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We review the problem of a vertically thrown ball, with a drag force which is either linear or
quadratic in the speed. It is stressed from the outset that these two types of drag correspond to
specific ranges of the Reynolds number (Re,1 and 103,Re,23105, respectively! and do not hold
outside these intervals. We also include the buoyant force in our treatment of the problem. The
equations of motion are solved analytically and several true-to-life examples are discussed. The
calculations are somewhat harder than for the well-known case without drag force, but no highbrow
mathematics is required and the extra effort is amply compensated by the gain in realism and
surprise value. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

One of the classic problems of physics concerns a sph
cal object moving vertically through a resistive medium. O
may think for instance of a cannon ball shot up into the a
or of a grain of sand sinking slowly to the bottom of a lak
If the resistive forceF(n) is either linear or quadratic in th
velocity, the problem admits an analytical solution, and t
will be the main topic of the present paper. First of all, ho
ever, we discuss when these two particular forms of resis
force actually occur. Both correspond to a specific interva
the Reynolds number and can be derived from the follow
general formula:1

F~n!5 1
2CdrAn2. ~1!

HereCd is the so-called drag coefficient,r the density of the
medium,A the object’s cross-sectional area~in the case of a
spherepR2), andn its velocity. It should be noted that Eq
~1! is actually only valid in the case of constantn, the so-
called stationary situation, and that in general~if n varies!
one should also take into account the Boussinesq–Basse
cous memory force and the ‘‘added mass’’ term.2 These
terms are especially important if the density and the visco
of the medium are large. On the other hand, they complic
the calculations to such a high degree that we choos
ignore them.

The most intriguing element in Eq.~1! is the drag coeffi-
cient; it depends in a complicated way on the Reynolds nu
ber ~Re!, as depicted in Fig. 1.~This figure can be found in
almost any textbook on hydrodynamics, see, e.g., Refs. 3
4.! So in order to use the above equation one first has
know the value of Re. This dimensionless number is defi
as follows:1

Re5
r ln

h
, ~2!

wherel represents the characteristic length scale of the ob
in the cross-sectional plane~in the case of a sphere this is ju
the diameter 2R) and h the dynamic viscosity of the me
dium.

In the hydrodynamic literature one finds several formu
to describe the curve of Fig. 1, most of which are restric
to a relatively small range of Re~see Refs. 4–7!. An excep-
tion to this rule is the following curve-fit formula, from Re
4, which holds for all 0,Re,23105:
538 Am. J. Phys.67 ~6!, June 1999
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Cd~Re!'
24

Re
1

6

11ARe
10.4. ~3!

In the limit for very small Reynolds number, say Re,1, the
first term dominates and we may ignore the second and t
terms. With Cd(Re)524/Re512h/rRn and A5pR2 the
general formula in Eq.~1! then reduces to

F~n!56phRn. ~4!

This is known as Stokes’ formula. It tells us that the drag
a ~very! slowly moving sphere is linearly proportional to it
velocity. The formula applies to the sinking grain of san
mentioned above~we shall come back to this example i
Sec. II!, to micro-organisms in water,8 or to tiny dust par-
ticles floating in air. Generally speaking, though, the con
tion Re,1 is rather restrictive and rarely met in practic
This has not prevented the linear drag force or ‘‘visco
friction,’’ with its appealing simplicity and nice theoretica
properties~e.g., it can be incorporated in the Lagrangia
formalism9!, from becoming the favorite type of damping i
the physics literature.

The second interval we focus upon is 103,Re,23105,
where the drag coefficient is seen@from Fig. 1 or Eq.~3!# to
be approximately constant:Cd'0.4. In that case Eq.~1! re-
duces to

F~n!50.2rpR2n2. ~5!

So in this regime the drag on the sphere is quadratic in
velocity. It applies for instance to a pebble dropped from t
Leaning Tower of Pisa~except for a fraction of a second a
the very start, see also Sec. III! or a sky diver and is com-
monly known as ‘‘air drag.’’

As mentioned before, for the above two forms of the dr
force the problem of a vertically thrown ball can be solve
analytically. In practice, of course, one often goes outside
domains of linear (Re,1) and quadratic drag (103,Re,2
3105). For instance, for a bullet shot upwards with an initi
Reynolds number of 106, Re will pass through every value
from 106 to zero, at the top of the trajectory. Nevertheless,
certain cases the drag force remains linear or quadratic
ing ~almost! the whole trajectory and we restrict ourselves
these. It should be noted that several of the calculations to
presented can be found elsewhere, scattered throughou
538© 1999 American Association of Physics Teachers
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volumes of this journal, but in our opinion there are at le
three good reasons for putting this subject on the stage
more.

