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ABSTRACT

We present a general method to compute the nonlinear matter power spectrum for
dark energy and modified gravity scenarios with percent-level accuracy. By adopting
the halo model and nonlinear perturbation theory, we predict the reaction of a ΛCDM
matter power spectrum to the physics of an extended cosmological parameter space.
By comparing our predictions to N-body simulations we demonstrate that with no-free
parameters we can recover the nonlinear matter power spectrum for a wide range of
different w0-wa dark energy models to better than 1% accuracy out to k ≈ 1 h Mpc−1.
We obtain a similar performance for both DGP and f (R) gravity, with the nonlinear
matter power spectrum predicted to better than 3% accuracy over the same range
of scales. When including direct measurements of the halo mass function from the
simulations, this accuracy improves to 1%. With a single suite of standard ΛCDM N-
body simulations, our methodology provides a direct route to constrain a wide range
of non-standard extensions to the concordance cosmology in the high signal-to-noise
nonlinear regime.

Key words: cosmology: theory – large-scale structure of Universe – methods: ana-
lytical

1 INTRODUCTION

General Relativity (GR) has been put under intense scrutiny
in the Solar System, where it has successfully passed all
tests (Will 2014). Its application to cosmology, however, in-
volves vastly different length scales and is comparable in
orders of magnitude to an extrapolation from an atomic
nucleus to the scale of human experience. It is therefore
important to perform independent tests of our Theory of
Gravity in the cosmological regime. Further motivation for
a thorough inspection of cosmological gravity can be drawn
from the necessity of a large dark sector in the energy bud-
get of our Universe to explain large-scale observations with
GR (Riess et al. 1998; Perlmutter et al. 1999; Aghanim et al.

⋆ E-mail: matteo@roe.ac.uk

2018; Hildebrandt et al. 2017; Abbott et al. 2018). In partic-
ular the late-time accelerated expansion of the cosmos has
traditionally been an important driver for the development
of alternative theories of gravity, a concept that has however
become strongly challenged with the confirmation of the lu-
minal speed of gravity (Lombriser & Taylor 2016; Abbott
et al. 2017b; Lombriser & Lima 2017; Creminelli & Vernizzi
2017; Maŕıa Ezquiaga & Zumalacárregui 2017; Baker et al.
2017; Sakstein & Jain 2017; Battye et al. 2018; de Rham &
Melville 2018; Creminelli et al. 2018). Nevertheless, cosmic
acceleration could be the result of a dark energy field perme-
ating the Universe that may well be coupled to matter with
an observable impact on cosmological scales. Importantly,
should that coupling be universal, i.e. affecting baryons and
dark matter equally, the corresponding models must then
rely on the employment of screening mechanisms to comply

© 2018 The Authors
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2 Cataneo et al.

with the stringent Solar-System bounds (Vainshtein 1972;
Khoury & Weltman 2004; Babichev et al. 2009; Hinterbich-
ler & Khoury 2010). Signatures of screening are naturally to
be expected in the nonlinear cosmological small-scale struc-
ture, where modified gravity transitions to GR, and for some
models are even exclusively confined to these scales (Wang
et al. 2012; Heymans & Zhao 2018). The increasing wealth of
high-quality data at these scales (Laureijs et al. 2011; LSST
Dark Energy Science Collaboration 2012; Hildebrandt et al.
2017; Abbott et al. 2018) renders cosmological tests of grav-
ity a very timely enterprise. At the same time, cosmological
structure formation proves notoriously difficult to model to
sufficient accuracy in this regime, where high signal-to-noise
measurements have the potential to distinguish a few per-
cent deviation from GR (Heymans & Zhao 2018).

For any given theory of gravity or dark energy model,
our current best predictions for the statistical properties of
the resulting matter distribution come from large-volume
high-resolution N-body simulations (Oyaizu 2008; Schmidt
2009b; Zhao et al. 2011; Li et al. 2012; Brax et al. 2012;
Baldi 2012; Puchwein et al. 2013; Wyman et al. 2013; Bar-
reira et al. 2013; Li et al. 2013b; Llinares et al. 2014; Winther
et al. 2015). Running these, however, can take up to thou-
sands of node-hours on dedicated cluster facilities, and al-
though methods to partially alleviate this drawback ex-
ist (see, e.g., Barreira et al. 2015; Mead et al. 2015a; Valo-
giannis & Bean 2017; Winther et al. 2017; Bose et al. 2017;
Llinares 2017) exploring vast swathes of the theory space
remains currently unfeasible. Alternatively, analytical and
semi-analytical methods can be used to swiftly predict spe-
cific large-scale structure observables, such as the matter
power spectrum (Koyama et al. 2009; Schmidt et al. 2009,
2010; Li & Hu 2011; Fedeli et al. 2012; Brax & Valageas 2013;
Lombriser et al. 2014; Barreira et al. 2014a,b; Zhao 2014;
Achitouv et al. 2016; Mead et al. 2016; Aviles & Cervantes-
Cota 2017; Cusin et al. 2018; Bose et al. 2018; Hu et al.
2018), with the important caveat that they have limited ac-
curacy in the nonlinear regime of structure formation, and
often involve some level of fitting to the same quantity mea-
sured in simulations. These approaches are therefore inade-
quate for future applications to high-quality data from Stage
IV surveys (Laureijs et al. 2011; LSST Dark Energy Science
Collaboration 2012; Levi et al. 2013; Koopmans et al. 2015),
where percent level accuracy over a wide range of scales will
be necessary to obtain tight and unbiased constraints on
departures from GR (Alonso et al. 2017; Casas et al. 2017;
Reischke et al. 2018; Spurio Mancini et al. 2018; Taylor et al.
2018b) and the nature of dark energy (Albrecht et al. 2006).
Matter power spectrum emulators can provide a solution to
this problem for particular modified gravity or dark energy
models (Heitmann et al. 2014; Lawrence et al. 2017; Euclid
Collaboration et al. 2018; Winther et al. 2019), but still rely
on the availability of large quantities of computational re-
sources to the determine the properties of the matter power
spectrum at the location of the emulator nodes. The absence
of a clear attractive alternative to the ΛCDM paradigm calls
for a more general framework, one easily adaptable to non-
standard cosmologies beyond the handful of well studied
cases.

Here we take an important step in this direction by ex-
tending the method proposed in Mead (2017), where the
halo model is used to compute matter power spectrum ra-

tios with respect to a convenient baseline cosmology. Mead
(2017) showed that by determining these ratios, rather than
the absolute value of the matter power spectrum, the short-
comings of the halo model are mitigated. The initial con-
ditions of the baseline cosmology are designed so that un-
der GR+ΛCDM evolution the linear clustering of matter at
some given redshift exactly reproduces that of the target
cosmology of interest, whose evolution is instead governed
by non-standard laws of gravity and/or background expan-
sion. Assuming one can generate an accurate nonlinear mat-
ter power spectrum for the reference cosmology (e.g with a
suitable emulator), recovery of the target power spectrum
then hinges on the computation of a ‘correction’ factor that
incorporates the nonlinear effects of fifth forces, screening
mechanisms and deviations from the cosmological constant.
We use the halo model and nonlinear perturbation theory
to obtain such corrections, and refer to this quantity as the
reaction.

The paper is organised as follows. In Sec. 2 we briefly de-
scribe popular modified gravity and dark energy models used
here as testbeds for our methodology. Sec. 3 reviews the halo
model formalism and introduces the matter power spectrum
reactions. The cosmological simulations used to validate our
approach are described in Sec. 4, and Sec. 5 presents the
capability of the halo model reactions to predict the nonlin-
ear matter power spectrum. We summarise our conclusions
in Sec. 6. We provide details of the spherical collapse and
perturbation theory calculations employed in this work in
App. A and App. B, respectively. Additional tests to gauge
the importance of the halo mass function and halo concen-
tration in our predictions are presented in App. C.

2 DARK ENERGY AND MODIFIED GRAVITY

THEORY

The most general four dimensional scalar-tensor theory with
second-order equations of motion is described by the action
(Horndeski 1974; Deffayet et al. 2011; Kobayashi et al. 2011)

S =

∫
d4x

√−g
{

5∑
i=2

Li[φ, gµν] + Lm[ψ, gµν]
}
, (1)

where g is the determinant of the metric gµν minimally cou-
pled to a generic matter field ψ (Jordan frame), Lm is the
matter Lagrangian, φ is the scalar degree of freedom, and
the terms entering the Einstein-Hilbert Lagrangian are

L2 = K(φ, X) ,
L3 = −G3(φ, X)2φ,

L4 = G4(φ, X)R + G4X (φ, X)
{
(2φ)2 − ∇µ∇νφ∇µ∇νφ

}
,

L5 = G5(φ, X)Gµν∇µ∇νφ − 1

6
G5X (φ, X)

{
(∇φ)3

−3∇µ∇νφ∇µ∇νφ2φ + 2∇ν∇µφ∇α∇νφ∇µ∇αφ
}
. (2)

Here, K and Gi are arbitrary functions of φ and X ≡
−∇νφ∇νφ/2, and the subscripts X and φ denote derivatives.

The nearly simultaneous detection of gravitational
waves and electromagnetic signals emitted from two collid-
ing neutron stars (Abbott et al. 2017a) imposes tight con-
straints on the present-day speed of gravitational waves cT ,
i.e. |cT /c − 1| . 10−15, where c is the speed of light (Abbott

MNRAS 000, 1–22 (2018)



Matter power spectrum reaction to dark energy and modified gravity 3

et al. 2017b). Restricting ourselves to theories of gravity with
non-evolving cT , and requiring this not to be achieved by ex-
treme fine tuning of the G4 and G5 functions (Lombriser &
Taylor 2016; Lombriser & Lima 2017; Creminelli & Vernizzi
2017; Maŕıa Ezquiaga & Zumalacárregui 2017; Baker et al.
2017; Sakstein & Jain 2017; Battye et al. 2018; de Rham
& Melville 2018), implies that the remaining Horndeski La-
grangian takes the form (McManus et al. 2016)

LH = K(φ, X) + G4(φ)R − G3(φ, X)2φ . (3)

In this paper we focus on well-studied models of modified
gravity and dark energy, each exploring the effects intro-
duced by the individual terms in Eq. (3). Quintessence and
k-essence dark energy models are described by a contribu-
tion of K only (Sec. 2.3). G4 introduces a coupling of this field
to the metric that modifies gravity. The class of models de-
scribed by this term encompasses the chameleon (Khoury &
Weltman 2004), symmetron (Hinterbichler & Khoury 2010),
and k-mouflage (Babichev et al. 2009) screening mecha-
nisms, and we will study a particular example of this ac-
tion with chameleon screening in Sec. 2.1 when considering
a realisation in f (R) gravity. The G3 term appears, for in-
stance, in the four-dimensional effective scalar-tensor theory
of DGP braneworld gravity (Sec. 2.2) and gives rise to the
Vainshtein screening mechanism (Vainshtein 1972). Either
G3 or noncanonical kinetic contributions in K produce a non-
luminal sound speed of the scalar field fluctuations that can
yield observable scale-dependent effects beyond the sound
horizon. The mass scale associated with a scalar field po-
tential in K can furthermore introduce a scale-dependent
growth of structure below the sound horizon. With cT = 1,
a genuine self-acceleration of the cosmological background
that is directly attributed to modified gravity must arise
from G4 (Lombriser & Taylor 2016), which is however in
tension with observations (Lombriser & Lima 2017). A self-
acceleration from K or G3 that dispenses with the need of
a cosmological constant is, in contrast, still observationally
feasible.

