous publications). Here, subscript U refers to the upper boundary, where the window operator

is applied. In our formulation, a small additional time-shift tǫ has been included to account for the finite

frequency content of the data. In practice, we typically choose tǫ as half the temporal support of the

source wavelet [32]. Based on causality, we assume that

ΘUΓU = 0. (12)

In various publications on geophysical applications of the Marchenko equation, the medium is assumed

to be layered with moderately curved interfaces [1], [2]. Under these conditions, the focusing function

consists of a time-reversed direct wave, which is timed at −tUd, and a coda, which is timed thereafter. A

common interpretation is that the direct wave focuses at x when injected into the medium from the upper

boundary [28], while the coda is associated with all (primary and multiple) reflections that are generated

between this boundary and x. In media with increasing propagation velocity (which are common in

geophysical settings), problems arise at long offsets, due to incorrect handling of refracted waves and

post-critical reflections [9], [33]. In the presence of sharp discontinuities in the lateral direction, such as

point diffractors, the focusing function contains additional forward-scattered components (i.e. waveforms

that have not altered their vertical propagation direction between the upper boundary and x) that are

(partly) timed before −tUd [8], [10], [11]. To allow these (unknown) components in our formulation, we

formally partition the focusing function in an initial focusing function FUi, containing all waveforms in

the interval (−∞,−tUd + tǫ], and a coda FUm, containing all waveforms in the interval (−tUd + tǫ,∞).
With help of these definitions, we may write

FU = FUi + FUm. (13)

When the operators Z and ΘU are applied successively to the focusing function, it follows from these

definitions that

ΘUZFU = ΘUZFUm. (14)

When we substitute (13) into (10) and apply operator ΘU (from the left) to both sides of the result, it

follows with help of (12) and (14) that

−ΘURUFUi = ΘU (RU + Z)FUm. (15)

This result is generally known as the Marchenko equation. If the initial focusing function FUi is known,

(15) can be solved for the coda FUm. It is common practice to approximate the initial focusing function

FUi for any relevant (x,x′

U)-pair by a time-reversed direct wave FUd, which is typically computed in an

approximate macro velocity model [4]. We refer to this practice as the direct-wave approximation. Under

this approximation, we ignore additional waveforms FUa that are (mostly) related to forward-scattering,

which we define formally as

FUa = FUi − FUd. (16)

Substitution of FUi = FUd + FUa into (15) yields

−ΘURU (FUd + FUa) = ΘU (RU + Z)FUm. (17)
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By assuming FUa = 0 (i.e. the direct-wave approximation), the coda FUm can be resolved from (17)

by linear inversion. A common strategy for the inversion is to rewrite the equation by a Neumann series

expansion, which is guaranteed (at least in 1D for infinite frequency content) to converge as long as the

spectral radius of operator RU is less than one [31], [34]. However, a variety of alternative numerical

solvers might be employed [31], [34], [35], [36]. For the construction of operator RU , we require access to

a complete, well-sampled reflection response [37], [38] and sufficient aperture [39]. Modifications of the

methodology have been proposed to allow for gaps in the acquisition design [40] and imperfect sampling

[41]. Once the coda FUm is resolved, the complete focusing function can be constructed with (13), and

eventually the Green’s function follows from (10). In this section, we have derived a Marchenko equation

for (vertical) dipole Green’s functions, see (6). However, the theory can be modified for the retrieval of

monopole Green’s functions, see [25].

III. AUXILIARY EQUATION FOR TRANSMISSION DATA

It is well-known that forward-scattered waveforms can not be accurately retrieved under the direct-

wave approximation [8], [9], [10], [11]. Ideally, we would like to add the additional components FUa

to FUd, prior to solving the Marchenko equation (17). We show in the following that, when auxiliary

transmission data ara available, some of these components can be recovered. We acquire these data by

placing additional dipole sources at the lower boundary ∂D′

L (which is located just below ∂DL, see Fig.

