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Abstract

In this thesis, we study the optimal scaling problem for sampling from a target

distribution of interest using a random walk Metropolis (RWM) algorithm. In or-

der to implement this method, the selection of a proposal distribution is required,

which is assumed to be a multivariate normal distribution with independent com-

ponents. We investigate how the proposal scaling (i.e. the variance of the normal

distribution) should be selected for best performance of the algorithm.

The d-dimensional target distribution we consider is formed of independent

components, each of which has its own scaling term θ−2
j (d) (j = 1, . . . , d). This

constitutes an extension of the d-dimensional iid target considered by Roberts,

Gelman & Gilks (1997) who showed that for large d, the acceptance rate should be

tuned to 0.234 for optimal performance of the algorithm. In a similar fashion, we

show that for the aforementioned framework, the relative efficiency of the algorithm

can be characterized by its overall acceptance rate.

We first propose a method to determine the optimal form for the proposal
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scaling as a function of d. This assists us in producing a necessary and sufficient

condition for the algorithm to adopt the same limiting behavior as with iid targets,

resulting in an asymptotically optimal acceptance rate (AOAR) of 0.234. We show

that when this condition is violated the limiting process of the algorithm is altered,

yielding AOARs which might drastically differ from the usual 0.234. We also

demonstrate that inhomogeneous proposal distributions are sometimes essential to

obtain of a nontrivial limit. Finally, we illustrate how our results can be applied

to the special case of correlated targets whose distribution is jointly normal.

Specifically, we prove that the sequence of stochastic processes formed by say

the i∗-th component of each Markov chain usually converges (as d → ∞) to a

Langevin diffusion process whose speed measure varies according to target scaling

vector. The demonstrations involve an appropriate rescaling of space and time, as

well as L1 convergence of generators.

We illustrate with a number of examples how practitioners can take advantage

of these results.
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Introduction

In recent years, Markov chain Monte Carlo (MCMC) methods, which constitute

powerful tools allowing for data generation from highly complex distributions, have

raised a growing enthusiasm. Since their first appearance in the statistical physics

literature (see [24]), these techniques have opened new horizons regarding the com-

plexity of models that can be used in practice. As of this day, such methods are

extensively used by researchers and practitioners in various fields of application

such as biostatistics, computer science, physics, economics, finance, and applied

statistics. They have had a deep impact on the progress in statistical genetics for

instance, a field often dealing with highly complex hierarchical models. In statis-

tical finance, they have permitted the elaboration of methods for inference and

prediction of stochastic volatility models (see [22], for example). In applied statis-

tics, MCMC methods are widely used in the Bayesian environment, where very

high dimensional state spaces or extremely complex distributions are challenges

that one is likely to encounter.

A number of researchers contributed to the development of these algorithms.

Hastings’ adaptation (see [21]) of the Metropolis algorithm (see [24]) has resulted

in the famous generalization known today as the Metropolis-Hastings algorithm.

The particularity of these algorithms resides in the necessity of choosing a pro-
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posal distribution for their implementation. The work presented in [17] about the

Bayesian restoration of images is famous in the statistical literature, as it consti-

tutes the first instance of the Gibbs sampler algorithm. This algorithm utilizes the

full conditional distributions to iteratively sample from a joint distribution. This

work has also been one of the first applications of MCMC methods to Bayesian

analysis. The data-augmentation algorithm presented in [39] constitutes a popular

iterative method to compute Bayesian posterior distributions. A generalization of

the Gibbs sampler and data-augmentation algorithms can be found in [18], along

with several examples illustrating the use of these techniques. Various MCMC

methods and some of their variants are outlined in [40], which also discusses the-

oretical and practical issues related to these methods.

The main advantage of MCMC methods resides in the simplicity of the under-

lying principle. In order to randomly sample from a specific probability distribution

called the target distribution, it suffices to design a Markov chain whose station-

ary distribution is the target distribution. The Metropolis-Hastings and the Gibbs

sampler algorithms are among the most popular methods of designing the Markov

chain. However, there now exist several variations and hybrid methods which have

been derived by modifying and/or combining these techniques. Once the Markov

chain is created, we simulate it on the computer for a period of time long enough

so as to be assured that the chain has reached stationarity. At that point, we

record the state of the Markov chain and treat it as a sample point from the target

distribution. A data set is thus obtained by either repeating this procedure many

times or by recording several states after the burn-in period (and skipping more

or less states in between draws, depending if we are looking for an independent
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sample or not).