Throughout, we assume a flat Friedmann-Robertson-
Walker (FRW) background, and the perturbed metric in the
Newtonian gauge reads1

ds2
= gµνdxµdxν = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2 , (4)

where Ψ and Φ denote the two gravitational potentials, and
a is the scale factor. The evolution of non-relativistic matter
perturbations is determined by Ψ, whereas photons follow
the null geodesics defined by the lensing potential Φ− = (Ψ−
Φ)/2 (see, e.g., Carroll 2004). For all models considered here
Φ− = ΨN , where ΨN is the standard Newtonian potential.

2.1 f (R) gravity

In f (R) gravity the Einstein-Hilbert action is modified to
contain an additional non-linear function of the Ricci scalar
R, that is

SEH =

∫
d4x

√−g 1

16πG
[R + f (R)] . (5)

1 Here and throughout we work in natural units, and set c = 1.

The f (R) Lagrangian is a particular case of Eq. (3) with the
Horndeski functions (see, e.g., de Felice et al. 2011)

K = − 1

16πG
[R fR − f ] , (6)

G3 = 0 , (7)

G4 =

1

16πG
(1 + fR) , (8)

where we defined the scalaron field fR ≡ d f /dR, and used
φ = (1+ fR)/

√
8πG. In the quasi-static regime2, structure for-

mation is governed by the following coupled equations (e.g.,
Oyaizu 2008)

∇2
Ψ =

16πG

3
δρm − 1

6
δR( fR) , (9)

∇2δ fR =

1

3
[δR( fR) − 8πGδρm] , (10)

where δρm = ρm − ρ̄m, δR = R − R̄ and δ fR = fR − f̄R are
the matter density, curvature and scalaron perturbations
with respect to their background averaged values. Eqs. (9)
and (10) can be combined to give

∇Ψ = ∇ΨN − 1

2
∇δ fR , (11)

which explicitly shows that the scalar field fluctuations
source an additional fifth force.

Since GR accurately describes gravity in our Solar Sys-
tem, viable modifications must also be compatible with lo-
cal constraints. In f (R) gravity this is achieved by means
of the chameleon screening mechanism (Khoury & Weltman
2004), which suppresses departures from standard gravity
for large enough potential wells ΨN. In practice, structures
are screened if the thin shell condition,

|δ fR | ≪
2

3
|ΨN | , (12)

is satisfied. Stable theories require fR < 0 (Hu & Sawicki
2007), thus the chameleon screening activates throughout
an isolated object if |δ fR | ≤ | f̄R | ≪ |ΨN |. Assuming that the
Milky Way is placed in the cosmological background, and
knowing that |ΨMW | ∼ 10−6, this in turn imposes | f̄R0 | <
10−6 for the present value of the background scalaron field.

Hereafter, we adopt the following f (R) functional form
(Hu & Sawicki 2007)

f (R) = −2Λ − f̄R0

R̄2
0

R
, (13)

where Λ is an effective cosmological constant driving the
background cosmic acceleration, and R̄0 corresponds to the
background Ricci scalar today. We will work with values
| f̄R0 | = 10−5 (F5) and | f̄R0 | = 10−6 (F6), for which cosmo-
logical structures are, respectively, partially unscreened or
largely screened throughout the cosmic history. Note that
deviations from the ΛCDM expansion history are of order
f̄R0 (Hu & Sawicki 2007). Hence, for the f (R) models con-
sidered here the background evolution is in effect equivalent

2 See, e.g., Noller et al. (2014), Bose et al. (2015) and Lagos et al.
(2018) for a detailed discussion on the validity of the quasi-static
approximation in modified gravity.

MNRAS 000, 1–22 (2018)



4 Cataneo et al.

to that of the concordance cosmology, with the Hubble pa-
rameter given by

H2
=

8πG

3
(ρ̄m + ρ̄Λ) , (14)

where ρ̄Λ is the energy density of the cosmological constant.
The large-scale structure data currently available allows am-
plitudes | f̄R0 | . 10−5 (Terukina et al. 2014; Lombriser 2014;
Cataneo et al. 2015; Liu et al. 2016; Alam et al. 2016), thus
placing the F5 model on the edge of the region of parameter
space still relevant for cosmological applications3 if other
effects degenerate with the enhanced growth of structure
are ignored. Accounting for massive neutrinos (Baldi et al.
2014) and baryonic feedback (Puchwein et al. 2013; Ham-
mami et al. 2015; Arnold et al. 2018) will loosen the exist-
ing constraints (see, e.g., Hagstotz et al. 2018; Giocoli et al.
2018). In addition, alternative functional forms to Eq. (13)
can lead to different upper bounds on | f̄R0 | (see, e.g., Cata-
neo et al. 2015).

2.2 DGP

In the DGP braneworld model the matter fields live on
a four-dimensional brane embedded in a five-dimensional
Minkowski space (Dvali et al. 2000). In this model the di-
mensionality of the gravitational interaction is controlled by
the crossover scale parameter rc, such that on scales smaller
than rc DGP becomes a four-dimensional scalar-tensor the-
ory described by an effective Lagrangian with terms (Nicolis
& Rattazzi 2004; Park et al. 2010)

K ∼ r2
c X2 , (15)

G3 ∼ r2
c X , (16)

G4 =

1

16πG
e
−
√

16πG
3

ϕ
, (17)

where the brane-bending mode ϕ represents the scalar field.
Hereafter we will be working with the normal branch DGP
model (nDGP), which despite being a stable solution of the
theory is also incompatible with the observed late-time cos-
mic acceleration. To obviate this problem the Lagrangian
given by Eqs. (15)-(17) is extended to include a smooth,
quintessence-type dark energy with a potential conveniently
designed to match the expansion history of a flat ΛCDM cos-
mology (Schmidt 2009b)4. Therefore, the Friedmann equa-
tion Eq. (14) applies here as well.

The scalar field ϕ couples to non-relativistic matter by
sourcing the dynamical potential Ψ, which in turn produces
a gravitational force given by

∇Ψ = ∇ΨN +
1

2
∇ϕ, (18)

3 See, however, the recent work by He et al. (2018) where it was
showed that deviations as small as | f̄R0 | = 10−6 could already be in
strong tension with redshift space distortions data. At the present
time, the tightest constraints on f (R) gravity come from the anal-
ysis of kinematic data for the gaseous and stellar components in

nearby galaxies, which only allows | f̄R0 | . 10−8 (Desmond et al.
2018).
4 This is an assumption made to ease comparisons to ΛCDM sim-
ulations, and is not a strict observational requirement (cf. Lom-
briser et al. 2009).

where the second term on the right hand side is the attrac-
tive fifth force contribution. On length scales λ ≪ H−1, rc,
and in the quasi-static regime (Schmidt 2009a; Brito et al.
2014; Winther & Ferreira 2015), the evolution of the brane-
bending mode is described by (Koyama & Silva 2007)

∇2ϕ +
r2
c

3β

[
(∇2ϕ)2 − (∇i∇jϕ)(∇i∇ jϕ)

]
=

8πG

3β
δρm , (19)

with the function β(a) defined as

β(a) ≡ 1 + 2H rc

[
1 +

ÛH
3H2

]
, (20)

where overdots denote derivatives with respect to cosmic
time. The derivative self-interactions in Eq. (19) suppress
the field in high-density regions, where the matter density
field is nonlinear, effectively restoring GR. This is the so-
called Vainshtein screening. To explicitly illustrate how this
mechanism works we shall consider a spherically symmetric
overdensity with mass

δM(r) = 4π

∫ r

0
dr ′r ′2δρm(r ′) . (21)

Then, for this system the gradient of ϕ reads (Koyama &
Silva 2007; Schmidt et al. 2010)

dϕ

dr
=

4

3β

(
r

rV

)3
[√

1 +
( rV

r

)3
− 1

]
GδM(r)

r2
, (22)

where we defined the Vainshtein radius

rV(r) ≡
[
16r2

c GδM(r)
9β2

]1/3
. (23)

The scale introduced in Eq. (23) sets the distance from the
centre of the spherical mass distribution above which fifth
force effects are observable. For instance, for a top-hat over-
density of radius RTH one has the two limiting cases{

dϕ
dr
=

2
3β

dΨN

dr
r ≫ rV > RTH ,

dϕ
dr

≈ 0 RTH < r ≪ rV .

In the following we will consider the medium and weak

nDGP variants used in Barreira et al. (2016), with crossover
scales rcH0 = 0.5 (nDGPm) and rcH0 = 2 (nDGPw) in
units of the present-day Hubble horizon H−1

0
. Note that, at

present, of these two cases nDGPw is the only one com-
patible with growth rate data (Barreira et al. 2016). Hence,
similarly to F5, the use of nDGPm will serve as a testbed
for our methodology in conditions of relatively strong depar-
tures from GR.

2.3 Dark energy

The simplest models described by the Lagrangian in Eq. (3)
are those in which the scalar field is minimally coupled to
gravity, that is

K = K(φ, X) , (24)

G3 = 0 , (25)

G4 =

1

16πG
. (26)

In this scenario, the field φ is associated with a fluid called
dark energy (DE) with energy density and pressure (see,

MNRAS 000, 1–22 (2018)



Matter power spectrum reaction to dark energy and modified gravity 5

Table 1. Equation of state parameters defining the dark energy
models used in this work.

Model w0 wa

DE1 −0.7 0

DE2 −1.3 0

DE3 −1 0.5

DE4 −1 −0.5

DE5 −0.7 −1.5

DE6 −1.3 0.5

e.g., Amendola & Tsujikawa 2010)

ρDE = 2XKX − K , (27)

PDE = K , (28)

respectively. Its background evolution is controlled by the
equation of state parameter w ≡ P̄DE/ρ̄DE, and the solution
to the continuity equation

dρ̄DE

dt
+ 3H ρ̄DE(1 + w) = 0 (29)

is given by

ρ̄DE(a) = ρ̄DE,0 exp

[
3

∫ 1

a

da′

a′
(1 + w)

]
, (30)

where ρ̄DE,0 is the present-day dark energy density.
Popular models of dark energy, such as

quintessence (Wetterich 1988; Ratra & Peebles 1988),
k-essence (Armendariz-Picon et al. 2000) and clustering
quintessence (Creminelli et al. 2009), belong to this subclass
of theories. In this paper we restrict our discussion to a
quintessence-like dark fluid with rest-frame sound speed
c2
s = 1 and equation of state (Chevallier & Polarski 2001;

Linder 2003)

w(a) = w0 + (1 − a)wa , (31)

where {w0,wa} are free phenomenological parameters. The
relativistic sound speed washes out the dark energy pertur-
bations on sub-horizon scales, resulting in modifications to
the growth of structure tied solely to the different expansion
history compared to ΛCDM. Our methodology can, in prin-
ciple, also be applied to forms of dark energy clustering on
small scales.

Table 1 summarises the dark energy models selected for
this work, which have been chosen to roughly enclose the
2σ region of parameter space allowed by the Planck 2015
temperature and polarization data in combination with
baryon acoustic oscillations, supernova Ia and H0 measure-
ments (Planck Collaboration et al. 2016).