1). We define their associated (dipole) Green’s functions as

Γ (x,x′

L, ω) =
−2

iωρ′L
∂′

3,LG (x,x′

L, ω) , (18)

with x
′

L ∈ ∂D′

L, ∂′

3,L denoting the vertical partial derivative at x
′

L and ρ′L being the density at ∂D′

L.

Here, G (x,x′

L, ω) is a monopole Green’s function, obeying (2) with q = δ (x− x
′

L). When we substitute

p = Γ (x,x′

L, ω) into (4), it follows ∀x ∈ D that

Γ (x,x′

L, ω) =

∫

∂DU

FU (x,xU , ω) Γ
− (xU ,x

′

L, ω) dxU , (19)

where we used the fact that the medium is non-reflective above ∂DU , such that Γ+ (x,x′

L, ω)|x3=x3,U
= 0.

In this representation, Γ− (xU ,x
′

L, ω) can be interpreted as the (upgoing) transmission response of the

medium recorded at xU , stemming from a dipole source at x′

L. After inverse Fourier transformation, (19)

can be compactly rewritten as

ΓL = TLUFU , (20)

where ΓL = Γ (x,x′

L, t). Further, TLU is an operator for multidimensional convolution with the transmis-

sion response, obeying

TLUFU =

∫

∂DU

FU (x,xU , t) ∗ Γ
− (xU ,x

′

L, t) dxU . (21)

Once more, we assume that the traveltimes tLd (x,x
′

L) of the first (or direct) arrivals of Γ (x,x′

L, t) can

be estimated from a macro velocity model, such that an operator ΘL can be constructed which mutes all

arrivals at t ≥ tLd − tǫ (where tǫ is a small timeshift, as defined earlier and subscript L denotes the lower

boundary, where the window operator is applied). Akin to (12), causality leads to the assumption that

ΘLΓL = 0. (22)

When we apply operator ΘL to (20), it follows straight from (22) that FU should be in the nullspace of

operator ΘLTLU :
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Fig. 2. Let xP be a scattering point in a medium with constant propagation velocity, generating a forward-scattered event with traveltime

td (xU ,xP )+td (xP ,x
′

L) (where x
′

L is a source at ∂D′

L and xU is a receiver at ∂DU ). (a) Situation where x3,P > x3. When the transmission

data are convolved with the direct focusing function FUd (x,xU , t), a physical event is generated with traveltime td (xP ,x
′

L) + td (xP ,x).
This process is illustrated in the figure, where the solid and dashed black lines indicate causal and acausal raypaths, respectively (the

dashed grey lines designate ∂DU and ∂D′

L, while the black dots indicate specific locations). From the triangle inequality, it follows that

td (xP ,x
′

L)+td (xP ,x) ≥ td (x,x
′

L). Hence, the event maps at or after the direct arrival of ΓL = Γ (x,x′

L, t), resulting in ΘLTLUFUd = 0.

(b) Situation where x3,P < x3. Now, the generated event is a non-physical arrival with traveltime td (xP ,x
′

L)−td (xP ,x). From the triangle

inequality, it follows that td (xP ,x
′

L) ≤ td (xP ,x) + td (x,x
′

L), or td (xP ,x
′

L) − td (xP ,x) ≤ td (x,x
′

L). Hence, the event maps before

or at the direct arrival of ΓL = Γ(x,x′

L, t), resulting in ΘLTLUFUd 6= 0 as long as xP , x and x
′

L are not collinear. In the collinear case,

FUa overlaps with FUd (i.e. the propagation direction is not altered by scattering at xP ) and cannot be recovered.

ΘLTLUFU = 0. (23)

We may substitute FU = FUd + FUa + FUm into (23) and rewrite the result strategically as

−ΘLTLU (FUd + FUm) = ΘLTLUFUa. (24)

We refer to (24) as our auxiliary equation for transmission data. In this paper, we investigate if this

equation can be solved in a medium with density contrast and constant propagation velocity. At first

glance, the left-hand side of (24) seems to depend on both FUd and FUm. However, since the waveforms

in FUm are timed after the time-reversed direct wave, they reside mainly in the nullspace of ΘLTLU .