First, we shall pay proper attention to the domains of
lidity of the linear and quadratic drag and discuss typ
examples of each. There is some need for this, since in
literature on this subject the physical problem often seem
be only an excuse for a nice mathematical exercise.

Second, we include the buoyant force, which is alm
always forgotten or ignored in the literature on this top
This is somewhat curious, since the medium that is res
sible for the drag force at the same time introduces a buo
force.

Third, by carrying out all calculations step by step
hope to make them palatable for students, and perhaps
the subject to the classroom here and there. In textbook p
lems on projectile motion the air resistance is habitually
nored, and this has led to a widespread belief that inclu
of resistive forces would make any of these problems int
table. The two cases to be considered provide welc
counterexamples.

The paper is built up as follows. Linear drag is discus
in Sec. II, quadratic drag in Sec. III, and in Sec. IV we m
some concluding remarks. Throughout the paper we
often compare our results with those for the simple c
without any drag, and~hence! also without buoyancy. Let u
therefore briefly recall it here. In the absence of drag
buoyancy a ball thrown up from ground level with init
speedn0 has velocity:

n~ t !5n02gt, ~6!

and its height is given by

h~ t !5n0t2 1
2gt2. ~7!

It immediately follows that

tup5tdown5
n0

g
, ~8!

and that the ball reaches a height of

hmax5
n0

2

2g
. ~9!

Furthermore, it is clear that the ball hits the ground w
exactly the same velocityn0 as with which it started. All this

Fig. 1. The drag coefficientCd of a sphere as a function of the Reyno
number Re. BothCd and Re are dimensionless numbers. Mind the loga
mic scales. The sudden drop inCd at Re'2.53105 ~the so-called drag
crisis! is associated with the change of the boundary layer on the sph
surface from laminar to turbulent.
539 Am. J. Phys., Vol. 67, No. 6, June 1999
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will be changed by the drag~and buoyant! forces. It is per-
haps a good idea, before reading on, to try to predicthow the
various quantities will be changed. A few simple expe
ments may help. For instance, will the time to go up still
equal to the time to come down? Will the total time (tup

1tdown) be longer or shorter than 2n0 /g? And how much
will the final velocity differ fromn0? We shall come back to
these questions in due course.

II. LINEAR DRAG

The equation of motion, along a vertical path, for a sph
with linear drag@as in Eq.~4!# reads:

m
dn

dt
52~m2m* !g26phRn. ~10!

Here m* g, with m* the mass of the displaced medium,
the buoyant force. The above equation may also be wri
as:

dn

dt
52~12m* /m!g2

6phR

m
n ~11!

or equivalently:

dn

dt
52g̃2an, ~12!

whereg̃ ~the effective gravitational acceleration! is given by

g̃5~12m* /m!g5~12r/rball!g ~13!

and, withm5 4
3pR3rball ,

a5
6phR

m
5

9h

2R2rball
. ~14!

Equation ~12! is readily integrated@with initial condition
n(0)5n0# to give the velocity:

n~ t !5~n01g̃/a!e2at2
g̃

a
. ~15!

This looks quite different from the solution without dra
@given by Eq.~6!# but in the limit for a→0 and g̃→g it
nevertheless reduces to it, as it should; this may be chec
by a glance at the Taylor expansion@Eq. ~52!# in the Appen-
dix. Equation~15! shows that the velocity during the down
ward journey cannot grow beyond2g̃/a, the so-called ter-
minal velocity:

n term52
g̃

a
52

2~rball2r!gR2

9h
. ~16!

This also follows directly from Eq.~12!, whendn/dt is set
equal to zero.

Integrating Eq.~15! yields the heighth(t):

h~ t !5E n~ t !dt52
~n01g̃/a!

a
e2at2

g̃

a
t1c1 . ~17!

The integration constantc1 is determined from the initial
conditionh(0)50, and we get:

h~ t !5
g̃

a2 S 11
an0

g̃ D ~12e2at!2
g̃

a
t. ~18!

Again, this solution reduces to its frictionless counterp
@Eq. ~7!# in the limit a→0 andg̃→g, as exemplified by the

-

’s
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Taylor expansion@Eq. ~53!# in the Appendix.
Given the above expressions for the velocity and

height we now go on to determine the quantitiestup, hmax,
and tdown. The main reason why we choose just these th
quantities is that they are easy to measure, and may thu
checked in relatively simple experiments. The time to go
is found by settingn(t) equal to zero and thus, from E
~15!,

tup5
1

a
lnS 11

an0

g̃ D5S n0

g̃ D2
a

2 S n0

g̃ D 2

1
a2

3 S n0

g̃ D 3

2¯ .

~19!