3 MATTER POWER SPECTRUM REACTION

In Sec. 3.1 and Sec. 3.2 we briefly review the spherical col-
lapse model and the halo model formalism, which we use to
predict the nonlinear matter power spectrum for the range
of cosmological models listed in Sec. 2. The halo model as-
sumes that all matter in the Universe is localized in virial-
ized structures, called halos. In this approach, the spatial
distribution of these objects and their density profiles deter-
mine the statistics of the matter density field on all scales.

It is typically assumed that each mass element belongs to
one halo only, i.e. halos are spatially exclusive. Below we
introduce the ingredients entering the halo model prescrip-
tion, and refer the interested reader to the Cooray & Sheth
(2002) review on the topic for more details. In Sec. 3.3 we
then detail our new approach to reach percent level accuracy
on these power spectra over a range of scales where the halo
model alone is known to fail.

3.1 Spherical collapse model

The Press-Schechter formalism (Press & Schechter 1974)
approximates halo formation following the evolution of a
spherical top-hat overdensity of radius RTH and mass M =

4πR3
TH
ρ̄m(1 + δ)/3 in an otherwise homogenous background.

Mass conservation and the Euler equations imply (see, e.g.,
Schmidt et al. 2009)

ÜRTH

RTH

= −4πG

3
[ρ̄m + (1 + 3w)ρ̄eff] −

1

3
∇2
Ψ . (32)

Here, ρ̄eff and w are, respectively, the background energy
density and equation of state of an effective dark energy
component causing the late-time cosmic acceleration. Hence,
in f (R) gravity and nDGP, ρ̄eff = ρ̄Λ and w = −1. For the
smooth dark energy models in Sec. 2.3 we have ρ̄eff = ρ̄DE and
w given by Eq. (31). Modifications of gravity enter through
the potential term in Eq. (32), which we parametrize as

∇2
Ψ = 4πG(1 + F )ρ̄mδ , (33)

where F can depend on time, mass and environment.
Eq. (33) reduces to the standard Poisson equation for F = 0,
and expressions for F in f (R) and nDGP cosmologies are
given in App. A.

The mass fluctuation δi at the initial time ai within RTH

evolves as

δ =

(
Ri

RTH

)3

(1 + δi) − 1 , (34)

where Ri is the initial top-hat radius. Using Eqs. (32)-(34)
we then find δi such that collapse (i.e. RTH = 0) occurs at
a chosen time a = acoll. The Press-Schechter approach as-
sumes that all regions in the initial density field with over-
densities larger than δi have collapsed into halos by acoll.
Equivalently, one can compare the linearly evolved initial
fluctuations to the linearly extrapolated collapse overden-
sity δc(acoll) ≡ DΛ(acoll)δi/ai , with (see, e.g., Dodelson 2003)

DΛ(a) =
5Ωm

2

H

H0

∫ a

0

da′

(a′H/H0)3
(35)

being the linear growth factor in ΛCDM5, and Ωm ≡
8πG ρ̄m,0/3H2

0
.

In the idealised top-hat scenario, the spherical mass col-
lapses to a point of infinite density. However, processes in
the real Universe act so that, after turnaround, the over-
density eventually reaches virial equilibrium (see, e.g., Mo

5 For cosmologies with a scale-independent linear growth, such as
nDGP and wCDM, using the ΛCDM growth is simply a matter
of convenience. In f (R) gravity this approach has the advantage
of preserving the statistics of the initial mass fluctuations. For
more details see Cataneo et al. (2016).
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et al. 2010). Following Schmidt et al. (2010) (for an earlier
work see also Maor & Lahav 2005), we do not assume energy
conservation during collapse, and compute the time of viri-
alization, avir, from the virial theorem alone (see App. A for
details). This approach differs from previous works where
changes induced by dark energy (Mead 2017) or modified
gravity (Lombriser et al. 2014) were neglected. The virial
comoving radius Rvir of the formed halo can be derived from
its virial mass

Mvir =
4π

3
R3

vir ρ̄m,0 ∆vir , (36)

knowing that the virial overdensity is given by

∆vir = [1 + δ(avir)]
(

acoll

avir

)3

, (37)

with the mass fluctuation δ obtained from Eq. (34).

3.2 Halo model

The simplest statistics describing the clustering properties
of the matter density field ρm(x) is the 2-point correlation
function or, its Fourier transform, the power spectrum P(k)
defined as

〈δ̃(k)δ̃(k′)〉 ≡ (2π)3δD(k + k′)P(k) , (38)

where δD denotes the Dirac delta function, and δ̃(k) rep-
resents the Fourier transform of the matter density fluc-
tuations relative to the background mean density, δ(x) =
ρm(x)/ρ̄m − 1. Note that Eq. (38) assumes statistical homo-
geneity and isotropy.

In the halo model the matter power spectrum results
from the contribution of correlations between halos (P2h)
and those within halos (P1h), and can be written as6

P(k) = P2h(k) + P1h(k) . (39)

To properly account for these correlations we need to know
the abundance of such halos. For any redshift z, the halo
mass function provides the comoving number density of ha-
los of mass Mvir, and it is defined as

nvir ≡
dn

d ln Mvir
=

ρ̄m,0

Mvir
ν f (ν) d ln ν

d ln Mvir
, (40)

where the peak height ν ≡ δc/σ, and we adopt the Sheth-
Tormen (ST) multiplicity function (Sheth & Tormen 1999,
2002)

ν f (ν) = A

√
2

π
qν2

[
1 +

(
qν2

)−p ]
exp

[
−qν2/2

]
. (41)

Here, the normalization constant A is found imposing that
all mass in the Universe is confined into halos, i.e.

∫
dν f (ν) =

1, and the remaining parameters take the ΛCDM standard
values q = 0.75 and p = 0.3, unless stated otherwise. The
variance of the linear density field smoothed with a top-hat
filter of comoving radius R enclosing a mass M = 4πR3 ρ̄m,0/3
is given by

σ2(R, z) =
∫

d3k

(2π)3
|W̃(kR)|2PL(k, z) , (42)

6 In this instance, and whenever the context is clear, we omit the
time-dependence from our notation. However, we reintroduce it
any time this can become a source of ambiguity.

where W̃ is the Fourier transform of the top-hat filter, and
PL(k, z) is the ΛCDM linear power spectrum. At this point
it is worth emphasising that in some GR extensions, besides
its usual dependence on background cosmology and redshift,
the spherical collapse threshold δc can also vary with halo
mass and environment (Li & Efstathiou 2012; Li & Lam
2012; Lam & Li 2012; Lombriser et al. 2013; Lombriser et al.
2014). When appropriate we include both these dependen-
cies in our modelling by following the approach of Cataneo
et al. (2016), where the initial value of the environmental
overdensity is derived from the peak of the environment
probability distribution.

Halos are biased tracers of the underlying dark matter
density field, and at the linear level the halo and matter den-
sity fields are connected by the relation δh = bLδ. Adopting
the ST mass function, the peak-background split formalism
predicts the linear halo bias7 (Sheth & Tormen 1999)

bL(Mvir) = 1 +
qν2 − 1

δc
+

2p

δc[1 + (qν2)p]
. (43)

The last piece of information required by the halo
model is a description of the matter distribution within
halos. We adopt Navarro-Frenk-White (NFW) halo pro-
files (Navarro et al. 1996)

ρh(r) =
ρs

r/rs(1 + r/rs)2
, (44)

where the scale radius rs is parametrized through the virial
concentration cvir ≡ Rvir/rs, and the normalization ρs follows
from the virial mass as

ρs =
Mvir

4πr3
s

[
ln(1 + cvir) −

cvir

1 + cvir

]−1

. (45)

Inside the virial radius, and for all cosmological models stud-
ied here, the NFW profiles are a good representation of
the averaged halo profiles measured in simulations (Schmidt
et al. 2009; Schmidt 2009b; Zhao et al. 2011; Lombriser et al.
2012; Kwan et al. 2013; Shi et al. 2015; Achitouv et al. 2016).

In ΛCDM, f (R) gravity and nDGP we model the c-M

relation as the power law

cvir(Mvir, z) =
c0

1 + z

(
Mvir

M∗

)−α
, (46)

fixing c0 = 9 and α = 0.13 (Bullock et al. 2001), and M∗ is
defined by ν(M∗) = 1. In particular, for f (R) gravity M∗ de-
pends itself on the halo mass (Lombriser et al. 2014), which
means the c-M relation for these models is no longer de-
scribed by a simple power law (Shi et al. 2015). For the
smooth dark energy models in Sec. 2.3 we correct for the
different expansion histories following Dolag et al. (2004),
that is

cvir →
c0

1 + z

(
Mvir

M∗

)−α
gDE(z → ∞)
gΛ(z → ∞) , (47)

7 Valogiannis & Bean (2019) recently found that in f (R) gravity
the linear halo bias contains an additional term accounting for
the environmental dependence, which we omit in Eq. (43). Given
the relative unimportance of the bias for our halo model reactions
(see Secs. 3.3 and 5), this choice is, in effect, inconsequential for
the accuracy of our predictions.
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where gX is the linear growth factor normalized to z = 0

(see App. B). This correction reflects that halos collapse at
different times in cosmological models with different growth
histories. In cosmological models where halos collapse earlier
these halos will be more concentrated compared to the same
mass halos if they form later. In App. C we demonstrate
that our results are insensitive to the correct shape of the
c-M relation on scales k . 0.5 h Mpc−1.

We can now predict the nonlinear matter power spec-
trum, and rewrite Eq. (39) as

P(k) = I2(k)PL(k) + P1h(k) , (48)

where, more explicitly,

P1h(k) =
∫

d ln Mvir nvir

(
Mvir

ρ̄m,0

)2

|u(k, Mvir)|2, (49)

I(k) =
∫

d ln Mvir nvir
Mvir

ρ̄m,0
u(k, Mvir)bL(Mvir) . (50)

In the equations above, u(k, M) corresponds to the Fourier
transform of an NFW profile truncated at Rvir, normal-
ized such that u(k → 0, M) → 1. Note that from Eqs. (41)
and (43) it follows that limk→0 I(k) = 1.

3.3 Halo model reactions

The apparent simplicity and versatility of the halo model has
contributed to its widespread use as a method to predict the
nonlinear matter power spectrum in diverse scenarios. Ex-
amples include the ΛCDM cosmology (Seljak 2000; Peacock
& Smith 2000; Giocoli et al. 2010; Valageas & Nishimichi
2011; Valageas et al. 2013; Mohammed & Seljak 2014; Sel-
jak & Vlah 2015; van Daalen & Schaye 2015; Mead et al.
2015b; Schmidt 2016), dark energy and modified gravity
models (Schmidt et al. 2009, 2010; Li & Hu 2011; Fedeli et al.
2012; Brax & Valageas 2013; Lombriser et al. 2014; Barreira
et al. 2014a,b; Achitouv et al. 2016; Mead et al. 2016; Hu
et al. 2018), massive neutrinos (Abazajian et al. 2005; Mas-
sara et al. 2014; Mead et al. 2016), baryonic physics (Mo-
hammed & Seljak 2014; Fedeli 2014; Fedeli et al. 2014; Mead
et al. 2015b), alternatives to cold dark matter (Dunstan et al.
2011; Schneider et al. 2012; Marsh 2016), and primordial
non-Gaussianity (Smith et al. 2011). Its imperfect under-
lying assumptions are however responsible for inaccuracies
that limit its applicability to future high-quality data (see,
e.g., Figure 1 in Massara et al. 2014), where percent level
accuracy is required in order to obtain unbiased cosmologi-
cal constraints (Huterer & Takada 2005; Eifler 2011; Hearin
et al. 2012; Taylor et al. 2018a).