Therefore, we assume that −ΘLTLUFUm ≈ 0. Consequently, (24) can be rewritten / approximated as

−ΘLTLUFUd = ΘLTLUFUa. (25)

In Fig. 2(a), we show that the presence of forward-scattered waveforms which are generated below x

yield −ΘLTLUFUd = 0. On the other hand, when forward-scattered waveforms are generated above x,

we find −ΘLTLUFUd 6= 0, as illustrated in Fig. 2(b). Based on (25), these data should match ΘLTLUFUa,
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resulting in a linear inverse problem that can be solved for FUa, for instance by LSQR [42]. Since FUi

and FUd are only allowed to be non-zero at (−∞,−tUd + tǫ], so does FUa = FUi − FUd, which we

enforce during the inversion by restricting the unknown quantity to this time interval. Forward-scattered

components can only be resolved if they are kinematically separated from the direct wave, such that they

reside outside the nullspace of ΘLTLU . The dependence of operator ΘL on tǫ reveals that the separation

of waveforms that can be recoverd from waveforms that cannot be recovered is intimately related to

the frequency content of the data. This observation also means that the transmission loss that forward-

scattering imposes on the direct wave should be formally included in our definition of FUd. In practice,

we neglect these effects by approximating FUd in a macro velocity model, which could lead to amplitude

mismatches in the retrieved wavefields.

Once FUa is resolved, we may evaluate the Marchenko equation again with the (conventional) workflow

that was described in the previous section. However, this time we include FUa in the left-hand side of (17),

such that we can retrieve (estimates of) waveforms in the coda FUm beyond the direct-wave approximation.

IV. NUMERICAL EXAMPLE

In this section, we apply the proposed methodology to ultrasonic data from a 2D numerical experiment in

the 0−150kHZ frequency range. In Fig. 3, we show our synthetic model, which contains two rectangular

density contrasts. These contrasts have been intentionally designed such that their corners (labeled as

A,B, ...,H) and vertical interfaces (labeled as AB, CD, EF, GH) generate forward-scattered waveforms

that are not handled well by the conventional Marchenko methodology, which we want to improve on by

incorporating auxiliary transmission data. Our aim is to retrieve FU , ΓU and ΓL at the specific location

xI = (0,−0.0205m), which is indicated in Fig. 3.

As a wavelet, we take the second derivative of a Gaussian function (also known as a Ricker wavelet)

with a 50kHz peak frequency (for the truncation operators, we choose tǫ = 20µs). Our traces consist of

1024 time samples with dt = 31

3
µs. Reflection and transmission data are generated by solving an interface

integral equation [43], for which we discretize the mass density model on a spatial grid with a spacing

of 2mm. In Fig. 4, we show sections of these data, as well as an analytic Green’s function Γ0 that we

computed in a background homogeoneous medium.

For the estimation of the direct focusing function, we would like to reverse the analytic Green’s function

Γ0 from 4(c) in time. Unfortunately, this procedure does not take care of transmission loss, which leads

to an unacceptable amplitude error. Although methodologies exist to predict the transmission losses from

the data [7] (even in angle-dependent mode), we mitigate this problem here with help of a single (angle-

independent) scaling factor α, which is determined by

α (xI) =

∫ ∫

∂DU
Γ0 (xI ,xU , t)G0 (xU ,xI , t) dxUdt

∫ ∫

∂DU
Γ0 (xI ,xU , t)G (xU ,xI , t) dxUdt

. (26)

In the numerator of (26), we focus a Green’s function G0 in the background medium at xI , while in

the denominator, we do the same with a Green’s function G that is computed in the actual medium.

The amplitude ratio between both focusing processes determines our scaling factor α, which can be

interpreted as an estimate of the average inverse transmission loss for propagation between ∂D′

U and xI .

By this procedure, we find α = 1.1141 for the focal point that is specified in Fig. 3. The direct focusing

function is then estimated as FUd ≈ αZΓ0 and is shown in Fig. 5(a).

