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On the Ricci symmetry of almost Kenmotsu

manifolds

Dibakar Dey

Abstract. In the present paper, we characterize Ricci symmetric almost Kenmotsu
manifolds under several constraints and proved that they are Einstein manifolds.
As a consequence, we obtain several corollaries. Finally, an illustrative example is
presented to verify our results.
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1 Introduction

As an extension of the well-known Kenmotsu manifolds (see [11]) and an analogy of almost
Hermitian manifolds for manifolds of odd dimension, almost Kenmotsu manifolds defined in [9]
are becoming an important research object in differential geometry of almost contact metric
manifolds. Almost Kenmotsu manifolds satisfying the (k, µ) and (k, µ)′-nullity conditions were
firstly introduced and studied by Dileo and Pastore [7], where k and µ both are constants. As
a special case of the (k, µ) and (k, µ)′-nullity conditions, k- nullity condition defined on almost
Kenmotsu manifolds by Pastore and Saltarelli [13]. Later, Pastore and Saltarelli in [14] extended
the above three nullity conditions to the corresponding generalized nullity conditions for which
both k and µ are assumed to be smooth functions.

It is well known that symmetric spaces play an important role in differential geometry.
The study of locally symmetric Riemannian spaces was initiated in the late twenties by Cartan
[3], who, in particular, obtained a classification of those spaces. Let (Mn, g) be a Riemannian
manifold of dimension n, i.e., a manifold Mn with the Riemannian metric g and let ∇ be the Levi-
Civita connection of (Mn, g). A Riemannian manifold is called locally symmetric [3] if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, g). This condition of local symmetry is
equivalent to the fact that at every point p ∈ Mn, the local geodesic symmetry F (p) is an
isometry [12]. A Riemannian manifold is called Ricci symmetric if ∇S = 0, where S is the
Ricci tensor of (Mn, g). The class of locally symmetric Riemannian manifolds is very natural
generalization of the class of manifolds of constant curvature. During the last five decades the
notion of locally symmetric manifolds have been weakened by many authors in several ways.

In a recent paper, Dileo and Pastore [6] studied locally symmetric almost Kenmotsu mani-
folds under the condition that the Lie derivative of the structure tensor φ with respect to the Reeb
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vector field vanishes. Also Wang and Liu [16] studied classification problems on locally symmet-
ric almost Kenmotsu manifolds and proved that a three dimensional locally symmetric almost
Kenmotsu manifold is either hyperbolic space H3(−1) or the Riemannian product H2(−4) × R.
Deshmukh, De and Zhao [8] studied Ricci semisymmetric almost Kenmotsu manifolds with nullity
distributions. In [15], Sharma studied Ricci symmetric contact metric manifolds under several
constraints and conformally flat contact metric manifolds assuming certain curvature condition.
Further, Ghosh and Majhi [10] studied Ricci semisymmetric almost Kenmotsu manifolds with
conformal Reeb foliation.

Motivated by the above studies, in the present paper we consider Ricci symmetric almost
Kenmotsu manifolds under several constraints and proved that they are Einstein manifolds.
Finally, we have verified our results with an example.

2 Almost Kenmotsu Manifolds

An almost contact structure on a (2n + 1)-dimensional smooth manifold M2n+1 is a triplet
(φ, ξ, η), where φ is a (1, 1)-tensor, ξ is a global vector field and η is a 1-form satisfying (see [1, 2])

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

where I denote the identity endomorphism. Here also holds φξ = 0 and η ◦ φ = 0; both can be
derived from (2.1) easily.
If a manifold M2n+1 with a (φ, ξ, η)-structure admits a Riemannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y in T (M2n+1), then M2n+1 is said to be an almost contact metric
manifold. The fundamental 2-form Φ on an almost contact metric manifold is defined by

Φ(X,Y ) = g(X,φY )

for any X, Y in T (M2n+1). The condition for an almost contact metric manifold being normal
is equivalent to vanishing of the (1, 2)-type torsion tensor Nφ, defined by

Nφ = [φ, φ] + 2dη ⊗ ξ,

where [φ, φ] is the Nijenhuis tensor of φ [1]. Recently in [5, 6, 7], almost contact metric manifold
such that η is closed and dΦ = 2η ∧ Φ are studied and they are called almost Kenmotsu mani-
folds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu
manifolds can be characterized by

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,

for any vector fields X, Y in T (M2n+1).

