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Abstract. A generic 2×2 system of first order linear ordinary differential equations
with second degree polynomial coefficients is considered. The problem of finding
such a system with the property that its Stokes multipliers coincide with a given
set of relevant 2 × 2-matrices constitutes the first nontrivial case of the Riemann–
Hilbert–Birkhoff inverse monodromy problem. The meromorphic (with respect to
the deformation parameter) solvability of this problem is proved. The approach is
based on Malgrange’s generalization of the classical Birkhoff–Grothendieck theorem
to the case with the parameter. As a corollary, a new proof of meromorphicity of the
second Painlevé transcendent is obtained. An elementary proof of a particular case
of Malgrange’s theorem, needed for our goals, is also presented (following an earlier
work of the first author).

§1. Introduction

In this paper we study the inverse monodromy problem, which we shall also refer to
as the Riemann–Hilbert–Birkhoff problem or simply as the Riemann–Hilbert problem, for
a 2 × 2 linear system of ordinary differential equations with rational coefficients. The
system is assumed to have only one irregular singular point of Poincaré index 3. We
shall consider a generic situation, which means that, up to trivial gauge and scaling
transformations, the system in question can be written in the following form:

dΨ
dλ

= A(λ)Ψ(λ),(1)

A(λ) = A2λ
2 + A1λ + A0

= −4iλ2σ3 + 4iλ

(
0 u
−v 0

)
+
(−ix − 2iuv −2w

−2y ix + 2iuv

)
,(2)

σ3 =
(

1 0
0 −1

)
,
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where the complex numbers u, v, w, y, and x form a parameter set for the class of linear
systems considered. We shall denote this set by

A ≡ {(u, v, w, y, x)},
and, as in [24], we shall call it the set of singular data of system (1). Note that the set
A can be thought of as a complex manifold isomorphic to C

5, and hence

(3) dimC A = 5.

The Riemann–Hilbert–Birkhoff problem is posed as the question on surjectivity for
the generalized monodromy map,

(4) A �→ M,

where M stands for the set of generalized monodromy data. The set M is responsible for
the global properties of the solutions of a linear system. In the case of system (1), the set
of generalized monodromy data consists of (a) the two parameters of the exponential part
of the formal solution at λ = ∞, which is the only singular point of the system, and (b)
the six Stokes matrices associated with this (irregular) singular point. The collection S
of the Stokes matrices forms the set of monodromy data for system (1). The monodromy
map,

(5) A �→ S,

is the transcendental part of the generalized monodromy map (4). The detailed definition
of the sets S and M will be given in the next section. In the case of a general linear
system, the set of monodromy data includes also the corresponding monodromy group
(which is trivial for system (1)) and the connection matrices (matrices that connect the
marked fundamental solution with the local fundamental solutions at different singular
points).

In a more general sense, the Riemann–Hilbert problem includes the study of the
analytic properties of the inverse generalized monodromy map. A question of particular
interest is as to whether the inverse generalized monodromy map is a meromorphic
function on the submanifold D ≡ M\ S.

Our interest in the inverse monodromy problem for system (1) is twofold. The first
reason is that this is the first nontrivial case of the Riemann–Hilbert–Birkhoff problem
for systems with irregular singular points. Indeed, the two preceding cases, i.e., 2 × 2
systems with the coefficient matrices A(λ) = A1λ + A0 and A(λ) = A0, can be solved
explicitly in terms of contour integrals of elementary functions (i.e., in terms of the conflu-
ent hypergeometric function) and simply in terms of elementary functions, respectively.
Hence, for the two preceding cases, the monodromy maps (4) and (5) can be analyzed
by using explicit formulas that involve at most the contour integrals.

The second reason is the relationship between (1) and the integrable systems, in
particular, the theory of Painlevé equations. This relationship occurs due to the fact
that, simultaneously, system (1) is the first case of a polynomial system that allows for
nontrivial isomonodromy deformations, i.e., the monodromy map (5) has nontrivial level
curves. Indeed, in the case of the linear matrix-valued function A(λ), there are no free
parameters (after the proper gauge and scaling transformations) in the exponential part
of the formal solutions, the sets S and M coincide, and the monodromy map (5) is
one-to-one, i.e., no “room” remains for isomonodromy deformations.

The isomonodromy deformations of the linear system (1) are transformed into a certain
nonlinear dynamical system on the manifold A. In turn, this nonlinear system can be
reduced to the Painlevé-2 or Painlevé-34 equations (more details are given in §3 and in
Appendix 2). A similar isomonodromy interpretation, with different rational matrices
A(λ), exists for every Painlevé equation, and this fact was discovered at the turn of the
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ON THE INVERSE MONODROMY PROBLEM 107

last century by R. Garnier and L. Schlesinger. What apparently was not noticed in the
classical works, is that the associated Riemann–Hilbert problems can be used to study
the global properties of the Painlevé functions and, in particular, to obtain the explicit
asymptotic connection formulas. The latter is a modern achievement, which is based on
the isomonodromy method in the theory of Painlevé equations, initiated in the papers [24]
and [14]. We refer the reader to the monograph [19] and to the survey papers [15, 18, 21]
for more details on the isomonodromy method and the connection formulas for Painlevé
equations.

The questions about surjectivity of the monodromy map and the property of the in-
verse generalized monodromy map to be meromorphic play an important role in the
theory of Painlevé equations. The positive resolution of the first question justifies the
very basic technical idea of the isomonodromy method, which is the parametrization of
the solutions of Painlevé equations by the points of the relevant manifolds of monodromy
data. To have a rigorous proof of the existence of such a parametrization is crucial for
rigorous global asymptotic analysis of Painlevé functions (see, e.g., [21, 22]). An imme-
diate consequence of a positive answer to the second question is the principal property of
Painlevé equations, called the Painlevé property, saying that all their solutions are mero-
morphic on the universal covering of a punctured Riemann sphere determined by the
equation only. (In the case of the Painlevé-2 equation this is the finite complex plane.)

The modern framework for the study of the inverse monodromy problems is the theory
of holomorphic vector bundles. We refer the reader to the survey papers [4] and [32] for
all the details. The main idea is to identify the inverse monodromy problem for a given
system of linear equations with the question of triviality for a certain holomorphic vector
bundle over CP 1 × R, where R denotes a universal covering of the set of parameters
of the linear system. By using powerful, although highly nontrivial, geometric tools
of the theory of vector bundles, a negative answer to the surjectivity question for the
monodromy map in the case of Fuchsian systems (A(λ) has only simple poles and the
monodromy set S coincides with the monodromy group — the 21st Hilbert problem) was
obtained in [5]. The comprehensive analysis of additional conditions to be imposed on
the monodromy data in order to ensure the solvability of the inverse monodromy problem
for Fuchsian systems was done in [6] and [26]. In the case of a general linear system and
for fixed monodromy data belonging to the image of the monodromy map, it was shown
in [27] that the inverse generalized monodromy map is meromorphic as the function on
the set D of deformation parameters. A similar result for Fuchsian systems was obtained
in [29], and for a generic system with irregular singularities in [28, 30].1 Many important
results concerning the solvability of the inverse monodromy problem for general linear
systems were obtained in [2, 7, 25]. We refer the reader to the survey [7] for more on
the holomorphic vector bundle approach to the inverse monodromy problem and on the
history of the whole subject.

Another approach to the inverse monodromy problems is based on their interpretation
as the Riemann–Hilbert factorization problems, and it invokes the analytic theory of
Fredholm operators in order to establish the existence of the inverse monodromy maps
under certain symmetry constraints on the monodromy data. This approach can also
be used to prove that the inverse generalized monodromy map is meromorphic on the
set of deformation parameters provided the monodromy data belong to the image of the
monodromy map for at least one particular set of deformation parameters.2 The method

1Perhaps, from the results of [27, 30], and [28] it is possible to deduce that the monodromy map is
surjective in the generic case of rational coefficient matrix A(λ); however, that much was not exactly
stated in the papers cited.

2In principle, using certain topological arguments [11], one can drop this restriction on the monodromy
data.
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was presented in [34, 8, 16], and [10]; in particular, it allows one to prove the Painlevé
property for all the Painlevé transcendences.3 Also, the Riemann–Hilbert factorization
setting made it possible to use the nonlinear steepest descent method of [12] for the
asymptotic analysis of the inverse monodromy map and hence for the asymptotic analysis
of the solutions of Painlevé equations (see [13] and also [21]).

The Fredholm theory of singular integral operators plays an important role in the
vector bundle method as well; one needs it to analyze the local factorization problems
near singular points (see [27, 30].) The geometric-topological arguments are used then
to “glue” the solutions of local Riemann–Hilbert problems into a unique global solution.
Therefore, in essence, the invariant geometric language of vector bundles is unavoidable
for the rigorous analysis of the inverse monodromy problem and isomonodromy deforma-
tions in the case of general linear systems. At the same time, for specific linear systems
related to the Painlevé equations, e.g., for system (1), it is possible to perform a rigorous
study of the inverse problem on the basis of analytic considerations only.

Let us make a few additional remarks concerning the link between the Painlevé prop-
erty of the solutions of isomonodromy deformation equations and the property to be
meromorphic for the solutions of the related Riemann–Hilbert problems. If the Painlevé
property is known a priori, the basic analytic properties of the direct monodromy map
can be used to show that the solutions of the Riemann–Hilbert problem are meromorphic.
This idea was used in [20], where the inverse generalized monodromy map was shown to
exist and be meromorphic in a particular case (namely, u = v, w = y) of system (1);
this was done by using the classical Birkhoff–Grothendieck theorem and by assuming the
Painlevé property for the second Painlevé equation. However, this approach can hardly
be extended to more general linear systems, because a direct proof of the statement
that the solutions of general isomonodromy deformation equations are meromorphic, is
overwhelmingly difficult. We accept the point of view on this matter that is usual for
the theory of integrable system: the adequate way to analyze a global property (e.g., the
Painlevé property) of the solutions of an integrable system is to invoke the associated
Riemann–Hilbert problem. This is exactly the method by which the Painlevé property
for general isomonodromy deformation equations was proved in [7] and [27]–[28]. In a
similar spirit (but not by the same technique), the results mentioned above on the ex-
plicit asymptotic connection formulas for Painlevé equations have also been obtained via
the asymptotic analysis of the related Riemann–Hilbert problems.

In what follows, we present an elementary proof of the meromorphic solvability of
the Riemann–Hilbert problem for a general case of system (1), for an arbitrary choice
of monodromy data, and without any prior assumptions concerning the related system
of isomonodromy deformations. As a corollary, we rigorously justify the monodromy
data parametrization of the second and the thirty fourth Painlevé transcendents and
prove that they are meromorphic. We call our proof “elementary” since we do not
use (directly) either holomorphic vector bundles or the L2-Fredholm theory. The basic
technical ideas that we use instead are the following two: (i) the explicit solution of the
model Riemann–Hilbert factorization problem near λ = ∞, and (ii) a generalization,
due to B. Malgrange, of the classical Birkhoff–Grothendieck theorem to the case with
the parameter. An elementary proof of this important theorem is presented in Appendix
1; this proof is modeled on that suggested in [7]. We also make use of the uniform
boundedness of the Cauchy operator in some natural Banach spaces of holomorphic
functions (see Subsection 4.1 and Appendix 1).

3It should be noted that alternative methods to prove the Painlevé property for Painlevé equations,
which do not use any relationship with the Riemann–Hilbert problem, were suggested in [23] and [9].
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We believe that the ever-widening application of the Painlevé functions throughout
increasingly numerous areas of analysis and mathematical physics, as well as the success
of the Riemann–Hilbert approach in the asymptotic analysis of Painlevé transcendents,
make it worth having a detailed proof of their basic analytic properties, as well as of the
basic analytic properties of the solutions of the associated Riemann–Hilbert problems,
accessible without bundle theory or the analytic Fredholm theory as prerequisites. At
the same time, we hope that this paper will prepare the reader for the more advanced
texts on the general Riemann–Hilbert–Birkhoff problem where the use of the invariant
language is essential.

The second and third authors take the full responsibility for this Introduction and
apologize for all possible flaws in its reference part.

§2. Formulation of the Riemann–Hilbert problem and the main theorem

We begin with the exact definition of the monodromy sets M and S and the mon-
odromy maps (4) and (5). To this end, we need some basic facts concerning the solutions
of system (1).