As the complexity of the target distribution intensifies, significant complica-

tions occur which have raised a number of questions related to probability theory

and Markov chains. Namely, it has become crucial to understand as precisely as

possible how fast the chain converges to its stationary distribution ([14], [15]). This

has stimulated a great amount of research related to the bounding of convergence

rates ([35], [23]), the central limit theory of MCMC algorithms ([34], [32]), as well

as the scaling of proposal distributions for Metropolis-Hastings algorithms and the

limiting behavior of these algorithms as the dimension of the target distribution in-

creases. Optimal scaling refers to the need of tuning the proposal scaling and other

parameters so as to obtain an efficient convergence of the algorithm. Nowadays,

the trend has moved towards improving and modifying the existing algorithms us-

ing adaptive schemes. This can be seen as a dynamic extension of optimal scaling,

where the algorithm attempts to find the optimal parameter values and update

them while it runs (see [20]). This movement has spawned much research about

whether or not the different adaptations satisfy the required properties for MCMC

methods ([1], [2], [33]).

In this dissertation, we shall consider the optimal scaling problem for random

walk Metropolis (RWM) algorithms, which constitute the most commonly used

class of Metropolis-Hastings algorithms. These algorithms are named after the

fact that the kernel driving the chain is a random walk (which is ensured by an

appropriate choice of proposal distribution). Their ease of implementation and

wide applicability have conferred their popularity to RWM algorithms and they

are frequently used nowadays by all levels of practitioners in various fields of ap-
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plication. A downside of their versatility is however the potential slowness of their

convergence, which calls for an optimization of their performance. Because the ef-

ficiency of Metropolis-Hastings algorithms depends crucially on the scaling of the

proposal distribution, it is thus fundamental to judiciously choose this parameter.

Informal guidelines for the optimal scaling problem have been proposed among

others by [8] and [9], but the first theoretical results have been obtained by [29].

In particular, the authors considered d-dimensional target distributions with iid

components and studied the asymptotic behavior (as d → ∞) of RWM algorithms

with Gaussian proposals. It was proved that under some regularity conditions

for the target distribution, the asymptotic acceptance rate should be tuned to be

approximately 0.234 for optimal performance of the algorithm. It was also shown

that the correct variance for the proposal distribution is of the form `2/d for some

constant ` as d → ∞. The simplicity of the obtained asymptotically optimal

acceptance rate (AOAR) makes these theoretical results extremely useful in prac-

tice. Afterwards, [30] carried out a similar study for Metropolis-adapted Langevin

algorithms (MALA), whose proposal distribution uses the gradient of the target

density to generate wiser moves. Analogous conclusions were obtained, but with

an AOAR of 0.574. In spite of the iid assumption for the target components, in

both cases the results are believed to be far more robust and to hold under vari-

ous perturbations of the target distribution. Since their publication these papers

have spawned much interest and consequently, other authors have studied diverse

extensions of the iid model; their conclusions all corroborate the results found in

[29] and [30] (see, for instance, [11], [12], [13], [26] and [31]).

The goal of this dissertation is to study the robustness of the optimal scaling



5

results introduced in [29] when the RWM algorithm is applied to other types of

target distributions. In particular, we consider d-dimensional targets with inde-

pendent but not identically distributed components, where the components possess

different scaling terms which are allowed to depend on the dimension of the target

distribution. This setting includes some popular statistical models, but it produces

distributions having unstable scaling terms (since some of them might converge to

0 or ∞ as the dimension increases). Despite the independence of the various tar-

get components, the disparities exhibited by the scaling terms thus constitute a

critical distinction with the iid case. Furthermore, because Gaussian distributions

are invariant under orthogonal transformations, the model described also includes

multivariate normal target distributions with correlated components as a special

case.