The Taylor expansion is given to show howtup approaches
its frictionless counterpart in the limit (an0 /g̃)↓0. It con-
verges only for (an0 /g̃)<1, but that is all right, since fo
finite values of (an0 /g̃) one naturally uses the exact expre
sion.

The maximum height is obtained by substitutingtup in the
equation forh(t):

hmax5
n0

a
2

g̃

a2 lnS 11
an0

g̃ D5
n0

2

2g̃
2a

n0
3

3g̃2 1a2
n0

4

4g̃32¯ ,

~20!

and the above remarks concerning the Taylor expansion
apply here. Finally, the time to go down is determined
setting h(t)50. This yields the following transcendent
equation:

at5S 11
an0

g̃ D ~12e2at!, ~21!

with two solutions,t50 and t5t total5tup1tdown. Unfortu-
nately, the latter cannot be given explicitly, but the follo
ing elegant relation derived by Lekner10 is a worthy alterna-
tive:

t total5
n01unhitu

g̃
. ~22!

One might object that it just transfers the pain tonhit , for
which we also have no explicit solution. We do know, ho
ever, thatunhitu,n0 ~this follows simply from the fact tha
the ball has given up energy to the resistive medium! and
therefore thatt total,2n0 /g̃. This may also be checked b
inserting t52n0 /g̃ in the formula forh(t). Supposing tha
at52an0 /g̃)!1, and using the Taylor expansion Eq.~53!,
this yieldsh(2n0 /g̃)52a•(2n0

3/3g̃3)1¯ , which is nega-
tive, indicating that the ground must be hit before ti
2n0 /g̃. In the literature, where the buoyant force is hab
ally forgotten~and whereg̃ is therefore taken to be equal
g! it is inferred in the same stroke thatt total is always smaller
than the total time in the absence of drag, i.e., smaller
2n0 /g ~see, e.g., Ref. 10!. Of course, this is not general
true. If g̃ is only slightly less thang ~i.e., if the buoyancy
plays a minor role!, the total time as given by Eq.~22! will
indeed be smaller than 2n0 /g, but in situations whereg̃
deviates sufficiently fromg it will be larger. In the next
section, below Eq.~44!, we will come back to this.

The value ofg̃ may even be negative, for instance for
air bubble in water, and in that case there is no descent.
bubble just keeps going upwards~mathematically speakin
540 Am. J. Phys., Vol. 67, No. 6, June 1999
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forever, physically speaking until it reaches the surface! with
a velocity that approaches the value2g̃/a, which is now
positive.

In the same vein it can be checked that the way do
takes longer than the way up. This can be done, for insta
by insertingt52tup in the expression forh(t):

h~2tup!5
g̃

a2 F S 11
an0

g̃ D2S 11
an0

g̃ D 21

22 lnS 11
an0

g̃ D G
5a

n0
3

3g̃22a2
n0

4

2g̃3 1¯ . ~23!

Again, in performing the Taylor expansion, we have
sumed that (an0 /g̃),1. The expression forh(2tup) then
yields a positive value, so at time 2tup the ball is still on its
way down, or in other words:tdown.tup. The same resul
can also be inferred more generally~see Ref. 11! and even
without performing any calculation:12 during its motion the
ball continuously gives up energy to the medium. So
kinetic energy, and hence the velocity, at any given heigh
less on the way down than on the way up~the potential
energy being the same!. It follows that also theaverageve-
locity on the way down is smaller than the average veloc
on the way up, and consequently the descent takes lo
than the ascent.

The argument can also be given in terms of forces.13 Dur-
ing the ascent the resistive force and~effective! gravity act in
the same downward direction while during the descent t
are opposed to each other, resulting in a smaller net force
the acceleration is smaller during the descent, which th
fore takes more time.

Let us now consider the example mentioned in Sec.
grain of sand slowly sinking to the bottom of a lake. In th
caserball52.673103 kg/m3, while for the medium~water at
room temperature! we have r51.003103 kg/m3 and h
51.0031023 kg/m s. The terminal velocity is calculate
from Eq. ~16!:

n term523.643106R2 ~ in m/s!. ~24!

With this velocity the Reynolds number becomes

Re5
2rRn term

h
57.2831012R3, ~25!

which means that only sufficiently small grains with radi
R,0.531024 m ~that is, a diameter of one-tenth of a mill
meter! will fall according to Stokes’ law (Re,1). Take for
instance a grain of sand withR50.231024 m which is re-
leased from rest. Its velocity is given by Eq.~15! with n0

50:

n~ t !52
g̃

a
~12e2at!521.4631023~12e24.23103t!.

~26!