To mitigate these downsides one can add complexity to
the model at the expense of introducing new free parame-
ters (see, e.g., Seljak & Vlah 2015), fitting the existing ones
to the matter power spectrum measured in simulations (see,
e.g., Mead et al. 2015b), or sensibly increasing the computa-
tional costs by going beyond linear order in perturbation the-
ory (see, e.g., Valageas & Nishimichi 2011). Here, instead, we
follow and extend the approach presented in Mead (2017),
which we shall refer to as halo model reactions8.

8 Note that in Mead (2017) this is referred to as response. We
use the term reaction to distinguish it from the quantities studied
in Neyrinck & Yang (2013), Nishimichi et al. (2016) or Barreira &

Our goal is to model the nonlinear power spectrum of
fairly general extensions to the standard cosmology, a flat
ΛCDM Universe with massless neutrinos. These cosmologies
equipped with beyond-ΛCDM physics are what we will call
real cosmologies. We use the halo model to determine the
change (i.e. the reaction) that this new physics induces in a
reference ΛCDM cosmology, for which simulations are con-
siderably cheaper. Key to the success of our method is how
this reference cosmology is defined, which is what we will
call the pseudo cosmology. Essentially, this is a ΛCDM cos-
mology evolved with standard gravity up to a final redshift
zf , with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of
interest at zf . In other words, the cold dark matter and the
cosmological constant determine the expansion history and
growth of structure of the pseudo cosmology, but the initial
conditions (see Sec. 4) are adjusted so that

P
pseudo
L

(k, zf) = Preal
L (k, zf) . (51)

The reaction function is then defined as the ratio of the
nonlinear matter power spectrum in the real cosmology to
that in the pseudo cosmology,

R(k, z) ≡ Preal(k, z)
Ppseudo(k, z)

, (52)

and our corresponding halo model prediction takes the
heuristic form9

R(k, z) =
[(1 − E)e−k/k⋆ + E]Preal

L (k, z) + Preal
1h

(k, z)

Preal
L

(k, z) + P
pseudo

1h
(k, z)

. (53)

Here, E ∼ 1 and k⋆ > 0 are parameters introduced to im-
prove the accuracy of the halo model reactions in modified
gravity theories. These are not free parameters, and we shall
derive them using the halo model and standard perturbation
theory below. However, let us first examine the general be-
haviour of Eq. (53):

(i) On large linear scales R → 1 by definition10;

(ii) On small nonlinear scales R ≈ Preal
1h

/P
pseudo

1h
;

(iii) Quasi-linear scales 0.01 . k Mpc h−1 . 0.1 are well
described by perturbation theory, while intermediate scales
0.1 . k Mpc h−1 . 1 are primarily controlled by the halo

mass function ratio nreal
vir

/n
pseudo

vir
.

Schmidt (2017). Our and these other definitions are all conceptu-
ally analogous, in the sense that they describe how the nonlinear
power spectrum responds to changes in some feature, which in
our case is physics beyond the vanilla ΛCDM cosmology, e.g. fifth
forces, evolving dark energy, massive neutrinos, baryons etc.
9 Note that we neglect the integral factor Eq. (50) in our two-

halo terms. We checked that setting I2(k) = 1 for all scales has no
measurable impact on our halo model reactions.
10 This is not strictly true in the traditional halo model imple-

mentation we adopt in this work. In fact, the one-halo terms have
a constant tail in the low-k limit (see Eq. 54) that dominates the

two-halo contributions on very large scales. In a consistent for-
mulation of the halo model, however, where mass and momentum

conservation are enforced, this tail disappears leaving only the
theoretically motivated two-halo term (Schmidt 2016). For our
purposes we can simply ignore this inconsistency, and restrict the
use of the reaction function to scales k > 0.01 h Mpc−1.
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Fixing the real and pseudo linear power spectra to be iden-
tical (as in Eq. 51) forces the corresponding mass functions
to be somewhat similar. Therefore, owing to (iii), reaction
functions can overcome the typical inaccuracies that plague
the halo model in the transition region between large and
small scales.

To assign a value to the boost/suppression term E, it
is important to realise that we would like to preserve the
smoothness in the transition from the linear to the nonlinear
regime. In turn, this is tied to the shape of the one-halo
terms on scales 0.5 . k Mpc h−1 . 1, where the two-halo
contribution becomes subdominant. In this regime the one-
halo terms are well approximated by their large-scale limit
P1h(k → 0), thus suggesting that

E(z) =
Preal

1h
(k → 0, z)

P
pseudo

1h
(k → 0, z)

(54)

is a good choice, one that only depends on the ratio

nreal
vir

/n
pseudo

vir
.

In Eq. (53), the transition rate from linear to nonlinear
scales is governed by the parameter k⋆

11: for k⋆ → 0 the
halo model reaction collapses to the ratio of one-halo terms;
in the opposite case, k⋆ → ∞, the parameter E loses any role,
and the reaction reduces to its definition in Mead (2017).
We determine this scale using standard perturbation theory
(SPT) (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z |k⋆) =
Preal
SPT

(k0, z) + Preal
1h

(k0, z)

P
pseudo

SPT
(k0, z) + P

pseudo

1h
(k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + PΨ13(k, z) , (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the
largest wavenumber that can both ensure reliable perturba-
tive predictions and keep the inaccuracies induced by the
exponential sensitivity to k⋆ under control (see App. B and
Carlson et al. 2009). Expressions for the second order cor-
rections P22, P13 and PΨ

13
to the linear power spectrum are

given in App. B. Note that alternative perturbation schemes
can also be used in Eq. (55), such as the Lagrangian Per-
turbation Theory for modified gravity recently developed
in Aviles & Cervantes-Cota (2017).

The role of the two-halo correction factor in Eq. (53)
becomes clear in the limiting case k⋆ → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions
matches smooth dark energy simulations at percent level or
better on scales k . 1 h Mpc−1for z = 0 (see also Sec. 5
below). On quasi-linear scales this remarkable agreement
can be understood in terms of standard perturbation the-
ory. Schematically, the nonlinear matter power spectrum is
a non-trivial function of the linear power spectrum obtained
through some operator K, i.e. P(k) = K[PL(k)] (Bernardeau

11 As we shall see below, k⋆ is derived from perturbation theory

and is largely independent of the one-halo contribution. How-
ever, its specific value should be interpreted with caution, in that
equally good alternatives to the exponential function in Eq. (53)
can provide different solutions to Eq. (55).

et al. 2002). Provided that gravitational forces remain un-
changed, then Eq. (51) enforces Preal ≈ Ppseudo on linear and
quasi-linear scales. This is no longer true for modifications
of gravity, since the structure of the KMG operator is altered
by different mode-couplings and screening mechanisms. We
correct for this fact by including the two-halo pre-factor in
Eq. (53), so that finite k⋆ roughly encapsulates the extent
of the mismatch between KMG and KGR. For comparison, in
F5 at z = 0 we have k⋆ = 0.3 h Mpc−1, whereas in nDGPm
it becomes k⋆ = 0.95 h Mpc−1, which reflects the different
screening efficiency on large scales between the chameleon
and Vainshtein mechanisms.

Although our choice of k0 is commonly regarded as
well within the quasi-linear regime, screening mechanisms
in modified gravity induce nonlinearities on large scales that
can be more important than in GR. For this, the determina-
tion of k⋆ can be complicated by inaccuracies specific to the
perturbation theory employed, and to reduce their impact
on the halo model reactions we take advantage of the follow-
ing two facts: (i) on large scales we expect Preal

NoScr
≈ Ppseudo,

where Preal
NoScr

denotes the nonlinear matter power spectrum
of the real cosmology assuming there is no screening mech-
anism; (ii) the kernel operators KScr

MG
and KNoScr

MG
for the

screened and unscreened real cosmology, respectively, have a
similar structure (see App. B). Therefore, at least in princi-
ple, the ratio Preal

Scr,SPT
/Preal

NoScr,SPT
could give a better descrip-

tion of the reaction on large scales than the obvious candi-

date Preal
Scr,SPT

/P
pseudo

SPT
. Hereafter we will use Preal

NoScr,SPT
instead

of P
pseudo

SPT
in Eq. (55), which in spite of being a sub-optimal

strategy in some cases (see right panel of Figure B1) pro-
duces the most consistent behaviour across the cosmological
models we have tested, as shown in Sec. 5.

In summary, halo model reactions provide a fast (we
only need one-loop SPT for a single wavenumber) and gen-
eral framework to map accurate nonlinear matter power
spectra in ΛCDM to other non-standard cosmologies. We
apply this method to f (R) gravity, nDGP and evolving dark
energy, and test its performance in Sec. 5 against the cos-
mological simulations described in the next section.

4 SIMULATIONS

The simulations of f (R) gravity and DGP models used in
this work were run using ecosmog (Li et al. 2012, 2013a,b),
which has been developed to simulate the structure forma-
tion in various subclasses of models within the Horndeski
family of theories. ecosmog is an extension of the simula-
tion code ramses (Teyssier 2002), which is a particle-mesh
code employing adaptive mesh refinement to achieve high
force resolution. The simulations are dark matter only and
run in boxes with comoving size 512 h−1Mpc using 10243

simulation particles. Other basic information can be found
in Table 2. The initial conditions of the simulations are gen-
erated using 2lptic (Crocce et al. 2006), which calculates
the particle initial displacements and peculiar velocities up
to second order in Lagrangian perturbations, allowing us to
start from a relative low initial redshift zini = 49. To iso-
late the effect of nonlinearities we use identical phases for
the initial density field in all cases. The linear power spectra
used to generate the initial conditions are computed using
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Table 2. Main technical details of the simulations employed in this work. The Nyquist frequency kNy = πNp/Lbox, ǫ is the force resolution,

and mp the particle mass. The standard cosmological parameters for the real f (R) and nDGP simulations, as well as for their standard
ΛCDM counterparts, are ωb ≡ Ωbh

2
= 0.02225, ωc ≡ Ωch

2
= 0.1198, H0 = 100h = 68 km s−1 Mpc−1, As = 2.085 × 10−9, ns = 0.9645. For the

evolving dark energy models we have instead ωb = 0.0245, ωc = 0.1225, H0 = 70 km s−1 Mpc−1, σ8 = 0.8, ns = 0.96.

model Lbox N3
p kNy ǫ mp realisations code

f (R) 512 Mpch−1 10243 6.3 h Mpc−1 15.6 kpch−1 1.1 × 1010 M⊙h−1 1 ecosmog

nDGP 512 Mpch−1 10243 6.3 h Mpc−1 15.6 kpch−1 1.1 × 1010 M⊙h−1 1 ecosmog

DE 200 Mpch−1 5123 8 h Mpc−1 7.8 kpch−1 5 × 109 M⊙h−1 3 gadget-2

camb (Lewis et al. 2000), with Ωm = 0.3072, ΩΛ = 0.6928,
h = 0.68, Ωb = 0.0481 for all simulations. Importantly, follow-
ing Eq. (51) the normalisation – and shape in f (R) gravity
– of the initial linear power spectra are different in the real

and pseudo simulations. Since at early times deviations from
GR are negligible, simulations in ΛCDM and modified grav-
ity share the same initial conditions set by the ΛCDM power
spectrum,

Preal
L (k, zini) =

[
DΛ(zini)

DΛ(z = 0)

]2

PΛL (k, z = 0) , (57)

with σ8(z = 0) = 0.8205. The pseudo runs (to which we
will apply the halo model reactions) have different initial
conditions, generated using modified gravity linear power
spectra at the final redshift, zf , and then rescaled with the
ΛCDM linear growth to the starting redshift as

P
pseudo
L

(k, zini) =
[

DΛ(zini)
DΛ(zf)

]2

PMG
L (k, zf) , (58)

where in this work zf = 0 or 1. By evolving the initial real
and pseudo power spectra, Eqs. (57) and (58), with the mod-
ified and standard laws of gravity, respectively, Eq. (51) will
be automatically satisfied at zf . We extract the nonlinear
matter power spectrum from our particle snapshots using
the public code powmes (Colombi et al. 2009).

