
On the Rigidity Theorems of Witten
Author(s): Raoul Bott and Clifford Taubes
Source: Journal of the American Mathematical Society, Vol. 2, No. 1 (Jan., 1989), pp. 137-186
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/1990915

Accessed: 16/06/2010 06:15

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at

http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of

content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms

of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Journal
of the American Mathematical Society.

http://www.jstor.org

http://www.jstor.org/stable/1990915?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams


JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
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ON THE RIGIDITY THEOREMS OF WITTEN 

RAOUL BOTT AND CLIFFORD TAUBES 

1. INTRODUCTION 

In this paper we prove the rigidity theorems predicted by Witten in 1986, 
about the index of certain elliptic operators on manifolds with an S1 action 
[W]. 

Witten's insight was the culmination of an interesting interchange of ideas 
between him and Hopkins, Landweber, Ochanine, and Stong. For the detailed 
history, we refer the reader to [La]. 

The present account is essentially a reinterpretation of the second author's 
(Taubes' [T]) original proof of the theorem. The senior author's contribution 
was solely to notice that the rather densely written arguments of the original 
manuscript could be formulated in terms of the well known fixed point formulae 
of equivariant index theory and equivariant cohomology. In this context, the 
final proof then appears in direct lineage of the Atiyah-Hirzebruch theorem 
concerning the vanishing of the A genus of spin manifolds admitting a circle 
action [A-H] and of the even older idea of Lusztig concerning circle actions 
in the complex case. There remains, however, the beautiful, physics inspired 
novelty of connecting these techniques with elliptic function theory. 

2. STATEMENT OF THE THEOREM 

Recall that for an elliptic operator 

(2.1) D: F(E) -, (F) 

acting on sections of vector bundles E and F over the compact manifold M, 
the index of D is defined as the virtual vector space 

(2.2) index D = kerD - coker D. 

If M admits a circle action preserving D, that is, acting on E and F 
and commuting with D, then this index clearly inherits an S action and so 
becomes a virtual S1-module. As such it has a Fourier decomposition into a 
finite sum of irreducible one-dimensional representations 

(2.3) index D =ZaLn 
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138 RAOUL BOTT AND CLIFFORD TAUBES 

where Ln denotes the representation of S1 on C sending e i to ein , and the 
a 's are integers. 

We call the operator D "rigid" if, in this Fourier expansion, all an with 
n -- 0 vanish. Another way of saying this is that D is rigid only if every 
nontrivial irreducible representation of S1 occurring in ker(D) also occurs in 
coker (D) with the same multiplicity. 

The simplest examples of rigid operators arise in deRham theory as a conse- 
quence of the homotopy invariance of cohomology: If 
(2.4) Q0 d I d d n 

is the usual deRham complex and d* denotes the adjoint of the exterior deriva- 
tive, d, relative to a Riemannian structure then 
(2.5) d + d* : * even _ odd 

Acting from even-dimensional forms to odd-dimensional ones, it is rigid in our 
sense for any action of S1 on M by isometries. This follows from the Hodge 
theory because the kernel and cokernel of this operator consist precisely of the 
harmonic forms, which, by homotopy invariance, must stay put under the S1 
action. 

Similarly, if Q are the complex forms on M which are even and odd, C 
respectively, under the Hodge *, then the signature operator 

ds : QC 
-- Q_ 

of an oriented manifold is rigid under any S -action by isometries. (When an 
operator is rigid under any action of S1 by isometries, we will say that it is 
universally rigid.) 

Here again it is the homotopy invariance that forces the rigidity because 
kerds and coker ds are again naturally identified with the subspace of har- 
monic forms on M which are invariant, and anti-invariant, respectively, under 
the Hodge * operator of M. 

Note that in both these examples, the index is rigid in the very strong sense 
that both the kernel and the cokernel are separately rigid. It is for this reason 
that the example provided by the Dirac operator on a compact spin manifold 
of even dimension is more interesting. This operator, 

F: r(A+) -, (A-) 

acts between sections of the two spin bundles of the spin structure, and it is also 
universally rigid. Here, the kernel and cokernel can separately "move," although 
they must be isomorphic S1 modules. Indeed, this assertion is a corollary of 
the Atiyah-Hirzebruch Theorem which states that 
(2.6) 
index 0 =0 whenever M is connected and admits a nontrivial S1 action. 
Now, for R a representation of 0(n), we also write R, or R(T), for the 

bundle associated to the frame bundle of a Riemann manifold M by R. Use 
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of the Levi-Civita connection allows a functorial twisting by R of each of 
the three operators just described. Thus, for example, the twist of ds by R, 
denoted by ds 0 R, is a new elliptic operator 

(2.7) ds X R: Q (R) Qc- (R) 

The question now arises which of these twists remain universally rigid. 
Witten does not quite answer this query. It is still an open question, but he 

predicted that for the sequence of representations {Rn } characterized below, 
ds 0 RP, will be rigid. 

Precisely, let T denote the standard complex representation of 0(n) or, 
if you wish, the tangent bundle of M. We write S k(T) and Ak(T) for the 
symmetric and exterior powers of this representation and, as is usual, set 

00 

Sa(T) = : a S (T) 

(2.8) k=O 

Aa(T) = a kA (T). 
k=O 

These should be thought of as formal power series in a with values in the 
representation ring of 0(2n) or Spin (2n). We also write A+ and A for the 
spin representations of Spin (2n) and set 

A =A +A and A - A- A 

On a spin manifold of dimension 2n with Dirac operator 0 one then has 
the "twisting relations" 

(2.9) ds=$?A , d+d*=$?A1 

(which, in a sense, establish 0 as the primary elliptic operator associated to a 
Riemann structure on M). 

With all this understood we can state the theorem that Witten conjectured as 
follows. 

Theorem. Let M be a 2n dimensional, compact Riemannian manifold which 
admits a spin-structure with corresponding Dirac operator 0'. Also let Rn and 
R' be sequences of representations defined by the formal series 

00 00 00 

(2.10) Rq = EqnR = )Aqn(T) )Sqm(T)X 
n=O n=1 m=1 

00 00 

(2.1 1) R -Eq n12Rf 8 Aqn(T) Sqm (T) 
n=O n=1/2,3/2 .... m=1 

Then each of the operators 

'0( Rn and 0 X A Rn-ds 3 Rn 
is universally rigid. 
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The theorem has been established under restricted hypotheses about the 
S'-action by Landweber and Stong [L-S] and then by Ochanine [0]. 

Remarks. (1) The first few of these representations are given by 

R I= I} 

RR = T, 

(2.12) RR =A 2T + T , 

R I=A A3T TX TO~ T, 

and 

Ro = I, 

RI = 2T, 

(2.13) R = 2(T 2 + T), 

R3= 2T3 +A3T+S3T+4T 2+2T, 

It is clear, therefore, that this is a complicated series of representations and 
one might at first think it is for this reason that their rigidity was not noted 
earlier in some other context. Amazingly, this is not so. For instance, even the 
rigidity of the first new candidate ds 0 T, cannot be established in isolation, 
so to speak, at least as far as we know. Note also that these operators are rigid 
only on spin manifolds, although the family ds 0 Rn is perfectly well defined 
on all oriented ones. 

(2) Where do these formulae come from? Certainly they make best concep- 
tual sense from Witten's physics-inspired point of view as formulae on the loop 
space YM. But, as we will see, they also make excellent sense purely in the 
context of the "fixed point formula" which we review in the next section. 

The overall plan of the paper is as follows. In ?3 we state the fixed point 
formulae and use them to prove the rigidity of ds. In ??4 and 5 we combine 
these arguments with the power series Rq and so interpret Tq(M), the Chern 
character of index(ds0Rq) (= ch.index(ds?Rq)), as a meromorphic function 
on a complex torus Tq2 which has poles only at roots of I and which has no 
poles on a certain circle S c Tq2. ??6 and 7 then show that under the spin 
hypothesis, Tq(M) has no poles anywhere on Tq2, and hence is constant. In all 
these sections we assume isolated fixed points. Then, in ??8 and 9 we extend 
these arguments to S1 actions with larger fixed point sets. ?10 deals with 
questions of orientability and brings a new proof of a theorem of Edmonds. In 
? 11 we follow Witten to extend the rigidity to auxiliary spin-bundles V on M, 
which approximate the tangent bundle T of M in the sense that w2( V- T) = 0 
and 1p, (V - T) = 0, with these classes now taken in the equivariant sense. 
Actually our conditions are slightly weaker than the ones formulated by Witten. 
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In ? 12 we discuss the rigidity for 0 ? R'. Finally in ? 13 we describe the 
modular properties of T (M), and T =(M) ch * index($ 0 R'), and in ?14 
we state the "almost complex" version of the rigidity theorem, which can be 
treated in precisely the same manner. Because a version of this theorem was 
quite recently proved by F. Hirzebruch [H] we did not go into the details there. 

Our approach is in a sense "low-brow" and hopefully accessible to non- 
experts. For a more lofty overview of the entire subject of elliptic cohomology 
we refer the reader to G. Segal's incisive Bourbaki account [S] as well as [La]. 

3. THE FIXED POINT FORMULA FOR ELLIPTIC COMPLEXES 

Recall that the fixed point formula of [A-B] deals with the trace of a geomet- 
rically induced automorphism f of an elliptic operator: 

(3.1) D: r(E) -(F). 

When f has only nondegenerate fixed points, the result is of the following 
sort: 

(3.2) Trace f I (kerD-cokerD)= E up(D,f) 
pEM:f (p)=p 

The "multiplicity" ,up is locally determined by the behavior of D and f 
near the fixed point p . 

For instance, if we are dealing with an even-dimensional, oriented manifold 
M and an S1 action on M with only isolated fixed points, this formula easily 
specializes to yield the following. 

Let f denote the action of e'6 in S1 . Also if p is a gixed point of the 
action let 

(3.3) Tp =El ...EEd, d =dimRM, 

be a decomposition of the tangent space to M at p into SI-invariant, real 
2-planes. (On each 2-plane, S1 is represented in a nontrivial manner, because 
p is assumed to be isolated.) 

We next choose an isomorphism of C with Ej relative to which the repre- 
sentation of S1 on E is given by e'0 eimj i with m1 E Z. But we choose 
these orientations to be compatible with the orientation of M, C being ori- 
ented by { 1, i} in the usual manner. The resulting set of integers ml, ... . md 
is called the set of exponents of the action at p . Note that they are unique up 
to sign, but the signs of the mi can only be changed in even lots. 

With this understood, and setting A = e'0, the fixed point formulae for our 
three complexes read: 

(3.4) trace f on index(d+d*)= Z +1, 
f (P)=p 
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(3.5) trace f on index ds= Z ,(l+.mJ) 

E d Amjl2 
(3.6) trace f on index $ = Z TI (1, mj) 

f (p)=p 1=1I 

As trace f on Ln is clearly An these formulae in principle determine the 
index = ker-coker qua S' module in every case. In fact, the formulae go 
further. They immediately prove the universal rigidity for each of the three 
operators. 

For (3.4) this is true by inspection: If the trace of multiplication by eio 
is independent of 0 then only the trivial representation occurs. For (3.5) we 
have to work a little harder and take the substitution A = eio more seriously: In 
terms of A, the left-hand side (LHS), being the character of a finite-dimensional 
virtual SI module, is of the form 

n=+N 
(3.7) LHS= A 

n=-N 

This is the restriction to SI c C of a finite Laurent series on the A-plane. 
On the other hand, the right-hand side (RHS) is the restriction to S' of the 
rational function 

(3.8) RHS= E l(l+ )mi) A=eio 
f (p)=p 

l A) 

also defined on the A-plane. 
The fixed point formula implies that these two expressions are equal on a 

dense set of the circle JAI = 1 . Hence they are equal as rational functions on 
C. In fact, both obviously extend to rational functions on S2 = C U oo. 

But the LHS can have poles only at 0 and at 00 while the RHS has poles 
only on the unit circle. Since the LHS and RHS are equal, both LHS and RHS 
are constant as functions of A, this constant being the signature r(M). QED 

Essentially the same argument holds for the Dirac operator (3.6). All one 
might have to do is to pass to a double cover of S if the square root occurs 
on the RHS. (In fact, taking A = 0 or A = oo in (3.6) shows that the index 
for the Dirac operator vanishes (as in [A-H]).) Thus for an Si action with only 
isolated fixed points, the rigidity properties of all our operators are beautifully 
transparent. 

In the next sections we will present the extension of this rigidity argument to 
the family of operators {ds 0 Rn }, but still in the isolated singularity case. 

4. PROOF OF THE RIGIDITY OF ds 0 Rn; BEGINNINGS 

Recall that under a twist by R the multiplicities of our fixed point formula 
behave very simply. At a fixed point p of the action we have a natural lifting 
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I of SI to the fiber over p, Op, of the orthogonal frame-bundle over M. In 
terms of Ip the twisted multiplicity upu(D 0 R) is related to the untwisted one 
1pu(D) by 

(4.1) 1u(D X R) =u p(D) * ch i;R. 

In short we simply multiply by the character of R restricted to ip . 
For instance (in the notation of ?3) 

(1 +Am -, 
(4.2) ,p(ds0 T) = II a * [( E(m + m)] 

If one now attempted to prove the rigidity of ds ? T one would have to deal 
with this multiplicity in the corresponding fixed point formula: 

n=+N 
(4.3) E anA = du. 

n=-N 

But now the expression 
I + An (An + A-n) 

and hence each up, has a pole at 0 and ox as well as on the unit circle JI = 1 
For this reason, the old argument does not prove the vanishing of an's; at best, 
it yields inequalities for the N in (4.3). 