The terminal velocity, 1.46 millimeters per second, is
tained almost instantaneously; aftert5 ln 100/(4.23103)
51.131023 s ~1 ms!, it is already approached within 1%. S
we may safely say that the grain sinks all the way to
bottom with the terminal velocity. If the lake is 3 m deep,
this will take 34 min. In the absence of the buoyant force
would have found 21 min, indicating once again that t
force is not to be ignored.

Now, in order to illustrate the equations derived in th
section, we take this same grain of sand and toss it upw
540P. Timmerman and J. P. van der Weele
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from the bottom of the lake~a rather fancy experiment! and
determine its heighth(t) and velocityn(t). To keep Re,1
we have to choose a small initial velocity; we setn0

50.01 m/s. The result is depicted in Fig. 2. The dott
curves represent the simple case without drag or buoya
the dashed curves show the case when drag is taken
account, but buoyancy is not~i.e., wheng̃ is taken equal to
g59.81 m/s2); finally, the solid curves are the ‘‘true’’ ones
including the effects of both drag and buoyancy~with g̃
56.14 m/s2).

The first thing to be noted is, of course, the extreme sm
ness of the times and distances involved, showing once a
that the applicability of Stokes’ law is limited to microscop
phenomena. For instance, the grain of sand rises only
1.631026 m, less than one-tenth of its radius. Neverthele
the figure brings out very clearly that~in the presence o
drag! the way down takes longer than the way up, and a
that the grain of sand very quickly approaches its termi
velocity (21.4631023 m/s). Another interesting thing is
that the dashed velocity curve stops exactly at the p
where it meets the dotted velocity. This is a graphical illu
tration of Eq.~22!, since in the case thatg̃5g this equation

Fig. 2. The heighth(t) and velocityn(t) of the grain of sand discussed i
the text, shot upwards in water with an initial velocity of 0.01 m/s. The so
curves are the ‘‘true’’ ones, including the effects of both drag and buoya
~with a54213 s21 andg̃56.14 m/s2). In the dashed curves the buoyancy
neglected (a54213 s21, g̃5g59.81 m/s2); in the dotted curves both buoy
ancy and drag are neglected~i.e., a50 s21 and g̃5g59.81 m/s2).
541 Am. J. Phys., Vol. 67, No. 6, June 1999
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tells us thatnhit5n02gttotal, and this coincides precisely~at
t5t total) with the velocity of the frictionless case:n(t)5n0

2gt. We further note that the dashed and dotted veloc
curves go through zero with the same slope~namely2g),
but that the slope of the solid curve is different (2g̃).

III. QUADRATIC DRAG

Whereas in the case of linear drag, the way up and the
down constituted one problem~one differential equation!
with one solution, in the case of quadratic drag they give r
to two separate problems. This is becausen2 does not change
sign in going from the way up to the way down; hence,
ensure that the quadratic drag force opposes the motion
have to insert the correct signs ourselves. This means tha
get two different equations of motion, which have to
treated separately. It should be noted that the mathema
gist of this section has appeared earlier in this journal in
form of a problem;14 the downward part alone has been d
scribed in Refs. 15–17. The new thing is that we have
cluded the buoyant force. It does not make the calculati
any harder, so there is really no reason to avoid this forc

During the upward journey the drag force@given by Eq.
~5!# acts in the downward direction, and the equation of m
tion takes the form:

m
dn↑
dt

52~m2m* !g20.2rpR2n↑
2. ~27!

This equation can be rewritten as follows:

dn↑
dt

52g̃~11g2n↑
2!, ~28!

where g5A0.2rpR2/mg̃5A0.15(r/rball)/Rg̃. Integrating
and inserting the initial conditionn↑(0)5n0 yields:

n↑~ t !5
1

g
tan~2gg̃t1arctangn0!. ~29!

From this expression immediately follows the time when t
ball reaches its maximum height@i.e., whenn↑(t) becomes
zero#:

tup5
1

gg̃
arctangn05

n0

g̃
2g2

n0
3

3g̃
1g4

n0
5

5g̃
2¯ . ~30!

Here, as always, the Taylor expansion is meant to indic
how the result approaches the frictionless expression.
should not use it forgn0.1, because then the series d
verges. Integrating the velocity gives the height of the ris
ball:

h↑~ t !5E n↑~ t !dt

5
1

g
•

1

gg̃
ln@cos~2gg̃t1arctangn0!#1c2 , ~31!

where the integration constantc2 is determined from the ini-
tial conditionh↑(0)50:

c25
21

g2g̃
ln@cos~arctangn0!#5

1

g2g̃
ln A11~gn0!2.