We provide a necessary and sufficient condition under which the algorithm

admits the same limiting diffusion process and the same AOAR as those found

in [29]. We also prove that when this condition is violated, the acceptance rate

0.234 is not always asymptotically optimal, and we thus present methods for de-

termining the correct AOAR. This addresses the issue raised in Open Problem #3

of [32]. In particular, we show that when there exists a finite number of target

scaling terms converging significantly faster than the others, then the asymptotic

acceptance rate optimizing the efficiency of the algorithm depends on specific tar-

get components only and is smaller than 0.234. Finally, we shall see that when

the target distribution possesses too small scaling terms (i.e. scaling terms that

are remote from the other ones), then the optimization problem is ill-posed which

calls for the use of inhomogeneous proposal scalings.
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In order to reach these conclusions, an appropriate rescaling of space and

time allows us to obtain a nontrivial limiting process as d → ∞. This is achieved

in the first place by determining the appropriate form of the proposal scaling as

a function of d, which is now different from the iid case. Then, by verifying

L1 convergence of generators, we find the limiting distribution of the sequence

of stochastic processes formed by say the i∗-th component of each Markov chain.

In the majority of cases, this limiting distribution is a Langevin diffusion process

with a certain speed measure. The speed measure then determines if the process

behaves as in the iid case (same speed measure) or converges to a different limit

(different speed measure). Speed measures being the sole measure of efficiency

for diffusions, obtaining the AOAR is thus a simple matter of optimizing this

quantity. In certain cases however, we might have to deal with certain target

components whose limiting distribution remains a RWM algorithm, but with a

particular acceptance rule. This arises when dealing with target components whose

scaling term is significantly smaller than that of the other components. Since there

exist multiple measures of efficiency for discrete-time processes, we choose not to

use these components to determine the AOAR.

Throughout this dissertation, we also study how well these asymptotic results

serve the practical side; this is achieved by presenting various examples illustrating

the application of the theorems proved in this work. This demonstrates that,

although of asymptotic nature, the results can be used to facilitate the tuning of

algorithms in finite-dimensional problems. We finally apply the results to popular

statistical models, and perform some simulation studies aiming to demonstrate

their robustness to certain disruptions from the assumed target model.
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This thesis is organized as follows. Chapter 1 presents some background in-

formation about Metropolis-Hastings algorithms, along with the optimal scaling

results for iid target distributions. In Chapter 2, we introduce the assumed target

model, which consists in an extension of the d-dimensional iid target distribution

considered in [29]. We also present a method to determine the optimal form for

the proposal scaling as a function of the dimension, as well as a discussion about

measures of efficiency for Metropolis-Hastings algorithms. The goal of the third

chapter is to present the main optimal scaling results, along with some examples.

In particular, we first consider the case where the AOAR obtained is the usual

0.234, and we then focus on the case where this rate is not asymptotically optimal

anymore. Some extensions and special cases are discussed in Chapter 4; inho-

mogeneous proposal distributions, among others, shall reveal essential in certain

situations. Chapter 5 aims to prove the various theorems presented in the pre-

ceding chapters, which is achieved by resorting to lemmas proved in Chapter 6.

For the proofs of the theorems presented in this work to be complete, we however

require results about weak convergence of stochastic processes which can be found

in [16]; Chapter 7 is devoted to the study of these results.



Chapter 1

Metropolis-Hastings Algorithms

and Optimal Scaling

The aim of this chapter is to introduce the Metropolis-Hastings algorithm. In

particular, we present the idea behind this method, how it is implemented, and

the required conditions in order to ensure its convergence to the right distribution.

We also familiarize ourselves with various types of Metropolis-Hastings algorithms,

among which the random walk Metropolis and Metropolis-adjusted Langevin algo-

rithms. We conclude this chapter by presenting the optimal scaling results obtained

by [29] and [30]. This shall provide the tools necessary to the introduction of the

main results in the following chapters.

1.1 Construction of the M-H Algorithm

Metropolis-Hastings algorithms are an important class of MCMC algorithms. They

provide a way to sample from complex distributions by generating a Markov chain

8
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X0, X1, . . . whose stationary distribution is the distribution we are interested in,

referred to as the target distribution πD. These algorithms allow for a lot of

flexibility, as they can be used with basically any probability distribution. Their

implementation is characterized by the necessity of choosing a proposal distribu-

tion.