In accordance with the general theory of linear systems of ODEs with rational coeffi-
cients (see, e.g., [31] or [3]), system (1) has seven canonical solutions, Ψk(λ), k = 1, . . . , 7,
which are uniquely determined by the asymptotic conditions

Ψk(λ) = (I + o(1)) exp
{
−4

3
iλ3σ3 − ixλσ3 − ν ln λσ3

}
,(6)

λ → ∞, λ ∈ Ωk,

where
ν = vw − uy

is the formal monodromy exponent, and Ωk ⊂ C denotes the canonical sectors,

Ωk =
{
λ : −2π

3
+

πk

3
< arg λ <

πk

3

}
, k = 1, 2, . . . , 7.

The branch of lnλ is fixed by the condition

−2π

3
+

πk

3
< argλ <

πk

3
if λ ∈ Ωk.

The functions Ψk satisfy the following analytic properties, which are the specifications
for system (1) of the corresponding general facts of the theory of linear ODEs (see again
[3, 31] and also [24]).

(i) Each Ψk(λ) is an entire function. Moreover, the functions Ψk(λ) depend analyt-
ically on the parameters u, v, w, y, and x. In fact, if we denote

a := (u, v, w, y, x) ∈ A,

then each Ψk(λ) ≡ Ψk(λ, a) is jointly analytic in (λ, a). In other words,

Ψk(λ, a) ∈ H
(
C ×A) ≡ H

(
C × C

5
)
.

(ii) Each Ψk(λ, a) is invertible for all (λ, a), and

Ψ−1
k (λ, a) ∈ H

(
C ×A).

In fact,
detΨk ≡ 1.
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(iii) Estimate (6) can be replaced by the full asymptotic series,

Ψk(λ) � Ψf (λ), λ → ∞, λ ∈ Ωk,(7)

where Ψf (λ) denotes the formal power series solution of (1),

(8) Ψf (λ) =
(
I +

∞∑
j=1

mj

λj

)
exp

{
−4

3
iλ3σ3 − ixλσ3 − ν ln λσ3

}
.

The asymptotic expression (7) is uniform, i.e., for each positive number l, closed
subsector Ω′

k ⊂ Ωk, and compact subset K ∈ A, there exists a constant C > 0
such that∣∣∣Ψk(λ) exp

{
4
3
iλ3σ3 + ixλσ3 + ν ln λσ3

}
− I −

l∑
j=1

mj

λj

∣∣∣ ≤ C

λl+1
,

(λ, a) ∈ Ω′
k ×K.

(iv) The coefficients mj of the series (8) are entire functions of a. In fact, like the
formal monodromy exponent ν, all the mj are polynomials in u, v, w, y, and x,
and they can be determined recursively (see, e.g., [24]). The first two coefficients
are

m1 =
1
2

(−id u
v id

)
,(9)

m2 =
1
8

(
uv − d2 − xν 2iw + 2iud
−2iy − 2ivd uv − d2 + xν

)
,(10)

where
d = yw − xuv − u2v2

(we recall that

(11) ν = vw − uy

is the formal monodromy exponent; see (6), (8)).
(v) The asymptotic expansion (7) is termwise differentiable with respect to λ and

each of the coordinates of a, i.e., with respect to λ, u, v, w, y, and x. The
resulting asymptotic representations are uniform as well.

The Stokes matrices are defined by the equations

(12) Sk = Ψ−1
k (λ)Ψk+1(λ), k = 1, . . . , 6.

Since Ψk(λ) and Ψk+1(λ) are fundamental solutions of the same linear system, the ma-
trices Sk do not depend on λ. However, they depend on the coefficients of system (1),
i.e.,

Sk ≡ Sk(u, v, w, y, x) ≡ Sk(a).
Moreover, properties (i) and (ii) of the canonical solutions imply

Sk(a) ∈ H
(A) ≡ H

(
C

5
)
.

Furthermore, the Stokes matrices have the following triangular structure:

(13) S2l =
(

1 s2l

0 1

)
, S2l−1 =

(
1 0

s2l−1 1

)
, l = 1, 2, 3,

and they satisfy the cyclic relation

(14) S1S2S3S4S5S6 = e−2πiνσ3 .

The indicated triangular structure of Sk is a direct consequence of the fact that two
different solutions of equation (1), i.e., Ψk(λ) and Ψk+1(λ), have the same exponential

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE INVERSE MONODROMY PROBLEM 111

asymptotics (6) in the common sector Ωk ∩ Ωk+1 (the Stokes phenomenon). The cyclic
relation follows from the fact that each Ψk(λ) is an entire function and, therefore,

Ψ1(λ) = Ψ1

(
e−2πiλ

)
= Ψ7(λ)e2πiνσ3 = Ψ1(λ)S1S2S3S4S5S6e

2πiνσ3 .

It should also be mentioned that equation (14) indicates the triviality of the monodromy
group of system (1).

We define the set S of monodromy data as the collection of the Stokes matrices and
the formal monodromy exponent ν, i.e.,

S :=
{(

S1, . . . , S6; ν
)

: the Sk satisfy (13), (14)
}
.

We also define the set M of generalized monodromy data as the collection of the Stokes
matrices and the two parameters ν and x, which determine the exponential factor in the
asymptotics (7), i.e.,

M :=
{(

S1, . . . , S6; ν, x
)

: the Sk satisfy (13), (14)
}
.

Accordingly, the generalized monodromy map (4) is defined by equations (12) and (11),
and by the equation x = a5. Observe that M is a complex manifold of dimension 5, i.e.,

dimC M = 5 = dimC A.

Simple considerations show that the generalized monodromy map is an injection. In-
deed (cf., e.g., [31]), if we assume that

ν(a) = ν(b), x(a) = x(b)

and
Sk(a) = Sk(b) for all k,

then the matrix ratio Ψ1(λ, a)Ψ−1
1 (λ,b) is an entire function of λ that approaches the

identity matrix as λ approaches infinity. By the Liouville theorem, this implies that, in
fact, this matrix ratio is the identity matrix. Hence,

Ψ1(λ, a) = Ψ1(λ,b) for all λ,

and, in turn,
A(λ, a) = A(λ,b) for all λ =⇒ a = b.

As it has already been indicated, the questions about the surjectivity of the mon-
odromy map and the analytic properties of the inverse generalized monodromy map
with respect to the complex parameter x constitute the Riemann–Hilbert inverse mon-
odromy problem for system (1). In other words, we ask the following: Given a complex
number ν and six 2×2 matrices Sk satisfying equations (13) and (14), does there exist a
linear system of class (1) that has the given data as its monodromy data? If the answer
is in the affirmative, then what is the dependence of the inverse generalized monodromy
map on the deformation parameter x? Our principal goal is to present a detailed proof
of the following theorem, which answers these questions.

Theorem 1. Let s ≡ (S1, S2, . . . , S6; ν) be monodromy data, i.e., a complex number ν
and six (2×2)-matrices satisfying equations (13) and (14). Then there exists a countable
set Θ ≡ Θ(s) ≡ {xj ≡ xj(s)} ⊂ C, xj → ∞, and a unique matrix-valued function
Ψ(λ, x) with the following properties:

(i) Ψ(λ, x) and Ψ−1(λ, x) are holomorphic in C × (
C \ Θ

)
and meromorphic along

C × Θ (i.e., they have poles at xj ∈ Θ, and the coefficients of the corresponding
Laurent series are holomorphic in C);

(ii) detΨ(λ, x) ≡ 1;
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(iii) for every x ∈ C \ Θ we have

Ψ(λ, x)S1 · · ·Sk−1 �
(
I +

∞∑
j=1

mj(x)
λj

)
e{−

4
3 iλ3σ3−ixλσ3−ν ln λσ3},(15)

λ → ∞, λ ∈ Ωk, −2π

3
+

πk

3
< arg λ <

πk

3
,

where the coefficients mj(x) are holomorphic in C \ Θ and meromorphic in C;
(iv) the asymptotic expression (15) is uniform, i.e., for each positive number l, closed

subsector Ω′
k ⊂ Ωk, and compact subset K ⊂ C \Θ, there exists a constant C > 0

such that∣∣∣Ψ(λ, x)S1 · · ·Sk−1 exp
{4

3
iλ3σ3 + ixλσ3 + ν ln λσ3

}
− I −

l∑
j=1

mj

λj

∣∣∣ ≤ C

λl+1
,

(λ, x) ∈ Ω′
k ×K;

(v) the asymptotic expression (15) is differentiable with respect to x and λ.

Theorem 1 shows that for any given collection s of monodromy data the Riemann–
Hilbert–Birkhoff problem posed above is solvable meromorphically with respect to the
parameter x. Indeed, put

(16) A(λ, x) :=
∂Ψ(λ, x)

∂λ
Ψ−1(λ, x).

For every x ∈ C \ Θ, the matrix A(λ, x) is an entire function of λ. Moreover, since the
matrices Sk do not depend on λ, we have

A(λ, x) =
∂
[
Ψ(λ, x)S1 · · ·Sk−1

]
∂λ

[
Ψ(λ, x)S1 · · ·Sk−1

]−1

�
(
I +

∞∑
j=1

mj(x)
λj

)(
−4iλ2σ3 − ixσ3 − ν

λ
σ3

)(
I +

∞∑
j=1

mj(x)
λj

)−1

−
∞∑

j=1

jmj(x)
λj+1

(
I +

∞∑
j=1

mj(x)
λj

)−1

,

(17)

as λ → ∞, λ ∈ Ωk. This means that in the full neighborhood of λ = ∞ the following
estimate is fulfilled:

A(λ, x) = A2(x)λ2 + A1(x)λ + A0(x) + O (1/λ) , λ → ∞,

where

A2(x) = −4iσ3, A1(x) = 4i[σ3, m1(x)],(18)

A0(x) = 4i[σ3, m2(x)] − ixσ3 − 4i[σ3, m1(x)]m1(x),(19)

and [ , ] denotes the usual matrix commutator. By the Liouville theorem, we conclude
that in fact the exact equation

(20) A(λ, x) = A2(x)λ2 + A1(x)λ + A0(x)

occurs. Therefore, the function Ψ(λ, x) is a fundamental solution of a linear system of
class (1). Moreover, by the asymptotic formula (15), the corresponding monodromy data
coincide with the given set s.

It should be noted that, as soon as the polynomial structure of A(λ, x) is established,
we can use the asymptotic relation (17) to express all the coefficients mj(x) in terms
of the four scalar functions u(x), v(x), w(x), and y(x), which parametrize the matrix
A(λ, x) (in accordance with (2)). In particular, equations (9)–(11) are fulfilled.
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In what follows, the function Ψ(λ, x) ≡ Ψ(λ, x; s) will be called the solution of the
Riemann–Hilbert problem corresponding to the monodromy data s = (S1, . . . , S6; ν).

Remark 1. Theorem 1 is new as stated, but may be viewed properly as a specification
and refinement of the results of [7, 16, 27, 28, 30].4 The elementary proof of the theorem
we present in §4 does not use the results of those papers.

§3. Isomonodromy deformations. The Painlevé property. The second

Painlevé equation

This section is an adaptation of the general theory of [14, 24] to system (1).
From equations (18), (19) it follows that the parameters u, v, w, and y corresponding

to the set
s = (S1, . . . , S6; ν)

of monodromy data via the solution of the Riemann–Hilbert problem are given by the
equations

u = 2(m1(x))12, v = 2(m1(x))21,(21)

w = −4i(m2(x))12 + 2iu(m1(x))22,(22)

y = 4i(m2(x))21 − 2iv(m1(x))11,(23)

and therefore are meromorphic functions of x with the set Θ ≡ Θ(s) as the set of
their poles. These functions have an important meaning; indeed, equations (21)–(23)
determine the curve

a(x) =
(
u(x), v(x), w(x), y(x), x

)
in the space A of singular data such that the corresponding monodromy data are the same
(coincide with the given set s) along the entire curve. In other words, these equations
determine an isomonodromy deformation of system (1). The following theorem identifies
the curve a(x) as a solution of a certain nonlinear system of ODEs; this system describes
the isomonodromy deformations of the linear equation (1).

Theorem 2 (cf. [14, 20, 24]). Let Ψ(λ, x) be the solution of the Riemann–Hilbert–
Birkhoff problem corresponding to the set of monodromy data s = (S1, . . . , S6; ν), and let
the (meromorphic) functions u(x), v(x), w(x), and y(x) be defined in accordance with
(21)–(23). Then5

(24) w = ux, y = vx

and the functions u(x) and v(x) satisfy the following system of ODEs:

(25)

{
uxx = xu + 2u2v,

vxx = xv + 2v2u.

Proof. Consider the x-logarithmic derivative of the function Ψ(λ, x),

(26) U(λ, x) :=
∂Ψ(λ, x)

∂x
Ψ−1(λ, x) ≡ Ψx(λ, x)Ψ−1(λ, x).