~32!

y
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This integration constant is not only elegantly simple, b
also significant. Its elegance stems from the relat
cos(arctana)51/A11a2. Its significance lies in the fact tha
it happens to be the maximum heighthmax, that is to say,

hmax5
1

g2g̃
lnA11~gn0!25

1

2g2g̃
ln@11~gn0!2#

5
n0

2

2g̃
2g2

n0
4

4g̃
1g4

n0
6

6g̃
2¯ . ~33!

Of course, the Taylor expansion is only valid forgn0<1.
From the above equations it is seen thath↑(t) is built up as
hmax plus a negative term that decreases with time. Put
the pieces together we get:

h↑~ t !5hmax1
1

g2g̃
ln@cos~2gg̃t1arctangn0!#

5
1

g2g̃
ln@A11~gn0!2 cos~2gg̃t1arctangn0!#.

~34!

When we get near the top of the trajectory, our analysis
strictly speaking, no longer valid; the Reynolds numb
drops below 103 and the drag force is no longer quadratic
the speed. However, under normal circumstances this is
a tiny part of the trajectory that we do not have to wor
about it. In air, with r51.293 kg/m3 and h517.1
31026 kg/~m s!, the Reynolds number, given by Eq.~2!, is

Re5151.23103Rn. ~35!

For a pebble with radiusR51 cm this means thatn should
exceed 0.66 m/s for the quadratic drag to apply. In the f
tionless case this speed is already attained after 0.07 s, w
the pebble is 2.2 cm under the top. In the presence of fric
these values will be of the same order of magnitude.

We therefore ignore the subtleties around the top and
directly to the downward part of the trajectory. Here the dr
force and the gravitational force act in opposite directio
and the equation of motion takes the form:

dn↓
dt

52g̃~12g2n↓
2!. ~36!

This equation has an extra minus sign as compared with
upward equation, and as a consequence we now get a
solution instead of a tan~this may be traced back to th
difference between cosh2 x2sinh2 x51 and cos2 x1sin2 x
51). To be specific, the solution reads:

n↓~ t !52
1

g
tanhgg̃~ t2tup!. ~37!

From this expression it is seen that the coefficientg is not
just a cosmetic factor to keep the formulae transparent
also has a physical meaning:n↓(t) can never exceed th
terminal velocity

n term52
1

g
52A mg̃

0.2rpR2. ~38!

This terminal velocity can also be inferred directly from E
~36!, whendn↓ /dt is set equal to zero. Withm5 4

3pR3rball it
can be written as:
542 Am. J. Phys., Vol. 67, No. 6, June 1999
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n term52A6.67S rball

r
21DgR, ~39!

which for g59.81 m/s2 andr51.293 kg/m3 ~air! reduces to
n term528.1A((rball/1.293)21)R. This shows, for instance
that if two balls are dropped simultaneously from the Le
ing Tower of Pisa they will not hit the ground at the sam
time unless they have equal values of ((rball/1.293)21)R.
In this context the following passage from Galileo’s Di
logues Concerning Two New Sciences, quoted in Ref. 15
very interesting: ‘‘Aristotle says that ‘an iron ball of on
hundred pounds falling from a height of one hundred cu
reaches the ground before a one-pound ball has falle
single cubit.’ I say that they arrive at the same time. Y
find, on making the experiment, that the larger outstrips
smaller by two finger-breadths, that is, when the larger
reached the ground, the other is short of it by two fing
breadths.’’ This passage shows two things. First, that Gal
was well aware that the simultaneous landing for which
has become famous is in fact an idealization. Second
shows that Galileo was a rather sloppy experimenter or
very thick fingers, for the difference can be calculated to
no less than a meter; it is fair to note, though, that the
perimental verification of this is not at all easy since t
difference in time is only 1/30 of a second.15 For those who
want to check these numbers we mention that 100 cubi
about 60 m and thatr iron57.873103 kg/m3.

Resuming the calculation at hand and integrating the
locity given by Eq.~37!, we get the height of the falling ball

h↓~ t !5E n↓~ t !dt5hmax2
1

g2g̃
ln coshgg̃~ t2tup!. ~40!

The structure of this formula resembles that ofh↑(t); it is
built up as hmax minus a distance, which in this casein-
creaseswith time. Whereas the distance in the case ofh↑(t)
was of the form ln(cos), in the present case it has the fo
ln(cosh). Withhmax as in Eq.~33! we get:

h↓~ t !5
1

g2g̃
lnS A11~gn0!2

coshgg̃~ t2tup!
D . ~41!

We have now completed the calculation of the veloc
and the height as functions oft, and in passing we have als
determined the times of ascent (tup) and the maximal heigh
(hmax). Another quantity of interest is the time of desce
(tdown). To calculate this we seth↓(t) equal to zero, that is

coshgg̃tdown5A11~gn0!2, ~42!

from which it follows that

tdown5
1

gg̃
arccoshA11~gn0!2

5
1

gg̃
arcsinhgn05

1

gg̃
ln~gn01A11~gn0!2!

