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Abstract. The general theories of the derivation of inverses of functions from their power series and
asymptotic expansions are discussed and compared. The asymptotic theory is applied to
obtain asymptotic expansions of the zeros of the Airy functions and their derivatives, and
also of the associated values of the functions or derivatives. A Maple code is constructed
to generate exactly the coefficients in these expansions. The only limits on the number of
coefficients are those imposed by the capacity of the computer being used and the execution
time that is available.
The sign patterns of the coefficients suggest open problems pertaining to error bounds for
the asymptotic expansions of the zeros and stationary values of the Airy functions.
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1. Introduction and Summary. The work described in this paper originated
in a project at the National Institute of Standards and Technology to update and
extend the well-knownHandbook of Mathematical Functions published by the National
Bureau of Standards in 1964 [5]. Almost all of the special functions covered in this
handbook have real and/or complex zeros, and one of the tools for the computation
of these zeros is the reversion of asymptotic expansions for the functions.

The construction of inverses of analytic functions is a well-understood branch of
complex analysis, and we begin in section 2 by stating the relevant theorems. Less well
known is the corresponding theory for functions represented by asymptotic expansions
in the neighborhood of a singularity: section 2 continues with a description of available
theory for these problems.

In section 3 we show how to apply the theory of section 2 to construct the asymp-
totic expansions of the real and complex zeros and stationary values of the Airy func-
tions, together with the associated values of the functions or their first derivatives.
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In section 4 we describe results that have been obtained for the Airy functions with
the aid of a computer algebra system. The number of coefficients in the asymptotic
expansions greatly exceeds the number already known; indeed, the only restraints on
the number of coefficients that we are able to generate exactly are the capacity of the
computer being used and the time available for computations. At the end of section 4
we discuss the problem of constructing error bounds for the asymptotic expansions,
and state open problems for these bounds together with a conjecture.

Our computer algebra code for generating the coefficients in the asymptotic ex-
pansions described in sections 3 and 4 is available in the appendix.

2. Inversion and Enumeration Theorems.
Theorem 2.1. Let f(z) be analytic at z = z0, f(z0) = w0, and f ′(z0) �= 0.1

Then the equation w = f(z) has a unique solution z = F (w) such that F (w0) = z0
and F (w) is analytic at w = w0.

This is a standard theorem of complex analysis, proofs of which will be found, for
example, in [2, Chapter 6] and [12, Chapter 7]. Since f(z) and F (w) are analytic at
z = z0 and w = w0 they can be expanded in power series

f(z) = f0 + f1(z − z0) + f2(z − z0)2 + · · · ,(2.1)
F (w) = F0 + F1(w − w0) + F2(w − w0)2 + · · ·(2.2)

that converge in the neighborhoods of z0 and w0, respectively. Clearly F0 = F (w0) =
z0, F1 = F ′(w0) = 1/f ′(z0) = 1/f1, and higher coefficients Fj can be found by
equating coefficients in the identity

z − z0 =
∞∑
j=1

Fj

{ ∞∑
k=1

fk(z − z0)k
}j

.(2.3)

For example,

F2 = − f2

f3
1
, F3 =

2f2
2 − f1f3

f5
1

, F4 =
−5f3

2 + 5f1f2f3 − f2
1 f4

f7
1

.(2.4)

A general formula for Fj was found by Lagrange in 1768 [3] by ingenious manip-
ulation of series, as shown in the following theorem.

Theorem 2.2. For j = 1, 2, . . . ,

Fj =
1
j!

[ dj−1

dzj−1

{ z − z0

f(z)− f0

}j]
z=z0

.(2.5)

Proofs of Theorem 2.2 in standard complex analysis texts are based on residue
theory which did not appear until the early 19th century.

For asymptotic expansions the distinguished point z0 is most commonly located
at infinity, and the typical problem is to determine the inverse of a function f(z)
having the expansion

f(z) ∼ z + f0 +
f1

z
+

f2

z2 +
f3

z3 + · · ·(2.6)

as z → ∞ in a certain sector in the complex plane. An existence theorem that
corresponds to Theorem 2.1 is as follows.