4The theorem also follows from the results of [20], which are based on the a priori assumption of the
Painlevé property for the second Painlevé equation.

5We use the notation fx ≡ df
dx

.
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Using this time the fact that the matrices Sk and the monodromy exponent ν do not
depend on x, as in (17)–(20) we find that

U(λ, x) �
(
I +

∞∑
j=1

mj(x)
λj

)(−iλ σ3

)(
I +

∞∑
j=1

mj(x)
λj

)−1

+
∞∑

j=1

mjx(x)
λj

(
I +

∞∑
j=1

mj(x)
λj

)−1

, λ → ∞,

(27)

for every x ∈ C \ Θ. Like the λ-derivative A(λ, x), the function U(λ, x) is an entire
function of λ. Therefore, the asymptotic relation (27) implies the exact equation

(28) U(λ, x) = U1(x)λ + U0(x),

where

(29) U1(x) = −iσ3

and

(30) U0(x) = i[σ3, m1(x)] =
(

0 iu(x)
−iv(x) 0

)
.

As soon as the polynomial structure of U(λ, x) is established, we can use the asymptotic
formula (27) to obtain a series of identities involving the coefficient matrices mj(x). In
particular, comparing the terms of order λ−1, we arrive at the relation

0 = i[σ3, m2(x)] − i[σ3, m1(x)]m1(x) + m1x(x).

Together with (19), this implies the formula

A0 = −ixσ3 − 4m1x,

and equations (24) follow by (21).
To derive the nonlinear system (25), we take a new look at equations (16) and (26).

Indeed, consider the linear system

(31)

{
Ψλ = A(λ)Ψ,

Ψx = U(λ)Ψ,

where the polynomial matrices A(λ) ≡ A(λ, x) and U(λ) ≡ U(λ, x) are given by the
equations

A(λ) = A2λ
2 + A1λ + A0

= −4iλ2σ3 + 4iλ

(
0 u
−v 0

)
+
(−ix − 2iuv −2ux

−2vx ix + 2iuv

)(32)

and

(33) U(λ) = U1λ + U0 = −iλσ3 +
(

0 iu
−iv 0

)
.

Then, we can interpret (16) and (26) as the following statement: Let Ψ(λ, x) be the solu-
tion of the Riemann–Hilbert–Birkhoff problem, and let the scalar functional parameters
u(x) and v(x) in (32) and (33) be defined in accordance with (21). Then system (31) is
compatible and the function Ψ(λ, x) is its fundamental solution. Observe that the com-
patibility condition Ψλx = Ψxλ yields the following relation on the coefficient matrices
of the linear system (31):

(34) Uλ(λ) − Ax(λ) = [A(λ), U(λ)] identically in λ.
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A straightforward calculation shows that the nonlinear system (25) is equivalent to re-
lation (34) provided A(λ) and U(λ) are given by equations (32) and (33), respectively.
This completes the proof of the theorem. �

The next theorem shows that any solution of (25) represents an isomonodromy defor-
mation of system (1).

Theorem 3 (cf. [14, 20, 24]). Let J ⊂ R be an interval and suppose that u(x) and v(x)
both belong to C2(J) and satisfy system (25). Then the equation

a =
(
u(x), v(x), ux(x), vx(x), x

)
determines an isomonodromic curve in the space A of singular data of system (1).

Proof. Again, we shall use the equivalence of the nonlinear system (25) to the compat-
ibility condition (34) of the overdetermined linear system (31). Let u(x) and v(x) be
functions satisfying the conditions of the theorem. Consider the linear system (1) with

A(λ) = A(λ, x) ≡ A(λ, a(x)),

where

(35) a(x) :=
(
u(x), v(x), ux(x), vx(x), x

)
,

and let
Ψk(λ, x) ≡ Ψk(λ, a(x))

be the corresponding canonical solutions. Note that the Ψk(λ, x) are twice continuously
differentiable with respect to x (this follows from property (i) of the canonical solutions).
It should also be noted that the combination uxv − uvx is the first integral of system
(25) (a simple direct calculation). Therefore, the formal monodromy exponent associated
with Ψk(λ, x), namely,

ν = vw − uy = uxv − uvx,

is a constant, i.e.,

(36)
dν

dx
≡ 0.

Now we claim that for every k and λ we have

(37)
∂

∂x
Ψk(λ, x) = U(λ, x)Ψ(λ, x),

where U(λ, x) is defined by (33). Observe that the statement of the theorem is a simple
consequence of this equation. Indeed, since (37) is followed by the relation

∂

∂x
Ψ−1

k (λ, x) = −Ψ−1
k (λ, x)U(λ, x),

we have
dSk(x)

dx
=

∂

∂x

(
Ψ−1

k (λ, x)Ψk+1(λ, x)
)

= −Ψ−1
k (λ, x)U(λ, x)Ψk+1(λ, x) + Ψ−1

k (λ, x)U(λ, x)Ψk+1(λ, x) = 0.

Together with (36), this implies that the curve (35) is isomonodromic.
To verify equation (37), put

F (λ, x) :=
∂

∂x
Ψk(λ, x) − U(λ, x)Ψk(λ, x).
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By (21) and (36), we see at once that6

(38) F (λ, x)eθ(λ,x)σ3 = O (1/λ) as λ → ∞, λ ∈ Ωk,

for every x ∈ J , where we have introduced the notation

θ(λ, x) = i
4
3
λ3 + ixλ + ν ln λ.

We must show that, actually, F (λ, x) ≡ 0.
Using (34) (which is true because u and v satisfy (25)), we can easily check that the

matrix-valued function F (λ, x) satisfies system (1) for every x. It follows that there exists
a matrix C ≡ C(x) independent of λ such that

F (λ, x) = Ψk(λ, x)C(x).

From estimates (7) and (38) we conclude that, for every x ∈ J ,

(39) e−θ(λ,x)σ3C(x)eθ(λ,x)σ3 = O (1/λ) as λ → ∞, λ ∈ Ωk.

This estimate implies immediately that the diagonal entries of C(x) vanish, i.e., C11(x) =
C22(x) ≡ 0. Then, assuming

π

3
(k − 1) < arg λ <

π

3
k

in (39), we conclude that either C12(x) or C21(x) must be identically zero (depending on
the parity of k). The remaining off-diagonal entry vanishes under the assumption that

π

3
(k − 2) < argλ <

π

3
(k − 1)

in (39). Hence, the matrix C(x) is zero for all x, and (37) follows. The proof of the
theorem is complete. �

Because of the uniqueness of a local solution of the Cauchy problem for system (25)
and the uniqueness of the solution of the Riemann–Hilbert problem, we arrive at once
at the following two important corollaries of Theorems 2 and 3.

Corollary 1 (The Painlevé property). Suppose that C2-functions u(x) and v(x) satisfy
the isomonodromy deformation equations (25). Then they admit meromorphic continu-
ation to the entire complex x-plane.

Corollary 2 (Monodromy parametrization of the solution set). The map

{solutions of (25)} �→ S
is a bijection; hence, the notation

u(x) ≡ u(x; s), v(x) ≡ v(x; s)

for the solutions of (25) is justified. Given s ∈ S, the functions u(x; s) and v(x; s) are
meromorphic, and Θ(s) is the set of their (first order) poles.

In fact, the nonlinear system (25) is closely related to the classical list of Painlevé
equations. Indeed, it can be observed that, under the reduction relation

(40) u = v,

system (25) becomes a particular case of the second Painlevé equation

(41) uxx = xu + 2u3.

6We recall that, by property (v) of the canonical solutions, the asymptotic expression (7) is x-
differentiable.
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In terms of monodromy data, the reduction (40) is equivalent to the conditions

(42) ν = 0, sk+3 = −sk, k = 1, 2, 3

(see, e.g., [19] and also Appendix 2); in particular, the cyclic equation (14) transforms
into a single scalar equation, namely,

(43) s1 − s2 + s3 + s1s2s3 = 0.

In its turn, this implies that, in the case of the second Painlevé equation (41), the set S
of monodromy data becomes a two-dimensional algebraic variety:

S0
p2 = {s ≡ (s1, s2, s3) ∈ C

3 : s1 − s2 + s3 + s1s2s3 = 0}.
From Corollaries 2 and 3 we deduce the respective statements concerning the Painlevé

equation (41).

Corollary 10 (The Painlevé property). Suppose that a C2-function u(x) satisfies the
second Painlevé equation (41). Then it admits meromorphic continuation to the entire
complex x-plane.

Corollary 20 (Monodromy parametrization of the Painlevé set). The map

{solutions of P2} �→ S0
p2

is a bijection; hence, the notation

u(x) ≡ u(x; s),

for the solutions of the Painlevé equation is justified. Given s ∈ S0
p2, the function u(x; s)

is meromorphic, and Θ(s) is the set of its (first order) poles.

In Appendix 2, more facts concerning the relationship of the system (25) with Painlevé
equations are collected. In particular, there we describe links to the full Painlevé-2
equation and to the Painlevé-34 equation.

§4. Proof of Theorem 1

We split the proof into three steps. At the first step, we establish the existence
of a solution local both in λ and in x for the Riemann–Hilbert problem in question.
Specifically, we prove that, given a neighborhood Ω of λ = ∞ and a disk D on the x-
plane, there exists a matrix-valued function (denoted by M(λ, x)) that is holomorphically
invertible in Ω×D and satisfies the asymptotic condition (15) with all mj(x) holomorphic
in D (see Theorem 4 below). We note that, were it not for our special interest in the
x-dependence, the result would follow from the Sibuya theorem [31] concerning the local
solvability of the general Riemann–Hilbert–Birkhoff problem for a linear system near its
irregular singularity. Therefore, we call this step the Sibuya theorem with a parameter.
The principal construction used at this step is the introduction of the explicit model
functions gk(λ, x) such that each of them factorizes the corresponding Stokes matrix Sk.
Essentially, it is this technique, followed by an application of the Birkhoff–Grothendieck
theorem (the second step), that allows us to avoid any use of the L2-Fredholm theory of
singular integral operators, which was a principal tool in the papers [8] and [16] mentioned
before.

At the second step, we apply the classical Birkhoff–Grothendieck theorem (also gener-
alized to the case with a parameter) to the function M(λ, x) and obtain a solution global
in λ, but still local in x, for the original Riemann–Hilbert problem (see Theorem 6 below).
Since this is the most important step, for the reader’s convenience we decided to present
a detailed proof of the Birkhoff–Grothendieck theorem with parameter in Appendix 1;
this proof follows the pattern of [7].
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Finally, at the third step we cover the x-plane by a countable number of small disks
and glue up the corresponding local solutions into a single solution (global both in λ
and in x) of the inverse monodromy problem in question, which completes the proof of
Theorem 1.

Before we proceed, we make a technical assumption concerning the formal monodromy
exponent ν. We assume that

(44) ν /∈ Z \ {0}.
The following lemma shows that it indeed suffices to prove Theorem 1 under this restric-
tion.

Lemma 1. Let Ψ(λ, x) be the solution of the Riemann–Hilbert problem with monodromy
data s =

(
S1, . . . , S6; ν

)
, and let u(x) and v(x) be the corresponding functional parameters

on the manifold A of singular data. Then the functions

Ψ̂(λ, x) :=
(

λ + ux/2iu −u/2
2/u 0

)
Ψ(λ, x)

and

Ψ̃(λ, x) :=
(

0 2/v
−v/2 λ − vx/2iv

)
Ψ(λ, x)

solve the Riemann–Hilbert problems with the monodromy data

ŝ =
(
S1, . . . , S6; ν − 1

)
and

s̃ =
(
S1, . . . , S6; ν + 1

)
,

respectively.

Note that only the asymptotic property (iii) needs a proof. The proof can be obtained
by direct calculation with the help of relations (21)–(23) between the matrix coefficients
mj of the asymptotic series for Ψ and the functions u, v, w = ux, and y = vx.7

4.1. The Sibuya theorem with a parameter. In this section, as well as in the rest
of the paper, we accept the following notation. For each set M ⊂ CN with nonempty
interior, we denote by H(M) the Banach space of 2×2 matrix-valued functions holomor-
phic in the interior of M and continuous in M. Next, we denote by H0(M) the subspace
of H(M) consisting of holomorphically invertible matrix functions. Such functions are
also said to be holomorphic in M and holomorphically invertible in M, respectively.