It is important to note, however, that by comparing the right and left sides 
of (3.2) this argument does prove that the poles of up on the unit circle must 
cancel in the RHS, just as before! 

This, then, is the situation if one attempts to prove the rigidity of ds 0 T in 
isolation. 

Let us now turn to the Witten framework; we write down the fixed point 
formula for the twists ds ? Rn of (2. 10) and then sum them to form the formal 
expression E qfn index(ds 0 Rn) . Precisely let anm be defined by 

m=+Nn 

(4.5) index(ds 3 Rn) = E anmLm 
m=-Nn 

so that the sum in question is given by the expression 

(4.6) index(ds 0 Rq) E E qnafmLm. 
n m 

The LHS of the fixed point formula is now given by 

(4.7) ch * index(ds 0 Rq) = E qnan (A) 
n ,m 

where an (A) denotes the finite Laurent series 

(4.8) an (A) = E aAm. 
m 
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We turn now to the RHS of the fixed point formula, that is, to the multiplicity 
formulae up (ds ? Rn) and to the power series 

(4.9) ,up(q; A) = E q np(dS @ Rn) 
a formal power series in q with coefficients which are meromorphic functions 
in A. 

Using the well-known identity, qua formal power series in q, 

(4.10) Sq (T) = 1 
A_q(T) 

we can recast Witten's Rq into the form 
00 

(4.11) Rq (T) = & AqA (T)/A_qk(T). 
k=1 

Then, using the multiplicative properties of A we arrive at the formula 

(4.12) /Ip(ds0Rq) 11 (I + lAl) rl (1 +q>kAm,)(I -qkAmi) 

where the right-hand side is taken in the sense of a formal power series in q. 
It clearly makes sense as such; in fact, it is of the form 

(4.13) RHS = Ebp(A)q 
n 

where b,p (A) is a rational function 

(4.14) bp(A) = 1pu(ds 0 Rn) 

With all this understood, the fixed point formula applied to all the ds 0 Rn 
is summarized by the equality 

(4.15) Zan (A)q =ZZ bnp()q n 
n n 1pI 

Note that it is immediate from the preceding equality that the sum over the 
fixed points, E I p b P (A)), has no poles on Ij = 1. 

Further progress is made by exploiting the modular properties of 'up (ds 0 Rq) 
and it will be in the language of elliptic functions that the proof of the rigidity 
will be carried out in the next sections. 

5. THE MULTIPLICITY AS A MEROMORPHIC FUNCTION ON C /q 

If one divides the multiplicative group of nonzero complex numbers by the 
subgroup generated by an element q $ 0, one obtains a complex torus, which 
we denote by Tq . 

Our first remark will be that the formal series (4.12) is a convergent Laurent 
series in the region 0 < jql < 1, and jqll/N < JIl < ql j1/N of the pull-back to 
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C* of a meromorphic function on the torus Tq2 Here N is some (determined) 
positive integer. 

To explain this, it is best to start with the function 

(5.1) 'Po(A)=1- on C 

and consider a corresponding infinite product 

(5.2) lp, 
= (A 

= 
[ q i) A I q 

k 
) 

This product converges absolutely in the annulus D: Iql < )JA < lql; ql < 1. 

C q *1 ll/q 

FIGURE 1 

Indeed, in this region q qkAl and q 7kA- I are < jqj k 1 and IqI < 1. Thus (I (A) 
is a holomorphic function on the annulus D; and 

(5.3) (a (A) -0 o(A) * (a I (A) 

is therefore a meromorphic function on D with a pole of order 1 at A = 1 . 
Let us now make the substitution A -A q . Formally, 

(5.4) (a (Aq) =-(a(A) 

Indeed, under this substitution (1 + qkkA) moves to (1 + qk+l i) and (1 + qkA)l) 

to (1+q k-A-1) So 

(5.5) ip(Aq)= -A- i+.*p(A) = -'P() 

As this substitution maps jql < J2] < 1 to 1 < J2A < T we see that this 
symmetry can be used to extend ,(A) to a meromorphic function on all of 
C. We write (A) for this extended function also. In view of the symmetry 
q(qA) = -p(A), we then have 

(5.6) (p(q p(A). 
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It follows that q is the pull-back of a meromorphic function (also written (p) 
on the torus Tq2. As such q clearly has a pole of order 1 at the cosets of 0 

2 and q mod q , and a zero of order 1 at the cosets of -1 and -q . Now 
the points ?q and +1 are precisely the points of order 2 on Tq2, so that up 
to a normalization factor q is one of the canonically associated meromorphic 
functions on the complex torus T which have poles of order one at the origin 
and at one of the other points, wI , of order 2 on T while vanishing with 
order one at the remaining two points of order 2, say w2 and C)3 . 

In the more standard picture of an additive torus, the divisor of q is of the 
form 

x poles of p. at O andw 

/ zeros of p* at W2 and W3 

0 

FIGURE 2 

Note also that on Tq2 the residue of q at the identity is given by 

(5.7) res (,=q = -2 

Hence the renormalized q given by 

1 1 __ _ qn _2 

2 111+ q) 

has residue -1 at 1 , and, therefore, +1 at q. 
The canonical nature of this function on all tori (T, w,) with a singled out 

point w 1 with w1?I + w1 I = 0, w1I- $0 (with T additive as in Figure 2), will be 
used later to discuss the modular properties of index(ds X Rq) . 

To return to the multiplicity formula (4.12), observe that the function qO(A) 
- (1 + A)/(1 - A) is the prototype for all the factors of ,p . In fact, if 0/m 

denotes the operation of raising A to the mth power, then at a fixed point p 
of our circle action, with exponents m, md, the multiplicity , has the 
form 
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Because the nth power operation yin is also well defined on Tq2 and com- 
mutes with the pullback, our discussion concerning (p identifies Mup(ds 0 Rq) 
as a Laurent series of the meromorphic function V'rn * .'md on Tq2: 

(5.9) /p(ds0Rq)= VImI (Ol? VmdV ( 

At this stage we can assemble these remarks to yield a first interesting conse- 
quence of the fixed point theorem. 

Proposition 5.1. Consider an action of S1 by isometries on the oriented compact 
Riemannian manifold M with isolated fixed points, and let N be the largest of 
the exponents {mi} occurring at them. Then the formal series 

(5.10) ch * index(ds X Rq) = E qn anmAm 

is convergent in the annulus 0 < Iql < 1, qll/N < A < ql- I/N to the Laurent 
series of a meromorphic function on the torus Tq2 

Proof. Recall that (0 is the product of a q-independent rational function of 
A with poles only on the circle JAI = 1 and a convergent Laurent expansion 
in q and A with domain of convergence 0 < Iql < l and Iql < JAI < Iq'l 1 
Thus, YImn( is the product of a q-independent, rational function of A with 
poles only on JAI = 1 and a convergent Laurent expansion in q and A whose 
domain of convergence has shrunk to Iq1 /m < A < Iq Il/m . Hence, by (5.8) each 
multiplicity ,p (ds X Rq) is the product of a q-independent, rational function 
on C with poles only on the circle JAI = 1 with a convergent Laurent series on 
the region Iq1I/N <JA < l/NINAlso lip(ds 0 Rq) is the pull-back to C* of 
a meromorphic function on Tq2 

By the fixed point theorem, we have, as was already remarked in ?4, the 
equality 

(5.11) ch-index(ds X Rq)- p(ds Rq), 
p 

qua formal powers series in q with coefficients which are the restriction to the 
circle JAI = 1 of rational functions on the A-plane. By (4.14), the polar parts of 
the coefficients of the formal q-expansion of the RHS in (5.1 1) cancel on the 
circle JAI = 1 . Thus, the RHS of (5.1 1) defines a convergent Laurent expansion 
in q and A with domain 0 < I q < 1 and Iql/N < JAI < Iql1/N the only poles 
possible lie on AI = 1 , and (4.14) implies that there are none. To see this, 
we write ,up = rp(A) * hp(A, q), where rp is a rational function on C with its 
poles on S, and hp is a function on A and q with a convergent power series 
in A and q for lql < 1 and A in an annulus that contains S. Thus, a pole 
in Ep p at c E S of order N> 0 has leading coefficient a function fN(q), 
which is a linear combination of the values of the {hp } and their A-derivatives 
at c to some finite order-hence, an analytic function of q for Iq < 1. So 
taking the polar part and taking the q-expansion are commuting operations 
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on Epup . Thus, the index theorem plus the fixed point formula applied to 
each {ds 0 Rn}1,0 insures that the power series expansion of fN is zero, and 
fNEO. 

Thus, (5.1 1) identifies the LHS as the restriction to the circle JAI = 1 of a 
convergent power series in q and Laurent series in . on the domain 0 < IqI < 
I, ql I/N < JAI < lql 1/N. This convergent Laurent expansion represents, of 
course, a meromorphic function of the type described because the RHS is a 
sum of such functions. QED 

Remarks. In view of this proposition the character of the index of ds 0 Rq is 
a well-defined meromorphic function on Tq2, which we call the q-signature of 
M, and denote by Tq(M) 

(5.12) Tq(M) )= ch * index(ds X Rq). 

In some formal sense -q (M) represents the "signature" of the loop-space 
2(M). But in any case it is a well-defined meromorphic finction on Tq2 and 
has no poles on the circle S c Tq2 corresponding to I21 = 1. 

In this context the rigidity of ds ? Rq is equivalent to the assertion that 
Tq(M) has no poles at all on Tq2 

A priori -rq(M) = up(ds 0 Rq) has only poles at the points of finite order 
on Tq2 because the multiplicities ,up have only poles there. Hence one can test 
for the poles of Trq(M) by considering the behavior of its translates taTq(M) by 
nth roots of 1 on Tq2 . For example, consider the points of order 2 first. For 
a = -1 , t, preserves S, and therefore ta rq(M) has no poles on S because 
Tq(M) did not to start with. 

Next set a = q, the more interesting point of order 2 on Tq2. Then 

(5.13) t1 (=- 

hence at a fixed point p with exponents min, md we obtain 

(5.14) tA -)? it.p 
If the exponents of the action satisfy the condition 

(5.15) Em m(P (mod 2) 

for any pair of fixed points p and p', then taTq(M) = ?-Tq(M) and Tq(M) 
also has no poles on q .5. In short, under the exponent condition (5.15) Tq (M) 
has no poles of order 2. 

We will show later that (5.15) is always satisfied on a spin manifold (this 
assertion is also made in [A-H]). But it is easily seen to fail for other actions. 
For example, consider the projective space P(V) of lines in the S1 module 

0 1 2 (5.16) V=LE[L?E)L. 
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Then P(V) is CP2 with an induced holomorphic S -action whose fixed 
0 1 2 points correspond precisely to the axes L L , and L of V. At these fixed 

points, the exponents are seen to be 
L? 01 2 

(5.17) L -1 1 
L2 - 2 -1 

where we have now chosen the holomorphic orientations at the fixed points. 
12 Note that the parities of their sums are different at L and L 

For this example we have 
2 

(5.18) = 2Gop - y2P _ 6P 

and it is easy to check that this Tq has no pole at 1, but does have a pole 
of order two at q. Of course this is not alarming because CP2 is not a spin 
manifold. 

To test for poles of Trq (M) at higher roots of 1 is more difficult and requires 
a "transfer" argument as well as a twisted form of Proposition 5.1. We explain 
this extension in the next section. 

6. TwISTING Tq 

The arguments of the preceding sections admit some straightforward exten- 
sions which correspond in the present context to the operation of twisting ds 
by an auxiliary complex S'-bundle F over M. At each fixed point p, the 
fiber Fp of F at p, decomposes into a sum 

(6.1) F Lmi 

of irreducible S' modules and we call the integers m1 the exponents of F at 
p.- 

The fixed point formula for the twist of ds by F then reads 

(6.2) ch * index(ds X F) = E u,p(ds) * ch(Fp) 

with ch Fp A E mi . Just as before, this relation implies that on the unit circle 
the poles of the right-hand side cancel out. 

Such a result persists if we twist ds 0 Rq by F but would destroy the elliptic 
nature of the answer. To remedy this we will twist ds 0 Rq by a q-dependent 
vector bundle constructed as follows. Recall the Laurent expansion of our basic 
meromorphic function, p, on Tq 

(6.3) - i n=l If q1 in=l 1nA 4I 1 

and let a be a point in the region, Iql < JAI < 1 , of convergence of the infinite 
product. 
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It then follows that the translate by a of 0 defined by 

(6. 4) (Pa (A) _ta ( (i) _(p (aA) 
is the product of a q-independent rational function with simple pole at A = 1/a 
and a Laurent series in q and A which converges for 0 < Iq < 1 on the 
annulus Iq/al < JAI < 1/aql containing the unit circle. Notice that the Laurent 
expansion is of "finite type in A." That is, the expansion has the form 

00 

(6.5) E q n bn (A) 
n=O 

with each bn (A) a finite Laurent series. Indeed, this property of (5.2) is not 
altered by the translation by a. 

Since (o(q) = -(o(), equation (6.4) defines the translate (a(A) for any 
point a E Tq2*. This function Pa(A) is then a meromorphic function on Tq2 . 