First, we solve Marchenko equation (17) in a conventional manner, using reflection data only. We do

so by evaluating the first 10 terms of its associated Neumann series under the direct-wave approximation

FUa = 0, see Fig. 5(b) (the convergence curve can be found in Fig. 11(a)). The retrieved coda FUm is

added to FUd and the result is shown in Fig. 5(c).

For our reference, we compute the desired Green’s function ΓU directly from the model parameters by

solving an interface integral equation [43], see Fig. 6(a). In Fig. 6(b), we show the same Green’s function,

as retrieved by the Marchenko equation under the direct-wave approximation FUa = 0 (which is obtained
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m

)

Fig. 3. Configuration for the 2D numerical experiment. The medium has a constant velocity of 1500m/s and a background density

ρwhite = 1000kg/m3. The two black rectangles are density anomalies with ρblack = 2000kg/m3. The gray dots (labeled as A, B, ..., H)

denote sharp corners that generate forward-scattered waveforms. The upper boundary ∂D′

U contains 101 coinciding vertical force (dipole)

sources and pressure receivers with a spacing of 5mm. The lower boundary ∂D′

L contains 101 vertical force (dipole) sources with a spacing

of 5mm. Additional taper zones have been added to these arrays at the intervals x1 ∈ [−0.5m,−0.25m) and x1 ∈ (−0.25m, 0.5m] to

eliminate truncation artefacts of the spatial integrals. The black dot marks the specific location xI = (0,−0.0205m), where we retrieve our

focusing function and Green’s function.

(a)
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Fig. 4. (a) Reflection response: ∀x′

U ∈ ∂D′

U : Γ− (x0,x
′

U , t). (b) Transmission response: ∀x′

L ∈ ∂D′

L : Γ− (x0,x
′

L, t). In both panels,

we have set x0 = (0,−0.120m) as a reference location. (c) Analytic dipole Green’s function in a homogeneous background medium:

∀x′

U ∈ ∂D′

U : Γ0 (xI ,x
′

U , t). All panels are convolved with the wavelet and clipped at 10% of the maximum amplitude.
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Fig. 5. (a) Direct focusing function FUd. (b) Coda of the focusing function FUm as retrieved by solving the Marchenko equation under the

direct-wave approximation FUa = 0. (c) Updated focusing function FU , as obtained by adding the retrieved coda FUm to FUd. All panels

are clipped at 10% of the maximum amplitude of the direct wave.

by substituting the retrieved focusing function from Fig. 5(c) into (10)). The difference between the

retrieved and reference Green’s functions is given in Fig. 6(c). Events AB′ and CD′, which are indicated

in Fig. 6, relate to forward-scattered waveforms that have not been retrieved accurately (where ′ is used to

indicate forward-scattered waveforms). These events are mainly generated by the vertical interfaces AB
and CD (as indicated in Fig. 3). A similar statement can be made about the (weaker) events EG⋆ and

FH⋆, which seem to be related to the reflections of event AB′ at the horizontal interfaces EG and FH in

Fig. 3 (where ⋆ is used to indicate reflected waveforms).

The Green’s function ΓL can be estimated by applying the transmission operator to the retrieved focusing

function FU , see (20). In Fig. 7, we compare the result of this procedure with a reference Green’s function

that we found by solving an interface integral equation [43]. Events EF′ and GH′ relate to forward-scattered

waveforms that have been retrieved accurately. These events are mainly generated by the vertical interfaces

EF and GH (as indicated in Fig. 3). Based on Fig. 2(a), it is clear that these waveforms map in the interval

[tLd − tǫ,∞) (i.e. below the green curve in the figure). Hence, they will be in the nullspace of the operator

ΘLTLU . On the other hand, events AB× and CD× are artefacts that are generated by forward-scattered

waveforms from the vertical interfaces AB and CD in Fig. 3 (where × is used to indicate non-physical

events). We confirm that these artefacts map mostly in the interval (−∞, tLd − tǫ) (i.e. above the green

curve in the figure), as we already predicted in Fig. 2(b). Hence, ΘLTLUFU 6= 0, which violates (23).