Specifically, let π be the density of the target distribution with respect to

some reference measure µ. We also denote the state space by X , with a σ-algebra

F of measurable subsets. Note that in what follows, a statement such as π1 (dx) =

π2 (dx) for instance really means
∫

x∈A
π1 (dx) =

∫
x∈A

π2 (dx) for all A ∈ F . To

avoid trivial cases, we assume that π is not a point-mass function. We want to

design a Markov chain having transition probabilities P (x, dy) for x, y ∈ X such

that ∫

x∈X
π (x) P (x, dy) µ (dx) = π (y) µ (dy) ,

i.e. where π is stationary for the chain. This can be achieved by making use

of the reversibility condition with respect to π. That is, by designing transition

probabilities satisfying

π (x) P (x, dy) µ (dx) = π (y) P (y, dx) µ (dy) (1.1)

for x, y ∈ X , it is easily seen that π is stationary for the chain since

∫

x∈X
π (x) P (x, dy) µ (dx) = π (y) µ (dy)

∫

x∈X
P (y, dx) = π (y) µ (dy) .

In order to construct the chain, a proposal distribution and an acceptance

function are required. We then define a proposal chain on X with transition
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probabilities Q (x, dy) for x, y ∈ X . We also assume that the transitions are dis-

tributed according to a density q with respect to the same measure µ as before,

i.e. Q (x, dy) = q (x, y) µ (dy). We are now left to define the acceptance function

α (x, y). The idea is to make the chain move through the state space by first

proposing a new state using the proposal distribution, and then using the accep-

tance function to determine if this proposed move is accepted or not. In the case

where the proposed move is rejected, the chain just remains at the current state.

The transition probabilities P (x, dy) are thus given the form

P (x, dy) = (1 − δx (y)) q (x, y) α (x, y) µ (dy)

+δx (y)

(
1 −

∫

y∈X
q (x, y) α (x, y) µ (dy)

)
,

where δx is the point-mass function at x. The acceptance function α (x, y) being

the only undefined object, we can now develop restrictions on it that will guarantee

the reversibility of the chain with respect to π. For x 6= y (the case x = y is trivial),

we have

π (x) q (x, y) α (x, y) µ (dx) µ (dy) = π (y) q (y, x) α (y, x) µ (dy) µ (dx)

⇒ α (y, x) = α (x, y)

(
π (x) q (x, y)

π (y) q (y, x)

)
.

Adding α (x, y) on both sides of the equation, we get

α (y, x) + α (x, y) = α (x, y)

(
1 +

π (x) q (x, y)

π (y) q (y, x)

)
.
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Finally, we let s (x, y) = α (y, x) + α (x, y). This yields

α (x, y) =
s (x, y)(

1 + π(x)q(x,y)
π(y)q(y,x)

) ≡ s (x, y)

(1 + t (x, y))
, (1.2)

where t (x, y) is implicitly defined and s (x, y) is any symmetric function of x and

y chosen such that 0 ≤ α (x, y) ≤ 1 for all x, y ∈ X . This thus implies that

0 ≤ s (x, y) ≤ 1 + t (x, y) for all x, y ∈ X .

Two popular choices for the function s (x, y) are given by

s(M) (x, y) =





1 + t (x, y) , if t (y, x) ≥ 1

1 + t (y, x) , if t (y, x) ≤ 1

and

s(B) (x, y) = 1.

If in addition the proposal density is symmetric, i.e. q (x, y) = q (y, x), then using

s(M) (x, y) yields the Metropolis algorithm developed in [24], and s(B) (x, y) yields

Barker’s method (see [3]).

For a given proposal distribution, [28] investigated on the relative merits of

different choices for the function s (x, y). It was shown that s(M) (x, y) is the opti-

mal candidate for s (x, y) (in terms of asymptotic variance of estimated quantities),

as it results in a function α (x, y) accepting suitable steps more often than other

forms, and thus encouraging a better sampling of the states. From now on, we then

focus on the Metropolis-Hastings algorithm with s(M) (x, y), and we shall refer to

it as the Metropolis algorithm.
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1.2 Implementation and Convergence of Metropo-

lis Algorithms

For a given proposal distribution (not necessarily symmetric), the acceptance func-

tion of the Metropolis algorithm is given by

α (x, y) =





min
(
1, π(y)q(y,x)

π(x)q(x,y)

)
, if π (x) q (x, y) > 0

1, if π (x) q (x, y) = 0
. (1.3)

An advantage of this algorithm is that it depends on the target density only through

the ratio π (x) /π (y). Hence, one only needs to know the target density up to a

normalizing constant in order to perform the Metropolis algorithm. Moreover, in

the case where the target density at the proposed move is null, i.e. π (y) = 0, then

α (x, y) = 0 provided that π (x) q (x, y) > 0. The proposed state is then rejected

and this means that the chain almost surely remains in X + = {x : π (x) > 0} once

it is entered.