It follows by the splitting principle that (pa can be extended to complex vector 
bundles F, to yield a formal power series 

00 

(6.6) (Pa(F) = ,q nbn(F). 
n=O 

In fact, for lql < lal < 1 , we have the expansion 

(6.7) qiPa(F) = A F ) (A nF A F*I 

for the bundle analogue to (6.3); here, F* is the complex, dual bundle to F. 
Now, then, the arguments of the previous sections easily extend to the twist- 

ing of ds 0 Rq by tap(F) to yield the following. 

Proposition 6.1. In the context of our discussion above, define Tq(M; (Pa(F)) as 
the formal Laurent series 

(6.8) Tq(M; (a(F)) =ch * index(ds X Rq ?& (Pa(F)). 

Then Tq(M; (pa(F)) converges on some annulus D containing S = (JAI = 1) to 
the Laurent series of a meromorphic function on Tq2 which has no poles on the 
unit circle S c Tq2* Similarly twisting by a finite number of 9a(F) 's preserves 
the regularity of Tq on S. 

As an example consider the action of (5.16) on the "subbundle H* " of P( V) 
whose fiber at a line L is L itself. The exponents of H* are then 0, 1, and 
2, respectively, so that 

(6.9) Tq(M; (Pa(H*)) = (0* m/2?( * 0(0a *( ( (* a + 12 ( * ( * V2a 
Thus Proposition 6.1 asserts that this rational function on Tq2 has no pole on 
S. This can be checked from first principles using the polar properties of (, 
but already requires a more subtle analysis than the regularity of Tq(M) (as 
given by (5.18)) required. 



ON THE RIGIDITY THEOREMS OF WITTEN 151 

Remarks. In general, (Oa(F) $ (oa(F*). Hence (0a cannot be extended to an 
operation on real vector bundles. Note, however, that PqI/2 (A) is symmetric in 
. and 7 1, and so extends to a well-defined operation on real vector bundles: 
If F is a real vector bundle, we have 

(6.10) (Pql/2(F)_ (n= ?+q F n=1 AFqnI/12F 

7. THE TRANSFER FORMULAE 

To prove the rigidity of -q (M), we plan to show that under suitable circum- 
stances none of the translates taTq(M), a E Tq2, by points of finite order on 
Tq2 has a pole on the circle S c Tq2 This will follow immediately from the 
discussion of the previous section if we can express these ta Tq (M) as twisted 
forms of Tq on some auxiliary manifolds. It should also be clear that it is suf- 
ficient to carry out this program as k ranges over the positive integers and as 
a ranges over the roots of the form 

(7.1) a=a S a k=q 

for k and s having no common factors save 1 . 
The auxiliary manifold pertinent to the translation by such an a is the man- 

ifold Mk of fixed points in M under the action of the subgroup Zk C S, 
generated by 4 e27i/k Thus, 

(7.2) Mk = fixed point set of Zk. 

The cyclic group Zk acts on the normal bundle of Mk in M and we have 
a natural decomposition of the tangent space T of M along Mk according to 
the irreducible real representations {p} of Zk 

(7.3) TIMk = E T 

Now, our S -action on M induces an action on Mk; and its differential induces 
an action on TIMk which preserves the decomposition (7.3) thus making each 
T an Sl-bundle over Mk. 

To illustrate our plan in the simplest instance, assume that k is odd. In 
this case, the irreducible real representations p of Zk' other than the trivial 
one, admit unique complex structures so that 4 maps to Xr under p, with 
r = 1, ... , (k - 1)/2. 

Hence, in our context, each T for p not trivial can be given a unique 
p 

complex structure on which 4 acts by Xr for some r = 1. (k - 1)/2; and 
let Tr denote this complex bundle. Then, the decomposition in (7.3) has the 
form 

(7.4) TIMk = TMk+ T + T(kk 1)/2 
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with # indicating the underlying real bundle of the indicated complex one. 
The bundle TMk is the tangent bundle to Mk and corresponds to the trivial 

representation. It need not carry a complex structure, but if we use the natural 
(complex) orientation of Tr#, then (7.4) does serve to induce an orientation on 
TMk, and hence on Mk, once one is selected for M and hence for T. 

With all this understood, assuming now that M is a spin manifold, we have 
the following transfer formula for odd k: 

(k- 1)/2A 

(7A5) ta5 q(M) = Tq Mk;<)f!()T) 
r=l 

where wo(r) E {1, k - 1} is the mod k reduction of s * r and where Mk 
denotes Mk, but with a specific orientation which may differ from the induced 
one. In fact, if the connected components of Mk are labelled by {Mk ,}, and 
if the induced orientation is denoted by +1 E {?1}, then the orientation on 
Mk a is given by (-1)u(k 'a where u(k, a) is computed from the exponents at 
any fixed point p E Mk,a . It is the number e(p) in (7.9) and Lemma 7.1 below. 
If SI acts on a component of Mk with no fixed points, then that component 
contributes 0 to (7.5) and any orientation used for that component will suffice. 

To prove (7.5), we can apply the fixed point formula to both sides and com- 
pare the contributions at each fixed point p. Indeed, partition the exponents 
at p into the various exponents of T# and TMk, with the exponents -_ r 
(mod k) occurring in T7#. Using the complex orientation on Tr# amounts to 
choosing m1 < 0 if Imj = k - r (mod k ) and mj > 0 if Imj = r (mod 
k ) . Let this be done and choose the remaining ones to be compatible with the 
induced orientation of TMk . These are the mi which are congruent to 0 mod 
k. 

With this choice of m1, the fixed point contribution to Tq (M) is given by 

d 
(7.6) up 17 Y/m j 

j=1 

Hence t(oS1p = rH tas (M/m (p) . But, 

(7.7) tas =m = 'm tces * in 

so that 
d 

(7.8) tas 1P = TI vYmj(Po smi 
j=l 

Now write s *m = 1* k + , where w1 i E {0, ,k - 1} is the mod k 
reduction of s i m, and then introduce the integer 

d 
(7.9) 8(p) = E e,* 
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Then use the formula fq= -( to rewrite (7.8) in the form 
d 

(7.10) taj = (-1)(P) rI tI/mJ (pj 
j=1 

On the other hand, if Mk replaces Mk in the right side of (7.5), then this side 
contributes at a fixed point p with this same expression, but with no factor 
(1)6(P). Indeed, the right side of (7.5) with Mk replacing Mk gives (7.10) 
without (- 1)6(P) and bracketed according to the congruences of the mi . The 
m. 0 (mod k) occur in Tq(Mk) those with m. = 1 (mod k) occur in 
,(P(0, (TkW , and so on. 

Thus, the transfer formula holds for odd k once we prove that (-1 )6(P) - 
(-1 )C(P ) when p and p' are in the same component of Mk . But this assertion 
follows from the following more general fact, which is proved in ?9. 

Lemma 7.1. Suppose that M is an oriented spin manifold on which Si acts 
with isolatedfixed points, and, for k E N, let Mk C M be a connected, oriented 
component of the fixed point set of Zk c S '. Also, let s E Z be relatively prime 
to k. Suppose that p E. Mk is fixed by S1 and that exponents {mj} for TIp 
have been chosen to be compatible with the orientation of M, and also so that 
those which are 0 mod k give the correct orientation for TMk l . For each mj, 
define ?1 E Z and w1)j E {0, ..., k - 1} by s* m1 = 1* k?+w1o, and then define 
e(p) = Zj?j. If p, p' E Mk, then (-1)6(P) = (- )C(P ) 

Before continuing, we note that changing m1 to -mi does not change 
(-1)6(P) if m1 = 0 mod (k) , but (-1)6(P) changes to (-l)C(P)+l if mj X 0 
mod (k). 

Assuming Lemma 7.1, there still remains the case k even. In this case, 
(7.11) TMk = TMk ETk2 

where each <for r = 1, k -1 is a real bundle which has a natural 
complex structure so that 4 E Zk acts on the resulting complex bundle, Tr, as 
rr The vector bundle Tk/2 is a real bundle on which 4 acts as (-1) . 
A transfer formula such as (7.5) for the k even case requires, a priori, that 

Mk be orientable (so a signature operator can be defined). This is the case if 
M is spin, a corollary of a general theorem of Edmonds, but we will bring a 
short proof of this assertion in ?10. Here, we record this fact as 

Lemma 7.2. If M is spin and orientable, and if S' acts, then the fixed point 
set Mk of the Zk c S action is orientable. 

Armed with this result, and again assuming that M is spin, we can state the 
k even transfer formula: 

(7.12) t(sTq(M) = Tq l9(o(r) (r) 
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where, as in (7.5), cl(r) is the mod k reduction of s * r and Mk is Mk with 
a specific orientation selected. To explain this orientation, we note first that 
the natural complex structures on <for 1 < r < k - 1 orient these vector 
bundles, and so, with the orientation of T, the Whitney sum TMk @ TkJ2 gets 
an orientation. Choose an orientation for TMk and call it + 1 . With respect to 
this orientation, the orientation for Mk is defined on a component, Mk a to be 
(1)u(k,a) where u(k, a) e(p) of Lemma 7.1 for any fixed point p E Mk , 

Here, a comment is in order. If the orientation of Mk is changed, then 
(-1)6(P) as computed in Lemma 7.1 also changes sign. This is because the 
orientation of Tk/2 must change. To see why such a change affects (-1)6(P), 
choose the signs f'or the exponents of T at p by the following convention. 

The exponents which are not congruent to 0 or k mod k are chosen as 
before. For the rest, fix an orientation for TMk. This induces one on Tk/2. 
Choose the signs of the exponents that are 0 mod k so that the orientations 
for TMk and for Tk/2 at p are separately compatible. 

Now observe that a change in the orientation of Tk/2 will require an odd 
number of exponents m1 congruent to k mod k to change sign, and this will 
change an odd number of the corresponding ?j to -Ve. + 1). 

With the preceding convention for the exponents at p chosen, the argument 
for (7.12) is virtually identical to the one for (7.5), and so the transfer formula 
for both even and odd cases stands with Lemma 7.1, the subject of ?9. 

This brings us to the result we wanted. 

Theorem 7.3. Let S' act on a compact, oriented spin manifold so as to have 
only isolated fixed points. Then its q-signature, Tq, has no poles on Tq2 and, 
hence, is a constant. As a consequence, the rigidity theorem holds. 

8. FIXED POINT SETS OF HIGHER DIMENSION 

In general, the fixed points of an S' action on M fall into components {P} 
which are themselves smooth manifolds and although a fixed point formula is 
still valid, the contribution of each P is now more complicated. The precise 
nature of this contribution is described by the G-signature theorem of Atiyah- 
Segal [A-S]. 

We will here first formulate this result in purely K-theoretic terms which fit 
most naturally into our context. We will also spell out some of the K-theoretic 
details to make the arguments accessible to nonexperts. 

First note that if P is a component of the fixed point set of an S -action on 
the oriented manifold M, then along P the tangent bundle T of M splits 
into a direct sum 

k 

(8.1) TIP=TP @E E 
i=l1 
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where E7 denotes the underlying real bundle or "realization" of the complex 
bundle Ei on which SI acts by sending 4 to Xm1 Here, Imi $ 1 mjI unless 
i j. Although E is canonical, Ei is not. Indeed, the complex conjugate Ei 
of Ei, of course, has the same "realization" E = Ei, but the action S on 
E, is given by 4 - m. Hence the exponents are only canonical up to signs 
and a choice of the sign of mi chooses between Ei and EiI In any case, once 
the exponents are fixed a definite orientation on TP is induced from one on 
TM. 

We write di for dimc Ei and refer to this integer as the dimension of Ei . In 
terms of these bundles, the equivariant index theorem of [A-S] now specializes 
to give the equivariant signature of M in the following form: 

(8.2) T(M) = >J(P) 
{P} 

with 
k 

(8.3) Au(P) =index ? AAwntEi/A Ei 

Remarks. In this formula we have used the substitution e'0 = A as throughout, 
and d denotes the signature operator of P, qua oriented manifold. 

The twisting bundle of d5 in (8.3) makes good sense in the K theory of 
P, tensored by the rational function in A by virtue of the nilpotence of the 
ideal, 0K(P) "of dimension 0 bundles" in K(P). Indeed, given a bundle E 
of dimension d, then in K(P) the class of ?E = E - d 1 has dimension 0, 
and the exterior powers of ?E and E are related by 

(8.4) AaE=Aa("E+d* 1) = (1 +a) dAal?a)(OE)* 

Hence the denominator in (8.3) is of the form 

(8.5) fJ(1-A ,) { 1 + N} 

where N is a finite linear combination of nilpotent elements in K(P) with co- 
efficients which are monomials in Am/1(1 -Am') ; the denominator can therefore 
be inverted so that the twisting factor k I Al),,Ei/A_A1n E1 finally takes on 
the form of a finite sum 

(8.6) Ea (A)Nj 
(I) 

where the Nj E K(P) and the ap(A) are rational functions whose poles are 
entirely on the unit circle and possibly at oX or/and 0. It follows that 

(8.7) ul(P) =a P(A) 2)index(ds 0 NJ) 
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is also a rational function in A with this polar behavior. (Actually there are 
no poles at 0 or oo in ,u(P) because Ak,,,,i (Ei)/A_tni (Ei) at most changes sign 
under the substitution A -i s.) 