Simulations of dark energy models were run using a
modified version of Gadget-2 that allows for the {w0,wa}
parametrisation under the assumption that the dark en-
ergy is homogeneous. Initial conditions were generated at
zini = 199 using N-GenIC (Springel 2015), a code that cal-
culates initial particle displacements and peculiar velocities
based on the Zeldovich approximation. Our simulations take
place in 200 Mpc h−1 boxes and use 5123 particles. Note that
since we are concerned only with ratios of power spectra the
overall resolution requirements on the simulations are less
stringent than if we were interested in the absolute power
spectra. We checked that our simulated reactions were in-
sensitive to the realisation, box size, particle number and
softening up to the wave numbers we show.

Differently from the modified gravity runs, we fix σ8 =

0.8 for all the evolving dark energy models. Then, for the
real cosmologies the amplitudes of the initial density field
are determined by

Preal
L (k, zini) =

[
DDE(zini)

DDE(z = 0)

]2

PDE
L (k, z = 0) , (59)

where DDE(z) is the linear growth of a specific dark energy
model, while for the pseudo counterparts one simply replaces
PMG

L
with PDE

L in Eq. (58).

5 RESULTS

Here we test our halo model reactions (see Sec. 3.3) against
the same quantities constructed from the real and pseudo

cosmological simulations described in Sec. 4. To help get
a better sense of the performance of our method, for each
real cosmology C we also compute the standard ratios
Preal
C (k)/PΛCDM(k), where our theoretical prediction for the

real nonlinear power spectrum is obtained as

Preal
C (k) = R(k) × P

pseudo

C (k) , (60)

where R(k) is given by Eq. (53). To test our modified grav-

ity predictions we calculate P
pseudo

C (k) from HMcode (Mead
et al. 2015b, 2016) or using the measurement from the sim-
ulations directly. For evolving dark energy, instead, we use
the pseudo nonlinear power spectrum given by the Coyote
Universe emulator (Heitmann et al. 2014), and in so doing
we illustrate how one could predict the real power spectrum
for cosmologies beyond the concordance model with the aid
of a carefully designed ΛCDM-like emulator (Giblin et al. in
prep.).

5.1 f (R) gravity

Figure 1 shows the matter power spectrum reactions cal-
culated using Eq. (53) for the F5 cosmology at z = 0 (left
panel) and z = 1 (right panel) in comparison to the mea-
sured reactions in the N-body simulations. For the virial
halo mass function entering P1h (see Eq. 49) we first adopt
the approach developed in Lombriser et al. (2013), which
incorporates both self- and environmental-screening in the
spherical collapse (see App. A). At z = 0 the halo concen-
trations, virial radii and mass functions are good enough
to give percent level predictions on scales k . 1 h Mpc−1.
A deviation of a few percent is however visible at z = 1

starting on scales as large as k ≈ 0.2 h Mpc−1. In App. C
we show that changes in the halo profiles only affect scales
k & 0.5 h Mpc−1, suggesting that the observed inaccuracies
could be caused by a mismatch between the predicted virial

mass function ratio nreal
vir

/n
pseudo

vir
and the same quantity mea-

sured in simulations. Indeed, Cataneo et al. (2016) found
that, for halo masses defined by spherical regions with an
average matter density 300 times the mean matter density
of the Universe, the halo mass function of Lombriser et al.
(2013) can deviate up to 10% from the simulations.

Given the complexity of measuring the virial halo mass
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Figure 1. Matter power spectrum reactions in f (R) gravity for | f̄R0 | = 10−5. In each panel the data points represent the reactions
measured from simulations; lines denote the corresponding halo model predictions identified by the halo mass function used for the

one-halo contributions in f (R) gravity, that is either Lombriser et al. (2013) (dashed) or Cataneo et al. (2016) fits (dotted). Lower panels
present the fractional deviation of the halo model relative to the simulations, with grey bands marking the 1% and 2% uncertainty regions.

Left: reaction at z = 0 with both halo mass functions providing predictions within 1% from the simulations for k . 1 h Mpc−1, as shown
in the lower panel. Right: z = 1 reaction. The lower panel shows that thanks to the improved semi-analytical prescription for the halo
abundances in Cataneo et al. (2016) the agreement between halo model and simulations reaches percent-level on scales k . 1 h Mpc−1.
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Figure 2. Same as Figure 1 with the amplitude of the background scalaron field now fixed to | f̄R0 | = 10−6. For this cosmology both halo
mass functions perform very well regardless of redshift, which can be explained by their similarity as shown in Cataneo et al. (2016).

function in f (R) simulations12, we investigate changes in the
reactions induced by a more accurate description of the halo

12 Due to the nature of the chameleon screening, in f (R) gravity
the virial overdensity depends on both the mass of the halo and
the gravitational potential in its environment. Things are much

abundances with the fits provided in Cataneo et al. (2016).

There, however, the calibration of the n
f (R)
∆

/nΛCDM
∆

ratios
was performed for ∆ = 300, whereas for our purposes we need

simpler in DGP, where by virtue of the Vainshtein screening both
dependencies disappear.
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∆ = ∆vir. We go from one mass definition to the other with
the scaling relations outlined in Hu & Kravtsov (2003) (for a
first application to f (R) gravity see Schmidt et al. 2009). In-
evitably, this transformation suffers from inaccuracies in cvir

and ∆vir, which we attempt to compensate for by adjusting
the M300(Mvir) relation so that the new rescaled mass func-
tion provides a present-day halo model reaction that is at
least as good as the reaction obtained when using the Lom-
briser et al. (2013) virial mass function (dotted line in the
left panel of Figure 1)13. We then take the ratio of the Cata-
neo et al. (2016) rescaled mass function to that of Lombriser
et al. (2013), and treat this quantity as a correction factor
for the latter. To find the required adjustment at high red-
shifts we shift the z = 0 correction by an amount ∆ log10 Mvir

inferred from the redshift evolution of the ratio of the two
halo mass functions over the range z ∈ [0, 0.5] (see central
panel of Figure 4 in Cataneo et al. 2016). A simple extrapo-
lation to z = 1 gives ∆ log10 Mvir = 1. Although far from being
a rigorous transformation, the resulting halo model reaction
now agrees to better than 1% down to k ≈ 3 h Mpc−1, as
shown in the right panel of Figure 1. Figure 2 illustrates
that similar considerations are also valid for the F6 cosmol-
ogy, where we use the same mass shift ∆ log10 Mvir = 1 to
go from the z = 0 to the z = 1 mass function correction. In
all cases, deviations in the highly nonlinear regime are most
likely caused by inaccurate c-M relations. We leave the study
of f (R) gravity reactions on small scales derived from proper
virial quantities for future work.

Figure 3 and Figure 4 show the relative change of the
matter power spectrum in f (R) gravity with respect to GR
for the F5 and F6 models, respectively. The left panels
present the best-case scenario, that is, when“perfect”knowl-
edge of the pseudo power spectrum is available. In this case,
since the uncertainties come entirely from our halo model
predictions, we can obviously reproduce the power spectrum
ratios at the same level of accuracy of our reactions. For
now the pseudo information comes directly from our simu-
lations, but it is not hard to imagine a specifically designed
emulator capable of generating the nonlinear matter power
spectrum of ΛCDM cosmologies with non-standard initial
conditions. We will analyse the requirements for such emu-
lator in a future work (Giblin et al. in prep.). In the right
panels we compute Ppseudo with HMcode to demonstrate
that currently, together with publicly available codes, our
method can achieve 2% accuracy on scales k . 1 h Mpc−1in
modified gravity theories characterised by scale-dependent
linear growth.

For a comparison to a range of other methods for mod-
elling the nonlinear matter power spectrum in f (R) and
other chameleon gravity models, we refer to Figures 4 and 5
in Lombriser (2014), noting that the majority of these meth-
ods rely on fitting parameters in contrast to the approach
discussed here.

13 In practice, we start with the Hu & Kravtsov (2003) rela-
tion M300 = Q(Mvir)Mvir, and make the replacement Q(Mvir) →
Q′(Mvir) = min[ãQ f (R)(b̃Mvir), QGR(Mvir)], where ã and b̃ are O(1)
free parameters fine-tuned to reach the required accuracy in the
halo model reaction at z = 0. The use of the minimum operator

ensures that the f (R) conversion factor matches the corresponding
GR value for masses large enough to fully activate the chameleon

screening.

5.2 DGP

Spherical collapse dynamics is much simpler in
nDGP (Schmidt et al. 2010), with both the linear over-
density threshold for collapse, δc, and the corresponding
average virial halo overdensity, ∆vir, being only functions
of redshift. For instance, in GR one has ∆vir(z = 0) = 335

and ∆vir(z = 1) = 200 for Ωm = 0.3072, whereas these
values become ∆vir(z = 0) = 283 and ∆vir(z = 1) = 178 in
our nDGPm cosmology. This fact allows us to extract the
virial halo mass function directly from our simulations, and

test that accurate nreal
vir

/n
pseudo

vir
ratios do indeed produce

accurate halo model reactions. Figures 5 and 6 show that,
after refitting the virial Sheth-Tormen mass function to
the same quantity from simulations, halo model predictions
reach percent level accuracy on scales k . 1 h Mpc−1(see
App. C for details on the halo mass function calibration to
simulations). Moreover, since the Vainshtein radius (Eq. 23)
for the most massive halos is of order a few megaparsecs, we
expect small changes caused by the screening mechanism on
large scales, i.e. k . 0.1 h Mpc−1. In other words, although
in our calculations we keep the two-halo correction factor
in Eq. (53), it contributes only marginally to improving the
performance of our reaction functions. This is evident from
the perturbation theory predictions shown in Figure B2.
Once again, deviations on scales k & 1 h Mpc−1could be
primarily sourced by inaccurate real and pseudo halo
concentrations, and is the subject of future investigation.

We study the ability of the halo model reactions to re-
produce the relative difference of the nDGP power spec-
trum from that of standard gravity when combined with
the pseudo matter power spectrum from either HMcode or
the simulations. Figures 7 and 8 confirm that with current
codes also scale-independent modifications of gravity can be
predicted within 2% over the range of scales relevant for this
work.