Now, let

Ωρ =
{
λ ∈ C : |λ| > ρ

}
7The transformations Ψ �→ Ψ̂ and Ψ �→ Ψ̃ are examples (found by A. Kitaev) of the Schlesinger

transformations (see, e.g., [24]). They induce the Bäklund transformations

(u, v) �→
(
−u

4
(uv + x − u2

x/u2),
4

u

)
,

and

(u, v) �→
( 4

v
,−v

4
(uv + x − v2

x/v2)
)
,

on the solution space for system (25).
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Figure 1. The contours Γρ
k and the sets Ωρ

k.

Figure 2. The sectors Lk.

be a neighborhood of λ = ∞. We define the following subsets of Ωρ:

Γρ
k =

{
λ ∈ C : |λ| ≥ 2ρ, argλ =

2k − 1
6

π
}

, k = 1, . . . , 6;

Ωρ
k =

{
λ ∈ C : |λ| > ρ,

∣∣∣arg λ − 2k − 1
6

π
∣∣∣ < ε

}
;

Lk =
{

λ ∈ C : |λ| ≥ 3ρ,
∣∣∣argλ − k − 1

3
π
∣∣∣ ≤ π

6

}
, k = 1, . . . , 6.

We assume that the contours Γρ
k are oriented towards the point at infinity, and ε is a

sufficiently small positive number such that Ωρ
k ∩ Ωρ

k+1 = ∅. At the moment, we do not
impose any restrictions on the positive number ρ. The contours Γρ

k and the sets Ωρ
k are

depicted in Figure 1. The sectors Lk are presented in Figure 2.
Our goal in this section is to prove the following theorem.
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Theorem 4 (The Sibuya theorem with a parameter). Let s =
(
S1, . . . , S6; ν

) ∈ S be
given monodromy data, and let K be a closed disk on the complex x-plane. Then there
exists ρ0 ≡ ρ0

(K) and a matrix-valued function M(λ, x) such that for all ρ ≥ ρ0 the
following statements are true.

1. M(λ, x) ∈ H0
(
Ω3ρ × K

)
.

2. For every x ∈ K, we have

M(λ, x)S1 · · ·Sk−1 �
(
I −

∞∑
j=1

m0
j(x)
λj

)
e{−

4
3 iλ3σ3−ixλσ3−ν ln λσ3},(45)

λ → ∞, λ ∈ Lk,
∣∣∣argλ − k − 1

3
π
∣∣∣ ≤ π

6
,

where the coefficients m0
j(x) are holomorphic in K.

3. The asymptotic expression (45) is uniform, i.e., for any positive number l, there
exists a constant C > 0 such that∣∣∣M(λ, x)S1 · · ·Sk−1 exp

{4
3
iλ3σ3 + ixλσ3 + ν ln λσ3

}
− I −

l∑
j=1

m0
j

λj

∣∣∣ ≤ C

λl+1
,

(λ, x) ∈ Lk ×K.

4. The asymptotic expression (45) is differentiable with respect to both x and λ.

Remark 2. Because of the “correct” triangular structure of the Stokes matrices Sk, the
asymptotic condition (45) implies that it is actually fulfilled in the open sectors Ωk

defined in (6). Indeed, for every positive number l and closed subsector Ω′
k ⊂ Ωk there

exists a constant C > 0 such that∣∣∣M(λ, x)S1 · · ·Sk−1 exp
{4

3
iλ3σ3 + ixλσ3 + ν ln λσ3

}
− I −

l∑
j=1

m0
j

λj

∣∣∣ ≤ C

λl+1
,

(λ, x) ∈ Ω′
k ×K.

In an equivalent way, Theorem 4 can be reformulated as follows.

Theorem 4′. Let s =
(
S1, . . . , S6; ν

) ∈ S be given monodromy data, and let K be a
closed disk on the complex x-plane. Then there exists ρ0 ≡ ρ0

(K) and a collection of
six matrix-valued functions Yk(λ, x), k = 1, . . . , 6, such that for all ρ ≥ ρ0 the following
statements are true.

1. Yk(λ, x) ∈ H0
(Lk ×K

)
.

2. Yk+1(λ, x) = Yk(λ, x)Gk(λ, x), λ ∈ Γρ
k ∩ {|λ| ≥ 3ρ}, k = 1, . . . , 6, where

Gk(λ, x) = e−θ(λ,x)σ3Skeθ(λ,x)σ3 , θ(λ, x) = i
4
3
λ3 + ixλ + ν ln λ,(46)

argλ =
2k − 1

6
π if λ ∈ Γρ

k,

and we put Y7(λ, x) ≡ Y1(λ, x).8

3. For every x ∈ K and k = 1, . . . , 6 we have

Yk(λ, x) � I +
∞∑

j=1

m0
j(x)
λj

,(47)

λ → ∞, λ ∈ Lk,

8We emphasize that the sectors Lk are viewed as subsets of C but not of the universal covering of
C \ {0}.
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where the coefficients m0
j(x) are holomorphic in K.

4. The asymptotic expression (47) is uniform, i.e., for each positive number l there
exists a constant C > 0 such that∣∣∣Yk(λ, x) − I −

l∑
j=1

m0
j

λj

∣∣∣ ≤ C

λl+1
for all (λ, x) ∈ Lk ×K and all k.

5. The asymptotic expression (47) is differentiable with respect to both x and λ.

To see that Theorem 4′ implies Theorem 4, we define a function M(λ, x) by the
equations

M(λ, x)
∣∣
L1

= Y1(λ, x)e−θ(λ,x)σ3 ,

M(λ, x)
∣∣
Lk

= Yk(λ, x)e−θ(λ,x)σ3Sk−1 · · ·S1, k > 1,

where the branch of lnλ is fixed by the condition∣∣∣argλ − k − 1
3

π
∣∣∣ ≤ π

6
if λ ∈ Lk.

The function M(λ, x) defined in this way satisfies all the statements of Theorem 3.
Indeed, because of property 2 of Yk(λ, x) and the cyclic constraint (14) on Sk, the function
M(λ, x) has no jumps across any of Γρ

k; hence, it is holomorphic in the entire Ω3ρ. The rest
of the properties announced in Theorem 4 follow directly from the respective properties
of the functions Yk(λ, x).

In what follows, we prove Theorem 4′. Our approach is based on the replacement
of the jump conditions posed on the rays Γρ

k by some equivalent jump conditions posed
on horseshoe shape domains around the rays. To this end, we introduce the following
covering of the neighborhood Ωρ:

Ωρ ⊂ Ω+ ∪ Ω−,

where the sets Ω+ and Ω− are as depicted in Figure 3 and Figure 4, respectively. The
characteristic properties of Ω+ and Ω− are as follows.

• The set Ω+ is obtained from the complex plane C by deleting a collection of thin
neighborhoods Ωk

+ of the contours Γρ
k. The closure of the neighborhood Ωk

+ is a
subset of Ωρ

k. In other words,

Ω+ = C \
6⋃

j=1

Ωk
+, Γρ

k ⊂ Ωk
+, Ωk

+ ⊂ Ωρ
k.

• The set Ω− is a union of (slightly bigger) neighborhoods Ωk
− of the contours Γρ

k,
whose closures are also subsets of the respective Ωρ

k. In other words,

Ω− =
6⋃

k=1

Ωk
−, Γρ

k ⊂ Ωk
+, Ωk

+ ⊂ Ωk
−, Ωk− ⊂ Ωρ

k.

• Let γ+ := ∂Ω+ be the boundary of Ω+. Then

γ+ =
⋃
k

γ+
k , γ+

k = −∂Ωk
+,

and we assume that each γ+
k is a simple analytic curve that encircles the ray Γρ

k

and is asymptotic to the rays Γ(k;±ε/3), where

Γ(k;δ) :=
{

λ ∈ C : argλ − 2k − 1
6

π = δ
}
.
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Figure 3. The set Ω+ = C \⋃6
j=1 Ωk

+.

Figure 4. The set Ω− =
⋃6

k=1 Ωk−.

• Let γ− := ∂Ω− be the boundary of Ω−. Then

γ− =
⋃
k

γ−
k , γ−

k = ∂Ωk
−,

and we assume that each γ−
k is a simple analytic curve that encircles the ray Γρ

k

and is asymptotic to the rays Γ(k;±ε/2).

In addition to the sets Ω+ and Ω−, we need their intersection

Ω0 := Ω+ ∩ Ω−.

The set Ω0 is depicted in Figure 5. Observe that the properties of the sets Ω+ and Ω−
imply the following properties of the set Ω0:

• Ω0 =
⋃6

k=1 ωk, ωk ⊂ Ωρ
k \ Γρ

k, and each subset ωk is open and connected;
• ∂ωk = γ+

k + γ−
k ;

• dist
(
γ+

k , γ−
k ) ≥ cε.
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Figure 5. The set Ω0 = Ω− ∩ Ω+ =
⋃6

k=1 ωk.

Now, we are ready to introduce the principal ingredient of our proof, i.e., the model
functions gk(λ, x) mentioned above. Assuming that λ ∈ Ωρ

k \ Γρ
k, we put

gk(λ, x) = exp
{ 1

2πi

∫
Γρ

k

ln Gk(µ, x)
µ − λ

dµ
}

=




(
1 sk

2πi

∫
Γρ

k

e−2θ(µ,x)

µ−λ dµ

0 1

)
, k = 2l,(

1 0
sk

2πi

∫
Γρ

k

e2θ(µ,x)

µ−λ dµ 1

)
, k = 2l − 1,

(48)

where the jump matrices Gk(λ, x) and the phase function θ(λ, x) are given in (46). The
characteristic property of gk(λ, x) is the jump relation, namely,

(49) gk+(λ, x) = gk−(λ, x)Gk(λ, x), λ ∈ Γρ
k ∩ {|λ| ≥ 2ρ + δ},

where gk+(λ, x) and gk−(λ, x) denote the boundary values of gk(λ, x) as λ approaches
Γρ

k from the left and from the right, respectively.
On the set Ω0 ×K, the function g(λ, x) can be defined by setting

(50) g(λ, x)
∣∣
ωk

= gk(λ, x).

We list some direct consequences of the explicit formulas (48) and (50) and the geometric
properties of the set Ω0 indicated above.

(i) g(λ, x) is holomorphic both in λ and in x. Indeed,

g(λ, x) ∈ H0
(
Ω0 ×K).

(ii) We have the uniform estimate

(51) sup
λ∈Ωo,x∈K

∣∣λ(g(λ, x) − I
)∣∣ ≤ cρ,K.

Moreover,

(52) cρ,K → 0 as ρ → ∞.

The next lemma is a local version of the Birkhoff–Grothendieck theorem with param-
eter. This is the main technical step in our proof of Sibuya’s Theorem 4′. The basic idea
is the uniform boundedness of the relevant Cauchy operators (see Proposition 1 below),
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Figure 6. ωk = ω+
k ∪ ω−

k .

which is the main advantage of moving to the horseshoe domains ωk from the rays Γρ
k.

First, this idea was suggested in [1] (see also [7] and Appendix 1).

Lemma 2 (The basic factorization lemma). For sufficiently large ρ > 0, there exist
functions Ψ±(λ, x) with the following properties.

1. Ψ±(λ, x) ∈ H0
(
Ω± ×K).

2. sup
(λ,x)∈Ω±×K

∣∣λ(I − Ψ±(λ, x)
)∣∣ ≤ C.

3. Ψ+(λ, x)g(λ, x) = Ψ−(λ, x), λ ∈ Ω0, x ∈ K.

Proof. We introduce three other Banach spaces:

H =
{
f ∈ H

(
Ω0 ×K), sup

(λ,x)∈Ω0×K

∣∣λf(λ, x)
∣∣ < ∞

}
,

H± =
{
f ∈ H

(
Ω± ×K), sup

(λ,x)∈Ω±×K

∣∣λf(λ, x)
∣∣ < ∞

}
⊂ H,

‖f‖H ≡ sup
(λ,x)∈Ω0×K

|λf(λ, x)|, ‖f‖H± ≡ sup
(λ,x)∈Ω±×K

|λf(λ, x)|.

Given f ∈ H , we can define the Cauchy operators(
P±f

)
(λ, x) =

1
2πi

∫
γ±

f(µ, x)
µ − λ

dµ, λ ∈ Ω±.

We recall that γ± = ∂Ω±, and that

∂Ω0 = γ+ + γ− =
6∑

k=1

∂ωk =
6∑

k=1

(γ+
k + γ−

k ).

Note that the Cauchy formula

(53) f(λ, x) =
(
P+f

)
(λ, x) +

(
P−f

)
(λ, x), λ ∈ Ω0,

is valid for the functions in H .