Let M2n+1 be an almost Kenmotsu manifold. We denote by h = 1
2£ξφ and l = R(·, ξ)ξ on

M2n+1. The tensor fields l and h are symmetric operators and satisfy the following relations [13]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0, (2.2)

We also have the following formulas (see [5, 7, 11])

∇Xξ = X − η(X)ξ − φhX, (2.3)
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φlφ− lX = 2(h2 − φ2), (2.4)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− tr(h2), (2.5)

R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y, (2.6)

∇ξh = −φ− 2h− φh2 − φl (2.7)

for any X,Y in T (M2n+1). Let X ∈ D be an eigenvector of h corresponding to the eigenvalue
λ. Then −λ is also an eigenvalue of h. We denote the eigenspaces associated with h by [λ] and
[−λ] corresponding to the non-zero eigenvalues λ and −λ respectively. We refer the reader to go
through the references [4, 6, 8] for further details on almost Kenmotsu manifolds.

3 Ricci Symmetric Almost Kenmotsu Manifolds

In this section, we consider Ricci symmetric almost Kenmotsu manifolds under several conditions.

Lemma 3.1. In an almost Kenmotsu manifold the following conditions holds

(i) tr(h2Q) = tr(Qh2)

(ii) tr(φhQ) = tr(Qφh)

(iii) tr(φ(∇ξh)Q) = tr(Qφ(∇ξh))

Proof. (i) tr(h2Q) = g(h2Qei, ei) = g(Qei, h
2ei) = g(ei, Qh

2ei) = tr(Qh2), where the symmetry
of Q and h are used.

(ii) tr(φhQ) = g(φhQei, ei) = −g(hQei, φei) = −g(Qei, hφei) = g(Qei, φhei) = g(ei, Qφhei) =
tr(Qφh), where the skew symmetry of φ, the symmetry of Q and h and the fact hφ+ φh = 0 are
used.

(iii) From (2.7), we have

φ(∇ξh)X = h2X +X − η(X)ξ − 2φhX + lX.

Now, using the foregoing equation, we infer that

tr(φ(∇ξh)Q) = g(h2Qei, ei) + g(Qei, ei)− g(η(Qei)ξ, ei)− 2g(φhQei, ei) + g(lQei, ei)

= tr(h2Q) + r − S(ξ, ξ)− 2tr(φhQ) + tr(lQ).

Again,

tr(Qφ(∇ξh)) = g(Qh2ei, ei) + g(Qei, ei)− g(ξ, ei).g(Qξ, ei)− 2g(Qφhei, ei) + g(Qlei, ei)

= tr(Qh2) + r − S(ξ, ξ)− 2tr(Qφh) + g(ei, lQei)

= tr(Qh2) + r − S(ξ, ξ)− 2tr(Qφh) + tr(lQ).

Hence, using (i) and (ii), we can see that tr(φ(∇ξh)Q) = tr(Qφ(∇ξh)).

Theorem 3.1. If an almost Kenmotsu manifold M2n+1 is Ricci symmetric, then
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(i) tr(Ql) = ||Qξ||2

(ii) the scalar curvature r = −2n− tr(Q(h2 − 2φh− φ(∇ξh)) + h2)− ||Qξ||2

(iii) the sectional curvature K(ξ,Qξ) = 0 if Qξ is not collinear with ξ.

Proof. Let the Ricci tensor of an almost Kenmotsu manifold M2n+1 is parallel, i.e., ∇S = 0
holds on M2n+1, where S is the Ricci tensor. Then we have

S(R(W,X)Y,Z) + S(R(W,X)Z, Y ) = 0,

which implies

g(R(W,X)Y,QZ) + g(R(W,X)Z,QY ) = 0,

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ). Now the foregoing equation can
be written as

g(R(Y,QZ)W,X) + g(R(Z,QY )W,X) = 0. (3.1)

Putting Y = W = ξ in (3.1), we get

g(R(ξ,QZ)ξ,X) + g(R(Z,Qξ)ξ,X) = 0. (3.2)

Now substituting Z = ξ and X = Qξ in (3.2) we obtain g(R(ξ,Qξ)ξ,Qξ) = 0 and therefore,
K(ξ,Qξ) = 0 if Qξ is not collinear with ξ. This proves (iii).
From (2.7), we get

φ(∇ξh)X = −φ2X − 2φhX − φ2h2X − φ2lX,

which implies

R(ξ,X)ξ = h2X +X − η(X)ξ − 2φhX − φ(∇ξh)X. (3.3)