5
n0

g̃
2g2

n0
3

6g̃
1g4

3n0
5

40g̃
1¯ . ~43!

Remarkably, this quantity which could not be solved anal
cally in the case of the allegedly simpler linear drag, h
comes out without any difficulty. Comparing the Taylor e
pansions oftup and tdown ~assuming that they converge, i.e
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that gn0<1), one immediately sees thattdown.tup. This is
just as in Sec. II for linear drag, and indeed, the argume
given there @below Eq. ~23!# apply equally well to the
present case. In the literature, wheng̃ is always taken to be
equal tog, it is inferred from Eq.~43! that tdown can never
become larger thann0 /g ~the time of descent in the absen
of dissipation! and hence that the total timetup1tdown is al-
ways smaller than its frictionless counterpart 2n0 /g. How-
ever,

t total5
1

gg̃
$arctangn01 ln(gn01A11~gn0!2%

5
2n0

g̃
2g2

n0
3

2g̃
1g4

•

11n0
5

40g̃
1¯ ~44!

and this can very well exceed the value 2n0 /g, if the buoy-
ancy is significant. Take for instance a light children’s b
with radius 15 cm, such that the mass of the displaced a
m* 518.3 g. Putting the ball on a letter balance one find
mass (m2m* ) of 60 g, say, so the proper mass of the b
~plastic plus air inside! is m578.3 g. The correspondin
value ofg̃ is 7.52 m/s2, andg50.176 s/m. If one throws this
ball upwards with a velocity ofn055.0 m/s the total time o
flight according to Eq.~44! is 1.15 s~with tup50.55 s and
tdown50.60 s), which is larger than 2n0 /g51.02 s. This is
illustrated in Fig. 3.

By insertingtdown in the expression for the downward v
locity, the speed with which the ball hits the ground is n
easily calculated:

nhit5n↓~ t total!52
1

g
tanh~arcsinhgn0!

52
n0

A11~gn0!2
. ~45!

This is a surprisingly charming result, taking into account
somewhat cumbersome expressions that went into it.
can immediately check that it has the right limiting behav
for g50: The final velocity is then equal to2n0 . Also the
limit for gn0→` is correct, sincenhit then approaches th
terminal velocity21/g. In a practical situation, with a give
ball and medium~and thus a certain fixed value ofg!, one
can come very close to this limit by makingn0 as large as
possible.

In Fig. 3, the end of the dashed curve lies almost on
dotted line, and from this one might get the impression t
Eq. ~22!, which was derived for linear drag, is still valid~cf.
our discussion of Fig. 2!. However, with the above expre
sion fornhit , one easily checks thatt total @Eq. ~44!# is not the
same as

n01unhitu
g̃

5
2n0

g̃
2g2

n0
3

2g̃
1g4

3n0
5

8g̃
1¯ . ~46!

For the children’s ball the difference is small, sinceg!1 and
the value ofn0 is modest, but in other instances~see, for
example, Fig. 4! the difference may be quite substantial.
any case, Eq.~22! is not exact for quadratic drag.

From Eq.~45! we can also infer how much of the ball
energy has been dissipated during the flight. At the mom
it hits the ground its kinetic energy is
543 Am. J. Phys., Vol. 67, No. 6, June 1999
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11~gn0!2 , ~47!

which is a factor 11(gn0)2 smaller than the initial kinetic
energy. Thus forg50 there is no loss of energy, as it shou
and for any finite value ofg the energy loss increases w
growing initial velocityn0 .

Let us see how all this works out for a spherical bullet s
upwards with an initial velocityn05150 m/s. We take th
bullet to be made of lead (r lead511.33103 kg/m3) and to
have a mass of 12 g, so that its radius is 0.63 cm. The v
of g̃ is then 0.9999g ~so the buoyant force is quite negligibl!
and the terminal speed21/g is, according to Eq.~39!,

n term5260.1 m/s ~52216 km/h!. ~48!