Proposition 1. P± are bounded operators from H to H±.

Proof of the proposition (an adaptation of the technique of [1]). Each ωk can be repre-
sented as the union of the domains ω+

k and ω−
k in accordance with Figure 6. Assume

that λ ∈ Ω+\
⋃

k ω+
k .
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Then

λ
(
P+f

)
(λ, x) =

1
2πi

∫
γ+

λf(µ, x)
µ − λ

dµ,

∣∣λ(P+f
)
(λ, x)

∣∣ ≤ 1
2π

∫
γ+

∣∣f(µ, x)
∣∣2 |dµ| · |λ| ·

∫
γ+

|dµ|
|µ − λ|2

≤ ‖f‖H · 1
2π

∫
γ+

|dµ|
|µ|2 ·

∫
γ+

|dµ|/|λ|(
1 +

∣∣µ
λ

∣∣2 − 2
∣∣µ
λ

∣∣ cos ε
12

)
≤ ‖f‖H · 1

2π

∫
γ+

|dµ|
|µ|2 · 2

∫ ∞

0

dz

1 + z2 − 2z cos ε
12

≡ C+ · ‖f‖H .

Similarly, if λ ∈ Ω−\
⋃

k ω−
k , then

(54)
∣∣λ(P−f

)
(λ, x)

∣∣ ≤ C− · ‖f‖H.

Suppose now that λ ∈ ω+
k . Then, we can use identity (53) and rewrite λ

(
P+f

)
(λ, x)

as

(55) λ
(
P+f

)
(λ, x) = λf(λ, x) + λ

(
P−f

)
(λ, x).

On the other hand, λ ∈ ω+
k ⇒ λ ∈ Ω−\

⋃
k ω−

k , and hence we can use (54) on the right-
hand side of (55). Therefore (cf. [1] and the proof of Lemma A.1 in Appendix 1), we
obtain ∣∣λ(P+f

)
(λ, x)

∣∣ ≤ (1 + C−) · ‖f‖H

if λ ∈ ω+
k . In other words, we have the inequality∣∣λ(P+f

)
(λ, x)

∣∣ ≤ C · ‖f‖H with C := max{C+, 1 + C−},
for all (λ, x) ∈ Ω+ ×K, which implies∥∥P+f

∥∥
H+

≤ C · ‖f‖H .

Similarly, ∥∥P−f
∥∥

H−
≤ C′ · ‖f‖H

with
C′ := max{C−, 1 + C+}

and the proposition is proved. �

Put
g(λ, x) = I +

o
g(λ, x),

o
g(λ, x) ∈ H.

We are looking for

Ψ±(λ, x) = I +
o

Ψ±(λ, x),
o

Ψ±(λ, x) ∈ H±,

such that
I +

o

Ψ− =
(
I +

o

Ψ+

)(
I +

o
g
)
,

or
o

Ψ− =
o

Ψ+ +
o

Ψ+

o
g +

o
g.

Applying P+, we see that

0 =
o

Ψ+ + P+

( o

Ψ+

o
g
)

+ P+(
o
g).

Hence, we must only solve the following integral equation:
o

Ψ+ + P+

[ o

Ψ+

o
g
]

= −P+

o
g.
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Because of estimates (51) and (52), we conclude that the operator

I + P+[ · o
g]

is invertible in the Banach space H+ for sufficiently large ρ; moreover, the norm of Ψo
+

can be made sufficiently small to ensure the invertibility of the matrix Ψ+(λ, x) for all
(λ, x) ∈ Ω+ ×K. This completes the proof of the lemma. �

Proof of Theorem 4′. Define the functions Yk(λ, x) as indicated in Figure 7. We claim
that these functions satisfy all the properties announced in the theorem.

Figure 7. The functions Yk(λ, x).

The properties that do not follow directly from the definition of the functions Yk(λ, x)
and, therefore, need a proof, are the asymptotic statements 3–5. The proof is based on
the use of appropriate integral representations for the functions Yk(λ, x), which can be
obtained as follows (cf. [30]).

First, we note that property 2 of the functions Ψ±(λ, x) implies the estimate

(56) sup
(λ,x)∈Lk×K

∣∣λ(I − Yk(λ, x)
)∣∣ ≤ C,

which allows us to use the Cauchy formula in the sectors Lk and obtain the equations

(57) Yk(λ, x) = I +
∫

∂Lk

Yk(µ, x) − I

µ − λ

dµ

2πi
, λ ∈ o

Lk,

and

(58) 0 =
∫

∂Lk

Yk(µ, x) − I

µ − λ

dµ

2πi
, λ /∈ Lk,

where
o

Lk denotes the interior of Lk. We put

Γk := Γρ
k ∩ {|λ| ≥ 3ρ},

and let Ck be the arc of the circle |λ| = 3ρ between the rays Γk−1 and Γk (see Figure 2).
Assume that Ck is oriented counterclockwise. Then

∂Lk = −Γk − Ck + Γk−1,
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and we can rewrite (57) as

Yk(λ, x) = I −
∫

Ck

Yk(µ, x) − I

µ − λ

dµ

2πi

−
∫

Γk

Yk(µ, x) − I

µ − λ

dµ

2πi
+
∫

Γk−1

Yk(µ, x) − I

µ − λ

dµ

2πi
,

(59)

where we keep λ ∈
o

Lk. Observe that from property 2 of Yk we have

Yk(λ, x) − I = −Yk(λ, x)
(
Gk(λ, x) − I

)
+ Yk+1(λ, x) − I, λ ∈ Γk,

and

Yk(λ, x) − I = Yk−1(λ, x)
(
Gk−1(λ, x) − I

)
+ Yk−1(λ, x) − I, λ ∈ Γk−1.

Therefore, (59) can be transformed into
(60)

Yk(λ, x) = I −
∫

Ck

Yk(µ, x) − I

µ − λ

dµ

2πi

+
∫

Γk

Yk(µ, x)
(
Gk(µ, x) − I

)
µ − λ

dµ

2πi
+
∫

Γk−1

Yk−1(µ, x)
(
Gk−1(µ, x) − I

)
µ − λ

dµ

2πi

−
∫

Γk

Yk+1(µ, x) − I

µ − λ

dµ

2πi
+
∫

Γk−1

Yk−1(µ, x) − I

µ − λ

dµ

2πi
.

Now, making use of the second Cauchy relation (58), we can replace the last two integrals
by ∫

Ck+1

Yk+1(µ, x) − I

µ − λ

dµ

2πi
+
∫

Γk+1

Yk+1(µ, x) − I

µ − λ

dµ

2πi

and

−
∫

Ck−1

Yk−1(µ, x) − I

µ − λ

dµ

2πi
+
∫

Γk−2

Yk−1(µ, x) − I

µ − λ

dµ

2πi
,

respectively. Thus, equation (60) can further be transformed into the equation

Yk(λ, x) = I −
∫

Ck+1

Yk+1(µ, x) − I

µ − λ

dµ

2πi
−
∫

Ck

Yk(µ, x) − I

µ − λ

dµ

2πi

−
∫

Ck−1

Yk−1(µ, x) − I

µ − λ

dµ

2πi

+
∫

Γk

Yk(µ, x)
(
Gk(µ, x) − I

)
µ − λ

dµ

2πi
+
∫

Γk−1

Yk−1(µ, x)
(
Gk−1(µ, x) − I

)
µ − λ

dµ

2πi

−
∫

Γk+1

Yk+1(µ, x) − I

µ − λ

dµ

2πi
+
∫

Γk−2

Yk−1(µ, x) − I

µ − λ

dµ

2πi
.

(61)

Comparing the two integrals in the last row of (61) with similar integrals in (59), we
see that the manipulations that led us from (59) to (61) result in the increase of the index
k in the first integral and its decrease in the second one. Therefore, repeating the above
procedure several times, we shall arrive at the following final integral representation for
Yk(λ, x):

(62) Yk(λ, x) = I −
6∑

l=1

∫
Cl

Yl(µ, x) − I

µ − λ

dµ

2πi
+

6∑
j=1

∫
Γl

Yl(µ, x)
(
Gl(µ, x) − I

)
µ − λ

dµ

2πi

for all λ ∈
o

Lk.
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Each term of the first sum on the right in (62) is holomorphic in a neighborhood of
λ = ∞, while the integrand of each term in the second sum decays exponentially as
λ → ∞. In fact, there exist positive constants C and c such that

|Yl(µ, x)
(
Gl(µ, x) − I

)| < Ce−c|µ|3 , µ ∈ Γl, x ∈ K.

This means that, indeed, uniformly in x ∈ K, we have the full asymptotic series (47) for
Yk(λ, x) with coefficients given by the equations

m0
j(x) =

6∑
l=1

∫
Cl

(
Yl(µ, x) − I

)
µj−1 dµ

2πi

−
6∑

l=1

∫
Γl

Yl(µ, x)
(
Gl(µ, x) − I

)
µj−1 dµ

2πi
.

(63)

In particular, from this equations it follows that all m0
j(x) are holomorphic functions.

By standard arguments, the integral representation (62) implies the x- and λ-differen-
tiability of the asymptotic expression (47). In fact, the λ and x-differentiability of (47)
is a direct consequence of its uniformity (see, e.g., [33]).

The last thing we have to comment on is that the asymptotic expansion (47) is valid
in the closed sector Lk (in fact, in some sector that includes Lk). Indeed, because
of property 2, each of the functions Yk(λ, x) can be continued analytically beyond the
boundaries of Lk so that it become holomorphic and satisfy the estimate (56) in a sector
that includes Lk. Therefore, in the representation (62) we can slightly rotate the rays
Γk and Γk−1 so as to make the representation (consequently, the asymptotic expansion
(47)) valid for all λ ∈ Lk. �

4.2. The local solution of the Riemann–Hilbert problem. We denote by Ω0, Ω∞,
and ω the following subsets of the Riemann sphere CP 1:

Ω0 = {λ ∈ C : |λ| ≤ R},
Ω∞ = {λ ∈ C ∪∞ : |λ| ≥ 4ρ},

ω = Ω0 ∩ Ω∞,

where R > 4ρ. Also, we denote by Dδ(x0) the closed disk in the x-plane of radius δ and
centered at x0, i.e.,

Dδ(x0) = {x ∈ C : |x − x0| ≤ δ}.
Let M(λ, x) be the Sibuya function discussed in the preceding subsection and corre-

sponding to the choice
K = Dδ(x0).

Observe that

(64) M(λ, x) ∈ H0
(
(Ω∞ \ {∞}) × Dδ(x0)

)
for all ρ ≥ ρ0(Dδ(x0)) ≡ ρ0(x0, δ). In particular,

(65) M(λ, x) ∈ H0(ω × Dδ(x0)).

By direct application of the Birkhoff–Grothendieck theorem with parameter (see Appen-
dix 1) to the function M(λ, x), we arrive at the following result.

Theorem 5. Let x0 ∈ C. Then there exists a number δ0 > 0, a finite set Θ0 ≡ {x0j} ⊂
Dδ0(x0), and matrix-valued functions T (λ, x) and Φ(λ, x) with the following properties.

• T (λ, x) and T−1(λ, x) are holomorphic in Ω∞×(
Dδ0(x0)\Θ0

)
and meromorphic

along Ω∞ × Θ0 (i.e., they have poles at x0j ∈ Θ0, and the coefficients of the
corresponding Laurent series are holomorphic in Ω∞).
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• Φ(λ, x) and Φ−1(λ, x) are holomorphic in Ω0 ×
(
Dδ0(x0) \Θ0

)
and meromorphic

along Ω0 × Θ0.
•

(66) M(λ, x) = T−1(λ, x)λ
(

κ1 0
0 κ2

)
Φ(λ, x),

where κ1 ≥ κ2 are integers, the same for all x ∈ Dδ0(x0) \ Θ0.

The specific features of the function M(λ, x) we are dealing with yield specifications
of some of the statements above.

Proposition 2. The function Φ(λ, x) is an entire function of λ; indeed,

Φ(λ, x) ∈ H0
(
C × (Dδ0(x0) \ Θ0)

)
,

and both Φ(λ, x) and Φ−1(λ, x) are meromorphic along D0 × Θ0. Moreover,

Φ(λ, x)S1 · · ·Sk−1 � λ

(−κ1 0
0 −κ2

)
B0

(
I +

∞∑
j=1

mj(x)
λj

)
e−θ(λ,x)σ3 ,(67)

λ → ∞, λ ∈ Lk, det B0 �= 0,

where the coefficients mj(x) are holomorphic in Dδ0(x0)\Θ0 and meromorphic in Dδ0(x0).
The asymptotics is uniform in x ∈ D, where D is an arbitrary compact subset of
Dδ0(x0) \ Θ0, and it is differentiable with respect to both x and λ.