Making use of (3.3) in (3.2), we have

g(h2QZ +QZ − η(QZ)ξ − 2φhQZ − φ(∇ξh)QZ,X) + g(R(Z,Qξ)ξ,X) = 0. (3.4)

Putting Z = X = ei in (3.4), where {ei}, i = 1, 2, ..., (2n + 1) is an orthonormal basis of the
tangent space at each point of the manifold and taking summation over i, we infer that

tr(h2Q) + r − S(ξ, ξ)− 2tr(φhQ)− tr(φ(∇ξh)Q) + ||Qξ||2 = 0, (3.5)

where r is the scalar curvature. Using (2.5) and Lemma 3.1, we have from (3.5)

r = −2n− tr(Q(h2 − 2φh− φ(∇ξh)) + h2)− ||Qξ||2. (3.6)

This proves (ii).
Now operating Q on (3.3) and then tracing the resulting equation gives

−tr(Ql) = tr(Qh2) + r − S(ξ, ξ)− 2tr(Qφh)− tr(Qφ(∇ξh)). (3.7)

Therefore, upon using Lemma 3.1, (3.5) and (3.7) together implies

tr(Ql) = ||Qξ||2, (3.8)

which proves (i).
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Corollary 3.2. A Ricci symmetric almost Kenmotsu manifold M2n+1 with zero ξ-sectional cur-
vature (i.e., l = 0) is Ricci flat.

Proof. If l = 0, then from (i) of the above theorem, we have Qξ = 0.
Differentiating it along φX, where X⊥ξ, we get Q(φX) = Q(hX). As X⊥ξ, replacing X by
φX in the previous equation, we have QX = QφhX. Again substituting hX = λX, X⊥ξ in
the foregoing equation, we obtain QX = λQφX. Now replacing X by φX as X⊥ξ in the last
equation yields QφX = −λQX. Now the last two equations together implies (1 + λ2)QX = 0.
Since h is symmetric, (1 +λ2) 6= 0 and therefore, QX = 0 for all vector field X⊥ξ. Thus QX = 0
for all vector field X on M2n+1, which implies that the manifold is Ricci flat. This completes the
proof.

Theorem 3.3. If a Ricci symmetric almost Kenmotsu manifold M2n+1 satisfies Qξ = fξ for
some smooth function f on M2n+1, then M2n+1 is Einstein.

Proof. Since Qξ = fξ holds on M2n+1, then f = S(ξ, ξ). Taking covariant derivative of this
along any vector field X, we have

Xf = 2S(∇Xξ, ξ)
= 2S(X − η(X)ξ − φhX, ξ)
= 2S(X, ξ)− 2η(X)S(ξ, ξ)

= 0,

which implies f = constant.
Now, since ∇Q = 0, differentiating Qξ = fξ along any vector field X, we obtain

QX −QφhX = fX − fφhX. (3.9)

Let us consider X⊥ξ. Replacing X by φX in (3.9), we get

QφX −QhX = fφX − fhX. (3.10)

Taking hX = −λX as X⊥ξ in (3.10), we infer

QφX + λQX = fφX + fλX. (3.11)

Again substituting hX = λX in (3.9) yields

QX − λQφX = fX − fλφX. (3.12)

Multiplying the equation (3.11) by λ and then adding with (3.12), we get

(1 + λ2)(QX − fX) = 0. (3.13)

Since, h is symmetric, 1+λ2 6= 0. Hence, from (3.13), we have QX = fX for all X⊥ξ. Therefore,
QX = fX for any vector field X on M2n+1. This completes the proof.

Before proving our next theorem, we first state and prove the following Lemma:

Lemma 3.2. In an almost Kenmotsu manifold the condition K(ξ,X) = K(ξ, φX) holds if and
only if φ(∇ξh)X = 2hφX.
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Proof. Using (3.3), we calculate the terms K(ξ,X) and K(ξ, φX) as follows:

K(ξ,X) = −g(R(ξ,X)ξ,X) (3.14)

= −g(hX, hX)− 1 + 2g(φhX,X) + g(φ(∇ξh)X,X)

and

K(ξ, φX) = −g(hX, hX)− 1 + 2g(hφX,X) + g((∇ξh)φX,X). (3.15)

Now from (2.4) and (2.7), we can easily obtain that (∇ξh)φX = −φ(∇ξh)X. Now subtracting
(3.15) and (3.15), we get

K(ξ,X)−K(ξ, φX) = 2g(φ(∇ξh)X − 2hφX,X). (3.16)

Therefore, K(ξ,X) = K(ξ, φX) holds if and only if φ(∇ξh)X = 2hφX.