To perform the Metropolis algorithm, we begin by choosing some starting

value X (0). Then given X (t), the state of the chain at time t, a value Y (t + 1) is

generated from the proposal distribution Q (X (t) , ·). The probability of accepting

the proposed value Y (t + 1) as the new value for the chain is α (X (t) , Y (t + 1)),

where α (x, y) is defined as in (1.3). If the proposed move is accepted, the chain

jumps to X (t + 1) = Y (t + 1); otherwise, it stays where it is and X (t + 1) =

X (t). Replacing t by t+1, the procedure is repeated until the chain has converged

to its stationary distribution. Once the chain has reached stationarity, one way of

getting a sample is to record the state of the chain and repeat the whole procedure
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say N times in order to get a sample of size N ; alternatively, it is possible to run

only one big chain and record values after the burn-in period. In the first method,

only the last point of each run can be used, since we sample as soon as we are

confident enough that the chain has reached stationarity. With long runs, all the

data obtained after the burn-in period can be exploited (to possibly obtain more

than one sample). The second method thus makes a more efficient usage of the

data.

The stationarity of the target distribution for the Markov chain is not suffi-

cient to guarantee the success of the algorithm. We also need the t-step transition

probability of the Markov chain,

P t (x,A) = P (X (t) ∈ A |X (0) = x) ,

to converge to πD (A) =
∫

x∈A
π (x) µ (dx) for all measurable A ⊆ X as t → ∞. It

is a well-known result that this requirement is satisfied when the Markov chain is

φ-irreducible and aperiodic. The following theorem and definitions can be found

in [36].

Theorem 1.2.1. If a discrete-time Markov chain on a general state space is φ-

irreducible and aperiodic, and furthermore has a stationary distribution πD (·), then

for πD-almost every x ∈ X , we have that

lim
t→∞

sup
A∈F

∣∣P t (x,A) − πD (A)
∣∣ = 0.

For a proof of this result, see [36].
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A φ-irreducible Markov chain is such that all sets A ⊆ X with φ (A) > 0 are

eventually reachable from any point of the state space.

Definition 1.2.2. A chain is φ-irreducible if there exists a non-zero σ-finite mea-

sure φ on X such that for all A ⊆ X with φ (A) > 0, and for all x ∈ X , there

exists a positive integer t = t (x,A) such that P t (x,A) > 0.

The aperiodicity condition ensures that the chain does not cycle through some

subsets of the state space.

Definition 1.2.3. A Markov chain is aperiodic if there do not exist d ≥ 2 disjoint

subsets X1,X2, · · · ,Xd ⊆ X with πD (Xi) > 0, such that P (x,Xi+1) = 1 for all

x ∈ Xi, 1 ≤ i ≤ d − 1, and P (x,X1) = 1 for all x ∈ Xd.

Therefore, when the Markov chain is both φ-irreducible and aperiodic, then

P t (x, ·) is close to πD (·) for large t, and it becomes possible to successfully sample

from the chain. It is necessary to assess φ-irreducibility and aperiodicity on an

individual basis for every designed transition law. An essential condition for the

Markov chain P to be irreducible is that the proposal chain Q be irreducible as

well. Indeed, a Q that is not φ-irreducible means that a part of the state space

is inaccessible from some starting value and it is therefore impossible to propose

moves in this region of the state space. However, since P depends on both Q and

π, the φ-irreducibility of Q is not sufficient to guarantee the φ-irreducibility of P .

Nonetheless, the φ-irreducibility condition is usually easily verified by choosing φ

to be the Lebesgue measure on the appropriate region of the state space.

Once we have assessed the φ-irreducibility of P , it is generally easy to verify

the aperiodicity condition. Let A =
{

x : 1 −
∫

y∈X q (x, y) α (x, y) µ (dy) > 0
}

be
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the set of states at which the probability of rejecting the proposed move is positive.