The proposition is an immediate consequence of equations (64), (66), and the asymp-
totic properties of M(λ, x) (see (45)). We note also that the coefficients mj(x) are finite
combinations of the coefficients m0

j (x) and the coefficients of the Taylor expansions of
T (λ, x) at λ = ∞.

Proposition 3. The numbers κ1 and κ2 in (66) satisfy the equation

(68) κ1 + κ2 = 0.

Proof. The matrix equation (66) implies the following relation in the annulus ω = Ω0 ∩
Ω∞ for the corresponding determinants:

(69) detΦ(λ, x) = det T (λ, x) detM(λ, x)λ−κ1−κ2 .

Simultaneously, we observe that the asymptotic properties of the matrix-valued function
M(λ, x) (see statement 2 of Theorem 4) yield

(70) detM → 1 as λ → ∞.

Suppose that κ1 + κ2 �= 0 and put

φ(λ, x) :=

{
detΦ(λ, x) if λ ∈ Ω0,

detT (λ, x) det M(λ, x)λ−κ1−κ2 if λ ∈ Ω∞ \ {∞}
(x ∈ Dδ0(x0)\Θ0). Equations (69) and (70) mean that, for every x, the (entire) function
φx(λ) ≡ φ(λ, x) is either identically zero (κ1 + κ2 > 0) or is a polynomial of degree
−κ1 − κ2 (κ1 + κ2 < 0). In both cases there are points λ on the finite complex plane
where the matrix Φ(λ, x) is not invertible. This contradicts Proposition 2; hence, the
sum κ1 + κ2 must be zero. �

Equation (68) allows us to specify (66) as follows:

(71) M(λ, x) = T−1(λ, x)λκσ3Φ(λ, x),

where κ ≥ 0 is an integer (the same for all x ∈ Dδ0(x0) \ Θ0); we recall that

σ3 =
(

1 0
0 −1

)
.
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Proposition 4 (cf. [20]). The number κ in equation (71) is (identically) zero.

Proof. It is in this statement that we use the assumption (44). Suppose that κ > 0.
Note that then the functions T (λ, x) and Φ(λ, x) in (66) are defined up to the following
transformations:

T (λ, x) �→ T̃ (λ, x) =
(

c1 0∑2κ
j=0 ajλ

j−2κ c2

)
T (λ, x),

Φ(λ, x) �→ Φ̃(λ, x) =
(

c1 0∑2κ
j=0 ajλ

j c2

)
Φ(λ, x),

where c1c2 �= 0 and a0, . . . , a2κ are arbitrary. Using this freedom, one can adjust the
matrix-valued functions T (λ, x) and Φ(λ, x) in such a way (perhaps adding a few more
points to the singular set Θ0 and reducing the radius δ0 a little bit) that asymptotic
relation (67) can be transformed to the relation

Φ(λ, x)S1 · · ·Sk−1 �
(
I +

∞∑
j=1

mj(x)
λj

)
e−
(
θ(λ,x)+κ ln λ

)
σ3 ,(72)

λ → ∞, λ ∈ Lk,

where the coefficients mk(x) are meromorphic in Dδ0(x0) and holomorphic in Dδ0(x0)\Θ0

and satisfy

(73) (mj)12 ≡ 0, j < 2κ.

It should also be noted that the asymptotic expression (72) is still uniform and differen-
tiable with respect to both x and λ.

When applied to the logarithmic derivatives ΦλΦ−1 and ΦxΦ−1, the arguments based
on the Liouville theorem and used already in §3 in the proof of Theorem 2 show that the
function Φ(λ, x) satisfies the isomonodromy Lax pair (31). The functional parameters
u(x), v(x), w(x), and y(x) are meromorphic in Dδ0(x0) and holomorphic in Dδ0(x0)\Θ0,
and they satisfy the general relations

(74) w = ux, y = vx,

(75) ν + κ = vw − uy.

Moreover,
u = 2(m1)12 and v = 2(m1)21.

From the first equation and (73) we conclude that

u(x) ≡ 0.

By (74), this means that w(x) ≡ 0 as well, and therefore the right-hand side of (75) is
identically zero; but it is not zero, since ν is not an integer. This contradiction proves
that κ must be zero.9 �

Propositions 2–4 yield the following corollary of Theorem 5, which constitutes the
local solution (with respect to x) of the original RH problem.

Theorem 6. Let x0 ∈ C. Then there exist a number δ0 > 0, a finite set Θ0 ≡ {x0j} ⊂
Dδ0(x0), and a unique matrix-valued function Ψ0(λ, x) with the following properties.

9Strictly speaking, in the proof we have excluded the case where T11(∞, x) ≡ 0. If T11(∞, x) ≡ 0,
then κ must be replaced by −κ in (72), and “12” by “21” in (73). The rest of the proof will go along
the same lines as before.
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(i) Ψ0(λ, x) and Ψ−1
0 (λ, x) are holomorphic in C× (

Dδ0(x0) \Θ0

)
and meromorphic

along C × Θ0.
(ii) detΨ0(λ, x) ≡ 1.
(iii) For every x ∈ Dδ0(x0) \ Θ0 we have

Ψ0(λ, x)S1 · · ·Sk−1 �
(
I +

∞∑
j=1

mj(x)
λj

)
e−θ(λ,x)σ3 ,

λ → ∞, λ ∈ Lk,

where the coefficients mj(x) are holomorphic in Dδ0(x0) \ Θ0 and meromorphic
in Dδ0(x0). The asymptotic expression is uniform in x ∈ Dδ0(x0) \ Θε

0 and is
differentiable with respect to both x and λ. Θε

0 denotes an arbitrary ε-neighborhood
of the set Θ0.

Proof. Let Φ(λ, x) and T (λ, x) be the functions mentioned in Theorem 5. Set

Ψ0(λ, x) := T−1(∞, x)Φ(λ, x).

We argue that this function satisfies conditions (i)–(iii) above. Indeed, condition (i)
follows directly from Proposition 2 and the analytic properties of T (λ, x). By (71) and
Proposition 4, the equation

Ψ0(λ, x) = T−1(∞, x)T (λ, x)M(λ, x)

is fulfilled. Note that

T−1(∞, x)T (λ, x) = I +
∞∑

j=1

Tj(x)λ−j ,

where the series converges in Ω∞ uniformly for x ∈ D, D ⊂ Dδ0(x0) \Θ0, and the coeffi-
cients Tj(x) are holomorphic in Dδ0(x0)\Θ0 and meromorphic in Dδ0(x0). Hence, taking
into account the asymptotic properties of the Sibuya function M(λ, x) (see statement 2
of Theorem 4), we arrive at the asymptotic relation (iii). To obtain (ii), we note that for
every fixed x we have

detΨ0(λ, x) → 1, λ → ∞,

and (ii) follows via the Liouville theorem. Finally, to prove the uniqueness statement of
the theorem, we assume that Ψ̃0(λ, x) is another function satisfying (i)–(iii) and consider
the ratio

R(λ, x) := Ψ̃0(λ, x)Ψ−1
0 (λ, x).

For every fixed x, R(λ, x) is an entire function of λ. Moreover, as λ → ∞ and λ ∈ Lk,
by (iii) we obtain

R(λ, x) = Ψ̃0(λ, x)Ψ−1
0 (λ, x)

=
[
Ψ̃0(λ, x)S1 · · ·Sk−1e

θ(λ,x)σ3

][
Ψ0(λ, x)S1 · · ·Sk−1e

θ(λ,x)σ3

]−1

= I + O(1/λ).

In other words, in the entire neighborhood of infinity we have R(λ, x) → I, λ → ∞,
whence R(λ, x) ≡ I. Uniqueness and, with it, the theorem are proved. �
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4.3. The solution of the Riemann–Hilbert problem. By Theorem 6 and countable
compactness of the complex plane, there exists a countable covering

C =
∞⋃

n=1

Dδn(xn)

of the complex x-plane by disks Dδn(xn) such that for each Dδn(xn) the statement of
Theorem 6 is valid. In other words, for every n there exists a finite set Θn ≡ {xnj} ⊂
Dδn(xn) and a unique matrix-valued function Ψn(λ, x) such that:

(i) Ψn(λ, x) and Ψ−1
n (λ, x) are holomorphic in C×(

Dδn(xn)\Θn

)
and meromorphic

along C × Θn;
(ii) detΨn(λ, x) ≡ 1;
(iii) for every x ∈ Dδn(xn) \ Θn we have

Ψn(λ, x)S1 · · ·Sk−1 �
(
I +

∞∑
j=1

mj(x)
λj

)
e−θ(λ,x)σ3 ,

λ → ∞, λ ∈ Lk,

where the coefficients mj(x) are holomorphic in Dδn(xn)\Θn and meromorphic in
Dδn(xn); the asymptotic expression is uniform in x ∈ D, where D is an arbitrary
compact subset of Dδn(xn) \ Θn, and it is differentiable with respect to both x
and λ.

Now our aim is to glue this collection of solutions (local in x) of the original Riemann–
Hilbert problem into a global function Ψ(λ, x), which should solve the problem for all
complex x ∈ C \ Θ, where

Θ :=
∞⋃

n=1

Θn.

(Note that the set Θ is countable and has ∞ as its only limit point.) The following
lemma plays a central role in the construction.

Lemma 3. Suppose that
o

Dδn(xn) ∩ o

Dδm(xm) �= ∅.

Then

Ψn(λ, x) = Ψm(λ, x), (λ, x) ∈ C × (
(Dδn(xn) \ Θn) ∩ (Dδm(xm) \ Θm)

)
.

Proof. The proof is literally the same as that of the uniqueness statement in Theorem 6.
The principal point is that the two functions have one and the same asymptotic behavior
(with exactly the same Stokes matrices) as λ → ∞.

Now, we put

(76) Ψ(λ, x) := Ψn(λ, x), (λ, x) ∈ C × (
Dδn(xn) \ Θn

)
.

Because of Lemma 3, this equation determines Ψ(λ, x) as a holomorphically invertible
function on the entire product C×(

C\Θ
)
. Moreover, it inherits all the common analytic

properties of the local solutions Ψn(λ, x), including uniqueness. In other words, the
function Ψ(λ, x) satisfies all the properties announced in Theorem 1. �

Remark 3. The poles of the functions u(x; s) and v(x; s) are the values of the parameter
x for which the generalized inverse monodromy problem with the given monodromy
data s = {S1, . . . , S6; ν} is not solvable. At the same time, by using the Schlesinger
transformations indicated in Lemma 1, we can see that if x is a pole of the functions
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u(x; s) and v(x; s), then the generalized monodromy problem is solvable for each of the
following choices of the monodromy data:

ŝ = {S1, . . . , S6; ν − 1}
and

s̃ = {S1, . . . , S6; ν + 1}.
Remark 4. The Sibuya function M(λ, x) determines a holomorphic vector bundle over
CP 1. The points xj of the set Θ ≡ Θ(s), i.e., the poles of the functions u(x; s) and
v(x; s), are the points where the bundle is not trivial. If this is the case, the index κ in
the representation (71) is equal to 1.

For more details concerning the facts mentioned in Remarks 3 and 4, see [20].

Appendix 1. The Birkhoff–Grothendieck theorem with a parameter

Denote by Ω0, Ω∞, and ω the following subsets of the Riemann sphere CP 1:

Ω0 = {λ ∈ C : |λ| ≤ R},
Ω∞ = {λ ∈ C ∪∞ : |λ| ≥ r},

ω = Ω0 ∩ Ω∞,

where R > r. Also, as in the main text, we denote by Dδ(x0) the closed disk in the
x-plane of radius δ and centered at x0, i.e.,

Dδ(x0) = {x ∈ C : |x − x0| ≤ δ}.
Our goal is to present an elementary proof of the following (local) version of the

classical Birkhoff–Grothendieck theorem with a parameter.

Theorem A.1. Suppose M(λ, x) belongs to the space H0(ω×Dδ(x0)). Then there exists
a number 0 < δ0 ≤ δ, a finite set Θ0 ≡ {x0j} ⊂ Dδ0(x0), and matrix-valued functions
T (λ, x) and Φ(λ, x) such that the following statements are true.

• The functions T (λ, x) and T−1(λ, x) are holomorphic in Ω∞ × (
Dδ0(x0) \ Θ0

)
and meromorphic along Ω∞ × Θ0 (i.e., they have poles at x0j ∈ Θ0, and the
coefficients of the corresponding Laurent series are holomorphic in Ω∞).