The associated value ofgn0 is 2.5 and hence, according
Eq. ~45!, the bullet hits the ground with almost the termin
velocity, namely with 55.7 m/s. And with 11(gn0)257.25
it follows that no less than 86.2% of the initial energy is l
to the air. Also the other characteristic quantities are gre
affected. Whereas the bullet in the absence of air resist

Fig. 3. The heighth(t) and velocityn(t) for the children’s ball discussed i
the text. The solid curves correspond to the actual ball, with air drag
buoyancy~with g50.176 s/m andg̃57.52 m/s2). In the dashed curves th
buoyancy is omitted~i.e., we have takeng̃5g59.81 m/s2 and henceg
50.154 s/m), and the dotted curves represent the simple case without
drag or buoyancy (g50 s/m andg̃5g59.81 m/s2). Note thatt total for the
solid curve is larger than for the dotted one.
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would reach a height of 1.15 km@see Eq.~9!#, it now does
not go higher than 0.36 km. As for the time of flight: instea
of 2315.3 s530.6 s without air resistance, we now gettup

57.3 s andtdown510.1 s, adding up to a mere 17.4 s. The
values can also be read off from Fig. 4, where we ha
depictedh(t) and n(t) for the bullet as functions oft. The
dotted curves represent the case without air drag.

The above example is related to a question that came
during the recent disturbances in Albania, where the peo
made it a habit to crowd together and shoot bullets strai
up into the air. Reporters in the field were somewhat co
cerned about this. The issue was discussed on television
in several newspapers, and in particular the speed with wh
the bullets would hit the ground~or an unfortunate by-
stander! was a hot topic. The bullets considered were 10–
g, and fired by a Kalashnikov rifle, which means that t
initial velocity was about 700 m/s. In one newspaper t
bullets were estimated to return to the earth with the speed
sound~330 m/s!, another newspaper reported that the bulle
came down with the same speed as with which they left
rifle ~700 m/s!, and a third one claimed that the impact v
locity was no less than a smashing 120 000 m/s. The la
two values are clearly false, illustrating how poor our int
ition for air resistance really is, but even the first one
considerably faster than the terminal velocity~60 m/s! of our

Fig. 4. The heighth(t) and velocityn(t) for the spherical bullet discussed
in the text. The solid curves are for the actual bullet (g50.0167 s/m), while
the dotted curves represent the case without air drag (g50 s/m). The buoy-
ant force is negligible in this example, sog̃'g59.81 m/s2.
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spherical bullet above. Note that in our example we to
n05150 m/s instead of 700 m/s~in order to keep Re,2
3105 and stay within the domain of quadratic drag! but,
although it brings about large changes in the height and t
of flight, this has no effect on the terminal velocity.

Now one might object that bullets are usually not spheri
but torpedo shaped, and that the value of 1/g for the latter is
somewhat larger since its drag coefficient is only aboutCd

50.30 ~against 0.4 for a sphere!. But this is not sufficient to
bridge the gap, since for a torpedo-shaped bullet of 12 g
would get 1/g;90 m/s and this is still much smaller than th
speed of sound. Moreover, the torpedo shape prevents
bullet from falling straight~rather, it comestumblingdown!
and this means that its translational velocity will always
main significantly smaller than 1/g, in no way does it get
near the speeds reported in the newspapers.

As a final example, let us have one more look at the c
dren’s ball mentioned under Eq.~44!. We drop it from a
heighth0530 m, and assume that it falls straight down~ig-
noring the fact that in reality the ball will always start t
wobble as a consequence of the formation of von Ka´rmán
vortices!. Disregarding the very short initial stage for whic
n,0.044 m/s, when the Reynolds number has not
reached the value 103 @cf. Eq. ~35!#, its velocity is given by
Eq. ~37! with tup50 s:

n↓~ t !52
1

g
tanhgg̃t525.67 tanh~1.32t !. ~49!

The terminal velocity of 5.67 m/s is approached within 1
after 2.0 s. The altitude of the ball is then

h↓~ t !5h02
1

g2g̃
ln coshgg̃t53024.28 ln cosh~1.32t !

521.6 m. ~50!

The rest of the way down takes 21.6/5.6753.8 s, so the ball
reaches the ground after 5.8 s. If the experiment were
formed in a vacuum tube, i.e., in the absence of drag
buoyancy, one would findt5A2h0 /g52.5 s.

It may be noted that the time of descent also follows fro
Eq. ~43!, if we assume~for the sake of the argument! that the
height of 30 m was acquired as a result of a tremend
throw. We then first determine the associated value ofn0 by
setting h05hmax, i.e., 3054.28 lnA11(n0/5.67)2. This
yields a valuen056245 m/s~!! and inserting this in Eq.~43!
we gettdown55.8 s again.

IV. CONCLUDING REMARKS

We have now come to the end of the paper and a
concluding remarks are in order. First, we have restric
ourselves to resistive forces which depend either linearly
quadratically on the velocity. These cases correspond, as
cussed in Sec. I, to Re,1 and 103,Re,23105, respec-
tively. Outside these intervals our calculations do not ap
and one should turn to a computer.18 Some of the qualitative
conclusions of the present paper, however, remain valid
in the general case. For instance, the way downalwaystakes
longer than the way up (tdown.tup).