This observation can be exploited to retrieve the missing components of the focusing function FUa from

the auxiliary equation, as we do shortly. Further, we have indicated A•, B•, C• and D• in Fig. 7(c). We

interpret these as diffractions (indicated by •) from the corners A, B, C and D in Fig. 3, which have not

been retrieved accurately.

Next, we show how the missing components of the focusing function can be resolved from the

transmission data. To achieve this, we solve (25) for FUa on the interval (−∞,−tUd + tǫ] by 20 iterations

of LSQR [42] (the convergence curve is provided in Fig. 11(b)). We add our solution to FUd and show the

result in Fig. 8(a). Then, we use FUd and FUa to invert Marchenko equation (17) for FUm by evaluating

the first 10 terms of its associated Neumann series (the convergence curve is provided in Fig. 11(c),

which is not too different from Fig. 11(a)). This results in a renewed estimate of the focusing function
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Fig. 6. (a) Reference Green’s function ΓU , as obtained by forward modeling. (b) Same Green’s function, as retrieved by solving Marchenko

equation under the direct-wave approximation FUa = 0. (c) Difference between Figs 6(b) and 6(a). The green curve marks the traveltime

of tUd − tǫ. All panels are clipped at 10% of the maximum amplitude of the direct wave.
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Fig. 7. (a) Reference Green’s function ΓL, as obtained by forward modeling. (b) Same Green’s function, as retrieved by solving Marchenko

equation under the direct-wave approximation FUa = 0. (c) Difference between Figs 7(b) and 7(a). The green curve marks the traveltime

of tLd − tǫ. All panels are clipped at 10% of the maximum amplitude of the direct wave.
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Fig. 8. (a) Initial focusing function FUi as obtained by adding FUa (which is retrieved by least-squares inversion of (25)) to FUd. (b)

Focusing function FU as retrieved by solving the Marchenko equation with FUi = FUd + FUa. (c) Difference between Figs 8(b) and 5(c).

Further, all settings are similar as in Fig. 5.

FU = FUd +FUa +FUm, see Fig. 8(b). In Fig. 8(c), we show the difference between Figs. 8(b) (obtained

with transmissions) and 5(c) (obtained without transmissions). Several events can be observed in this

figure, not only on the interval (−∞,−tUd + tǫ] (i.e. updates of FUa), but also on (−tUd + tǫ,∞) (i.e.

updates of FUm). These events help us to improve the retrieval of forward-scattered waveforms and their

associated multiple reflections in the Green’s functions ΓU and ΓL, as we demonstrate next.

In Fig. 9(a), we show the Green’s function ΓU , as obtained by substituting our renewed estimate

of the focusing function into (10). In Fig. 9(b),we show the difference between Figs. 9(a) (obtained

with transmissions) and 6(b) (obtained without transmissions). As indicated in this figure, the forward-

scattered waveforms that were indicated as AB′ and CD′, as well as EG⋆ and FH⋆ (relating to higher-order

scattering), can be recognized. In Fig. 9(c), we show the difference between Fig. 9(a) and the reference

Green’s function in Fig. 6(a). By comparing this result with Fig. 6(c), we see that the forward-scattered

waveforms (AB′ and CD′) and some of their associated multiples (EG⋆ and FH⋆) have been better

resolved. We also observe that our result is not optimal, which we assume to be attributed to the incorrect

amplitude spectrum of the direct focusing function (where transmission losses have not been handled

well) and finite aperture.

We may also retrieve the Green’s function ΓL by substituting our renewed estimate of the focusing

function into (20). The result of this operation (including the associated difference plots) is shown in Fig.

10. Comparing this result with Fig. 7, it is clear that the artefacts AB× and CD× have been suppressed,

as enforced by the inversion of (25). We also observe that the diffractions A• and C• have been retrieved

better, which is not so much the case for the diffractions B• and D•. The latter difference might be

attributed to finite aperture. More specifically: the Fresnel zones [44] that are required for the retrieval of

B• and D• are more extended and closer to the edges of the array compared to the those of A• and C•.