• Φ(λ, x) and Φ−1(λ, x) are holomorphic in Ω0 ×
(
Dδ0(x0) \Θ0

)
and meromorphic

along Ω0 × Θ0.
• We have

(77) M(λ, x) = T−1(λ, x)λ
(

κ1 0
0 κ2

)
Φ(λ, x),

where κ1 ≥ κ2 are some integers, the same for all x ∈ Dδ0(x0) \ Θ0.

We shall prove the theorem in a series of lemmas following closely the proof in [7],
where the case of the general matrix dimension and the presence of an arbitrary finite
number of parameters was considered. As in [7], the first two lemmas are merely 2 × 2
specifications and modifications (for the case of the presence of the parameter x) of the
corresponding statements proved in [1]. Lemma A.3 is a particular case of the Sauvage
lemma (see [17]). Also, as it has already been indicated in the Introduction, Theorem
A.1 itself is a particular case of the general theorem of Malgrange (see [27]).

The Banach spaces H(ω × Dδ(x0)), H(Ω∞ × Dδ(x0)), and H(Ω0 × Dδ(x0)) are
equipped with the standard norm ‖f‖ = max(λ,x) |f(λ, x)|. In addition to the subspaces
H0(Ω∞,0 × Dδ(x0)), we introduce yet another subspace, Ĥ(Ω∞ × Dδ(x0)), of
H(Ω∞ ×Dδ(x0)) consisting of all f(λ, x) ∈ H(Ω∞ ×Dδ(x0)) such that f(∞, x) ≡ 0. We
also note that, obviously, the spaces H(Ω∞,0 ×Dδ(x0)) are subspaces of H(ω ×Dδ(x0)).
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Lemma A.1. Under the conditions of the theorem, if ‖M − I‖ < ε for sufficiently small
ε > 0, then there exist unique functions T (λ, x) ∈ H0(Ω∞ × Dδ(x0)) and Φ(λ, x) ∈
H0(Ω0 × Dδ(x0)) such that T (∞, x) ≡ I and

(78) M(λ, x) = T−1(λ, x)Φ(λ, x).

Proof. Much as in the proof of the basic factorization lemma in §4 (and, once again,
following [1]), we introduce the Cauchy operators P± : H(ω × Dδ(x0)) �→ H(Ω0,∞ ×
Dδ(x0)) by the equations(

P+f
)
(λ, x) =

1
2πi

∮
|µ|=R

f(µ, x)
µ − λ

dµ,
(
P−f

)
(λ, x) = − 1

2πi

∮
|µ|=r

f(µ, x)
µ − λ

dµ,

where the orientation in both integrals is counterclockwise. We show that, like the
operators in §4, the operators P± are bounded. Once again the crucial role is played by
the Cauchy formula

(79) f(λ, x) =
(
P+f

)
(λ, x) +

(
P−f

)
(λ, x),

which is true for any f ∈ H(ω × Dδ(x0)). Note also that

Im P− = Ĥ(Ω∞ × Dδ(x0)).

We denote by s the number (R − r)/2. If 0 ≤ |λ| < s + r, then

|(P+f
)
(λ, x)| ≤ 1

2π

∮
|µ|=R

∣∣∣∣f(µ, x)
µ − λ

∣∣∣∣ |dµ| ≤ ‖f‖ 1
2π

∮
|µ|=R

1
s
|dµ| ≤ R

s
‖f‖.

If s + r ≤ |λ| ≤ R, we use (79) and obtain

|(P+f
)
(λ, x)| ≤ ‖f‖ + |(P−f

)
(λ, x)|

≤ ‖f‖ +
1
2π

∮
|µ|=r

∣∣∣∣f(µ, x)
µ − λ

∣∣∣∣ |dµ| ≤ ‖f‖ + ‖f‖ 1
2π

∮
|µ|=r

1
s
|dµ| ≤ s + r

s
‖f‖.

Thus,

|(P+f
)
(λ, x)| ≤ max

{
R

s
,
s + r

s

}
‖f‖

for all (λ, x) ∈ Ω0 × Dδ(x0), whence

‖P+‖ ≤ C := max
{

R

s
,
s + r

s

}
.

Similar arguments show that the same estimate is true also for the norm of the operator
P−.

Put N(λ, x) := M(λ, x) − I; then ‖N‖ < ε. To prove the existence statement of the
lemma, it suffices to show the existence of a matrix-valued function X(λ, x) ∈ Ĥ(Ω∞ ×
Dδ(x0)) such that ‖X‖ < 1/2 and

(80) P− ((I + X)M) = 0.

Indeed, in this case we can put

T (λ, x) := I + X(λ, x) ∈ H0(Ω∞ × Dδ(x0))

and
Φ(λ, x) := T (λ, x)M(λ, x) ∈ H0(Ω0 × Dδ(x0)).

By (79) and (80), it is clear that the function Φ(λ, x) is in H(Ω0 ×Dδ(x0)), and we only
need to comment on the holomorphic invertibility of Φ(λ, x). We have

Φ = I + X + (I + X)N,
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or (by application of the identity Φ = P+(Φ))

Φ = I + P+

(
(I + X)N

)
,

and the norm ‖P+

(
(I + X)N

)
< ‖P+‖ 3ε

2 can be made smaller than 1/2 for sufficiently
small ε.

Equation (80) can be rewritten as follows:

P− ((I + X)M) = P− ((I + X)(I + N))

= P− ((I + X + XN + N)) = X + P−(XN) + P−(N) = 0,

where we have used the obvious identities

P−(X) = X and P−(I) = 0.

Therefore, the equation we need to solve can be written as the integral equation

X + P−(XN) = −P−(N)

in the space Ĥ(Ω∞ × Dδ(x0)). Since the operator P− is bounded and ‖N‖ < ε, for
sufficiently small ε the operator I + P−[ · N ] is invertible, and the norm of the solution
X =

(
I + P−[ · N ]

)−1(−P−(N)
)

can be made as small as we need. This proves the
existence part of the lemma.

Suppose T̃ (λ, x) and Φ̃(λ, x) form another pair of functions with the same properties.
Then M = T−1Φ = T̃−1Φ̃, and the function

R(λ, x) :=

{
T̃ (λ, x)T−1(λ, x) if λ ∈ Ω∞,

Φ̃(λ, x)Φ−1(λ, x) if λ ∈ Ω0

is a holomorphically invertible matrix-valued function in C × Dδ(x0). Thus, by the
Liouville theorem, R(λ, x) does not depend on λ. On the other hand, from the con-
struction we see that R(∞, x) ≡ I, so that R(λ, x) ≡ I and, hence, T̃ (λ, x) ≡ T (λ, x),
Φ̃(λ, x) ≡ Φ(λ, x). �

The second step of the proof of the theorem is the replacement of the function M(λ, x)
by a certain matrix-valued function rational in λ.

Lemma A.2. For every matrix-valued function M(λ, x) ∈ H0(ω ×Dδ(x0)), there exists
a number 0 < δ′′ ≤ δ, a matrix-valued function F (λ, x) rational in λ with coefficients
holomorphic in x, and matrix-valued functions T (λ, x), Φ(λ, x) such that the following
statements are true.

1. The only possible poles of F (λ, x) are λ = 0 and λ = ∞. Moreover,

α0,∞ := sup
x∈Dδ(x0)

(the order of the pole at 0,∞) < ∞.

2. F (λ, x) is holomorphically invertible in ω ×Dδ′′(x0), and the positions of the zeros
of detF (λ, x) in Ω0 \ ω do not depend on x.

3. T (λ, x) and T−1(λ, x) are holomorphic in Ω∞ × Dδ′′(x0).
4. Φ(λ, x) and Φ−1(λ, x) are holomorphic in Ω0 × Dδ′′(x0).
5. M(λ, x) = T−1(λ, x)F (λ, x)Φ(λ, x).

Proof. The function M(λ, x0) can be uniformly approximated in ω by a matrix-valued
function rational in λ with possible poles at 0 and ∞ only. For this, we can merely use
parts of the Laurent expansion of M(λ, x0) in the annulus ω, cutting the infinite tails of
the expansion in an appropriate way.

On the other hand, for every ε > 0 we can choose a number δ′ > 0 such that
|M−1(λ, x)M(λ, x0) − I| < ε in ω × Dδ′(x0).
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Thus, we can always find a number 0 < δ′ ≤ δ and a matrix-valued function B(λ)
holomorphically invertible in ω, rational in λ, with poles at 0 and ∞ only, and such that
|B−1(λ)M(λ, x) − I| is uniformly small in ω × Dδ′(x0). Applying Lemma A.1 to the
product B−1(λ)M(λ, x), we obtain

B−1M = T−1
1 Φ1, M = BT−1

1 Φ1,

where T1(λ, x) ∈ H0(Ω∞×Dδ′(x0)), Φ1(λ, x) ∈ H0(Ω0×Dδ′(x0)). Consider the function
B(λ)T−1

1 (λ, x) and approximate it from the right in a similar way by a function H(λ)
with the same properties as B. Applying Lemma A.1 once again, we get

BT−1
1 H−1 = T−1

2 Φ2,

where T2(λ, x), Φ2(λ, x) have the same properties as T1(λ, x), Φ1(λ, x) (for some 0 <
δ′′ ≤ δ′). Consequently,

Φ2 = T2BT−1
1 H−1, M = T−1

2 Φ2HΦ1 = T−1
2 FΦ1, F := Φ2H.

From the first relation above it follows that for every x ∈ Dδ′′(x0) the matrix-valued
function Φ2(λ, x) is meromorphic in Ω∞ with poles independent of x and with Laurent
series coefficients holomorphic in x. On the other hand, Φ2 is holomorphically invertible
in Ω0 ×Dδ′′(x0) by construction. Thus, Φ2 is rational in λ with coefficients holomorphic
in x. In its turn, this implies exactly the same properties for F . Moreover, F (λ, x) is
holomorphically invertible in ω × Dδ′′(x0), because so are Φ2(λ, x) and H(λ).

Finally, we see that

F =

{
T2BT−1

1 if λ ∈ Ω∞,

Φ2H if λ ∈ Ω0.

Therefore, the only possible poles of F are 0 and ∞. Moreover, the corresponding
maximal orders α0 and α∞ of the poles do not exceed the orders of the corresponding
poles of the matrix-valued functions H(λ) and B(λ), respectively (these functions are
independent of x). Also, the position of the zeros of detF (λ, x) in

(
Ω0 \ ω

) × Dδ′′(x0)
does not depend on x because detΦ2 has no zeros in Ω0 and H does not depend on x at
all.

Now, denoting T = T2 and Φ = Φ1, we get the decomposition (5). �
The following lemma is a crucial step in the proof of the theorem. In fact, it proves

the theorem in the particular case of rational matrices M , without any small norm
assumptions.

It is convenient to introduce more notation. Let Ω be a subset of the extended complex
λ-plane, and let Θ be a finite subset of the interior of the disk Dδ(x0) on the complex
x-plane. We denote by H0

(
Ω×(Dδ(x0)\Θ)

)
the space of matrix-valued functions f(λ, x)

such that f(λ, x) and f−1(λ, x) are holomorphic in Ω × (
Dδ(x0) \ Θ

)
and meromorphic

along Ω × Θ.

Lemma A.3. Let M(λ, x) ∈ H0
(
(Ω0 \ {0})×

(
Dδ(x0) \ Θ

))
, where Θ is a finite subset

of the interior of Dδ(x0). Moreover, we assume that M(λ, x) is rational in λ with the
coefficients meromorphic in Dδ(x0) and holomorphic in Dδ(x0) \ Θ. Suppose also that
the only possible poles of M (as a function of λ) are λ = 0 and λ = ∞, and that the
corresponding maximal orders α0 and α∞ of the poles are finite. Then there exists a
number δ0 ≤ δ, a finite set Θ0 ⊂ Dδ0(x0), Θ ⊂ Θ0, and matrix-valued functions T (λ, x)
and Φ(λ, x) such that the following statements are true.

• T (λ, x) and T−1(λ, x) are holomorphic in
(
C \ {0})× (

Dδ0(x0) \Θ0

)
and mero-

morphic along C \ {0} × Θ0. In other words,

T (λ, x) ∈ H0
(
(C \ {0})× (Dδ0(x0) \ Θ0)

)
.

• Φ(λ, x) and Φ−1(λ, x) are holomorphic in Ω0 ×
(
Dδ0(x0) \Θ0

)
and meromorphic

along Ω0 × Θ0. In other words,

Φ(λ, x) ∈ H0
(
Ω0 × (Dδ0(x0) \ Θ0)

)
.