1By “f(z) be analytic at z = z0” we mean that f(z) is differentiable in a neighborhood of z0.
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Theorem 2.3. Let f(z) be analytic in a domain that includes a closed annular
sector S with vertex at the origin2 and angle less than 2π, and let f(z) satisfy (2.6)
as z →∞ in S uniformly with respect to ph z. Also, let S1 and S2 be closed annular
sectors with vertices at the origin, S1 being properly interior to S and S2 being properly
interior to S1.

(i) If the boundary arcs of S1 and S2 are of sufficiently large radius, then the
equation w = f(z) has exactly one root z = F (w), say, in S1 for each w ∈ S2.

(ii) F (w) is analytic within S2.
(iii) As w →∞ in S2,

z ∼ w − F0 −
F1

w
− F2

w2 −
F3

w3 − · · · ,(2.7)

where the coefficients Fj are constants.
Part (i) is proved in [8, Chapter 1, section 6]. Part (ii) is a consequence of Theorem

2.1.3 Part (iii) is proved in [8, Chapter 1, section 8.4].
As in the case of the series expansions (2.1) and (2.2) associated with Theorem

2.1, the coefficients F0, F1, F2, . . . in (2.7) can be found by successive resubstitutions
into (2.7) by means of (2.6) with f(z) = w. The first few may be verified to be

F0 = f0, F1 = f1, F2 = f0f1 + f2, F3 = f2
0 f1 + f2

1 + 2f0f2 + f3.(2.8)

Corresponding to Theorem 2.2 we have the following result.
Theorem 2.4. For j = 1, 2, . . . , jFj is the coefficient of z−1 in the asymptotic

expansion of {f(z)}j.
Proof. This result is stated without proof in a footnote on p. 22 of [8]. For

completeness we supply here an adaptation of Copson’s proof of Theorem 2.2 [2,
section 6.23].

The process of resubstitution shows that the formulas expressing the Fj in (2.7) in
terms of the fj in (2.6) are the same, whether the asymptotic expansion (2.6) diverges
or converges. For the purpose of proving Theorem 2.4 we may therefore assume the
latter to be the case for all sufficiently large |z|. Let us transform the point at infinity
to the origin by means of the substitutions z = 1/ζ, w = 1/ω. Then (2.6) becomes

1
ω

=
1
ζ
+ f0 + f1ζ + f2ζ

2 + · · · .

Hence

ω = ζ(1 + f0ζ + f1ζ
2 + f2ζ

3 + · · · )−1 = φ(ζ),

say. Since the series within the parentheses converges for all sufficiently small values
of |ζ|, φ(ζ) is analytic at ζ = 0; moreover, φ(0) = 0, φ′(0) = 1.

By Theorem 2.1, when ω lies in a neighborhood N of the origin, the equation
φ(t) = ω has a single root t = ζ such that (a) ζ = 0 when ω = 0; (b) ζ is an
analytic function of ω. Let C be a circle centered at the origin and within N . If |ω|
is sufficiently small, then both ζ and ω lie within C. Hence, by the residue theorem,

1
2πi

∫
C

φ′(t)
t{φ(t)− ω}dt =

1
ζ
+

φ′(0)
φ(0)− ω

=
1
ζ
− 1

ω
.(2.9)

2By a “closed annular sector S with vertex at the origin” we mean a point set z in the complex
plane such that α ≤ ph z ≤ β and ρ ≤ |z| < ∞, where α, β, and ρ are constants such that α < β
and ρ ≥ 0.

3From Ritt’s theorem [8, Chapter 1, section 4.3] it follows that f ′(z)→ 1 as z →∞ in S1.
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The last quantity has a removable singularity at ω = 0 and can therefore be expanded
in a convergent series of the form

1
ζ
− 1

ω
= −

∞∑
j=0

Fjω
j .(2.10)

Moreover, since
1
ζ
− 1

ω
= z − w

and asymptotic expansions are unique, the coefficients Fj in (2.10) are identical with
those in (2.7).

On differentiating (2.9) and (2.10), then integrating by parts, we find that
∞∑
j=1

jFjω
j−1 = − 1

2πi

∫
C

φ′(t)
t{φ(t)− ω}2 dt =

1
2πi

∫
C

1
t2{φ(t)− ω}dt.

Expanding the last integrand in ascending powers of ω, integrating term by term, and
then equating coefficients, we conclude that jFj is the coefficient of t in the Laurent
expansion of {φ(t)}−j in powers of t. Transforming back to the original variables we
arrive at Theorem 2.4.