Hence the rigidity proof for T(M) goes forward in the general case just as it 
did before. 

It is easiest to see the genesis from (3.5) to (8.3) if we assume that all of the 
Ei are line bundles because then the twisting factor of (8.3) is simply 

(8.8) J7(i AMi 'E) J7J(I i-)m'E1), 

so that, when P is simply a point p and consequently E1 = 1 in K(pt), this 
factor is precisely ,u(p) . In this extreme case index dp is interpreted as the ? 
identity map, the sign depending on the induced orientation of p. 

Using this same technique, now we can easily compute the contribution of 
P to Tq (M) . The formula is given by 

(8.9) Pu(P) = Tq(P; ) (),m (Ei)), 
and we will now spell its meaning out in greater detail and explore its nature as 
a meromorphic function on Tq2 i 

First the terms (,Am, (Ei). These are well-defined elements in K(P)0&z4(Tq2) 
where #(Tq2) denotes the ring of meromorphic functions on Tq2, which we 
will think of as a meromorphic function on C - {0} invariant under multipli- 
cation by q2 

Note that in ?6 we already defined (Oa(F) as an element in K(M)?zC when 
Iql < lal < 1. Thus (o,m(E) makes sense for lqll/m < JAI < 1 by the previous 
definition, but now we want to emphasize that it extends to a well-defined ele- 
ment of K(P)?z 4'( 12), and in particular we want to study its polar structure 
in A. 

For this purpose observe that if E is a line bundle over P, then we can 
define logE E 0K(P)?zQ by the formula 

oo ok 

(8.10) logE=log(1+0E)=-- k 1)k 
k=1 

because this sum terminates. 
Next consider the substitution A = eZ so that (p(A) = (z) and define p (k)(,) 

to be the kth derivative of -(z) relative to z: 

(8.11) k( _(d)^ 

These are new meromorphic functions on Tq2 with degree k poles at 1 and 
q. 

With all this understood define 

(8.12) CA (E) = C(z + log E) E (logE) ) 
0 
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Because log E is nilpotent in K(P) this expression now clearly exhibits 
(o,(E) as an element in K(P)oz(Tq2) 

Now if E = ([3 Ei is a sum of line bundles, then (o,(E) = Xi (oi(E1) and 
so (8.12) defines (oA(E) e K(P) ?&'(Tq2) for sums of line bundles, and hence, 
by the splitting principle, for any complex E. 

The operation t/'m applied to ( (E) finally produces (p,m (E) and this ex- 
plains the twisting part of the formula (8.9). It remains to recall that just as in 
?3, Tq(P; ( )) is shorthand for 

ch-index{<d?Rq(T)?( )}. 

Note also that again using the nilpotence of ?K(P) as in our treatment 
of (oA(E) ,Rq(T) is seen to be a finite expression of the form Ea,(q)W in 
K(P) ?z C where the a,(q) are given by convergent power series in q for 
ql < 1. 

All in all, then, we see that the contribution of P to Tq(M) is given by a 
polynomial in /m (k) i) with coefficients that are analytic functions of q in 
IqI < 1 . As in the case of isolated fixed points, we have identified Tq(M) as a 
meromorphic function on Tq2 and our previous argument may be used to show 
that this meromorphic function is regular on the circle JAI = 1 . Again, the 
proof of our rigidity theorem boils down to proving that Tq(M) has no poles 
at all. 

Now, a priori, poles can appear only at roots of q 2, that is, on circles of 
radius lal where a = aS for a a kth root of q and for s relatively prime 
to k. Also we will rule out such poles by proving that the transfer formulae 
of (7.5) and (7.12) for t Tq (M) generalize to S1 actions without constraints. 
In fact, the transfer formulae generalize essentially unchanged. If we let [k] 
denote the greatest integer less than or equal to k , then, when M is a spin 
manifold, we still have 

(8.13) t,asTq(M) = Tq(Ak; [k 1O2(r)( Tr)) 

where cl)(r) E {1. k - 1} is the mod k reduction of s * r, and where 
A f C M is the fixed point manifold of Zk c S' with a specific orientation 
which we will now describe. 

When k is odd, the tangent bundle TMIM decomposes according to (7.4) 
and induces an orientation on TMk. Call this orientation +1. Let P be a 
component of the fixed point set of the S' action with P C Mk and choose 
the signs of the exponents along P so that each mj 0 O (mod k) is congruent 
mod k to some r E {1, (k - 1)/2}. Choose the orientation of TP and 
choose the signs of those m 0 _ (mod k) so that the induced orientation on 
TMIp is the correct one; then, the induced orientation on TMklp will be the 
+1 orientation. For each min, introduce (?Iojj)eZx{1i. k- i} by 

(8.14) sm = .k+ wi 
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and then define 

(8.15) e(P) =ZE d1 *e 

where d1 = dimc E,. 
The orientation for Mk is now defined to be +1 (-1)6(P) on that compo- 

nent of Mk which contains P., and Lemma 8.1 below insures that (-1 )6(P) - 

(-1)6(p ) when P and P' are both fixed point manifolds of S in the same 
component of Mk . 

For the case k even, TIM decomposes according to (7.11), and as EDkJ2 I1 
is naturally oriented, an orientation is induced on TMk @ Tk/2 . Choose an ori- 
entation for TMk and call it +1; this induces one on Tk/2 . 

Let P be a component of the fixed point set of S1 and choose the signs of 
the exponents at P by the folowing rule. If mj X 0, k, mod k, make the choice 
as before so that (mJ)mod(k)E{ k - }. Choose the signs for those m1 
0, k (mod k) and choose the orientation of TP to make the induced orientation 
on TMk E TkI2 I P correct. This will make the induced orientation on TMIp 
correct. However, the induced orientation of TMklkp may not be the correct 
one (+1). To keep track of the discrepancy, introduce e0 = 0, 1 with eo = 0 
if the induced orientation on TMklkp is correct, and e0 = + 1 if the induced 
orientation on TMklkp is incorrect. (If mj =-kl2 mod kE. equivariantly splits 
an odd (complex) dimensional subbundle, it is always possible to choose the 
signs of the m 0, P. (mod k) and the orientation of P to get the correct 
orientation for both TMIp and TMklp .) 

For each min, introduce (p1, I1j) by (8.14) and set 

(8.16) E(P) = Co + dj e . 

The orientation for Mk is again + 1 1(-1)6(P) on that component of Mk that 
contains P, and the assertion that this orientation is unambiguous is made in 
Lemma 8.1. The proof of Lemma 8. 1 is deferred to the next section. 

Lemma 8.1. Let M be an oriented spin manifold on which S1 acts and for a 
positive integer k, let Mk C M be a connected component of the fixed point set 
of Zk C S '. Let s E Z be relatively prime to k. Let P., P' be connected fixed 
point manifolds for the S I-action, both lying in Mk . Use the prescription above 
to define the numbers e(P) and e(P') in (8.15) for k odd and (8.16) for k 
even. Then (- 1)6(P) = (-1 )C(P') . 

To prove our general transfer formula (8.13), we begin with the remark that 
when we choose our exponents at P according to the preceding prescription, 
then the analog of (7.10) still holds: 

(8.17) t(i1p = ( 1)6(P) Tq (P; ( m,aw,(Ei)) 
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We see (8.17) by using the antiperiodicity (opLq) = - (O() to first prove 

(8.18) t, ,O(A ) = (ma Ms) = (-1)% (Am ma) 

for (, w) E Z x {1, , k - 1} defined by s * m =e * k + w. Now we observe 
that (8.17) is a direct consequence of (8.18) when we go back to (8.12) to define 
(Pa (E) . 

Now, as before, we observe that Tq(P ? i A,lli(i (Ei)) is the contribution from 
P to the fixed point expression for Tq(Mk; r=/1 (OCw(r) (Tr)) . The argument is 
the same as before. Since Lemma 8.1 insures that (- I)6(P) depends only on the 
component of Mk that contains P, we can define Mk as Mk with the new 
orientation and our transfer formula is complete. 

9. EXPONENTS MOD 2 

The proofs of Lemmas 7.1 and 8.1 presented here compare the exponents at 
different points of M by means of judicious equivariant maps of the standard 
two sphere S2 into M. These maps pull back equivariant vector bundles on M 
to S2 where we can exploit more or less standard facts concerning equivariant 

2 bundles on S2 
Then let S act on S2 = S 2 by rotations about the north-south axis in 

the standard manner, and let S(") denote the kth iterate of this action, which 
2 1~~~~~~~~k rotates S2 k times about its axis as we go once around S . These two actions 

of S on S2 are related by an S equivariant map 
S(2 

(9.1) 71k 1 

s 
2 
(k) 

which is of degree k, and which, under stereographic projection of S2 onto 
C u x, corresponds to the map z - zk. The first of the two facts we need 
concerns complex bundles over S2= s 2 

Lemma 9.1. Let E be a complex vector bundle over S( ) to which the S1 action 
is lifted. Then the first Chern class of E is given by 

I c (E) = (mn _ ms) 

where the mn and ms are the exponents of the SI action on E at the north 
and south poles, respectively. 

The second fact we need is an equivariant generalization of the statement 
that all even-dimensional real bundles E? over S2 admit complex structures. 

Lemma 9.2. Every real, oriented, even dimensional, equivariant bundle E# over 
S( ) is the underlying real oriented bundle of a complex equivariant vector bundle 
E over S(2k). 
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Now Lemma 7.1 is a special case of Lemma 8.1, which can be generalized by 
considering, rather than TM, any real, oriented vector bundle V -* M with 
w (V) = 0 and to which our S1 action lifts. Restricting V to Mk produces 
a vector bundle VIMk on which Zk 5-* SI acts; just rotate 27r/k radians 
around S1 . As in the previous section, this Zk action decomposes VIM into 
constituents 

(9.2) VIM = VO + V1 + * + Vk-1)/2 

if k is odd, and into constituents 

(93) V|Mk =Vo + V, +V** + V+/2-1 + Vk/2 

if k is even. Here Zk acts trivially on VO, the generator acts by (-1) on Vk12 
and each Vr# for 1 < r < k has a unique complex structure with the property 
that the generator of Zk acts on the resulting complex bundle, Vr, by . 

When k is odd, (9.2) orients VO. When k is even, (9.3) orients VO @ Vk/2 
and, looking ahead to Lemma 10.1, we assert that VO is orientable. Assuming 
this, fixing an orientation on VO orients Vk/2. 

At a component, P, of the fixed point set of S , V decomposes as 

(9.4) V=Eo E eEE 

where S 1 acts trivially on Eo and where each E# is the realization of a complex 
bundle, E -P, on which S' acts by A S-Am' for some m E Z. As with 
V = TM , the exponents {m1} are canonical up to sign, as {Ei} are canonical 
up to conjugation and choosing the signs for {mi} specifies {Ei}. Choose 
these signs compatibly with orientation by requiring those mi 0 0, k (mod k) 2 
to have mod k reduction in { , (k - 1)/2} or {, , k- 1} depending 
on whether k is odd or even. When k is odd, choose the orientation for 
Eo and the signs of those mi= 0 (mod k ) so that the induced orientation 
on Volp = Eo im0(modk) E# is also correct. When k is even, choose 
the signs of those m1 0, k (mod k ) and the orientation of Eo so that the 
induced orientation on VO E Vk/2IP is correct. 

It may be impossible to choose the signs of those m -=0, k (mod k) and 
then the orientation of Eo to obtain correct orientations for both VO E Vk/2IP 
and Volp . Let co = 0 when the correct orientation for Volp is obtained (one 
can always arrange this when ei:m = k/2 (mod k) E splits equivariantly with an 
odd complex dimensional summand) and let co = + 1 when Vo0p inherits the 
wrong orientation. 

For any s relatively prime to k, introduce {(fi, ,wi)} C Zx {1 . k- 1} by 
s * m = 1. k + oi; and then introduce e(P) = co + Ei di .i where di = dimc Ei . 

Now we can state our generalization of Lemma 8.1. 
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p-^ )p M/ 

FIGURE 3 

Lemma 9.3. Let M be a smooth manifold and let V -* M be a real, oriented 
vector bundle with w2(V) = 0. Suppose S1 acts on M and compatibly on V 
and, for k E Z, let Mk C M be a connected component of the set in M fixed 
under Zk C S'. Let P, P' C Mk be distinct, connected components of the set 
in Mk fixed under S' and define the numbers c(P), e(P') by the prescription 
in the preceding paragraphs. Then c(P) - e(P') is an even number. 

We will now turn to the proof of Lemma 9.1. Choose a point p E P and 
a point p' E P'. The situation is depicted in Figure 3, where the dotted line 
represents a path from p to p' which lies in Mk and is so constructed that it 
avoids all other fixed points of our action, and with the property that rotating 
the path via our S action induces an equivariant map of S2 into Mk, 

(9.5) f:S Mk' 

taking the north pole to p and the south pole to p'. 
Since the path in Figure 3 lies in Mk, a second map from S2 into Mk is 

constructed by rotating the path through an angle of 27r/k radians by our S 
action. 

This new map is denoted by 

(9.6) f:kS2 M 

and in the equivariant context, fk fits into the commutative diagram 
S2 f 

(9.7) 7rk t M(k) 

S(k) fk 

We now pull the bundles Vr back to S(k) via fk For r $ 0, k these fkVr 

are complex equivariant bundles a priori, and for r = 0 or k , Lemma 9.2 
allows us to think of fk* Vr as a complex bundle also. 