Consequently, they seem to suffer more from the finite aperture of the acquisition array.
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Fig. 9. (a) Green’s function ΓU , as retrieved by solving the auxiliary equation and the Marchenko equation successively. (b) Difference

between Figs 9(a) and 6(b). (c) Difference between Figs 9(a) and 6(a). Further, all settings are similar as in Fig. 6.
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Fig. 10. (a) Green’s function ΓL, as retrieved by solving the auxiliary equation and the Marchenko equation successively. (b) Difference

between Figs 10(a) and 7(b). (c) Difference between Figs 10(a) and 7(a). Further, all settings are similar as in Fig. 7.
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Fig. 11. Frobenius norm of the residual (normalized by the residual at iteration 0) when solving (a) the Marchenko equation under the

direct-wave approximation FUa = 0, (b) the auxiliary equation and (c) the Marchenko equation with an updated initial focusing function

FUi = FUd + FUa.

V. APPLICATION TO INVERSE SOURCE PROBLEMS

As a potential application of the proposed method, we focus our attention on inverse source problems,

which are common in photoacoustic imaging [24]. We consider the configuration in Fig. 1 and assume

that a distribution of sources is located inside the volume D. We characterize this source distribution

as qe (x, t), where subscript e stands for “experiment”. An important assumption is that all sources are

ignited at t = 0, with a zero-phase wavelet (which might have to be enforced in practice by additional

preprocessing). Let ∀xU ∈ ∂DU : pe (xU , t) be the recorded wavefield at the upper boundary. Our goal is

to reconstruct the initial pressure distribution ∀x ∈ D : pe (x, t = 0) from these recordings. A common

strategy is to propagate the data back into the volume with Green’s functions from a (typically smooth)

macro model [45]. However, a range of alternative solutions exists [46]. When reflection and transmission

data are available, we may compute focusing functions by the methodology that we have derived in this

paper and rely on (4) for the required wavefield reconstruction process. Unfortunately, (4) can only be

applied to a wavefield p if its associated source distribution q is zero throughout the volume D, which is

obviously not the case for p = pe and q = qe. To overcome this problem, we symmetrize the wavefield

by the following operation

ph (x, t) = pe (x, t) + pe (x,−t) . (27)

Here, subscript h stands for “homogeneous”, referring to the fact that ph is a solution to the homogeneous

(= source-free) wave equation [47], [16]; i.e. ph satisfies (2) with q = 0. Consequently, we can use (4)

to reconstruct ph throughout volume D, given our recorded data at the upper boundary ∂DU . To facilitate

this process, we substitute p = ph into (4) and rewrite the result in the time domain as
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ph (x, t) =

∫

∂DU

FU (x,xU , t) ∗ p
−

h (xU , t) dxU +

∫

∂DU

FU (x,xU ,−t) ∗ p+h (xU , t) dxU . (28)

Next, we realize that ∀xU ∈ ∂DU : p−h (xU , t) = pe (xU , t) and p+h (xU , t) = pe (xU ,−t). Substitution

into (28) yields

ph (x, t) =

∫

∂DU

FU (x,xU , t) ∗ pe (xU , t) dxU +

∫

∂DU

FU (x,xU ,−t) ∗ pe (xU ,−t) dxU . (29)

We can utilize this result to reconstruct the symmetrized data ph throughout the volume D from the

recordings pe at the boundary ∂DU . To retrieve the initial pressure field, we may evaluate

pe (x, t = 0) =
1

2
ph (x, t = 0) , (30)

where we used (27). In the following, we will demonstrate the potential of the proposed strategy with a

simple synthetic example, based on the configuration that we presented earlier in Fig. 3. We choose the

following (point) source distribution: qe (x, t) = δ (x− xI)S (t), where xI = (0,−0.0205m) and S (t) is

the second derivative of a Gaussian wavelet with a 50kHz peak frequency, as in our previous example.

We compute the response ∀xU ∈ ∂DU : pe (xU , t) of this source distribution by forward modeling. Then,

we reconstruct the symmetrized wavefield ∀x ∈ D : ph (x, t) by (29), with help of focusing functions

that we retrieve from reflection and transmission data. Finally, we evaluate 1

2
ph (x, t = 0) to estimate the

initial pressure field pe (x, t = 0), following (30).