If φ (A) > 0 and P is φ-irreducible, then the set A will be reachable from any

starting value in X . There thus exists a positive probability that the chain stays

at the same state two consecutive times, since P (x, x) > 0 for all x ∈ A, conferring

aperiodicity. As a result, periodic MCMC algorithms are rarely encountered and

the aperiodicity condition is verified for virtually any MCMC algorithm.

1.3 Various Types of Metropolis Algorithms

Traditionally, Metropolis algorithms are divided into different classes according

to their proposal density. To be easily implemented on a computer, it is crucial

to select a proposal distribution from which values can be easily generated. Of

course, the closer to the target density is the proposal density, the more efficient

is the algorithm. Nonetheless, it is important to keep in mind that MCMC meth-

ods are used for sampling from highly complicated distributions, from where the

importance of choosing a relatively simple proposal distribution.

Infinitely many distributions can act as proposal distributions; we however

restrict our attention to four important classes.

- Symmetric Metropolis algorithms: This category contains the algo-

rithms whose proposal density is symmetric in terms of x and y, i.e. q (x, y) =

q (y, x). In this case, the acceptance probability simplifies to

α (x, y) = min

(
1,

π (y)

π (x)

)
.

The probability of accepting a proposed move thus depends on how small is the
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target density at this point compared to the current state of the chain. In the case

where the target density at the proposed move is larger, then the chain automati-

cally accepts this new state.

- Random walk Metropolis (RWM) algorithms: The proposal chains

included in this class take the form Y (t + 1) = X (t) + Z (t), where the random

variables Z (t) are independent with common density q. The proposal density

thus satisfies q (x, y) = q (y − x). Popular examples of proposal distributions for

random walk Metropolis algorithms are uniform, normal or Student distributions

centered at x.

- Independence Metropolis algorithms: When a proposal density does

not depend on the current state of the chain x, the corresponding chain is described

as an independence chain. The proposal density then satisfies q (x, y) = q (y) and

the acceptance probability can be expressed as

α (x, y) = min

(
1,

π (y) q (x)

π (x) q (y)

)
= min

(
1,

w (y)

w (x)

)
,

where w (x) = π (x) /q (x). The function w (x) is identical to the weight function

of the importance sampling method (see [37], for example), and the idea behind

the algorithm itself turns out to be similar to that method.

Since x is generated from the density q, π (x) is generally expected to be small

compared to q (x). However, since

∫

x∈X

π (x)

q (x)
q (x) µ (dx) = 1,

then π (x) /q (x) equals 1 on average, which is an indication that the ratio some-
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times bears large values. The chain thus reproduces the target density by remain-

ing at values with high weights for long periods of time, rising the amount of

probability sitting at these points.

- Metropolis-adjusted Langevin algorithms (MALA) : The rationale

behind this refined algorithm is to use a discrete approximation to a Langevin

diffusion process to create an algorithm proposing wiser moves. The proposal

distribution is such that

Y (t + 1) ∼ N

(
X (t) +

δ2

2
∇ log π (X (t)) , δ2

)
,

for some small δ2 > 0. This algorithm thus attempts to optimize its convergence

speed by making use of the gradient ∇ log π (X (t)) to push the proposal chain

towards higher values of π.

This dissertation focuses on symmetric RWM algorithms, where the proposed

moves are normally distributed and centered around the current state of the chain:

Y (t + 1) ∼ N (X (t) , σ2). This can easily be extended to multidimensional target

distribution settings; in d dimensions for instance, the moves are proposed inde-

pendently from each other and Y(d) (t + 1) ∼ N
(
X(d) (t) , σ2Id

)
, where Id is the

d × d identity matrix.

Besides the diversity of problems efficiently solved by the RWM algorithm

with Gaussian proposal distribution, the main advantage of this algorithm is the

easiness with which values can be generated from its proposal distribution. Another

appealing feature is the minimal amount of required information inherent to its

implementation, the only essential quantity being the unnormalized target density.

In comparison, the Metropolis-adjusted Langevin algorithm (MALA) attempts to
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propose smarter moves, but the price to pay is the computation of the gradient

∇ log π (X (t)). However, depending on the complexity of the target density, the

implementation of this technique can be almost as simple due to the Gaussian form

of the proposal distribution.