In all cases, f*V = (7rk ? fk)* Vr is an S I-equivariant, complex bundle 
for the standard S' action on S2 and restricts equivariantly to n (= north 
pole) as a direct sum of lines f *VrIn = L,(r), and SI acts on L, (r) by 
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A in(r) For r $ 0, k (mod k), the set of exponents {ma(r)} is precisely 
the subset {mi: mi-r (mod k)} of the set of exponents for the action of 
S on VIp but counted with multiplicity di = dimcEi. For k odd and 
r = 0, f* Von also decomposes as a sum , L(0) of complex lines on which 
the S1 action is defined by exponents {m,,(0)} and this is precisely the subset 
{m : mi -0 (mod k)} after counting with multiplicity di . When k is even, 
either e0 = 0 or 1 and if e0 = 0, then one has the same situation for f* VOjn 
and a similar situation for f* VI/2n which defines exponents {ma(k)}dimc Vk/2 anda smiar itutin fr f* k/2In 2 a=1 
as the subset {m : m = k2 (mod k)} after counting with multiplicity d1. 
However, when e = + 1, the orientations on f* VOn and f* Vk/2 In must be 
corrected so the exponents for the line decomposition of f* VO In are {mc(0)} 
which differs from the subset {mi : mi-=0 (mod k)} counted with multiplicity 
in that one m(k (0) has the wrong sign. Likewise, the exponents for f* Vk/2 In 
are a set {m ( k2)}di V 

A/2 which differs from the set {m: m k2 (mod k)} 
counted with multiplicity in that one m(jk) has the wrong sign. (Changing an 
odd number of complex lines to the conjugate line will switch the orientation.) 

We likewise introduce the set of exponents {m' (r)} for the SI-action on the 
restriction to the south pole of f* V, . 

With all of this understood, Lemma 9.1 tells us that 

(9.8) (m (r) - mj(r)) = j I C(f Vr) 

and since 7rk: S2 -* SI) is a degree k map, we can conclude that 

(9.9) E(m(r) - mX(r)) = k /2 Cl (f Vr)- 
a~~~~ 

Next, let s be relatively prime to k. Since m,(r) is an exponent of Vr at 
p, r equals its mod k reduction, and likewise for m' (r) . Thus s ma(r) and 
s* m(r) all have the same mod k reduction, (s . r)mod k which we fix once and 
for all. Hence, integers {f(, (r) } are defined at p by 

(9.10) s * m(r) = e(r) * k + (s * r)mod k- 

Similarly we obtain ff (r)}. Hence, if we divide (9.8) by k and multiply by 
s we find that 

(9.11) Z(f(r) - #,(r)) = s * C(f(Vr)) 

Now if r 0 0, k (mod k), then 

(9.12) Ee(r)= >i 
a i:m - r (mod) k 

since each m1 r (mod k) appears in the set {ml>(r)} with multiplicity di. 
If k is odd, (9.12) holds for r = 0 also, and if k is even, (9.12) holds for 
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r = 0 and f provided that co = 0. However, if =o 
= +1, then one m0(0) 

and one mj( k ) have the "wrong" signs and so 
2~~~~~~~~~~~~~ 

(9.13) ZQ(0)= ( dIetI1 -2.-ce..?0l() 
a k~~~i:mi 54 0 (mod k) 

and 

(9.14) 
k 

12 d*f) -2-eOf (2 ? 
ai:mi = k/2 (mod k) 

give correct formulae for 60 = 0 or 1. 
Now similar formulae hold at the south pole, so summing over r, we obtain 

(9.15) 

5(dif -d4t)-6e+6Z-260 [e,(o) + , (k) -(o) _ (2)] Sj Ci(fk(Vr))* 

But this establishes our lemma because the spin hypothesis on V implies that 
w2(V) = 0, whence w2(f* V) = 0 so that c1(fk* V) is even! But then 
Z ~ - e) + - 0 is even, as was to be shown. QED 

For the sake of completeness, we now give proofs of Lemmas 9.1 and 9.2. 

Proof of Lemma 9.1. Since S' acts on E we can construct the vector bundle 

Es = E xs8 ES, 

1 1 1 21 = s 2 xs, ES 
I 

where ES is the universal S -bundle over the classifying sp-ce BS . As a 
complex vector bundle, it has a first Chern class, c1 (ES,) E H2(S2 XS, ES'). 
Now the projection 7r ESI - BSI identifies S2 x s ES' as a fiber bundle 

1 2 over BS with fiber S . Two canonical sections, N and S, correspond to the 
north and south poles of S , respectively. 

A typical fiber F of this bundle defines a class [F] c H2(S2 xs, ES'). Two 
additional classes are defined by NJ[P ] and S*[P I] where [p1 C H2(BS ) is 
the generator. An easy exercise shows that 

(9.16) N*[P'] - S*[P'] = [F], 
and our formula in Lemma 9.1 is obtained by evaluating cl (Es,) on both sides 
of (9.16). 
Proof of Lemma 9.2. Rotating S' through 2ir/k radians gives the identity on 
S ) and so generates a Zk action on E# which decomposes E# in the usual 
way, i.e., as 

(9.17) E =Eo+E1 + +E(1)/2 



164 RAOUL BOTT AND CLIFFORD TAUBES 

or as 

(9.18) E =Eo+Ej+ +Eh/2-1+EhI2 

depending on whether k is odd or even. For r $ 0, k each E# has a complex- 
ification to Er on which the Zk generator acts as (r, so we need only concern 
ourselves with r = 0, k . First, we observe 

Lemma 9.4. Let E# be as in Lemma 9.2 with k even. Decompose E# as in 
(9.18); then E# and Ek/2 are even dimensional. 

Proof of Lemma 9.4. As E# is even dimensional, we may consider E# 
Eo E) EkI2 . As Zk C S1, it acts as an orientation preserving automorphism of 
E#, hence on the real line bundle det E# = det E # 0 det E#2 it must act 
as +1 . But it acts a priori as +1 on det Eo and it acts as (-1)dim EkI2 on 
det # so dim E is even. QED 

Now our standard S' action (rotation once about S1 gives one rotation of 
S ) lifts to EI# . At the north and south poles we may give F0# a complex 
structure which is compatible with the linear S1 action on the fiber and with 
the orientation. Indeed, we can choose our exponents (m, m(dim E#)/2) 

which are 0 (mod k) at n and s to uniquely define such a complex structure. 
Now pick a longitude, e, and extend our complex structures at n and s to 
a complex structure for Eo#lf. We can do this because SO(2n)/U(n) is path 
connected. Since each SI orbit save n and s intersects e exactly once, we 
can use the S1 action to extend the complex structure along e to a global one 
which is, a priori, S'-equivariant. 

For E# we can make the same construction. Though it is true here that 
rotating once around S2 does not lift to the identity on E#/2 rather it lifts 
to (-1). However, (-1) E SO(2n) lies in U(n), so it does not hinder our 
construction. 

10 . ORIENTATION 

It was essential for our program that the fixed point set Mn c M of Zn c S' 
be orientable, provided M is spin. This result is a special case of a more general 
phenomenon which arises in the context of a Zn action on a manifold M, and 
a real, oriented vector bundle, V -* M, to which the Zn action lifts. When 
restricted to the fixed point manifold, Mn c M for ZnI VIM admits a Zn 
action which decomposes VIM in the usual way: 

(10.1) VIM = V0 + V1 + + 

if n is odd, or 

(10.2) VIMn V= + VI + + Tn/2-, + VnI2 
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if n is even, where the generator of Zn acts trivially on V0, by (-1) on Tn12 
and where V* for 1 < r < n/2 have natural complex structures. 
Lemma 10.1. If V is spin and if the Zn action preserves the orientation and the 
spin structure of V, then VO is orientable. 

Taking V = TM produces our result that Mn C M is orientable for M a 
spin manifold. As we remarked, this corollary can be deduced from a theorem 
of Edmonds [E]; his theorem asserts that the fixed point set of an involution on 
a spin manifold is orientable. 

However, we will present a proof of this lemma along different lines from 
his. To begin, we note that for n odd, V needs only to be orientable for V0 
to be orientable, as the other constituents of V have complex structures. 

For the n even case, we base our proof on the following quite general propo- 
sition. 
Proposition 10.2 (Bott-Samelson [B-S]). In a connected and simply-connected 
compact Lie group the centralizer of an element is connected. 
Gist of proof. Let G be the group and g the element and consider the orbit 
of g under the adjoint action of G on itself. We write 0g for this orbit, and 
clearly 0g - G/Cg, where Cg is the centralizer of G. Under our assumptions 
it follows from the homotopy exact sequence that 

( 10.3) 7ro (C ) - 7r l (O) 
Now let n(G; Og) be the space of paths on G ending on O . It has the same 
homotopy type as 0g . Projection on the initial point of such a path gives us a 
fibering 

(10.4) Qe(GOg) ) Q(G;Og ) G, 

with fiber the space of paths in G starting at e and ending on O . The space 
on the left is simply connected by an old theorem of Bott and Samelson [B-S]. In 
fact, by Morse theory 5e (G; Og) is torsion free and has only even-dimensional 
homology. 

With the aid of this result we can prove Lemma 10.1 in the following manner. 
Let Q be the principal Spin (d) bundle covering the oriented frame bundle P 
of V and let f: M -- M be the map induced by the action of e2,iln c Zn on 
M. Then Mn = Mf is the fixed point set of f and by assumption we have 
induced bundle maps fQ: Q -- Q and fp : P -* P covering f . 

Let Q' be the preimage of a connected component of Mf in Q. Then 
fQ I Q' covers the identity automorphism of Q'. Therefore, fI Q' is induced 
by an equivariant map h Q' Spin(n) in the sense that 

(10.5) fQ(q) q * h(q), q c Q'. 

Equivariance implies that fQ (q * g) = fQ (q) * g which translates to 

(10.6) h(g * g) = g l h(q)g. 
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This h maps the fibers of Q' to Ad-orbits of Spin (d). Now fQ being of 
finite order, fQ IQ' is also, so that h takes values in orbits of points of finite 
order. These being discrete, we see that h actually takes values in a fixed orbit 
Og: 

(10.7) h: Q Og. 

Let g c 0 be a point of this orbit and consider the inverse image 

(10.8) Q" = h I(g). 
Then it is clear that Q" c Q' has Cg as its structure group. In short, along 
Mf the structure group of Q is naturally broken to Cg. 

Consider now the projection of Q" to the oriented orthogonal frame bundle 
P of V. The structure group of P is SO(n), and along Mf it is broken to 
the centralizer C of an element g in SO(n), which might well have two com- 
ponents. (Indeed an involution breaks 0(n) into 0(n - k) x 0(k) and hence 
SO(n) to a two-component subgroup of 0(n - k) x 0(k).) These two compo- 
nents of the reduction along each fiber of P IMf define a double cover Mf of 
Mf and the orientability of V0 clearly hinges on the question of whether this 
double cover is trivial or not. 

Now, then, we see from the connectedness of Cg that the projection of Q" 
into PIMf singles out one component of this double cover, whence Mf = 
Mf xZ2. QED 

1 1. GENERALIZATIONS 

Witten considered a generalization of the basic rigidity theorem by introduc- 
ing an auxiliary Spin(2k) principal bundle Qv over our spin manifold M to 
which the double of the S1 action lifts. Let A(V) and V denote the vector 
bundles over M which are associated to Qv via the spinor and vector rep- 
resentations, respectively. Similarly we write A(T) to denote the bundle of 
spinors which is associated to a choice of spin structure on our spin manifold 
M and in terms of these we introduce the expression 

1.1) Eq(V/T)= (A() ()Aqn V) (A(T) Aqtn T)q 

as a formal power series in q with coefficients in the real K-theory of M. 
Witten conjectured that 

(11.2) Tq(M; E)=_ch * ind(ds X Rq(T) X Eq(V/T)) 

is rigid when the equivariant characteristic classes of V are suitably constrained. 
To explain these constraints recall that the "equivariant cohomology" of an 

S1manifold M is defined as the cohomology of an auxiliary space Ms, con- 
structed as follows. Let ES be a contractible SI-space, e.g., the unit sphere in 
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a Hilbert space of infinite dimensions on which S' acts by complex multipli- 
cation. 

Then define Ms by 

(11.3) Ms = M x ES/S 
where the quotient is taken relative to the product action on M x ES. 

This space fibers over ES/S1 = BS1, which in this case is just CP . Thus 
2 H (pt) =H (CPO) = Z[u], u c H51, 

so that H H(M) *H(Ms) is naturally a module over this ring. Equivariant 
maps f: M -* M' induce maps fs: Ms -* Ms and induce f Hs(M') 
HS(M), in short, Hs is a generalized cohomology theory over Z[u]. 

Similarly S -bundles V over M extend to bundles Vs over Ms 

Vs = V x ES/S 
so that their characteristic classes are naturally defined in Hs (M). Thus w2 (VS) 
and p1 (Vs) are well defined in Hs (M; Z2 ) and H (M; Z), respectively. 