5.3 Dark energy

Figure 9 shows the reaction functions for the evolving dark
energy cosmologies listed in Table 1. The left panel contains
essentially the same z = 0 information of Figure 2 in Mead
(2017), with the notable difference that here we compute the
spherical collapse virial overdensities including the dark en-
ergy contribution to the potential energy, and do not assume
energy conservation during collapse (Schmidt et al. 2010)
(expressions for the individual terms entering the virial the-
orem can be found in App. A). The right panel shows the
same quantity at z = 1. At both redshifts the halo model re-
actions based on the standard Sheth-Tormen mass function
fits can capture very well the measurements from simulations
down to the transition scale between the two- and one-halo
terms. Also in this case, we attribute inaccuracies on small
scales mainly to the inadequacy of the Dolag et al. (2004)
and Bullock et al. (2001) halo concentration prescriptions
for the real and pseudo cosmologies, respectively.

In Figure 10 we consider two representative dark en-
ergy models, DE2 and DE3, and compare their matter power
spectra to that of ΛCDM with the same initial conditions.
Their particular equations of state enhance the growth of
structure in one case and suppress it in the other. Here,
we employ the Coyote Universe Emulator (Heitmann et al.

MNRAS 000, 1–22 (2018)
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Figure 3. Matter power spectrum fractional enhancements relative to GR for f (R) gravity with | f̄R0 | = 10−5. As in the previous figures, the
data points correspond to the results from simulations at z = 0 (blue squares) and z = 1 (red triangles). Coloured lines denote predictions

based on the halo model reactions at z = 0 (dashed blue) and z = 1 (dot-dashed red). To emphasise the impact of nonlinearities we
include the linear theory predictions as dashed grey lines. Lower panels show the fractional deviation of the nonlinear predictions from

the simulations, ∆ ≡
(
R × P

Sim/HMcode

Pseudo
/PSim/HMcode

GR

)
/
(
PSim

Real
/PSim

GR

)
−1, with grey bands marking 1% and 2% uncertainty regions. Left: for our

theoretical estimates we use pseudo cosmology matter power spectra measured from simulations as the baseline, which we then rescale

with the halo model reactions employing the Cataneo et al. (2016) halo mass functions. The lower panel illustrates that with future
codes, eventually capable of reaching percent-level accuracy on the matter power spectra for the ΛCDM-evolved pseudo cosmologies,

high-accuracy nonlinear matter power spectra in modified gravity will also be accessible. Right: same as left panel with the difference
that the pseudo cosmology matter power spectra computed with HMcode are now adopted as the baseline. This implies that applying
our halo model reaction methodology to baseline ΛCDM predictions from existing codes we can achieve . 2% precision on scales k . 1

h Mpc−1.
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Figure 4. Same as Figure 3 with the background field amplitude set to | f̄R0 | = 10−6.

MNRAS 000, 1–22 (2018)



Matter power spectrum reaction to dark energy and modified gravity 13

    

z=0

 Simulations

Standard ST
Refitted ST

0.75

0.80

0.85

0.90

0.95

1.00

1.05

ℛ(k)

nDGPm

0.01 0.05 0.10 0.50 1 5 10

-4

-2

0

2

4

k [h/Mpc]

Δ[%]

△ △ △ △ △△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

z=1

△ Simulations

Standard ST
Refitted ST

0.75

0.80

0.85

0.90

0.95

1.00

1.05

ℛ(k)
nDGPm

0.01 0.05 0.10 0.50 1 5 10

-4

-2

0

2

4

k [h/Mpc]

Δ[%]
Figure 5. Matter power spectrum reactions in an nDGP cosmology with crossover scale rcH0 = 0.5. In each panel the data points
represent the reactions measured from simulations; lines denote the corresponding halo model predictions defined by the halo mass

function used for the one-halo contributions in nDGP gravity, that is based on either the standard Sheth-Tormen fits (dashed) or on
fits to our simulations presented in App. C (dotted). Lower panels present the fractional deviation of the halo model relative to the

simulations, with grey bands marking the 1% and 2% uncertainty regions. Left: reaction at z = 0 with the refitted halo mass function
significantly improving the predictions for k . 1 h Mpc−1, as shown in the lower panel. Right: z = 1 reaction. The lower panel shows
similar performance for the two halo mass function fits, with our refitted version matching the simulations within 1% over a wider range
of scales.
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Figure 6. Same as Figure 5 with the crossover scale set to rcH0 = 2. Here both halo mass function fits exhibit excellent performance

independent of redshift, which can be explained by the similarity of their nDGP
vir

/nPseudo
vir

ratios shown in Figure C2.

2014) not only for our baseline pseudo power spectra, but
also as a substitute for the real and ΛCDM cosmology simu-
lations. This serves as an example to illustrate a straightfor-
ward application of the reaction functions: extend the cos-
mological parameter space of matter power spectrum emu-
lators designed for the concordance cosmology only, without

the need to run model-dependent and expensive cosmolog-
ical simulations. For the evolving equation of state of DE3
we use the emulator extension code PKequal built upon the
work presented in Casarini et al. (2016). Knowing that the
output from the emulator is 1-2% accurate on scales k . 1

h Mpc−1, from the previous results in Figure 9 we can expect
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Figure 7. Matter power spectrum fractional enhancements relative to GR for nDGP with rcH0 = 0.5. The data points correspond to
the results from simulations at z = 0 (blue squares) and z = 1 (red triangles). Coloured lines represent predictions based on the halo

model responses at z = 0 (dashed blue) and z = 1 (dot-dashed red). To emphasise the impact of nonlinearities we include the linear
theory predictions as dashed grey lines. Lower panels show the fractional deviation of the nonlinear predictions from the simulations,

∆ ≡
(
R × P

Sim/HMcode

Pseudo
/PSim/HMcode

GR

)
/
(
PSim

Real
/PSim

GR

)
− 1, with grey bands marking 1% and 2% uncertainty regions. Left: for our theoretical

estimates we use pseudo cosmology matter power spectra measured from simulations as the baseline, which we then rescale with the halo

model reactions employing our refitted halo mass functions in App. C. As for f (R) gravity, the lower panel illustrates that with future
codes eventually capable of reaching percent-level accuracy on the matter power spectra for the ΛCDM-evolved pseudo cosmologies,

high-accuracy nonlinear matter power spectra for scale-independent modifications of gravity will also be within reach. Right: same as the
left panel with the difference that the pseudo cosmology matter power spectra computed with HMcode are now adopted as the baseline.
Current available codes can achieve . 2% precision on scales k . 1 h Mpc−1when used in combination with accurate halo model reactions.
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Figure 8. Same as Figure 7 with the crossover scale set to rcH0 = 2.
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Figure 9. Matter power spectrum reactions for the six dark energy cosmologies with {w0, wa } pairs listed in Tab. 1. In each panel, the
data points represent the mean reactions measured from simulations as the average from three realisations; lines denote the corresponding

halo model predictions. Lower panels show the fractional deviation of the halo model relative to the simulations, with grey bands marking
the 1% and 2% uncertainty regions. Left: reactions at z = 0. These are similar to those presented in Mead (2017) and only differ in the

derivation of the virial overdensity ∆vir, in that here we account for all relevant contributions to the potential energy and do not assume
energy conservation (see Eqs. A6-A11). On small scales agreement with the simulations is somewhat better than in modified gravity,
which can be ascribed to a more accurate c-M relation at z = 0. Right: z = 1 reactions. Although percent level accuracy is reached on
scales k . 1 h Mpc−1, performance on highly non-linear scales deteriorates beyond the 2% level for some models. We think part of the
reason for that is to be found in high-z inaccuracies of the Dolag et al. (2004) prescription for the halo concentrations in dark energy
cosmologies.

similar agreement between our reaction-based power spectra
and those obtained from the emulator itself. This is indeed
the case except in the range 0.02 . k Mpc h−1 . 0.5, where
the interpolation process within the emulator fails to cap-
ture the correct dependence on ωb and w because the specific
values we use sit on the edge of its domain of applicability14.

6 CONCLUSIONS

The spatial distribution of matter in the Universe and its
evolution with time emerge from the interplay of grav-
itational and astrophysical processes, and are inextrica-
bly linked to the nature of the cosmic matter-energy con-
stituents. The power spectrum is an essential statistic de-
scribing the clustering of matter in the Universe, and lies at
the heart of probes of the growth of structure such as cosmic
shear and galaxy clustering. Measurements of these quanti-
ties from the next generation of large-volume surveys are
expected to reach percent level uncertainty – upon careful
control of systematics – on scales where nonlinearities and

14 The Coyote Universe emulator accepts values 0.0215 < ωb <

0.0235 and −1.3 < w < −0.7, while for our two evolving dark

energy models we have ωb = 0.0245, w(DE2)
= −1.3 and w

(DE3)
eff

=

−0.84. Since our background baryon density resides outside the
domain of the emulator, we set it to the maximum value allowed.
This has virtually no impact on our halo model responses, in that
they depend only weakly on ωb.

baryonic physics become important. It is notoriously diffi-
cult to predict the matter power spectrum in this regime to
such a degree of accuracy, yet these scales contain a wealth
of information on currently unanswered questions, e.g. the
nature of dark energy, the sum of neutrino masses and the
extent of baryonic feedback mechanisms.

In this work we focused on modelling the nonlinear
matter power spectrum in modified theories of gravity and
evolving dark energy cosmologies. We extended the reac-
tion method of Mead (2017) using the halo model to predict
the nonlinear effects induced by new physics on the matter
power spectrum of specifically designed reference cosmolo-
gies. These fiducial – pseudo – cosmologies mimic the lin-
ear clustering of the target – real – cosmologies, yet their
evolution is governed by standard gravity with ΛCDM ex-
pansion histories (which are either quick to simulate with
current resources, if not already available with emulators).
We showed that by applying the halo model reactions to the
nonlinear matter power spectrum of the pseudo cosmologies
we are able to recover the real counterpart to within 1% on
scales k . 1 h Mpc−1for all cases under study. Remarkably,
our methodology does not involve fitting the power spectra
measured in simulations at any stage. Instead, having access
to accurate ratios of the halo mass function in the real cos-
mology to that in the pseudo cosmology is crucial to achieve
the observed performance. Not including this information
from the simulation degrades the accuracy to . 3%. The
halo model reactions can also be used to predict the matter
power spectrum in the highly nonlinear regime. However,
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Figure 10. Matter power spectrum fractional differences relative to ΛCDM for DE3 (left) and DE2 (right) models, where the numbers
in curly brackets specify the equation of state pair {w0, wa }. Data points correspond to the output from the Coyote Universe emulator

(Heitmann et al. 2014) at z = 0 (blue squares) and z = 1 (red triangles). For DE3, which has a non-constant w, we used the emulator
extension of Casarini et al. (2016). Coloured lines represent predictions based on the halo model reactions at z = 0 (dashed blue) and
z = 1 (dot-dashed red). For reference, the linear theory predictions are shown as dashed grey lines. Lower panels show the fractional
deviation of the nonlinear predictions from the emulator, with grey bands marking 1% and 2% uncertainty regions. For our theoretical
estimates we use pseudo cosmology matter power spectra computed with the emulator itself as baseline, which we then rescale with the
halo model reactions. Lower panels illustrate that our halo model predictions can be employed to map accurately ΛCDM cosmologies to
evolving dark energy models. Deviations of order 2-4% on scales 0.02 . k Mpch−1 . 0.5 are entirely due to the emulator being pushed to
the edges of its domain of applicability in the plane {ωb, w }.

this requires additional knowledge of the average structural
properties of the dark matter halos as well as the inclusion
of baryonic effects (see, e.g, Schneider et al. 2018). We leave
these improvements for future work (Cataneo et al. in prep.).