After an asymptotic series has been reverted, a resulting sequence of zeros may
need to be enumerated. The standard analytical tool for this problem is the phase
principle, or principle of the argument, proofs of which will be found in complex
analysis texts, including those already cited.

Theorem 2.5 (phase principle). Let f(z) be analytic on a simply connected
domain that contains a simple closed contour C. Assume that the zeros of f(z) are
counted according to their multiplicity and that none are on C. Then the number of
zeros within C is (2π)−1 times the increase in any continuous branch of ph{f(z)} as
z goes once round C in the positive sense.

3. Application to Airy Functions. The Airy functions Ai(z) and Bi(z) are solu-
tions of the differential equation

d2w

dz2 = zw.

Each is an entire function of z. Many properties of Ai(z) and Bi(z) are derived in [4],
[7, Appendix], and [8, Chapters 2 and 11]. Each of the functions Ai(z), Ai′(z), Bi(z),
and Bi′(z) is known to have an infinite number of zeros on the negative real axis, all
of which are simple. In ascending order of absolute value they are denoted by as, a′s,
bs, and b′s, respectively, with s = 1, 2, 3, . . . .

To find the asymptotic expansions of as, a′s, bs, and b′s for large s, we need to
revert the compound expansions

Ai(−x) = 1√
πx1/4

{
cos(ξ − 1

4π)P (ξ) + sin(ξ − 1
4π)Q(ξ)

}
,(3.1)

Ai′(−x) = x1/4
√
π

{
sin(ξ − 1

4π)R(ξ)− cos(ξ − 1
4π)S(ξ)

}
,(3.2)

Bi(−x) = 1√
πx1/4

{
− sin(ξ − 1

4π)P (ξ) + cos(ξ − 1
4π)Q(ξ)

}
,(3.3)

Bi′(−x) = x1/4
√
π

{
cos(ξ − 1

4π)R(ξ) + sin(ξ − 1
4π)S(ξ)

}
,(3.4)
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where the variable x is real and positive, ξ = 2
3x

3/2, and

P (ξ) ∼
∞∑
j=0

(−)j u2j

ξ2j , Q(ξ) ∼
∞∑
j=0

(−)j u2j+1

ξ2j+1 ,(3.5)

R(ξ) ∼
∞∑
j=0

(−)j v2j

ξ2j , S(ξ) ∼
∞∑
j=0

(−)j v2j+1

ξ2j+1(3.6)

as x→∞. The coefficients uj , vj are defined by

uj =
(2j + 1)(2j + 3) · · · (6j − 1)

(216)jj!
, vj = −

6j + 1
6j − 1

uj , j ≥ 1,(3.7)

with u0 = v0 = 1.
At a zero of Ai(−x) we have from (3.1) that

tan(ξ + 1
4π) =

Q(ξ)
P (ξ)

∼ 5
72

1
ξ
− 39655

1119744
1
ξ3 + · · · .(3.8)

Hence

ξ + 1
4π − sπ = arctan

Q(ξ)
P (ξ)

∼ 5
72

1
ξ
− 1105

31104
1
ξ3 + · · · ,(3.9)

where s now denotes an arbitrary integer. When s is large and positive, we may apply
Theorem 2.3,4 the roles of z and w being played here by ξ and (s − 1

4 )π. With the
aid of (2.8), we derive

ξ ∼ (s− 1
4 )π +

5
72

1
(s− 1

4 )π
− 1255

31104
1

{(s− 1
4 )π}3

+ · · · .(3.10)

Since x = ( 3
2ξ)

2/3 we conclude that for large s the equation Ai(−x) = 0 is satisfied by

x = T (t),(3.11)

where

t = 3
8π(4s− 1)(3.12)

and

T (t) ∼ t2/3
(
1 +

5
48

1
t2
− 5

36
1
t4

+ · · ·
)
, t→∞.(3.13)

In the foregoing analysis we have used the symbol s in two senses, and it is
important to observe that we cannot assume that the expansion given by (3.11)–
(3.13) pertains to x = −as and not, for example, to x = −as+1. To settle this
question, we apply Theorem 2.5.