The class w2 (VS) E H(M; Z2) plays the role of an obstruction to an equi- 
variant spin structure on V, and it is a fact, which we learned from Dan Freed, 
that if w2(E) = 0 for a real, oriented bundle E over a space X, then there 
exists a canonical class e(E) c H4(X; Z) with 

(11.4) p, (E) = 2 * e(E). 
We write I p1 (E) for this class, as is the tradition among physicists. 
In any case the pertinent conditions which Witten proposed for the rigidity 

of (1 1.2) are now expressed by 

(11.5) w2(V5-T5)= ? p1(V5-T5)z=0 

where these classes are taken in Hs (M) . Actually, our proof of his conjectures 
works under the following slightly weaker hypotheses. For each k > 1 , consider 
Zk C S1, the cyclic subgroup of order k . 

We have the Zk equivariant cohomology of M, defined by 

(11.6) Hz;(M) = H (M x ES/Zk) 

and there is a natural "forgetful" map 

(11.7) at(S ;Zk) :M xES /Zk MS 

which induces by pullback 

at(S , Zk) :Hs Hzk 

The arrow which forgets the SI action altogether we denote by a(S ; 1). Thus 

(11.8) a(S 1)*:H*H* 
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is induced by the inclusion of M into Ms as a fiber over BS 
Finally, note that if Zk acts trivially on a space X then there is a new arrow 

7c H* (X) --- Hz* (X) 

induced by the projection 

( 11.9) Xz = (X x ES )/Zk = Xx X.k X . 

With these concepts understood, we let ZO S1 and then we have the 
following proposition. 

Proposition 11.1. Let M be compact oriented and spin, and let V be an auxil- 
iary spin bundle over M. For each 1 < k < 0, let i: Mk -- M be the inclusion 
of thefixed point set of Zk C SI in M and so i induces is: Mk x, ES' I Ms. 
Now assume that 

(11.10) ac(S ,Zk) o i* annihilatesw2( VS-Ts) E H(M;Z 

while for e =2p(Vs -TS) 

a 
I 

1Z )* *e = 7* o a(SI ;W1 o 
1 

*e. 

Then Tq (M; Eq (V/ T)) is rigid. 

Note that the relations (11.10) and (11.11) clearly follow from (11.5) by 
pulling back and forgetting, so that they are weaker. 

Proposition 1 1.1 is again proved via the fixed point formula, and again the 
proof is most transparent where the fixed points are isolated. For simplicity we 
will treat that case only. 

The fixed point formula asserts that 

(11.12) Tq (M; E) = E: ,p E fp 

p 

where p = fHd1 C/m p is our old friend, and where fp(q, A) is a formal power 
series in q with coefficients that are finite Laurent series in A. To write down 
fp, we will need the infinite product 

00 

(11.13) 0(A) = (1 +A) * .(1 + q n)(I + q 
n 

I), 
n=1 

which, when expanded, defines a convergent power series in q with finite 
Laurent series in A as coefficients and the domain of convergence for 0 is 
O < Iql < 1 and 0 < IAI. 

Note that 
O(qA) = A l0(A) 

and that 0 is related to our p by 
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Thus 0 is precisely one of the classical "theta functions" written out in our 
A-parameter. 

To construct fp from 0 we need to use the exponents of the S action on 
T and V at the fixed point p . Now the action on the tangent bundle at a fixed 
point p is described by the integers {m, ... md }, while the S action on 
Vlp is described by nonzero exponents {v1, v, } and a subspace, V'lp, on 
which the S 1 action is trivial. 

With all of this understood, the multiplicity fp is now seen to be 

(11.15) fp =A(,iZmi-Z v)/ /2j vip (iiL irn0) 

Remark. The exponent of A in (1 1. 15) is an integer by assumption ( 1. .10). Let 
us spell this out a little. First note that BZ2= RPoo and that H* (RPQQ ; Z2) 
Z2[x] where x has dimension 1. Hence if L = R is the nontrivial Z2 module, 
of dimension 1, on which the generator acts by -1 , then the total Stiefel- 
Whitney class w(L) E Hz* (pt; Z2) is given by 1 + x. 

Hence the decomposition 

(11.16) Tp= E15 

implies that 

(11.17) w2(Tp) = II(l + XMd) 1 i 

as an element in H* (p;Z2) 
On the other hand, the map 

2 (S Z2): Hs (P; Z2) HZ2 (P; Z2) 

sends u to x . It follows that 

Is0w2(Ts)=( mi)u (mi).u (mod2) 

in H 2({p} x BS' ;Z2) Similarly 

(11.18) w2(Ts -Vs) = (m - vi) - u (mod 2) 

whence (1.10) implies that Z(m -v1) =_0(2). QED 

Our strategy now is to show first that the right side of (11.12) defines a 
meromorphic function on Tq2 . Then we generalize the transfer formula of ?7 
to argue that this meromorphic function is constant. 

The multiplicity fp descends to Tq2 if and only if fp (q) = ?fP(A)), and 
since (11.13) obeys 6 (Aq) = A1 * (A) we first need to understand how q/m'rn 
transforms. Thus, 

(11 .19) yIAq) = mq)= nq) = q(Aq 1 . ) = -mn -m 1 (Ammr ml) 
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so that repeated iteration yields 

(11.20) (Ym 0)(Aq) = A . q (m)(m)I /Mo. 

Substituted into (1 1. 15) we therefore obtain the transformation law 

(11.21) fp (Aq) = ()2q)(Z (m f ())/2(A) 

Hence fp descends to a meromorphic function on Tq2 if and only if the 
exponents of T and V are related by 

(11.22) 2Z(m2 - v)= 0. 

But the relation c(Ei) = 1 + miu in H (pt) for the total Chern class of the 
Ei in (11. 16) shows that 

(11.23) p1(E1) = 1 - mr2u2 

so that i*p, (Ts) = H(1 - m2u2). Hence under our assumption fp does descend 
to Tq2 and our old arguments easily generalize to 

Lemma 11.2. The formal power series in (1 1.2) defines a meromorphic function 
on Tq2 without poles on the circle JAI = 1. 

As before, the constancy of the resulting meromorphic function on Tq2 is 
proved by checking that it has no poles on the circles IAI = IaI where a c Tq2 
is of the form as for a some kth root of q, ct = q . As before, a "transfer 
formula" will identify ta Tq (M ; E) as the character of the index of an elliptic 
operator on Mk c M; as such, it is a priori regular on the circle JAI = a . 

So, Proposition 11.1 requires us to find a transfer formula for Tq (M ; E), 
and with this our motivation we extend 0 to an operation Oa(F) on complex 
vector bundles F by the formal power series 

00 00 

(11.24) 0a --a<)AnF<)qna_F lql < a< 1. 
n=l m=1 

If a = ql/2 andif F X is a real vector bundle, introduce 
00 

(11.25) OqI/2(F) = ( Aqn 122F. 
n=1 

Both (1 1.24) and (1 1.25) define formal power series in q with coefficients in 
the complex or real vector bundles over X. Thus in K-theory, Oa(F)/lOa(F) 
agrees with (Pa(F) of ?8. 

We will apply this construction to those vector bundles over the fixed point 
set Mk , which occur in the Zk-decompositions (10.1) and (10.2) of Tlm and 

VImk . 
Our transfer formula for the cases k odd and k even differ and for this 

reason we separate them. 
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Case 1. k is odd. We need a word about Spinc-structures, so let X be a 
space and E -* X a real, oriented vector bundle and L -* X a complex 
line bundle. If w2(E) is the mod 2 reduction of cl (L), then E can be given a 
Spinc-structure which is defined by the line bundle L and we use A(E; L) ) X 
to denote the corresponding Spinc-bundle. That is, if we let L* denote the 
underlying real, oriented SO(2) bundle of L, then E D L# is spin, and there is 
a bundle of spinors, A(E e L#) - X, which is related in K-theory to A(E; L) 
by A(E eL#)= A(E;L).(1+ L) . If E isalreadyspin, then cl(L) -= 0 (mod 
2) and L has a square root, in which case one can choose a spin structure on E 
and a square root L112 of L such that A(E; L) = A(E) 0 L 112 where A(E) 
is the bundle of spinors for the spin structure on E. 

Our present situation when k is odd provides examples. Since M is spin, 
To = TMk has a Spinc-structure which is defined by 0r(-- 1)/2 det(Ti) and, sim- 
ilarly, since V is spin, V0 has a Spinc-structure, defined by (0 (k 1)/2 det(Vr) 

With this understood, we need one last fact before we can write down the 
k odd transfer formula. Let then s be relatively prime to k and introduce 
representatives w(r) in { 1 (k - 1 )/2} for the mod k reductions of s * r . 
Then we have 

Lemma 11.3. If k is odd and the assumptions of Proposition 1 1.1 hold, then the 
complex line bundle 

(n- 1)/2 

p5 = <8)det( r)(,)(r) . det(7r)c)r 
r=1 

admits a kth root 1 Ik over Mk. 

We defer our proof of this fact temporarily so that we can write down the 
transfer formula 
(11.26) 

tasTq(M;E) =rq (M, ;aa VI/k ? [A(? 0k1)/2 det(Vr)) ?E] 

(k-1)/2 (k-1)/2 

8) awt(r) (fVr) (g) 0ac(r) ( Tr ) 

r=l ~~~r=l 

where Eo = (0%n=I Aqn V') ? (0 I= Aqn To) 
I * Here, 

1 (k -1)/2 /w(r)2- 
CT = 2 E _ ) )(r)) (dimc Vr - dimc Tr) 

is constant on a connected component of Mk, and as before M, denotes Mk 
in the orientation given by (7.5). 
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Let us remark that a is a whole number under Proposition 1 1. 1's assump- 
tions. Indeed, as k is odd, one need only verify that 

(k-1)/2 
b _ E (dimc Vr -dimc Tr)wt)(r)2 

r=1 

is divisible by k. Then the integer 2a is of the form k x even and hence 
even. To verify b/k's integrality, we fix p E Mk and introduce the section 
q BZk - {p} x BZk -' Mz and calculate 

(11.27) qpoa(S ;Zk s(V-s)=bu 

where Uk E H2 (BZk ;Z) Zk is the generator of H* (BZk;Z) Z[uk]/(kuk). 
Since (1 1.27) must vanish, by (1 1. 1 1), we have b _ 0 (mod k ) as claimed. 

To verify (1 1.26), we first examine the effect of translation by aS on the left 
side of (1 1.26) by using the fixed point formula on M to equate Tq (M; E) with 
the right side of (1 1. 12). Our computation of the aS translation of the right side 
of (11.12) is facilitated by more than one use of the identity 6(Aq) = A I0(A)F 
in particular, use of this identity gives 

(11.28) t S/m6 = (A2W)yf q 1/2I2(_ /m0 

where )E {1 . I k - 1 } and e E Z are determined by the formula s*m = 
*k+?o. 
We will use (11.28) after introducing (ei 'w) and (<', w) in Zx 

{1, ,k - 1} by the formulae s *m =m * k + and s5vi = *k1 +W . 
Then we find that 

(11.29) tsf AaabA(jZmi-E vi)/2 (vI VIta0 Yo) ( tiwt 0) 

where a= E i'v. - Et m and 
(11.30) 

b = - E (2k(e2 -;) + + +2; + 0+ k ( e + w1ejtj + -smi) 

If we use (1 1.29) and (1 1.30) with (7.10) (which gives us t ,,up), then we can 
sum over the fixed points to obtain a formula for the aS translate of Tq (M, E). 
To prove (11.26), we will identify the resulting expression with the formula 
for the right side of (1 1.26), which is given to us by the fixed point theorem 
applied on Mk. With the contents of ?7 well digested, the task requires only 
the identification of (11.29) as the formula for the Sl-module structure of 

(k-1)/2 

(9 (Oa@(r) ( Vr) C) O.i(r) (Tr)) 
r=1 

at the fixed point p . 
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2 _ To make the requisite identification, we begin with the equality Ei mi 
Ejv2 which implies that the numbers b in (11.30) and a in (11.31) are the 

same. Also, this same equality shows that )a describes the complex line v I Ik 

as an S1-module. Meanwhile, the SI module structure of 
( (k-1)/2 (k-1)/2 

A VO; 0 det(V,)) ?A ATo; (0 det(Tr)) 0 Eolp 

is given by 

A(E ml -E vJ12 II Wi o * (y1mi 0) 
I 

i:mi -0 (mod k) 
j: vj 0 (mod k) 

while that of Oaw(r(Tr)Ip is given by lmim r (mod k) /m, t 0 and that of 
O,w(r)(Vr) IP is given by flpiu_ r (mod k) Yvi t 'O . Thus, we have identified (11.29) 
as giving the S'-module structure of (1 1.31 ) at p and, modulo Lemma 1 1.3, 
we are finished with establishing (1 1.26). 
Case 2. k is even. When k is even, (1 1.26) gets modified and to write down 
the modification we need the k even analog of Lemma 11.3. 