In the case of the dark energy models we adopted the
Coyote Universe emulator for the pseudo matter power spec-
trum (i.e. for w = −1), which we then combined with our
halo model reaction to obtain the real expected quantity.
By comparing this prediction to the real output of the em-
ulator (i.e. for w , −1) we showed that emulators trained
on pure ΛCDM models can be accurately extended to non-
standard cosmologies in an analytical way, thus substantially
increasing their flexibility while simultaneously reducing the
computational cost for their design. However, applications
of this strategy to scale-dependent modifications of grav-
ity (such as f (R) models) necessitate of a more elaborate
ΛCDM emulator that takes as input also information on
the linearly modified shape of the matter power spectrum
(Giblin et al. in prep.). Together with suitable halo model
reactions, this emulator can also be employed to predict the
nonlinear total matter power spectrum in massive neutrino
cosmologies (Cataneo et al. in prep.), where the presence
of a free streaming scale induces a scale-dependent linear
growth (Lesgourgues & Pastor 2006).

Given that our method builds on the halo model, the
halo mass function and the spherical collapse model are ab-
solutely central for our predictions. Contrary to the standard
halo model calculations, however, the accuracy of our reac-
tions strongly depends on the precision of the pseudo and

real halo mass functions. This opens up the possibility of
combining in a novel way cosmic shear and cluster abun-
dance measurements, for example. Moreover, quite general
modifications of gravity – with their screening mechanisms
– can be implemented in the spherical collapse calculations
through the nonlinear parametrised post-Friedmannian for-
malism of Lombriser (2016).

In summary, halo model reactions provide a fast, accu-
rate and versatile method to compute the real-space non-
linear matter power spectrum in non-standard cosmologies.
Successful implementations in redshift-space by Mead (2017)
pave the way for applications to redshift-space distortions
data as well. Altogether, these features make the halo model
reactions an attractive alternative in-between perturbative
analytical methods and brute force emulation, and promise
to be an essential tool in future combined-probe analyses in
search of new physics beyond the standard paradigm.
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APPENDIX A: SPHERICAL COLLAPSE IN

MODIFIED GRAVITY AND QUINTESSENCE

We shall briefly review expressions for the force enhance-
ment F in f (R) and DGP gravity used in the modified spher-
ical collapse calculation in Sec. 3.1 as well as its impact and
the impact of dark energy domination on the virial theorem.

The force enhancement F adopted here for the spherical
collapse calculation in f (R) gravity is given by (Lombriser
et al. 2013)

F = 1

3
min

[
3
∆R

RTH

− 3

(
∆R

RTH

)2

+

(
∆R

RTH

)3

, 1

]
, (A1)

which uses the thin-shell approximation (Khoury & Welt-
man 2004; Li & Efstathiou 2012) with thickness ∆R ≪ RTH.
The expression is also adopted for the thick-shell limit and
interpolates between the small-field (F = 0) and large-field
(F = 1/3) regimes, which correspond to the two limiting
scenarios studied in the f (R) spherical collapse calculation
of Schmidt et al. (2009). Furthermore, for the f (R) functional
form Eq. (13) one finds (Lombriser et al. 2013)

∆R

RTH

≃ | fR0 |a7

Ωm(H0RTH)2
yh

×

©«

1 + 4
ΩΛ

Ωm

y
−3
env + 4
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Ωm
a3

ª®¬
2

− ©«
1 + 4

ΩΛ

Ωm

y
−3
h
+ 4
ΩΛ

Ωm
a3

ª®¬
2
,(A2)

where the normalised top-hat radius

y ≡ RTH/a

Ri/ai
(A3)

needs to be solved in both the halo (h) and the environment
(env) using Eq. (32), that now becomes

y
′′
+

(
2 +

H ′

H

)
y
′
= −
ΩmH2

0
a−3

2H2
(1 + F )yδ , (A4)

where we set F = 0 for the ΛCDM environment and primes
denote derivatives with respect to ln a. To solve Eq. (A4) we
use the initial conditions y = 1 and y

′
= −δi/3 obtained from

the linear theory in an Einstein-de Sitter Universe, which
at early times is an accurate description for all models in
Sec. 2 when the contribution from radiation is ignored. We
then iteratively adjust δi until the condition y(acoll) = 0 (i.e.
RTH = 0) is satisfied at the desired time of collapse, acoll,
within some small tolerance. For the environment, instead,
we follow Cataneo et al. (2016). Also note that Eq. (A2)

can easily be generalised for the family of chameleon mod-
els (Lombriser et al. 2014).

In DGP gravity, the force modification be-
comes (Schmidt et al. 2010)

F = 2

3β

√
1 + x−3 − 1

x−3
, (A5)

where x ≡ RTH/RV, with the Vainshtein radius and β func-
tion given in Eqs. (23) and (20), respectively. In smooth
quintessence cosmologies F = 0, and the sole effect on the
spherical collapse dynamics enters through the non-standard
background expansion. In both DGP and quintessence there
is no contribution from the environment, hence yh alone de-
scribes the full evolution. Moreover, F can be generalised
and parametrised to cover the range of different screening
mechanisms (Lombriser 2016).

The virial theorem for a general metric theory of gravity
remains unchanged with respect to its formulation in GR,
and reads

2T +W = 0 , (A6)

where W is the potential energy of the system and T its ki-
netic energy. However, energy is not conserved for evolving
dark energy and modified gravity scenarios, and the virial ra-
dius cannot be related to the turnaroud radius in the usual
way (Lahav et al. 1991). Instead, one must find the time
of virialisation, avir, that satisfies Eq. (A6) when all contri-
butions to W are considered. More specifically, the Newto-
nian, scalar field and background potential energies take the
form (Schmidt et al. 2010)

WN

E0
= −Ωm

a−1

a2
i

y
2(1 + δ) , (A7)

Wφ

E0
= −Ωm

a−1

a2
i

F y
2δ , (A8)

Weff

E0
= −8πG

3H2
0

(1 + 3weff)ρ̄eff
a2

a2
i

y
2 , (A9)

where

E0 ≡ 3

10
M(H0Ri)2 , (A10)

and the kinetic energy can be written as

T

E0
=

H2

H2
0

[
a

ai
(y′ + y)

]2

. (A11)

Combining eqs. (A6)-(A11) together with Eqs. (36)-(37) al-
lows us to find the virial radius Rvir as a function of halo
mass, and for various theories of gravity as well as expan-
sion histories.

APPENDIX B: PERTURBATION THEORY

The nonlinear evolution of matter perturbations in modi-
fied gravity has been extensively studied in Koyama et al.
(2009), Brax & Valageas (2012), Brax & Valageas (2013)
and Bose & Koyama (2016). Here we summarise their re-
sults and provide explicit expressions for the computation
of next-to-leading-order corrections to the linear power spec-
trum.
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The continuity and Euler equations describing the evo-
lution of the matter density perturbations, δ, and peculiar
velocity, v, are

Ûδ + 1

a
∇ · [(1 + δ)v] = 0 , (B1)

Ûv + Hv +
1

a
(v · ∇)v = −1

a
∇Ψ , (B2)

where the gravitational potential Ψ in modified gravity the-
ories with screening mechanisms depends nonlinearly on the
matter density perturbations, as in Eqs. (9) and (18). As-
suming vanishing vorticity, the velocity field can be fully
described by its divergence θ ≡ ∇ · v/(aH). By defining the
vector field

̟(k, η) ≡
(
δ̃(k, η)
−θ̃(k, η)

)
, (B3)

and expanding the gravitational potential up to third order
in the perturbations, the fluid equations in Fourier space
read

̟′
i (k; η) +Mi j (k; η)̟j (k; η) =∫

dk1dk2

(2π)3
δD(k − k12)γi;jk (k1, k2; η)

×̟j (k1; η)̟k (k2; η)

+

∫
dk1dk2dk3

(2π)6
δD(k − k123)σi;jkl(k1, k2; η)

×̟j (k1; η)̟k (k2; η)̟l(k3; η) , (B4)

where primes denote derivatives with respect to η ≡ ln a,
k1· · ·n ≡ k1 + · · ·+ kn, and repeated indices are summed over.
The left hand side of Eq. (B4) controls the evolution of linear
perturbations, with the matrix

M(k; η) =
(

0 −1

− 3
2
Ωm(η)[1 + ǫ(k, η)] 1−3weff (η)Ωeff (η)

2

)
. (B5)

The quantity ǫ measures the time- and scale-dependent lin-
ear departure from GR, which in f (R) gravity and DGP
reads

ǫ f (R)(k, η) = k2

3[e2ηm2(η) + k2]
, (B6)

ǫDGP(η) = 1

3β(η) , (B7)

where the mass

m(η) = 1
√

3κ1
, (B8)

with

κn = H2n−2 dn fR

dRn

����
R̄

, (B9)

and the DGP function β is given in Eq. (20).
The sources of nonlinearities are confined to the right

hand side of Eq. (B4), where the second order vertices are

γ1(k1, k2; η) =
(

0 α̂(k2, k1)/2
α̂(k1, k2)/2 0

)
, (B10)

γ2(k1, k2; η) =
(
γ2;11(k1, k2; η) 0

0 β̂(k1, k2)

)
(B11)

with

α̂(k1, k2) =
(k1 + k2) · k1

k2
1

, (B12)

β̂(k1, k2) =
‖k1 + k2‖2(k1 · k2)

2k2
1

k2
2

, (B13)

and the only modified gravity non-vanishing third order ver-
tex is σ2;111, with

σ
f (R)
2;111

(k1, k2, k3; η) =

9e6ηm8
Ω

3
mk2

123

4(e2ηm2
+ k2

1
)(e2ηm2

+ k2
2
)

×
e2ηm2κ3 + (κ3 − 9m2κ2

2
)‖k2 + k3‖2

(e2ηm2
+ k2

3
)(e2ηm2

+ ‖k2 + k3‖2)(e2ηm2
+ k2

123
)
, (B14)

σDGP
2;111

(k1, k2, k3; η) = 0 . (B15)

The vertex γ2;11 = 0 in standard gravity, whereas

γ
f (R)
2;11

(k1, k2; η) =

9e4η
Ω

2
mm6κ2k2

12

4(e2ηm2
+ k2

12
)(e2ηm2

+ k2
1
)(e2ηm2

+ k2
2
)
, (B16)

γDGP
2;11

(k1, k2; η) = 1

6
Ω

2
m

H2

H2
0

(H0rc)2

β2

[
(k1 · k2)2

k2
1

k2
2

− 1

]
. (B17)

The one-loop power spectrum corrections require the
density and velocity fields up to third order in the pertur-
bations, that is, we need ̟ = ̟(1)

+̟(2)
+̟(3). For this, we

shall first find the linear solution to Eq. (B4), ̟(1), and then
derive recursively the higher order solutions with the help
of the retarded Green function, which is obtained by setting
the right hand side of Eq. (B4) to a Dirac delta function (see
Brax & Valageas 2012, 2013, for more details). We can write
the linear ansatz as