Theorem 3.4. If a Ricci symmetric almost Kenmotsu manifold M2n+1 satisfies K(ξ,X) =
K(ξ, φX) and K(ξ,X) > 0, then M2n+1 is an Einstein manifold.

Proof. Since the conditionK(ξ,X) = K(ξ, φX) is realized onM2n+1, we have φ(∇ξh)X = 2hφX.
From this, with the help of (2.7), we can easily obtain

R(ξ,X)ξ = h2X − φ2X. (3.17)

Now, for a Ricci symmetric almost Kenmotsu manifold, we have

g(R(W,X)Y,QZ) + g(R(W,X)Z,QY ) = 0.

Substituting Y = Z = ξ in the foregoing equation and using (3.17), we obtain

g(h2X − φ2X,Qξ) = 0,

which implies

h2Qξ = S(ξ, ξ)ξ −Qξ. (3.18)

Now, suppose V is an eigenvector of h orthogonal to ξ with eigenvalue λ, i.e., hV = λV and
hence hφV = −λφV . Taking inner product of (3.18) with V , we obtain

(1 + λ2)g(Qξ, V ) = 0. (3.19)

Since h is symmetric, 1 + λ2 6= 0. This shows that for those eigenvectors V with eigenvalue λ
(and hence for eigenvectors φV with eigenvalue −λ), we get Qξ ⊥ V and φV . Also V, φV ⊥
ξ. Therefore, Qξ ∈ L{ξ}, where L{ξ} is the linear span of ξ. Thus we have Qξ = fξ for some
function f . Now in a similar manner as in Theorem 3.3, we can obtain QX = fX for all X⊥ξ.
Thus Q = fI on M2n+1. This completes the proof.

If the sectional curvature K(ξ,X) = c of an almost Kenmotsu manifold is independent of
choice of X, then we can easily obtain the following:

R(ξ,X)ξ = −c[X − η(X)ξ], (3.20)

which implies

lX = c[X − η(X)ξ]. (3.21)
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Now from (2.4), we have

φlφX − lX = 2(h2 − φ2)X.

Making use of (2.1) and (3.21) in the foregoing equation yields

φlφX − c[X − η(X)ξ] = 2[h2X +X − η(X)ξ]. (3.22)

Putting X = φX in (3.22) and using (2.1) and (3.21), we obtain

−cφX = (h2φX + φX). (3.23)

Again substituting X = φX in (3.23) and using (2.1), we get

h2X = (c+ 1)(−X + η(X)ξ). (3.24)

Theorem 3.5. If a Ricci symmetric almost Kenmotsu manifold M2n+1 satisfies K(ξ,X) = c,
where c is a smooth function independent of choice of X such that c 6= 0,−2, then M2n+1 is
Einstein.

Proof. Let M2n+1 be an almost Kenmotsu manifold with the sectional curvature K(ξ,X) = c
(6= 0,−2 and independent of choice of X) such that ∇S = 0. Then it follows that

S(R(W,X)Y,Z) + S(Y,R(W,X)Z) = 0 (3.25)

for any vector fields X, Y, Z, W on M2n+1.
Substituting W = Y = Z = ξ in (3.25) yields

S(R(ξ,X)ξ, ξ) = 0. (3.26)

Using (3.20) in (3.26), we obtain

−cS(X − η(X)ξ, ξ) = 0. (3.27)

As c is non-zero, the above equation reduces to

S(X, ξ) = S(ξ, ξ)g(X, ξ). (3.28)

Differentiating (3.28) covariantly along Y , we get

S(∇YX, ξ) + S(X,∇Y ξ) = S(ξ, ξ)g(∇YX, ξ) + S(ξ, ξ)g(X,∇Y ξ)
+2g(X, ξ)S(∇Y ξ, ξ). (3.29)

Replacing X by ∇YX in (3.28), we obtain

S(∇YX, ξ) = S(ξ, ξ)g(∇YX, ξ). (3.30)

Using (3.30) in (3.29) yields

S(X,∇Y ξ) = S(ξ, ξ)g(X,∇Y ξ) + 2g(X, ξ)S(∇Y ξ, ξ). (3.31)