Lemma 11.4. If the assumptions of Proposition 1 1.1 hold and if k is even and 
s is relatively prime to k, then 

(1) The complex line bundle 
k/2-1 

Vs-1& [(det (V))w(r) 0 (det (T))w(r)] 
r=1 

has a ( k )th root, v2 -k Mk. 
(2) The vector bundle To E VO -- Mk has a Spinc structure which is defined 

by the line bundle 
k/2-1 k/2-1 

(11.32) o- (0 det (Vr) (0 (detTr)) v 
r=1 r=1 

We will again postpone the proof of Lemma 11.4 and write down the transfer 
formula in the case where k is even: 
(11.33) 
tasTq(M;E) 

CT 1 [A(V0e( TO 0.)) 
- k/2 k/2 

=Tq (Mkta* -VS (9 (?T @) To 
G Eo (& 0C Oa(r) (Vr)0 Qwcor(Tr) A(T0eT0) oJ r=1 r=1 

where Eo is the same as before, but on a connected component of Mk, 

k/2-1 (k(r)2 - 2 _I ~ w(r)} (dimc V~ - dimc Tr). 
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Under our assumptions, a is again an integer. 
The proof of (1 1.33) goes as before, so we end this section with the proofs 

of Lemmas 11.3 and 11.4. 
Proof of Lemma 11.3. Our result is obtained by studying the characteristic 
classes of a(SI ; Zk) *(Vs - TS) when restricted to Mk x BZk . These are easy 
to compute because 

(k- 1)/2 

( 11.34) a(SI ;Z) *15V Vo J@ ( V c L 
n 

r=1 

where L -- BZk is the complex line bundle (EZk XZ C) whose first Chern 
2 class is uk, the generator of H (BZk ; Z) Zk. The bundle T has a similar 

decomposition, so that the restriction to Mk x BZk of a(S'; Zk 2p1 (V5 - Ts) 
has a component in H (Mk) 0 H2 (BZk), given by 

(k-1)/2 

(11.35) E r * (cI r)CI (Tr)) Uk- 
r=1 

But the assumption (11.11) implies that this restriction, i.e., a(S1 ; Zk) oe 
be in the image of 7r* and hence have no mixed term whatsoever. This implies 
that cl (v5) = ZI7'1)2r (cl(Vr) -C2(Tr)) is divisible by k . QED 

Proof of Lemma 11.4. When k is even, the restriction to Mk x BZk of 

a(S ;Zk)* VS iS 

(k- 1)/2 
(11.36) a(SI ;Zk) V5 5= V0 @ (V)CL Le(Vk/2rL) 

r=1 

where Lr is as in (1 1.34), and where L -* BZk is the real line bundle whose 
complexification is Lk2 . The restriction of a(S ; Zk)*iSpl(Vs - TS) to Mk X 

BZk has one component in H (Mk) ? H2(BZk) 

(11.37) E r * (cl (Vr -l (Tr))* Uk + w02( Vk/2 - Tk/2) ()2 ) Uk 

(The calculation is straightforward, though it uses Lemma 10.1 to insure that 
Vk/2 is orientable and Lemma 9.4 to insure that it is even dimensional.) 

The assumptions in Proposition 1 1.1 require this class to vanish, a condition 
that demands the divisibility of E k1271 r*(cI(Vr)-cI(Tr)) by k in H2(Mk;Z). 

Now we have proved our first assertion because cl (vi) and E k12-1 r * (cl (Vr) - 
ci (7Tr)) are equal mod k . 

The second assertion of Lemma 11.4 also follows from the vanishing of 
(1 1.37) since (1 1.37) can vanish only if 

h(2-1 - 

(11.38) E r * (c, r)C, (Tr)) W 2 w(Vkl2 -Tk12) 
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and when (11.38) holds, the line bundle w in (11.32) has second Stiefel- 
Whitney class 

kf2-1 

(11.39) C2(W-))mod 2 E (C2(Vr) - C2(Tr))mod 2 = w2(Vkl2 -Tk/2)- 
r= I 

Now V and T are separately spin, and {Vi, T1}k/2 are all orientable, so 
the right side of ( 11.39) equals w2(VO - T0) = W2(VO + T0) and thus the second 
assertion is proved. 

12. THE DIRAC OPERATOR 

Our presentation so far has concerned only the signature operator, but Witten 
has also conjectured various rigidity theorems for twists of the Dirac operator. 
We will show here how Witten's other conjectures follow. In [W], Witten has 
twisted the Dirac operator with representations {R }n=0 which are defined by 
the formal power series in the parameter qll2: 

00 00 00 

(12.1) R /(T) _ R'q n/2 = (&An+1 2T O Sq... T, 
n=I n=O m=I 

and he conjectured that when S' acts by isometries on a spin manifold M, 

(12.2) TI(M) _ ch - ind($ 0 R'(T)) 

is rigid. 
Witten also considered generalizing (12.1) by fixing a real, oriented vector 

bundle V -* M and defining 

( 12.3 ) Eq ( VI T)- (A Aqn - 1 /2 F (g Aqn 12 T) 
n=I n --1 

Then if S1 acts compatibly on V and if the equivariant characteristic classes 
of V are suitably restricted, Witten conjectures that 

(12.4) Tv(M ; E'(V/T)) ch - ind($ 0 R'(T) 0 E(VI/T)) 
is also rigid. The precise assertion is 

Proposition 12.1. Let M be a smooth, oriented, compact spin manifold on which 
5 acts isometrically. Then T (M) is rigid. Also, let V -* M be a real, 

oriented vector bundle with w2(V) = 0 on which S1 acts compatibly, and assume 
Proposition 1 1.1 's restrictions on the equivariant characteristic classes of T - V. 
Then Tr(M; E'(V/ T)) is rigid. 

Proposition 12.1 will be proved in the manner of our analysis for Tq(M) 
(and Tq(M ; E(VI T)) ), though for brevity's sake we will restrict our attention 
here to T'(M) and leave the generalization to T'(M , E'(V/T)) for our capable 
readers. 
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The introduction of a covering space for our q-space, the punctured, open 
unit disc D0 \{O}, is required in order for us to interpret the half integral powers 
of q in (12.1). A double cover would suffice, but it is convenient to consider 
the universal covering space of D?0\{O} which is the open upper half plane H. 
So allow us now to digress to consider complex tori parametrized by points in 
H. 

The upper half plane parametrizes complex tori in the following way. We 
pick a standard torus R 2/Z x Z with basis Euclidean coordinates (x, y) and 
then use TE H to define the complex parameter zT_ x + y * T; the resulting 
complex manifold we call TT. The projection from H to D?0\{O} sends T to 
q = e and identifies TT with Tq = C*/q via the exponential map which 
sends zT E C to A = e27iZT E C*. For those who are more comfortable with 
complex tori that are defined as C/lattice, use the linear transformation 

(O Im T) 

to define a complex analytic diffeomorphism from TT to C/Z x T -Z. 
It is a well-known fact that SL(2, Z) acts on H and so on our space of 

complex tori, TT}TEH. This action can be made explicit by introducing the 
linear isomorphisms 

e i<0 ) and e2=(01 O) 
2 2~~~~~~~2 - 

of R . Then {el, e2} preserve R 2/Z x Z, they generate SL(2, Z), and 

(12.5) e1 ZT = Z+1, e2 ZT = -T-z / 

so el and e2 define complex analytic isomorphisms 

(12.6) e1: T$T+I, e2: T-* T_ 

Thus, our original parameter space, D \{O}, is given as H/Z. e,. 
Now recall that our basic object 0q of (5.3) defines, by virtue of (5.4), a 

* 2 2_ meromorphic function on C*/q . We went to the q -torus to avoid facing the 
minus sign in (5.4). To interpret o q on the torus C*/q and by pullback on TT, 
we must come to grips with that minus sign. We do so by introducing the flat 
line bundle 

(12.7) L=-R2 xC/ZxZ- TT 

where Z x Z acts on R2 above by translation and on C by sending {k, e} E 
Z x Z and v e C to (-1)v - v. Clearly, e*L+1= LT so LT is the pullback 
from C*/q of a flat line bundle Lq of which o is a meromorphic section. 
Thus, o pulls back to TT as a meromorphic section, , of LT which obeys 
el (T+1 = (T' 
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Up to isomorphism, there are four flat line bundles over T, that have trivial 
square. This is because H' (T ;Z2) Z2 X Z2. The trivial bundle is one, LT 
is another, and a third, which we will call L> , is defined as in (12.7) but with 
the action of Zx Z on C sending {k ,f} and v e C to (_1)k *v . The fourth 
is L'>LTL". 

The group SL(2, Z) permutes these line bundles since 

(12.8) e2 L_ = LT, e 1 = LT. 

With all of this understood, we return to our spin manifold M with S5 
action and observe that the transfer formulae (7.5) and (7.12) imply that Tq (M) 
pulls back to Tr as a meromorphic section, 5', of L', with e = 0 if the S1 
action lifts to the spin bundle and with e = + 1 if it does not. There is a similar 
interpretation for Tq (M) . 

Lemma 12.2. Let M be a spin manifold on which S acts, write q = e2niT for 
TE H, and write A = e2tiZT for zT = X + TY E C. Then T/ (M) of (12.1) is 
naturally defined over H as a family of meromorphic sections 

{5/: FT -+~ (L') } 
{5 Tt (Tt EH 

Our proof of Proposition 12.1 will show more or less directly that < has 
no poles. (There is another proof of Proposition 12.1 which establishes that 
5Y'T and el e2 (5' !(T+)) are a priori proportional, and since 7 I/(T+1) is now 
known to be rigid, the rigidity of J7 is finally deduced. This argument, in the 

T 

isolated fixed point case only, is given in the next section.) 
We will prove Lemma 12.2 with the help of the fixed point formula for 

the Dirac operator, but to properly interpret this formula, we must digress to 
consider some special sections of L' . For this purpose, fix T E H and q = e27li 

and set q"/2 = eniT, For 4 E C, introduce A = e27ri and Al/2 = e7"', and then 
define 

(12.9) x( 
/2 00 

(I0 (1 q -+q 2'A)(1 + ) 

As a function on C, XT is observedly meromorphic, and it obeys 

(12.10) XT(4 + 1) = -Xt(i) and XT(4 + T) = -XT(4) 

Thus, as a function of the complex coordinate 4 -ZT, we see XT descending 
to the T-torus T, as a meromorphic section of L' . In a sense, it is our basic 
section in that it has the minimal number of poles and zeros on T -one pole 
at Zt = and one zero at Zr = 2 (I + T) 

Now by iterating (12.10), we see that (Y/mXl)(Zt) (m* Zt) defines, for 
integer m, either a meromorphic section of L' (if m is odd) or a meromorphic 
function on TT (if m is even). Of course 'I,I'XT has ImI poles and ImI zeros. 
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Additional meromorphic sections of L' can be constructed if we remember 
that the meromorphic sections of L' form a module for the ring of meromor- 
phic functions on T7. Of course, the product of two meromorphic sections is 
a meromorphic function. 

At this point, we have enough meromorphic sections of L' to identify 
T/(M) , at least when S1 acts with isolated fixed points, because the fixed point 
q 

formula for $ ? R' is summarized by 
q 

Lemma 12.3. Let S' act on M by isometry with isolated fixed points. Write 
q = e for T e H. Then the fixed point formula applied to ?@ R' yields 

ch * ind(? (D R') (e') = EZ ' (e'6) 
{P} 

where 
d 

YPue ) = fI(YmXT)IZ,=H 
i=1 

To prove the lemma, we return to (3.7) to get the multiplicity for @ and then 
use (4.1) to generalize to 0 ? R. 

Note that the lemma exhibits the multiplicity at an isolated fixed point p as a 
meromorphic section of (L')i m*. Also, Lemma 9.3 insures that (j m,)mod 2 

is the same at each fixed point, so when SI acts with only isolated fixed points, 
Lemma 12.3 identifies Tr(M) as a meromorphic section of (L')6, as claimed 
in Lemma 12.2. 

Now suppose that S' acts with fixed point sets {P}, not necessarily points. 
To understand how to generalize Lemma 12.3, consider first just the fixed point 
formula for the Dirac operator-no twists. For this, remember that the normal 
bundle to P decomposes as 

(12.11) Np = 0ED 

with E# - P being the realization of a complex vector bundle on which S' 
acts by A -, Am'. We will use (12.11) to define the orientation on Np and 
hence Tp when dim P > 0. Also, since M is spin, the complex line bundle 

(12.12) detNp=0det Ei 

makes TP a Spinc-bundle so we can introduce the bundle of spinors 
A(TP;det Np) -+P. 

With this understood, the fixed point formula for the Dirac operator reads 

(12.13) ch - ind =Z,upO 
{P} 
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with 

(12.14) p =ch ind(ds i (A(TP; detNp)) (3& il(A-,.jEj)l) 

where dP is the sigtnature operator on P. 
Let us remark here that d4 o A(TP; det Np) 

- 
plays the role of the Dirac 

operator on P , for if P should be a bona fide spin manifold, we can use (2.1 1) 
to write 

(12.15) d;0A(TP;detNp)-' =P detN1t 2 

To step from (12.14) to the fixed point formula for 0 X R', let us introduce 
a generalization of $ 0 R' to an oriented manifold X whose tangent bundle q 
has a Spinc-structure from a complex line bundle, L -* X. Thus we set 

(12.16) TI(XL)=ch-ind(dsoA(TX;L)F1 oR'(TX)). 

Further generalize (12.16) so that when Eq is a formal power seres in q with 
coefficients in K(X), we have 

(12.17) TZIX ;E) = ch * ind(dS 0 A(TX;L) 0RI(TX) 0) . 
Remark now that when Eq is a finite sum of convergent power series in q 

on 0 < jql < 1 with coefficients in K(X), then so is Rq(TX) 0 Eq. This can 
be seen by writing TX as constant + nilpotent in K(X). 