̟(1)(k, η) = δ̃(k, 0)
(
D+(k, η)
D′
+
(k, η)

)
, (B18)

where the growing mode, D+(k, η), satisfies the linear second-
order equation

D′′
+
+

(
1 − 3weff(η)Ωeff(η)

2

)
D′
+
− 3

2
Ωm(η)[1 + ǫ(k, η)]D+ = 0 ,

(B19)

with Einstein-de Sitter initial conditions D+(ηi) = D′
+
(ηi) =

eηi at the initial time ηi. The decaying mode, D−, also sat-
isfies this equations and can be directly computed as

D−(k, η) = −D+(k, η)
∫ ∞

η

dη′
W(η′)

D+(k, η′)2
, (B20)

where the Wronskian of D+ and D− is given by

W(η) = −e
−(1/2)

∫
η

0
dη′[1−3weff (η′)Ωeff (η′)]

. (B21)

By using the retarded Green function

G(k1, k2; η1, η2) = Θ(η1 − η2)
× (2π)3δD(k1 − k2)G̃(k1, k2; η1, η2) , (B22)

MNRAS 000, 1–22 (2018)



Matter power spectrum reaction to dark energy and modified gravity 21

where Θ(η1 − η2) denotes the Heaviside function, we obtain
the second and third order density perturbations as the con-
volutions

δ̃(2)(k, η) = G1m ∗ [K(2)
m,i j

∗̟(1)
i
̟

(1)
j
], (B23)

δ̃(3)(k, η) = 2G1m ∗ [K(2)
m,i j

∗̟(2)
i
̟

(1)
j
]

+ G1m ∗ [K(3)
m,i jk

∗̟(1)
i
̟

(1)
j
̟

(1)
k

] , (B24)

with the operators K(2) and K(3) built from the second and
third order vertices, γm and σm, respectively (see Brax &
Valageas 2013, for more details). In Eq. (B22) the matrix G̃
takes the explicit form

G̃(k1, k2; η1, η2) =
1

D′
+2

D−2 − D′
−2

D+2

×
(
D′
+1

D−2 − D′
−2

D+1 D−2D+1 − D+2D−1

D′
+2

D′
−1

− D′
−2

D′
+1

D−2D′
+1

− D+2D′
−1

)
, (B25)

where D
+/−i is shorthand for D

+/−(ki, ηi).
Finally, we can write the equal-time two-point correla-

tion – equivalent to Eq. (56) – as

〈δ̃δ̃〉 = 〈δ̃(1)δ̃(1)〉 + 〈δ̃(2)δ̃(2)〉 + 〈δ̃(1)δ̃(3)〉 + 〈δ̃(3)δ̃(1)〉 , (B26)

which produces the following expressions for the one-loop
integrals

P22(k, η) = 2

∫
dq

(2π)3

∫ η

−∞
dη′

∫ η

−∞
dη′′

× G̃1j (k, k; η, η′)G̃1i(q, q; η, η′′)
× C̃j1 j2 (q, ‖k − q‖; η′, η′)C̃i1i2 (q, ‖k − q‖; η′′, η′′)
× γj;j1 j2 (q, k − q; η′)γi;i1i2 (q, k − q; η′′)
× PL(q)PL(‖k − q‖) , (B27)

P13(k, η) = 8PL(k)
∫

dq

(2π)3

∫ η

−∞
dη′

∫ η′

−∞
dη′′

× G̃1i1 (k, k; η, η′)G̃j1 j2 (q, q; η′, η′′)
× C̃m1m2 (‖k − q‖, ‖k − q‖; η′, η′′)
× C̃1j2 (k, k; η, η′′)γi1;j1m1

(q, k − q; η′)
× γi2;j2m2

(k, q − k; η′′)PL(‖k − q‖) , (B28)

PΨ13(k, η) = 6PL(k)
∫

dq

(2π)3

∫ η

−∞
dη′G̃12(k, k; η, η′)

× C̃11(k, k; η, η′)C̃11(q, q; η′, η′)
×σ2;111(q,−q, k; η′)PL(q) , (B29)

where all indices run from 1 to 2, the linear power spectra
are taken at η = 0, and we have used the two-point linear
correlator

C̃(k1, k2; η1, η2) =
(
D+1D+2 D+1D′

+2
D′
+1

D+2 D′
+1

D′
+2

)
. (B30)

To deactivate the screening mechanisms we simply set
γ2;11 = σ2;111 = 0, while keeping the linear deviation ǫ given
in Eqs. (B6)-(B7). This results in what we call the real ‘no-
screening’ power spectrum, Preal

NoScr
. The pseudo power spec-

trum up to one-loop, instead, follows from also imposing
ǫ = 0, such that the only difference compared to the standard
cosmology is in the initial conditions, i.e. in the shape and/or

Table C1. Refitted Sheth-Tormen halo mass function parameters
obtained from the simulation data shown in Figs. C1 and C2. Fits
are consistent with p = 0 in all cases. The standard values are
{A, q, p} = {0.3222, 0.75, 0.3}.

Model A q

nDGPm (z = 0) 0.3427 0.819
nDGPm (z = 1) 0.3067 0.757

nDGPw (z = 0) 0.3347 0.819
nDGPw (z = 1) 0.3023 0.754

pseudo-nDGPm (z = 0) 0.3438 0.829
pseudo-nDGPm (z = 1) 0.3057 0.761

pseudo-nDGPw (z = 0) 0.3332 0.823
pseudo-nDGPw (z = 1) 0.3013 0.753

amplitude of the linear power spectrum. Figures B1 and B2
show the SPT reaction functions on quasi-linear scales for
f (R) gravity and nDGP, where the pseudo nonlinear power
spectrum is computed using either the pseudo (solid lines) or
‘no-screening’ (dashed lines) one-loop correction. Although
the former approach is theoretically motivated, accuracy ar-
guments make the latter preferable for all cosmologies and
redshifts investigated in this work.

APPENDIX C: HALO MASS FUNCTION AND

CONCENTRATION TESTS

In Sec. 3.3 we showed that the real to pseudo halo mass func-

tion ratio, nreal
vir

/n
pseudo

vir
, controls the halo model reaction on

scales k & 0.1 h Mpc−1. In particular, for the nDGP cosmolo-
gies we explicitly checked that fitting the semi-analytical
halo mass functions directly to our simulations results in bet-
ter performance of the halo model reactions for wavenumbers
0.1 . k Mpc h−1 . 1. Below we briefly explain how these fits
to the halo mass functions extracted from our simulations
were carried out.

We measure the mean halo abundances and their un-
certainties from simulations as outlined in Cataneo et al.
(2016), with the important difference that, here, halos iden-
tified with the rockstar halo finder (Behroozi et al. 2013)
have masses defined in spherical volumes with mean density
∆vir times the background comoving matter density, as in
Eq. (36). The virial overdensity depends on redshift, mat-
ter content and theory of gravity through Eq. (37). Com-
pared to Cataneo et al. (2016) we also use a finer mass bin-
ning, with a bin size ∆ log10 M = 0.1. Figures C1 and C2
present a rescaled version of the halo mass functions (i.e. the
large-scale limit of the one-halo integrand Eq. 49) as well as

the nreal
vir

/n
pseudo

vir
ratios. The standard halo mass function fits

for the parameters in Eq. (41) systematically underpredict
the simulation measurements. Refitting these parameters to
each real and pseudo simulation separately can change the

halo mass function ratio nreal
vir

/n
pseudo

vir
to an extent relevant for

the halo model reactions. Note that when this ratio remains
largely unaffected by the refitting, the predicted reactions
also show very little variation (compare the right panels of
Figure C2 and Figure 6). Table C1 summarises the refitted
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Figure B1. Standard perturbation theory (SPT) matter power spectrum reactions in f (R) gravity with background scalaron amplitudes
| f̄R0 | = 10−5 (left) and | f̄R0 | = 10−6 (right). The different lines illustrate the effect of computing the nonlinear power spectrum for the
pseudo cosmology using either the exact one-loop corrections (solid) or the real unscreened one-loop terms instead (dashed). The squares
are the measurements from our simulations. In F5 the real screened and unscreened one-loop contributions err in the same direction,
which makes the no-chameleon correction preferable over the theoretically motivated pseudo one-loop term. The opposite is true for F6,

although the difference between the two approaches is small in this case. For consistency, throughout this work we always choose the
‘no-screening’ one-loop correction for our pseudo SPT predictions, a strategy good enough on large quasi-linear scales for all cosmologies

investigated.
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 nDGPw sim z=0
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Figure B2. Same as Figure B1 for nDGP gravity with crossover scales rcH0 = 0.5 (left) and rcH0 = 2 (right). Here using the real

unscreened one-loop corrections instead of the equivalent exact pseudo quantity has negligible impact on the SPT responses.

ST halo mass function parameters for the real and pseudo

nDGP cosmologies used in this work.

Given the structure of the one-halo term Eq. (49), one
might argue that inaccurate halo profiles are partially re-
sponsible for the few percent mismatch between the pre-
dicted and measured reactions in Figure 1 and Figure 5.
If that was the case, then having accurate halo mass func-
tions would not necessarily correspond to having accurate
halo model reactions. However, Figure C3 shows otherwise,
in that even extreme variations of the halo concentrations
cause important changes only on scales k & 0.5 h Mpc−1.

From these tests we conclude that accurate virial halo
mass function ratios are central to determining . 1% accu-
racy for the halo model reactions, and that the mean concen-
tration of massive halos is well described by Eq. (46), at least
as long as this relation is employed in the reaction ratios. In
future works we will investigate the implications of refitting
the c-M relation to that measured in simulations, which has

the potential to ameliorate our halo model predictions in the
highly nonlinear regime.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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Figure C1. P1h(k → 0) integrands (Eq. 49) at z = 0 (left) and z = 1 (right) for the nDGP cosmology with crossover scale rcH0 = 0.5. The
data points with error bars are Jackknife estimates from simulations; lines correspond to semi-analytical predictions using the standard

Sheth-Tormen halo mass function fits {A, q, p} = {0.3222, 0.75, 0.3} (dashed), or to direct fits to our simulations (solid). Top panels show
the results for the real nDGP cosmology, while middle panels present the outcome for the pseudo counterpart. The ratios of the real halo
mass functions to the pseudo ones are illustrated in the lower panels. Combined with the information in Figure 5, these ratios clearly
stand out as the relevant quantity to achieve percent level accuracy for the reaction function over scales k . 1 h Mpc−1. In fact, the
difference between the standard and refitted halo mass functions is more significant at low redshift, which reflects the performance shown
in the lower panels of Figure 5.
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Figure C2. Same as Figure C1 for the nDGP cosmology with crossover scale rcH0 = 2. For both selected redshifts the bottom panels
show small differences between the standard and refitted halo mass function ratios. Once again, this matches the expectations from

Figure 6.
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Figure C3. Impact of the c-M relation on the nDGPm halo
model response at z = 0. Lines correspond to different combi-
nations of normalisation and slope in Eq. (46), and changes are

restricted to the real cosmology only. Even significant deviations
from the standard values (solid blue line) are not able to match

the simulations, with virtually no effect on scales k . 0.5 h Mpc−1.
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