A suitable choice for the contour C of Theorem 2.5 is shown in Figure 3.1. The
rays OA and OE are given by ph z = 2π/3 and ph z = −2π/3, respectively. AB

4The conditions of Theorem 2.3 are satisfied since P (ξ) and Q(ξ), as defined by (3.1) and (3.3),
are analytic in the sector |ph ξ| ≤ π− δ (< π), and the expansions (3.5) and (3.8) are uniformly valid
as ξ →∞ in this sector.
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|z| = ρ

/π 32

δ

δ

E

B

A

O
C

D

Fig. 3.1 z-plane. Contour C for enumerating the zeros of Ai(z).

and DE are arcs of a circle |z| = ρ, B and D being the points ρei(π−δ) and ρei(π+δ),
respectively, where δ(< π/3) is an arbitrary positive constant. BCD is the curve
through B and D on which �{ 2

3 (−z)3/2} = const. In consequence C is the point
z = −ρ(cos 3

2δ)
2/3. If we choose ρ to satisfy

2
3ρ

3/2 cos 3
2δ = (s+ 1

4 )π,

where s is a large positive integer, then by use of the asymptotic and other properties
of Ai(z) on the contour, we can show that as we pass once round C the change in
ph{Ai(z)} is 2sπ+ o(1). (We do not reproduce details of this analysis here since they
are similar to those used in an enumeration of the complex zeros of Bi(z) given in [7,
Appendix].) Theorem 2.5 shows immediately that C contains exactly s zeros of Ai(z)
for all sufficiently large values of s. Since all the zeros of Ai(z) are known to be real
and negative [7, Appendix], we may now set x = −as in (3.11)–(3.13).

In reaching the expansion (3.13) we used the binomial theorem for dividing the
series in (3.8), the expansion

arctan t = t− 1
3
t3 +

1
5
t5 − · · ·

for the principal value of the inverse tangent function in (3.9), and the binomial
theorem again in forming the two-thirds power of the series (3.10). For deriving the
higher coefficients, however, more efficient methods are needed. For example, if

p(t) = p1t+ p3t
3 + p5t

5 + · · · ,
with p1 �= 0, then

arctan p(t) = q(t) = q1t+ q3t
3 + q5t

5 + · · · ,
where q1 = p1 and higher q’s can be generated from the recurrence relation obtained
by equating the coefficients in the identity

p′(t) =
[
1 + {p(t)}2

]
q′(t).
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In practice, however, we take advantage of the availability of comprehensive com-
puter algebra software packages to perform the necessary manipulations of series and
to store the wanted coefficients directly in electronic form. We employ the interactive
system Maple V [1] for our present purpose.5 However, since Maple (like other com-
puter packages) is essentially a “black box,” we guard against possible programming
or algorithmic errors in the package by using inverse operations. For example, after
finding the inverse tangent of a series we then compute the tangent of the result to
reproduce the original series as a check. Similarly, after reverting a series with the aid
of Theorems 2.3 and 2.4, we apply these theorems to the reverted series to recover
the original series.

The analysis for determining asymptotic expansions, again for large s, of the
zeros a′s, bs, and b′s of the functions Ai′(z), Bi(z), and Bi′(z) is similar and the results
are presented in the next section. There are no zeros of Ai(z) and Ai′(z) in the
complex plane other than those on the negative real axis. However, in the sector
π/3 < ph z < π/2 the functions Bi(z) and Bi′(z) have infinite sets of zeros βs and β′s,
respectively, with s = 1, 2, 3, . . . , and conjugate sets of zeros βs and β

′
s in the sector

−π/2 < ph z < −π/3. Asymptotic expansions for these zeros are also included in
section 4.

In addition to the zeros the associated values Ai′(as), Ai(a′s), Bi′(bs), Bi(b′s),
Bi′(βs), and Bi(β′s) are of importance in applications. As in the case of the expansion
for as given by (3.11)–(3.13), the first few terms in the corresponding expansions of
Ai′(as) and Ai(a′s) can be found by substituting the expansions for as and a′s into (3.2)
and (3.1), respectively. One way to generate the higher terms is to use the properties
[4, p. B48]

Ai′(as) =
(−1)s−1

πM(as)
, Ai(a′s) =

(−1)s−1

πN(a′s)
,(3.14)

in which

M(x) =
{
Ai2(x) + Bi2(x)

}1/2
, N(x) =

{
Ai′2(x) + Bi′2(x)

}1/2
,(3.15)

and as x→ −∞,

M2(x) =
1

π(−x)1/2
∞∑
j=0

1 · 3 · 5 · · · (6j − 1)
(96)jj!