Before returning to $ X R' , let us introduce one extra bit of notation. Let E 
be a complex vector bundle over a space X. Then write A1/2 = eVZ for z e C , 
and define 
(12.18) 

00 00 

X(E)(z) = A12 (A_ ) (3^q-lE IS^-<i-2 )D 3(SAqtnE X n1l * = )i' -A.~ (9(A Aqm-112E 0 AA-lqin- 1/2E*) ~(~ E 09 SAI q~ E*) 
m=1 m=1 

which is a formal power series in q"/2 whose coefficients are vector bundles 0 
finite Laurent series in A1/2 = eiz. However, when E is a line bundle, we can 
introduce as in ?8 the nilpotent log E E K(X) and then we have in K(X) the 
identity 

(12.19) ^ (E)(z)=EX(k) (Z og E) 
k>O 

where 
k 

(12.20) XT=e ( (e 7:ZX) 

with XT as defined in (12.9). 
Therefore, when E is a line bundle, we can view XI(E) as an element of 

the tensor product of K(X) with the meromorphic sections over TT of L'. If 
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E is a sum of line bundles L l ... Lk L then we have - (E) =03Z(Lk) and 
so, by the splitting principle, we can, for general E, view - (E) as an element 
of K(X) 0z {meromorphic sections over TT of (L')dimc E} 

With all of this understood, the fixed point formula for r'(M) reads 

(12.21) ch * ind( R R)Z) =(Pdet Np; 0 m (Ei)) 
{P} 

where v,,m acts on TT by z m* z. Now we see (12.21) exhibiting r'(M) 
as a meromorphic section 5'' of (L')8 where e = 0 if the S' action lifts 
to the spin bundle, and otherwise e = +1. (Note that e is computed at any 
component of the fixed point set by e = (i mi * dim Emi )mod 2 and Lemma 9.3 
guarantees that this computation is independent of the choice of component.) 
Thus we have verified Lemma 12.2. 

Actually, (12.21) does more for us. We can conclude, as in ??7 and 8, that 
5T'(M) has no poles on the circle I. = e2z" I = 1 since the left-hand side of 
(12.21) is, a priori, a power series in q with coefficients that are finite Laurent 
series in Ai/2 

The possible poles of 5YT'(M) can occur only at points on TT where V'mXT 
has poles and thus only on circles in TT of the form 

(12.22) a = a s with a= e27iTIk 

Furthermore, a transfer formula that is analogous to (7.5) and (7.12) will insure 
the regularity of 5'T' on these circles by identifying the translation of 5< by 
aS with the Chern character of the index of an appropriate elliptic operator on 
the submanifold Mk C M fixed by Zk C S'. Once the transfer formula is 
exhibited, the argument goes just as for Tq (M). With this clear, we complete 
the rigidity proof by giving the transfer formula. 

Once again, the formulae for k even and for k odd are slightly different, 
so we will treat these cases separately. When k is odd, (7.4) describes the 
decomposition of T along Mk, and since T is spin, (7.4) insures that TMk 
is Spine with complex line bundle L = (k- 1)/2 det 7',- Mk . For each 
r E { J ... { (k - 1)/2)} and integer s relatively prime to k, we set 

(12.23) C)(r) = (s * r)mod k E {1 k- 1}. 
Then the k odd transfer formula is 

(k- 1 )/2 

(12.24) t az2 _Cb . T/M' g %(rz=cr)k ztY q MLXT7)I=o()k' 
r=1 

where b = 1 Z(h7l)/2 O(r) . dimc Tr and where the oriented manifold Mk is 
defined to be the manifold Mk but oriented as in (8.13). 

The proof of (12.24) goes just like the proof of the k odd case of (8.13). 
Indeed, the crucial identity for (8.13) was the periodicity relation q(Aq) = 

-q,(A) which has its analogue for XT in (12.10). 
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When k is even, the proof is more complicated because of how TlMk de- 
composes in (7.11). Here TMk ? TkJ2 is Spinc using the line bundle L = 

0k/2l det T -Mk, but TMk itself may not be Spine for any line bundle 
over Mk. Thus, in the k even case, we must replace the possibly nonexistent 
Spinc Dirac operator ds 0) A(TM ; L) ' that appears in (12.16) and (12.17) 
by 

(12.25) ds ?)A(TM, @Tk/2;L)7. 

With this replacement implicitly understood, the k even transfer formula is 

b ~~~k/2- 1 

( 12.26) ( r qas9 ( kL; (g) (Tr)1z=(w(r)/k)T r8 Rq (Tk/2)) 
r= 1 

where b = 2 EkZ2-1 @(r) dimc Tr + -w(k/2) dimR Tk/2 and where 
00 00 

(12.27) Rq(Tk/2) = A(Tk/2 gR C) AqnTk/2 )Sqm/2Tk/2 
n=1 m=1 

Also, the oriented manifold M, in (12.26) is the manifold Mk, but oriented 
as in (8.13). 

The proof of (12.26) goes like the proof of (8.13), and we leave it to the 
reader. 

13. ON THE MODULAR PROPERTY OF Tq(M) AND Tq(M) 

At this time there are already several fine accounts explaining the modular 
nature of Tq (A) , see [Br, C-C, La *, M, S, Z]. Nevertheless, it might be appro- 
priate to explain this phenomenon in our context at least in the isolated fixed 
point case. 

Let us then assume that M is spin so that Tq(M) is constant on Tq2. 
From the fixed point formula we know that this constant can be computed by 

summing the values of the fixed point contributions up (a) at any point a E Tq2 
Of course if up has a pole at a, up (a) must be taken to be the constant term in 
its Laurent series at a. To apply this procedure at A = 1 we introduce eZ = A 
so that z is a local parameter near A = 1 and recall here that (p has a pole of 
order 1 at A = l and is odd in the sense that q(F1) = -(o(). So it follows 
that 

(13.1) (p(eZ) = KZ{1+a22+a4z4+ } 
near z = O. 

Now recall that 
d d 

(13.2) JP (eZ) = ( p Y o(eZ) = ( (em'z) 
1 1 
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so after expanding to obtain the constant term, one finds that 

(13.3) p(1) = K * E L m 
a f 

where aa is a monomial of weight dim M = 2d in the a1, those being weighted 
by 2j, and L,(.) is a universal symmetric polynomial in m2 of weight 2d. 
Now the sums 

(13.4) L,>(M) Z mL..(m) 

are known to yield the characteristic numbers, associated by the polynomial 
L(j) to M. (See [A-B ] or [B].) Hence this procedure establishes Tq(M) Kd 
as a universal polynomial in the ai with integral coefficients that are Pontrjagin 
numbers of M: 

(13.5) Tq(M)* K-d= L,(M)aa. 

Here K is a normalizing factor which we already computed in ?5. It is 

(13.6) K = 2 n(I + qn)2 

For example, when dim M = 4, the constant term of ,up at 1 is clearly 
{(m2 + m2V)/mm2} * a2 . Hence in that case 

(13.7) Tq(M) * K-2 = PI(M) * a 

In dimension 8 one calculates similarly to find 

(13.8) Tq(M) * K 4= P * a2 + (p2 - 2P2)a 

p1a4 + P2(a2- 2a4) 
etc. 

Now the formula (13.5) immediately establishes Tq (M) K-d as a modular 
form for the subgroup Fo(2), of SL(2, Z), of matrices with even lower left 
entry. 

Indeed, the function * = (p/K is canonical, up to a scalar multiple, on tori 
with a singled out point of order 2. Therefore, the coefficients of its Laurent 
expansion near its pole, in short our ai, are modular forms for Fo(2), whose 
weight can be read off to be 2j by simply keeping track of how they transform 
under z --Az. 

Actually, more is true. When p1 (M) = 0 then Tq (M) * K d is actually 
modular for all of SL(2, Z) . To see this, note that the Weierstrass 90-function 
is the canonical elliptic function on a torus T which near 1 E T has the 
behavior 

(13.9) 9(z) =-!+b2z2 +b4z6+ 
z2 2 4 
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Because 9 (z) is so canonical, we see that the bk are automorphic forms of 
degree 2(k + 2) for all of SL(2 Z) . Thus, b2 is of degree 4 and b4 of degree 
6. 

But note now that (p. , when squared, has the polar behavior of the 37 func- 
tion when constructed with our local parameter z of the torus T . Hence 

q 
(13.10) ( v 

where e = 3 (-1). Equating powers of z we get equalities 

2a2 = -e, 

(13.11) 2a4 +a2 =b4, 

2 a2k + E a2r a2s +ak/2 =b2k, k> 2. 
r+s=k 

From these we observe inductively that modulo the ideal generated by e 2a2, 
the higher a's are determined by the b's. 

2a4 = b4, 2a6 =-b6 

dimM2 But from this it is not difficult to argue that if p1 (M) = 0 then K M/2M 
Tq(M) is a linear combination of the b2j and hence a modular form for all of 
SL(2, Z) . 

When S1 acts with isolated fixed points, the effect of SL(2, Z) on T' (M) 

can be analyzed by similar methods. For this, we go to our covering space, the 
upper half plane H, and we label complex tori as J , r E H . Then the square 
of our section T of LT in (12.10) is a meromorphic function on TT with a 
zero of order 2 at (1 + r)/2 and a pole of order 2 at 0 with residue K'2 where 

(13.12) K' = ( - q n) 
n=1 (- 

Thus, we can write X I = XK/K in terms of the Weierstrass 97-function as 

(13.13) 2 = _ e 

where e' = 3 (zT = (1 + r)/2). Now a repeat of our analysis for * shows that 

(K ) dim M/2 * (M) is also fully modular under SL(2, Z) when p1 (M) = 0. 
The identities in ( 13.10) and ( 13.13) are important for another reason. They 

indicate a proof of a general relationship (noted by Witten) between Tq(M) 

and -r'(M) . To state the relationship, we write q = e27iT and q* = e 27il(T+ ) 

Then recall that the generators of SL(2, Z) on R12/Z x Z, e, and e2 of ( 12.6), 
act so that e*e* L L/(?1) = as an identification of flat line bundles over 
T . 

With this in mind, the relationship between T and Tr is 
q 11eK* M Ki 'q 

(13.14) e *e (K dim M/2 . q*(M)) = K' -dim M/2 -r,(M). 
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Note that (13.14) verifies the rigidity of rI(M) given the rigidity of Tq(M) 
Now a proof of (13.14) will take us too far afield to present, except for the 

case when S acts on M with isolated fixed points. In this case, both sides 
of (13.14) are expressed, using the fixed point formulae, in terms of 9 or 

T, and (13.10) and (13.13) suggest that SL(2, Z) relates these two objects. 
Indeed, one has 

(13.15) e*e(K- K =K 

as can be verified by comparing the zeros and poles of both sides. Furthermore, 
the action of SL(2, Z) on R 2/Z x Z commutes with multiplication by integers, 
so (13.15) remains true with /'mf ( and Y'mX replacing (0 and x. With the fixed 
point formulae, these observations immediately yield (1 3.14) in the isolated 
fixed point case. 

14. REMARKS ON THE ALMOST COMPLEX CASE 

We close with a few indications of how the preceding discussion extends to 
s actions on almost complex manifolds. Essentially one finds new rigidity 
phenomena once cl (M) is divisible by N. 

Recall that on such a manifold the cocomplexified tangent bundle splits, 

(14.1) T* ?C= T ? T, 

into a "holomorphic" and "antiholomorphic" part and that the deRham d splits 
correspondingly into 

(14.2) d =' +". 

On such manifolds 

(14.3) a// 0A even A0,odd 

can be taken to be the dominant operator in the sense that d + d* ds, and $, 
where defined, are now appropriate twists of a. Namely, 

(14.4) a=O 0(det(T))/2 ds=a0lAl(T') 
and 

(14.5) d + d* = a" A_(TI). 

The factorization of ds leads one to suspect that the operators 

(14.6) dc4=a(A T 

with a a root of 1 should now be amenable to a similar treatment as ds was. 
This is indeed the case. Namely, consider the 0-function 

00 

(14.7) 00 (A) = (I + aA) (( +aq nA)(I + a IqnAl) 
n=1 
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We then have 

(14.8) 0, (qA) =-1 A-1I-(A 

so that the expression 

(14.9) Oa(A)-0(A)/0-I)() 

transforms by 

(14.10) =p (qA) = - l (p (A) 

Hence if -a is an Nth root of 1 then (pi () naturally descends to a rational 
function on TqN . So interpreted, ( N becomes canonical, up to a constant, on 
tori with a singled out Nth root, wc, of 1. It is characterized by the fact that 
it has poles only at the powers of co and that translation by co multiplies the 
function by -a l . 

These considerations now lead us to define the following auxiliary q-bundle 
R' on almost complex manifolds q 

00 

(14.11) R T = A (AT qn T'0 XAcAnqn T 0 SqnT 0 SqT /*) 
n=1 

The rigidity phenomenon, also essentially predicted by Witten, in this context 
is now given by 

Theorem. On an almost complex manifold M with c- 0 mod N, the operators 
0 Ra are rigid provided (-a) N = 1. q 

Note that for a = 1, N = 2, we recover the rigidity of tq (M) in this almost 
complex case. 

There is also an R' rigid relative to the operator a" 0 (det T') 1IN defined q 
on almost complex manifolds with cl 0 mod N. It generalizes Rq of (2.11) 
and is given by 

R'N RN Rq =R 

but with (-a)N = q. 
We will discuss the details, which run entirely parallel to our discussion so 

far, at some other time. 
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