Second, we have included the buoyant force, which me
that we deal with an effective gravitational accelerationg̃
rather than withg itself. We have restricted ourselves
544P. Timmerman and J. P. van der Weele
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cases whereg̃ remains positive; ifg̃ were made negative~as
for a helium-filled balloon! the ball would go up all right, but
never come down. In the literature the buoyant force is co
monly disregarded~which means that one always deals w
g instead ofg̃), and in that case one can show that for
resistive forcesF(n)}nn with n>1 the total time of flight is
smaller than the frictionless time 2n0 /g.10 We have seen tha
in reality the matter is more subtle and that the total time
flight can very well exceed 2n0 /g.

Third, we have restricted ourselves to purely vertical t
jectories. In practice, of course, a slight horizontal comp
nent can hardly be ruled out, but this will not have a gr
influence on quantities like the maximum height and the fi
velocity. In the case of linear drag the now two-dimensio
problem still admits an analytical solution. One simply tak
the solution for the horizontal component of the motion,

nx~ t !5n0xe
2at, ~51a!

x~ t !5
n0x

a
~12e2at! ~51b!

and superimposes this on the solution for the vertical co
ponent, given by Eqs.~15! and ~18!. The result is a curved
path which in the limit fora→0 ~and g̃→g, as far as the
vertical component is concerned! tends to the well-known
textbook parabola. The quadratic drag is a harder nu
crack, even though the equation of motion in the horizon
direction can again be solved analytically; the difficulty
that this time a linear superposition is not allowed, since
system is nonlinear. How the problem should be handled
this case is described in Refs. 19–21.

In the context of nonvertical trajectories, there has rece
been a lively discussion in this journal~Refs. 22–24! about
the optimum angle of projection, i.e., the angle under wh
one should launch a ball in order to achieve the grea
range. In vacuum this angle is 45°, and it is also well kno
that in the presence of air drag it is somewhat less than
That is, optimal shots in air are ‘‘low.’’ The same is true
the case of linear drag, and indeed, one might be tempte
think that it holds for any conceivable drag forceF(n)
}nn, but this isnot the case. In Ref. 23 it was shown that
the exponentn exceeds some critical value~around 3.5, de-
pending on the drag coefficient! the optimum angle can ver
well be a few degrees larger than 45°. It is fascinating to
that such a venerable topic can still have surprises in sto

The fourth and final remark is that we have treated
gravitational acceleration and the density of the medium
constants. For the situations described in the present p
this is certainly a good approximation but it rules out, f
instance, trajectories that reach very high into the atmosp
or even escape into space.25 An interesting account of a fal
from high altitude can be found in Ref. 26.
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APPENDIX: TAYLOR EXPANSIONS OF THE
VELOCITIES AND HEIGHTS

In this Appendix we give the Taylor expansions forn(t)
and h(t) in the presence of drag and buoyancy. They
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derived from the exact analytical solutions in the main te
and elucidate the behavior for small drag. In the limita
→0 ~for linear drag! andg2→0 ~for quadratic drag! only the
first term is retained and this term is equal to the frictionle
quantities given by Eqs.~6! and~7!. In taking these limits,g̃
is simultaneously replaced byg, since the absence of dra
also implies absence of buoyancy.

In the case of linear drag the exact expression for
velocity is given by Eq.~15!. Its Taylor expansion reads:

n~ t !5~n02g̃t !2at~n02 1
2 g̃t !1a2 1

2 t2~n02 1
3 g̃t !2¯ ,

~52!

which for a→0 andg̃→g indeed reduces to the frictionles
velocity @Eq. ~6!#. The height, given by Eq.~18! in the main
text, has the following expansion:

h~ t !5~n0t2 1
2g̃t2!2a 1

2t~n0t2 1
3g̃t2!

1a2 1
6t

2~n0t2 1
4g̃t2!2¯ ~53!

and, again, in the limita→0 and g̃→g this reduces to its
frictionless counterpart@Eq. ~7!# as it should.

Likewise, in the case of quadratic drag we get for the w
up:

n↑~ t !5~n02g̃t !2g2g̃t~n0
22n0g̃t1 1

3g̃
2t2!1¯ , ~54!

h↑~ t !5~n0t2 1
2g̃t2!2g2 1

12g̃t2~6n0
224n0g̃t1g̃2t2!1¯

~55!

and for the way down:

n↓~ t !5~n02g̃t !2g2~ 2
3n0

32n0
2g̃t1n0g̃2t22 1

3g̃
3t3!

1¯ , ~56!

h↓~ t !5~n0t2 1
2 g̃t2!2g2

1

12g̃
~2n0

428n0
3g̃t16n0

2g̃2t2

24n0g̃3t31g̃4t4!1¯ . ~57!
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