For reference, we start with data ∀xU ∈ ∂DU : pe (xU , t) that was computed in a homogeneous

medium with c = 1500m/s and ρ = 1000kg/m3 (i.e. without mass density contrast). We reconstruct

the initial pressure distribution from these data, where we let FUd act as our focusing function. The result

of this procedure is shown in Fig. 12(a). Since the model has not generated any scattered or reflected

waveform, FUd is identical to the complete focusing function (i.e. both FUa and FUm are zero in this case).

Consequently, our initial result cannot be improved by any of the approaches that we have discussed in

this paper. Next, we repeat the exercise for data that were computed in the heterogeneous medium of Fig.

3, but we still choose FUd as our focusing function for the evaluation of (29). The image that is obtained

by this procedure is shown in Fig. 12(b). Compared to Fig. 12(a), we observe two kinds of artefacts.

Artefact EG⋆ is related to reflections from the horizontal interface EG (see Fig. 3). This phenomenon can

be understood as follows: the initial radiation from xI has reflected at the interface EG; this reflection

was recorded at ∂DU and has been backpropagated by FUd, generating a mirror image below xI . Artefacts

AB× and CD× are related to forward scattering. These phenomena can be understood as follows: the initial

radiation from xI has interacted with the (corners and vertical interfaces of) the density contrast above

xI , generating forward-scattered waveforms. These waveforms have been backpropagated by FUd (where

forward-scattered components have not been accounted for), resulting in additional events / artefacts (all

intersecting at xI). Next, we solve the Marchenko equation under the direct-wave approximation FUa = 0
and we use the retrieved focusing functions to evaluate (29). This leads to the image in Fig. 12(c). Note

that the reflection-based artefact EG⋆ has been removed by this procedure, but the artefacts from forward

scattering remain. Finally, we compute the focusing functions by solving the auxiliary equation and the

Marchenko equation successively, leading to the image in Fig. 12(d). This time, both types of artefacts

have been suppressed significantly. It is also observed that some weaker artifacts have emerged in the

image, which is indicated as noise in Fig. 12(d). To quantify the quality of our results, we introduce a

global normalized root-mean-square error as

E =

√

∫

D
|I (x)− I0 (x)|

2 dx
∫

D
|I0 (x)|

2 dx
. (31)
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Fig. 12. Reconstructed initial pressure field ∀x ∈ D : pe (x, t = 0). In panel (a) (which serves as a reference for the other panels), data

have been computed in a homogeneous background medium and FUd acted as our focusing function. In panels (b)-(d), data have been

computed in the heterogeneous medium of Fig. 3. (b) FUd acted as our focusing function. (c) The focusing function is obtained by solving

the Marchenko equation under the direct-wave approximation FUa = 0. (d) The focusing function is obtained by solving the auxiliary

equation (with FUm = 0) and the Marchenko equation successively. All panels are clipped at 10% of the maximum amplitude.

Here, I is our image and I0 is the associated reference image in Fig. 12(a). For the image I in Fig.

12(b), we find E = 0.246. This number is reduced significantly to E = 0.079 for the image in Fig.

12(c), and down to E = 0.059 in case of Fig. 12(d). This reduction of E suggests that the result has

improved. In our numerical example, we have chosen a monopole point source at xI as our unknown

source distribution. However, the linearity of the equations allows for arbitrary source distributions and

mechanisms, as has been demonstrated in equivalent geophysical problems [48]. It is remarkable that -

apart from the propagation velocity - no medium parameters are required for the reconstruction.

VI. DISCUSSION

In this paper, we have proposed to partition the focusing function at an arbitrary location x ∈ D as

FU = FUd + FUa + FUm. (32)

Here, FUd is the direct focusing function, while FUa and FUm contain all other waveforms in the intervals

(−∞,−tUd + tǫ] and (−tUd + tǫ,∞), respectively. We have assumed that FUm resides in the nullspace of

ΘLTLU , such that it can be excluded from the auxiliary equation, while FUa is not in this nullspace, and

hence can be recovered. The latter assumption is motivated by Fig. 2(b), where we illustrate that forward-

scattered waveforms which are generated above x are not in the nullspace of ΘLTLU . To investigate
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the validity of the abovementioned assumptions (especially in media with additional velocity contrast),

it would be highly valuable to model FU directly from the medium parameters, for instance by depth

extrapolation [49].