1
x3j ,(3.16)

N2(x) =
(−x)1/2

π

∞∑
j=0

1 · 3 · 5 · · · (6j − 1)
(96)jj!

1 + 6j
1− 6j

1
x3j .(3.17)

A second method is to use the properties [6], [7, Appendix]

Ai′(as) = (−)s−1
(
− das

ds

)−1/2
, Ai(a′s) = (−)s−1

(
a′s

da′s
ds

)−1/2
,(3.18)

in which s is regarded as a continuous variable. Our Maple code uses the second
method, but we also applied the first method as an overall check on the coefficients
in all the asymptotic expansions.

5Certain commercial equipment, instruments, or materials are identified in this paper to foster
understanding. Such identification does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the materials or equipment identified
are necessarily the best available for the purpose.
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4. Results for Zeros and Associated Values of the Airy Functions. Following
the notation of [4] and [7, Appendix], we present the desired asymptotic expansions
in the forms

as = −T{ 3
8π(4s− 1)}, Ai′(as)= (−)s−1V { 3

8π(4s− 1)},
a′s = −U{ 3

8π(4s− 3)}, Ai(a′s)= (−)s−1W{ 3
8π(4s− 3)},

bs = −T{ 3
8π(4s− 3)}, Bi′(bs)= (−)s−1V { 3

8π(4s− 3)},
b′s = −U{ 3

8π(4s− 1)}, Bi(b′s)= (−)sW{ 3
8π(4s− 1)},

βs = eiπ/3T{ 3
8π(4s− 1) + 3

4 i ln 2},
Bi′(βs) = (−)s

√
2e−iπ/6V { 3

8π(4s− 1) + 3
4 i ln 2},

β′s = eiπ/3U{ 3
8π(4s− 3) + 3

4 i ln 2},
Bi(β′s) = (−)s−1

√
2eiπ/6W{ 3

8π(4s− 3) + 3
4 i ln 2},

in which

T (t) ∼ t2/3
∞∑
j=0

Tj
t2j

, U(t) ∼ t2/3
∞∑
j=0

Uj
t2j

,

V (t) ∼ t1/6√
π

∞∑
j=0

Vj
t2j

, W (t) ∼ t−1/6
√
π

∞∑
j=0

Wj

t2j
.

The coefficients Tj , Uj , Vj , and Wj are generated as rational numbers by use of
the Maple code given in the appendix. In theory, there is no limit to the number
that can be found. In practice, however, the number is limited by the capacity of
the computer being used and the execution time. We generated the coefficients Tj ,
Uj , Vj , and Wj for j = 0, 1, . . . , 19 on a Sun Sparc Station 5 in 25.5 seconds, and for
j = 0, 1, . . . , 99 on an SGI Origin 2000 in 3.5 hours. Higher coefficients grow rapidly
in magnitude with j. For example, at j = 100 the number of decimal digits in the
numerator and denominator are 717 and 372, respectively, for Tj , and 788 and 441,
respectively, for Vj . For illustration, we record here the first 10 members of each set:

T0 = 1, T1 = 5
48 , T2 = − 5

36 , T3 = 77125
82944 , T4 = − 108056875

6967296 , T5 = 162375596875
334430208 ,

T6 = − 1622671914671875
66217181184 , T7 = 150126478779573265625

82639042117632 , T8 = − 644932726927939889453125
3470839768940544 ,

T9 = 13042116997445589075044921875
520200964553048064 ,

U0 = 1, U1 = − 7
48 , U2 = 35

288 , U3 = − 181223
207360 , U4 = 18683371

1244160 ,

U5 = − 91145884361
191102976 , U6 = 91725210265629647

3783838924800 , U7 = − 8517284704344771067699
4722230978150400 ,

U8 = 130949163695424727759631
708334646722560 , U9 = − 207878641847010708789807726484553

8323215432848769024000 ,
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Table 4.1 Terms needed in T (t) for as for various relative precisions.