Moreover, Φ(λ, x) is a polynomial in λ with the coefficients meromorphic in
Dδ0(x0) and holomorphic in Dδ0(x0) \ Θ0, and also deg Φ(λ, x) ≤ α0 + α∞ for
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• We have

(81) M(λ, x) = T−1(λ, x)λ
(

κ1 0
0 κ2

)
Φ(λ, x),

where κ1 ≥ κ2 are some integers that are the same for all x ∈ Dδ0(x0) \ Θ0.
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Proof. Since the only poles of M in the λ-plane are 0 and ∞, we may assume that the
matrix-valued function M is already of the form

(82) M(λ, x) = λ

(
κ1 0
0 κ2

)
L(λ, x)

for some integers κ1 ≥ κ2 and a polynomial matrix L(λ, x),

L(λ, x) = L0(x) + L1(x)λ + · · · + Lm(x)λm.

(Take simply κ1 = κ2 = −α0.) We note that

(83) L(λ, x) ∈ H0
((

Ω0 \ {0}
)× (Dδ(x0) \ Θ)

)
and the degree m of the polynomial L(λ, x) can be assumed to be the same for all x (for
instance, equal to α0 +α∞, although for some x the coefficient of the highest degree term
may be zero). We also note that all the coefficients Lj(x) are meromorphic in Dδ(x0)
with possible poles at the points of the set Θ.

If for all x ∈ Dδ(x0)\Θ we have detL(0, x) �= 0, then there is nothing to prove: simply
put δ0 ≡ δ, Θ0 ≡ Θ, T ≡ I, and Φ ≡ L.

Let detL(0, x1) = 0 for some x1 ∈ Dδ(x0) \ Θ. We claim that then

(84) detL(0, x) ≡ 0.

To prove (84), first we observe that

detL(λ, x) = l0(x) + l1(x)λ + · · · + ln(x)λn,

for some integer n (which we can choose the same for all x). All the coefficients lk(x)
are meromorphic functions of x ∈ Dδ(x0) with possible poles belonging to the set Θ. By
our assumption, l0(x1) = 0. At the same time, for at least one 0 < k ≤ n we must have
lk(x1) �= 0; otherwise, det L(λ, x1) ≡ detL(0, x1) = 0 in contradiction with (83). We
denote by k0 the maximal of such k’s, and set

P0(λ, x) := l0(x) + l1(x)λ + · · · + lk0(x)λk0 .

Take R0 < R so that the circle C0 := {λ : |λ| = R0} does not pass through the zeros
of P0(λ, x1). By the choice of k0, we have detL(λ, x1) = P0(λ, x1). Therefore,

det L(λ, x) − P0(λ, x) → 0, x → x1,

uniformly with respect to λ ∈ C0. Simultaneously,

P0(λ, x) → P0(λ, x1), x → x1,

uniformly with respect to λ ∈ C0. By the choice of R0, we have |P0(λ, x1)| ≥ c0 > 0 for
all λ ∈ C0. Consequently, there exists δ′ > 0 such that

(85) | det L(λ, x) − P0(λ, x)| < |P0(λ, x)|
for all λ ∈ C0 and all x ∈ Dδ′(x1) ⊂ Dδ(x0) \ Θ.

Now, suppose that (84) is not true. Then we can find 0 < δ′′ ≤ δ′ such that

(86) l0(x) �= 0, x ∈ Dδ′′(x1) \ {x1}.
Let λj(x), j = 1, . . . , k0, be the zeros of the polynomial Px(λ) := P0(λ, x). They satisfy
the relation

(87)
∏
j

λj(x) =
l0(x)
lk0(x)

(−1)k0 .

Note that
|lk0(x)| ≥ c′0 > 0, x ∈ Dδ′′′(x1),

for some 0 < δ′′′ ≤ δ′′. From this, the fact that l0(x) → 0 as x → x1, and equation (87),
we conclude that in any neighborhood of λ = 0 we can find at least one λj(x) for some
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x ∈ Dδ′′′(x1) \ {x1}. In particular, for some y ∈ Dδ′′′(x1) \ {x1} we have at least one
zero of P0(λ, y) inside the circle C0. By (85) and the Rouché theorem, inside the circle
C0 the polynomial Qy(λ) := det L(λ, y) has at least one zero. Denote this zero by µ. By
(86), we have Qy(0) �= 0, and therefore µ �= 0. Thus, there is at least one pair (λ, x) in(
Ω0 \ {0}

)×Dδ(x0), namely (µ, y), for which det L(λ, x) = 0. This contradicts (83), and
hence proves (84).

We denote by m1(x) and m2(x) the rows of the matrix L0(x) ≡ L(0, x) and assume
that

(88) m1(x) �= 0 for some x.

Then identity (84) implies the existence of a scalar function s(x) rational in the entries
of L0(x) and such that

(89) m2(x) = s(x)m1(x).

(For instance, we may take s(x) = m21(x)/m11(x) if m11(x) �= 0 for some x.) Define

T1(λ, x) :=
(

1 0
−s(x)λk2−k1 1

)
.

It is clear that T1(λ, x) ∈ H0
(
(C \ {0})× (Dδ(x0) \ Θ1)

)
, where Θ1 is the set of poles of

s(x), i.e., the set Θ extended by the zeros of the relevant entry of L0(x). Restricting, if
necessary, the x-domain to Dδ1(x0) with δ1 < δ, we can always make Θ1 finite (and still
containing Θ).

From (89) it follows immediately that

(90) T1(λ, x)M(λ, x) = λ

(
κ1 0
0 κ2+1

)
L1(λ, x),

where

L1(λ, x) =
(

1 0
−s(x)λ−1 λ−1

)
L(λ, x).

Because of (89), the function L1(λ, x) is still a matrix polynomial in λ. Its coefficients are
meromorphic in Dδ1(x0) and holomorphic in Dδ1(x0)\Θ1, and deg L1 ≤ deg L ≤ α0+α∞.
Also, equation (90) implies that L1 inherits the basic analytic properties of M . Indeed,

(91) L1(λ, x) ∈ H0
(
(Ω0 \ {0}) × (Dδ1(x0) \ Θ1)

)
.

If (88) is not true, i.e., if m1(x) ≡ 0, then we can increase the number κ1 directly,
without the procedure presented above. In fact, in this case we have

(92) M(λ, x) = λ

(
κ1+1 0

0 κ2

)
L1(λ, x),

where

L1(λ, x) =
(

λ−1 0
0 1

)
L(λ, x)

is again a polynomial satisfying (91).
Multiplying the right-hand side of (90) or (92) by a suitable constant matrix (either

identity or σ1 in fact), we can rewrite these equations in the form

T ′(λ, x)M(λ, x) = λ

(
κ′
1 0

0 κ′
2

)
L′(λ, x),

where κ′
1 ≥ κ′

2 and the matrices T ′(λ, x) and L′(λ, x) have the same properties as the
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matrices T1(λ, x) and L1(λ, x), respectively. Since κ′
1 + κ′

2 > κ1 + κ2, iterating (if
necessary) the process presented above, in a finite number of steps10 we get detL′(0, x) �=
0 (for all x), and hence the decomposition (81) of the lemma. The final set Θ0 is obtained
as the finite union of the Θ-sets generated at every step of the procedure. This completes
the proof of the lemma. �

Now, we are in a position to prove the theorem.

Proof of the theorem. By Lemma A.2, we can restrict our consideration to the case of
a matrix-valued function M(λ, x) rational in λ with coefficients holomorphic in Dδ(x0)
and such that the following is true.

1. The only possible poles of M(λ, x) are λ = 0 and λ = ∞. Moreover,

α0,∞ := sup
x∈Dδ(x0)

(the order of the pole at 0,∞) < ∞.

2. The positions of the zeros of detM(λ, x) in Ω0 \ ω do not depend on x.

If, moreover, M(λ, x) is holomorphically invertible in
(
Ω0\{0}

)×Dδ(x0), then the the-
orem follows immediately from Lemma A.3 (with Θ = ∅). Suppose that det M(λ0, x) = 0
for some 0 �= λ0 ∈ Ω0 \ ω.

Consider the new local coordinates ζ = λ−λ0 and define the polynomial matrix-valued
function M̃(ζ, x) := (ζ +λ0)α0M(ζ +λ0). Let Ω̃0 denote a small disk in the ζ-plane with
center at ζ = 0 and such that the matrix-valued function M̃(ζ, x) is holomorphically
invertible in

(
Ω̃0 \ {0}

)× Dδ(x0). Applying Lemma A.3 to M̃(ζ, x) (again starting with
Θ = ∅), we obtain the representation

(93) M(λ, x) = T−1(λ, x)(λ − λ0)CΦ(λ, x),

where C = diag(κ1, κ2), T (λ, x) ∈ H0
(
(C\{λ0})×(Dδ0(x0)\Θ0)

)
, and the matrix-valued

function Φ(λ, x) is a polynomial in λ whose coefficients are holomorphic in Dδ0(x0) \Θ0

and meromorphic in Dδ0(x0). Moreover, by construction, we have detΦ(λ0, x) �= 0, while
from equation (93) it follows that Φ(λ, x) is holomorphically invertible in the annulus
ω and its determinant has zeros in the set Ω0 \ {0} only at the possible zeros of detM
different from λ0. Noticing that the function (λ/(λ−λ0))C is holomorphically invertible
in Ω∞ × (

Dδ0(x0) \ Θ0

)
, from (93) we derive the equation

M(λ, x) = T−1
1 (λ, x)M1(λ, x),

where M1(λ, x) := λCΦ(λ, x) has all the properties of the original function M(λ, x)
except its determinant has one zero less in Ω0 \ ω. The function T−1

1 (λ, x) has exactly
the properties announced in the theorem. Repeating, if necessary, the above construction
for the function M1(λ, x), after a finite number of steps we eliminate all the possible zeros
of detM in Ω0 \ ω and arrive at the function M ′(λ, x) that satisfies the conditions of
Lemma A.3 (with a nonempty singularity set Θ′, in general). Again, the theorem follows
from the lemma. �

10The process cannot be repeated infinitely many times because of the obvious relation det M =
±λκ1+κ2 det L′ and the fact that, being a rational function, det M has a finite order of the pole at
λ = ∞.
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Appendix 2. More on Painlevé equations

Additional symmetries—particular case of P2.{
u = v
w = y

⇐⇒ σ2A(−λ)σ2 = A(λ)

⇐⇒ Ψk+3

(
eiπλ

)
= σ2Ψk(λ)σ2

⇐⇒




Sk+3 = σ2Skσ2,

ν = 0,

σ2 =
(

0 − i

i 0

)
,

sk+3 = −sk,

s1 − s2 + s3 + s1s2s3 = 0,{
u = v ∈ R

y = w ∈ R
⇐⇒ A(λ̄) = σ1A(λ)σ1

⇐⇒



sk+3 = −sk

s1 = s̄3

s2 = s̄2{
u = v ∈ iR
y = w ∈ iR

⇐⇒ A(λ̄) = σ2A(λ)σ2

⇐⇒



sk+3 = −sk

s1 = −s̄3

s2 = −s̄2.

General P2 and P34. The system

uxx = xu + 2u2v,

vxx = xv + 2uv2

implies that
uxv − uvx = ν = const,

and the logarithmic derivatives

p =
ux

u
, q =

vx

v
,

solve P2 in a different scaling:

pxx = 2p3 − 2xp + 1 − 2ν,

qxx = 2q3 − 2xq + 1 + 2ν,

while the product w = uv solves P34:

wxx =
w2

x

2w
+ 4w2 + 2xw − ν2

2w
.

All the functions are related by the Bäcklund transformations:

w =
1
2
(px + p2 − x) =

1
2
(qx + q2 − x),

wx = 2pw − ν = 2qw + ν,

p =
wx + ν

2w
, px = x + 2w − p2,

q =
wx − ν

2w
, qx = x + 2w − q2,
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q = p − 2ν

px + p2 − x
, p = q +

2ν

qx + q2 − x
,

px + p2 = qx + q2.

For more details, we refer the reader to [35].
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régulières, ibid., pp. 401–426; Sur les déformations isomonodromiques. II. Singularités irrégulières,
ibid., pp. 427–438. MR0728430 (85m:58006); MR0728431 (85m:58094a); MR0728432 (85m:58094b)

[28] L. J. Mason, M. A. Singer, and N. M. J. Woodhouse, Tau functions and the twistor theory of
integrable systems, Preprint, Univ. of Oxford, 1999.
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