Using (2.3), we get from (3.31)

S(X,Y )− g(Y, ξ)S(X, ξ)− S(X,φhY )
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= S(ξ, ξ)[g(X,Y )− g(Y, ξ)g(X, ξ)− g(X,φhY )]

+2g(X, ξ)[S(Y, ξ)− g(Y, ξ)S(ξ, ξ)− S(φhY, ξ)]. (3.32)

Substituting Y = φY in (3.32) and using (2.1)-(2.2), we have

S(X,φY )− S(X,hY ) = S(ξ, ξ)[g(X,φY )− g(X,hY )]. (3.33)

Putting Y = φY in (3.33) and making use of (2.1), (2.2) and (3.28), we infer that

S(X,Y )− S(X,φhY ) = S(ξ, ξ)[g(X,Y )− g(X,φhY )]. (3.34)

Substituting Y = hY in the above equation, we have

S(X,hY )− S(X,φh2Y ) = S(ξ, ξ)[g(X,hY )− g(X,φh2Y )]. (3.35)

Putting the value of h2Y from (3.24) in (3.35), we get

S(X,hY ) + (c+ 1)S(X,φY ) = S(ξ, ξ)[g(X,hY ) + (c+ 1)g(X,φY )]. (3.36)

Now adding (3.33) and (3.36), we obtain

S(X,φY ) = S(ξ, ξ)g(X,φY ), (3.37)

since c 6= −2 by hypothesis. Replacing Y by φY in the foregoing equation and using (3.28), we
have

S(X,Y ) = S(ξ, ξ)g(X,Y ). (3.38)

Tracing (3.20) yields S(ξ, ξ) = 2nc and therefore, from (3.38), we get

S(X,Y ) = 2ncg(X,Y ).

This completes the proof.

4 Example of a 3-dimensional Einstein Almost Kenmotsu
Manifold

Consider M3 = {(x, y, z) ∈ R3 : z 6= 0}. The vector fields

E1 = z
∂

∂x
, E2 = z

∂

∂y
, E3 = −z ∂

∂z

are linearly independent at each point of M3. Let g be the Riemannian metric defined by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E1, E2) = g(E2, E3) = g(E3, E1) = 0.

Let us consider E3 = ξ. The 1-form η is defined by η(X) = g(X,E3) for any vector field X on
M3. The (1, 1)-tensor field φ is defined by

φ(E1) = −E2, φ(E2) = E1, φ(E3) = 0.
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Using linearity of φ and g we have

η(ξ) = 1, φ2X = −X + η(X)ξ and g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector field X, Y on M3. Now it is easy to see that

[E1, ξ] = E1, [E1, E2] = 0 and [E2, ξ] = 0.

The well known Koszul’s formula is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using the above Koszul’s formula, we obtain the Levi-Civita connection ∇ as follows:

∇E1
E1 = −ξ, ∇E1

E2 = 0, ∇E1
ξ = E1,

∇E2
E1 = 0, ∇E2

E2 = ξ, ∇E2
ξ = E2,

∇ξE1 = 0, ∇ξE2 = 0, ∇ξξ = 0.

In view of the above relations we have ∇Xξ = X − η(X)ξ for any vector field X on M3. Thus
(φ, ξ, η, g) is an almost contact metric structure such that dη = 0 and dΦ = 2η ∧ Φ and hence
M3 is an almost Kenmotsu manifold with h = 0.
By the above relations, we can easily obtain the components of the curvature tensor R as follows:

R(E1, E2)E1 = E2, R(E1, E2)E2 = −E1, R(E1, E2)ξ = 0,

R(E2, ξ)E1 = 0, R(E2, ξ)E2 = ξ, R(E2, ξ)ξ = −E2,

R(E1, ξ)E1 = ξ, R(E1, ξ)E2 = 0, R(E1, ξ)ξ = −E1.

With the help of the expressions of the curvature tensor, we see that

R(X,Y )Z = −[g(Y,Z)X − g(X,Z)Y ].

From above, we can easily obtain

S(X,Y ) = −2g(X,Y ).

Therefore, M3 is an Einstein manifold.
Now, the ξ-sectional curvature is given by

K(ξ, E1) = K(ξ, E2) = K(ξ, φE1) = K(ξ, φE2) = 1.

Hence, Theorem 3.3, Theorem 3.4 and Theorem 3.5 are verified.
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