Relative precision

s 10−8 10−16 10−32 10−64

5 3 ∗ ∗ ∗
10 3 7 ∗ ∗
25 2 5 12 46
50 2 4 9 25
75 2 4 8 21
100 2 3 8 19
1000 1 3 5 11
10000 1 2 4 8

Table 4.2 Terms needed in V (t) for Ai′(as) for various relative precisions.

Relative precision

s 10−8 10−16 10−32 10−64

5 4 ∗ ∗ ∗
10 3 7 ∗ ∗
25 2 5 13 50
50 2 4 10 26
75 2 4 9 22
100 2 4 8 20
1000 1 3 5 11
10000 1 2 4 8

V0 = 1, V1 = 5
48 , V2 = − 1525

4608 , V3 = 2397875
663552 , V4 = − 74898940625

891813888 ,

V5 = 144198303734375
42807066624 , V6 = − 28089789994850703125

135612787064832 , V7 = 19888767068290223828125
1098991936733184 ,

V8 = − 484715181260975902241960546875
227464955097287491584 , V9 = 543312090233204853143378459259765625

1670502630234479338192896 ,

W0 = 1, W1 = − 7
96 , W2 = 1673

6144 , W3 = − 84394709
26542080 , W4 = 780277135421

10192158720 ,

W5 = − 204449051051945
65229815808 , W6 = 6052659852898453276069

30997208471961600 ,

W7 = − 665949373597862664529557709
38684516173008076800 , W8 = 103625840003130057133695803237

50785826360461885440 ,

W9 = − 682927649723267538009783214996381974247
2181880986428707707027456000 .

Previous calculations [4], [7, Appendix] stop at the first six coefficients for T (t) and
U(t), and the first four coefficients for V (t) and W (t).

In Tables 4.1 and 4.2 we indicate the number of terms needed in the expansions of
as and Ai′(as) for s = 5, 10, 25, 50, 75, 100, 1000, 10000 to achieve relative precisions6

6By “relative precision” of two nonzero real or complex numbers a and â, say, we mean | ln(a/â)|.
When a and â are nearly equal this quantity is almost indistinguishable numerically from the relative
errors |(a/â)− 1| and |(â/a)− 1|. One advantage of relative precision is that it is a metric. See [9].
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of 10−8, 10−16, 10−32, 10−64. Each entry in the tables is the number of terms that
ensure the relative contribution of the first neglected term in each series is less than
the specified relative precision. An asterisk (∗) indicates that no term in the series
is sufficiently small to yield the desired relative precision. Tables 4.1 and 4.2 were
generated in Fortran 90 using the multiple-precision package of [11].

It needs to be stressed that the criterion stated in the preceding paragraph serves
only as a guide to the actual accuracy yielded by each expansion. Only if strict
and realistic bounds are known for the remainder terms, as opposed to neglected
terms, can we be quite certain that the specified precision is attained. At present
the only bounds that appear to be available in the literature are those of Pittaluga
and Sacripante [10]. For the expansions of as and bs they showed that the Jth error
term (that is, the error on stopping the expansion at j = J − 1) is bounded by
the first neglected term and has the same sign as this term when J = 1, 2, 3, 4, 5,
and also that the sixth error term has the opposite sign to the fifth term. For the
expansions of a′s and b′s, they showed that the first terms in each expansion furnish
lower bounds.

Our calculations establish that each set of coefficients alternates in sign (except
for the second coefficient in the expansions of T (t) and V (t)) at least as far as j = 99.
Consequently, we conjecture that in the expansions of as, bs, a′s, b

′
s, Ai′(as), Bi′(bs),

Ai(a′s), and Bi(b′s), the Jth error term is bounded by the first neglected term and has
the same sign for all values of J ≥ 1. This is an open problem, as is the problem of
finding error bounds for the asymptotic expansions of the complex zeros and associated
values of Bi(z) and Bi′(z).