From the illustration in Fig. 2(b), it is clear that forward-scattered waveforms can only be retrieved from

the auxiliary equation if they are sufficiently delayed (with respect to the direct wave). On a similar note,

we have learned before that reflected waveforms can only be retrieved from the Marchenko equation if

they are sufficiently delayed [12]. It has been shown that the latter problem can be mitigated by introducing

an augmented focusing function [13], [14], [15]. It might be worthwhile to investigate if a similar strategy

could also be applied to the auxiliary equation.

In our study, we have not investigated the effects of finite spatial aperture, which can have a detrimental

effect on Marchenko-based Green’s function retrieval [38], [39]. In our numerical examples, potential

problems have been circumvented by choosing long spatial arrays and applying significant spatial tapers.

With shorter arrays, it is well-understood that particular components of the Green’s functions cannot be

retrieved when the stationary points of the underlying integrals are not properly evaluated [10].

Further, we have chosen to demonstrate the validity of our workflow for 2D wave propagation only.

Various publications have emerged recently on the implementation of the Marchenko equation for 3D

wave propagation problems [50], [51], [52]. Building on these developments, we prospect that a 3D

implementation of the auxiliary equation should also be feasible.

We emphasize that our methodology has been derived under the assumption that the medium is lossless.

By utilizing two-sided (rather than single-sided) reflection data and solving an alternative system of

Marchenko equations, Green’s functions can also be retrieved in dissipative media [53]. A potential

direction of further research is to include losses in our formulation of the auxiliary equation, such that

forward-scattered waveforms and their associated multiples can also be retrieved in dissipative media.

Such an approach might be beneficial not only for acoustic problems, but also for related applications

that involve electromagnetic wave propagation, where losses typically cannot be neglected [54].

Last but not least, our work may have an impact on elastodynamic Green’s function retrieval in solid

media (in those fortunate cases where auxiliary transmission data are available). Although the underlying

representations of the Marchenko equation are well established for elastodynamic wave propagation [55],

[56], it remains challenging to retrieve elastodynamic focusing functions in practice, since they overlap

partly with their associated Green’s functions in the time-space domain (due to the different velocities

of P- and S-waves) and their forward-scattered components are generally unknown [57]. It seems likely

that these problems can be mitigated (at least to some extent) with help of auxiliary transmission data,

by extending the theory from our paper to the elastodynamic case.

VII. CONCLUSION

Marchenko-type focusing functions are useful tools to allow Green’s function retrieval from single-

sided reflection data. We can partition the focusing function in an intial focusing function and a coda.

The initial focusing function contains the inverse direct wave and all preceding waveforms, which are

typically associated with forward scattering. The coda contains all events after the inverse direct wave,

which are typically associated with (primary and multiple) reflections. Given the initial focusing function,

we can retrieve the coda from reflection data by solving a multidimensional Marchenko equation. In

practice, the initial focusing function is often approximated by a time-reversed direct wave, which is

generally computed in a macro velocity model. Under this (direct-wave) approximation, forward-scattered

components of the Green’s function and their associated multiples cannot be successfully recovered. In

this paper, we have proposed to mitigate this problem by incorporating additional transmission data.

We derived an auxiliary equation, which can be used to resolve the missing components of the initial

focusing function from the transmission data by least-squares inversion. Once this is done, we can use

our updated initial focusing function and the reflection data to solve the Marchenko equation beyond

the direct-wave approximation. This procedure can be used to retrieve forward-scattered constituents of
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the Green’s function in a medium with density contrast and constant propagation velocity, as we have

demonstrated numerically. Implementing this methodology in a medium with velocity contrast is more

challenging and requires additional research to be conducted.
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