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ON THE ROAD COLORING PROBLEM 

JOEL FRIEDMAN 

(Communicated by Thomas H. Brylawski) 

ABSTRACT. Let G = (V, E) be a strongly connected, aperiodic, directed graph 
having outdegree 2 at each vertex. A red-blue coloring of G is a coloring of the 
edges with the colors red and blue such that each vertex has one red edge and one 
blue edge leaving it. Given such a coloring, we define R: V -* V by R(v) = w 
iff there is a red edge from v to w . Similarly we define B: V - V. G is 
said to be collapsible if some composition of R 's and B 's maps V to a single 
vertex. The road coloring problem is to determine whether G has a collapsible 
coloring. It has been conjectured that all such G have a collapsible coloring. 
Since G has outdegree 2 everywhere and is strongly connected, the adjacency 
matrix, A, of G has a positive left eigenvector w = (w(vl), ..., w(vn)) 
with eigenvalue 2, i.e. wA = 2w. Furthermore, we can assume that w 's 
components are integers with no common factor. We call w(v) the weight of 
v . Let W E V w(v), defined to be the weight of the graph. We will 
prove that if G has a simple cycle of length relatively prime to WF, then G is 
collapsibly colorable. 

1. INTRODUCTION 

Let G = (V, E) be a directed graph. G is said to be strongly connected if 
any vertex can reach any other vertex by a path in G. G is said to be aperiodic 
if V cannot be partitioned into d > 1 sets VJ, V*, J' = VO such that all edges 
(u, v) with u e V have v E V . 

Let G have outdegree 2 at each vertex. A red-blue coloring of G is a coloring 
of the edges with the colors red and blue such that each vertex has one red edge 
and one blue edge leaving it. Given such a coloring, we define R: V -* V by 
R(v) = w iff there is a red edge from v to w . Similarly we define B: V -- V. 
G is said to be collapsible if some composition of R's and B's maps V to a 
single vertex. 

The road coloring problem is to determine whether G has a collapsible col- 
oring. It has been conjectured that all such G have a collapsible coloring (i.e. 
G aperiodic, strongly connected). This problem originated in connection with 
[2], and appears explicitly in [1]. There it was assumed that G has no multiple 
edges, i.e. each vertex has edges to two distinct vertices. In [4] it was shown 
that a graph which has no multiple edges and a simple cycle of prime length 
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is collapsibly colorable. In this paper we analyze a property of noncollapsible 
colorings; this gives further conditions for collapsible colorability. 

Since G has outdegree 2 everywhere and is strongly connected, the adja- 
cency matrix, A, of G has a positive left eigenvector w = (w(v ), ... , w(vn)) 
with eigenvalue 2, i.e. wA = 2w. Furthermore, we can assume that w 's com- 
ponents are integers with no common factor. We call w(v) the weight of v. 
Let W Z,v w(v), defined to be the weight of the graph. For example, if G 
has indegree 2 everywhere, then W = I VI, the size of V . We will prove that 
if G has a simple cycle of length relatively prime to W, then G is collapsibly 
colorable. 

I would like to thank Brian Marcus for posing this problem to me and for 
encouragement on it. 

2. AN OBSERVATION 

Let G be a graph as before and fix a coloring of G. For T c V, let w(T), 
the weight of T, be the sum of the weights of the vertices in T. We say that 
T is collapsible if T can be mapped to a single vertex by some composition of 
R's and B's. Let To be a collapsible set of maximum weight, wo. 

Theorem 2.1. There exist i and subsets T1, ... , T1 1, each of which is collapsi- 
ble and of weight wO, such that To, . .. , Ti_ I is a partition of V . In particular, 
woi= W. 

Proof. Let U c V, and consider its backward images, R I U, B' IU. Since 
wA = 2w, we have w(R 1U) + w(B 1U) = 2w(U). It follows that either 
R l U or B 1U has greater weight than U, or both have weight equal to that 
of U. Also, if U is collapsible, then so are R IU and B 'U. From these 
observations it follows that R'1 and B-1 of any collapsible set of maximum 
weight is again collapsible of maximum weight. 

We have f: To -vo, where f is a composition of R's and B's and vo e V. 
Suppose that To is not all of V . We claim that we can extend f backwards to 
g = fh, h being a composition of R 's and B 's, so that g maps To to one 
vertex and maps another maximum weight collapsible set to another vertex. To 
see this, consider f l, which maps V to subsets of V; these subsets form a 
partition of V. Pick any vertex v 0 To0 and let g = fhf, where h is any 
composition of R 's and B 's mapping v0 to v . Notice that f(v) 5 vo, since 
v O; f- Iv since To is maximal, and that f' h To is a collapsible set of 
maximum weight by the preceding paragraph. It follows that g collapses two 
disjoint maximum weight collapsible sets. If these two sets do not comprise all 
of V, then we can extend g. backwards to a function which collapses three 
disjoint maximum weight collapsible sets, one of which is To0 by iterating the 
same argument. Repeating this process enough times completes the proof of 
the theorem. nl 

A set of vertices U is called a minimal image of V if U is the image of 
V under some composition of R's and B's and if U cannot be reduced in 
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size by any further composition of R's and B's. It is easy to see that any such 
U has size i-any set of size > i must contain at least two points in one of 

To, .. ., Ti> and can therefore be reduced, and any set of size < i cannot be 

the image of a set of vertices of weight > wo times its cardinality, which is less 
than W. 

3. COLORING WITH RED TREES 

Given that G has a simple cycle of length m through vertices vO, .. ., 1m 

we can choose one outgoing edge from each other vertex so that any path through 
these edges leads to the cycle. Coloring these edges and the edges of the cycle 
red, we get a coloring of G which has a red cycle of length m and a set of red 
paths taking each vertex into this cycle. We call such colorings of G colorings 
with red trees (the red edges of G form a tree plus an extra edge to complete 
the cycle). 

The following result appears in O'Brien's paper: 

Theorem 3.1. Let G have a coloring with a red tree and a red cycle of length 
m. Then i, the size of a minimal image, divides m. 

Proof. See [4]. a 

Combining this with Theorem 2.1 we have: 

Corollary 3.2. If G is colored with a red tree and a red cycle of length m, m 
relatively prime to W, then G is collapsible. 

Proof. Since i divides m and W, i = 1 . That is to say, G is collapsible. 

Corollary 3.3. If W is a prime power, then G is collapsibly colorable. 

Proof. Since G is aperiodic, G has a cycle relatively prime to p where p is 

the prime with W = p' . This cycle can be written as the union of simple cycles, 
and at least one of the simple cycles must be relatively prime to p . n 

In the case where G has indegree 2, has a prime number of vertices, and 
has no multiple edges, it was previously known that G is collapsibly colorable. 
This was due to Nelson Markley and Michael Paul, unpublished, based on ideas 
of G. A. Hedlund in [3]. 
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