Appendix A. Maple Code.
# We define the necessary variables. N is the number of terms
# in the asymptotic expansions desired.
# Must be used with Maple V release 4 and later.
restart: N:=19:
N2:=2*N+2: u:=vector(N2): v:=vector(N2):
F:=vector(N2): T:=vector(N2): U:=vector(N2):
u[1] := 5/72: v[1]:=-7/72:
for i from 1 to N2-1 do

u[i+1]:=(6*i+5)*(6*i+1)/(i+1)/72*u[i]:
v[i+1]:=-(6*i+7)/(6*i+5)*u[i+1]:

od:
#
#****Construction of T(x)
# Build the polynomials P and Q in Eq. (3.5).
P:=asympt(1+sum(’(-1)^i*u[2*i]*1/xi^(2*i)’,’i’=1..N),xi,N2):
Q:=asympt(sum(’(-1)^i*u[2*i+1]*1/xi^(2*i+1)’,’i’=0..N-1),xi,N2):
# Now construct Eq. (3.9), then rewrite it as s-pi/4 = xi*eq3_9m(xi).
eq3_9:=asympt(arctan(Q/P),xi,N2):
eq3_9m:=asympt(1*xi^0-eq3_9/xi,xi,N2):
# Now we execute Theorem 2.4 on eq3_9m knowing that there is
# a factor of \xi in front of the equation.
F[1]:=coeff(series(subs(xi=1/zeta,eq3_9m),zeta,N2),zeta,1):
F[2]:=coeff(series(subs(xi=1/zeta,eq3_9m),zeta,N2),zeta,2):
h7:=asympt(eq3_9m,xi,N2):
for j from 3 to N2 do
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h7:=asympt(h7*eq3_9m,xi,N2):
F[j]:=coeff(series(subs(xi=1/zeta,h7),zeta,N2),zeta,j)/(j-1):

od:
# We now use the fact that T[0]=1 and that all the even F[j]
# in Eq. (2.7) vanish.
for j from 1 to N+1 do T[j]:=F[2*j]: od:
eq3_10:=

asympt(lambda^0-sum(’T[i]/lambda^(2*i)’,’i’=1..N+1),lambda,N2):
eq3_13:=asympt(subs(lambda=2/3*lambda,eq3_10)^(2/3),lambda,N2);
#
#****Construction of U(x)
# Build the polynomials R and S in Eq.(3.6).
R:=asympt(1+sum(’(-1)^i*v[2*i]*1/xi^(2*i)’,’i’=1..N),xi,N2):
S:=asympt(sum(’(-1)^i*v[2*i+1]*1/xi^(2*i+1)’,’i’=0..N-1),xi,N2):
# Now construct Eq. (3.9) and its modification as before.
eq3_9U:=asympt(arctan(S/R),xi,N2):
eq3_9mU:=asympt(1*xi^0-eq3_9U/xi,xi,N2):
# Now we execute Theorem 2.4 on eq3_9m knowing that there is
# a factor of \xi in front of the equation.
F[1]:=coeff(series(subs(xi=1/zeta,eq3_9mU),zeta,N2),zeta,1):
F[2]:=coeff(series(subs(xi=1/zeta,eq3_9mU),zeta,N2),zeta,2):
h7:=asympt(eq3_9mU,xi,N2):
for j from 3 to N2 do

h7:=asympt(h7*eq3_9mU,xi,N2):
F[j]:=coeff(series(subs(xi=1/zeta,h7),zeta,N2),zeta,j)/(j-1):

od:
# We now use the fact that U[0]=1 and that all the even F[j]
# in Eq. (2.7) vanish.
for j from 1 to N+1 do U[j]:=F[2*j]: od:
eq3_10U:=

asympt(lambda^0-sum(’U[i]/lambda^(2*i)’,’i’=1..N+1),lambda,N2):
eq3_13U:=asympt(subs(lambda=2/3*lambda,eq3_10U)^(2/3),lambda,N2);
#
#****Construction of V(x)
# We implement Eq (3.18) appropriately using the chain rule and
# factoring out a t^(1/6) in front
eq3_18:=

asympt(3/2*diff(lambda^(2/3)*eq3_13,lambda),lambda,N2):
V:=asympt(1/sqrt(eq3_18)/lambda^(1/6),lambda,N2);
#
#****Construction of W(x)
# We implement Eq (3.18) appropriately using the chain rule and
# factoring out a t^(-1/6) in front
eq3_18W:= asympt(3/2*lambda^(2/3)*eq3_13U*

diff(lambda^(2/3)*eq3_13U,lambda),lambda,N2):
W:=asympt(1/sqrt(eq3_18W)*lambda^(1/6),lambda,N2);
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