Among the similarities they share, the RWM algorithm and the MALA both

possess only one arbitrary parameter, the scaling of the proposal distribution (σ2

for the RWM algorithm, δ2 for MALA). This parameter turns out to play a cru-

cial role in the efficiency of the method, from where the importance of choosing

it judiciously. In the case where the scaling parameter is excessively small, the

proposed jumps will be too short and therefore simulation will move very slowly to

the target distribution in spite of the fact that the proposed moves will be almost

all accepted. At the opposite, large scaling values will generate jumps that are far

away from the current state of the chain, often in low target density regions. This

will result in the rejection of the proposed moves and in a chain that stands still

most of the time, compromising the mixing of the states. In order to have some

level of performance in the convergence of the algorithm, it then becomes necessary

to find the middle ground between these two extremes. This is what we attempt

to do in the following chapters. In particular, next section aims to introduce the

existing results related to the choice of an optimal scaling value for the proposal

distribution.

1.4 Optimal Scaling for iid Target Distributions

A number of rules of thumb have been proposed by different authors to handle the

proposal scaling issue (among others, see [8], [9]). However, the first theoretical
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results have been introduced by [29], who studied the special case of d-dimensional

target densities formed of iid components, to which they applied the RWM algo-

rithm with Gaussian proposal density. These results shall be introduced in the

present section.

First, let the target density

π
(
x(d)
)

=
d∏

i=1

f (xi) (1.4)

be a d-dimensional product density with respect to Lebesgue measure. The func-

tion f is taken to be positive, continuous over R and is also assumed to belong

to C2, the space of real-valued functions with continuous second derivative. The

proposed moves are distributed as Y(d) (t + 1) ∼ N
(
X(d) (t) , σ2 (d) Id

)
, and then

the proposal density can be expressed as

q
(
d,x(d),y(d)

)
=
(
2πσ2 (d)

)−d/2
exp

{
− 1

2σ2 (d)

d∑

i=1

(yi − xi)
2

}
.

The acceptance probability for the proposed moves is

α
(
X(d) (t) ,Y(d) (t + 1)

)
= 1 ∧ π

(
Y(d) (t + 1)

)

π (X(d) (t))
,

where ∧ denotes the minimum function. Note that in a multidimensional setting,

the acceptance probability takes d-dimensional vectors as arguments but returns a

scalar. This implies that at a given time, the algorithm either accepts the proposed

moves for all d components or rejects all of them. As d increases, the number of

proposed moves in a given step obviously increases. Since the moves are proposed
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independently for each component, then as d grows and for a given proposal scaling

σ2 the algorithm becomes more likely to propose an unreasonable move for one

of the components. Because of the product form of the target density, a single

unreasonable move is sufficient to reduce the acceptance probability significantly,

causing the rejection of the move and eventually resulting in a chain that remains

stuck at some states for long periods of time.

To remedy to this situation, it is sensible to define the proposal variance to be

a decreasing function of the dimension. Indeed, if σ2 (d) becomes smaller for large

values of d, then it reduces the probability of foolish moves in any one dimension

and hence improves the convergence speed of the Markov chain. To this end, let

σ2 (d) = `2/d, where ` is some positive constant. It turns out that this form is

optimal for the proposal variance since it is the only one yielding a nontrivial limit.

If the variance is smaller than O (1/d) then the Markov chain explores the state

space very slowly while for larger order scalings, the acceptance rate converges to

0 too quickly. The form of the variance being determined, the objective has now

evolved in optimizing the choice of the constant `.

Before introducing the optimal scaling results, we have to assess the conver-

gence of the algorithm to the target distribution. It is then necessary to verify

that the Markov chain generated is indeed φ-irreducible and aperiodic, which is

now possible given the information about the target and proposal distributions. In

fact, due to the simplicity of the proposal distribution, both conditions are easily

verified, implying that the chain will exhibit the desired limiting behavior. We
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have, for all x(d) ∈ R,

P
(
x(d), A

)
≥

∫

y(d)∈A

q
(
d,x(d),y(d)

)
(

1 ∧ π
(
y(d)
)

π (x(d))

)
dy(d),

where equality holds if x(d) /∈ A. Since q
(
d,x(d),y(d)

)
> 0 for all x(d),y(d) ∈

Rd, then for all sets A satisfying πD (A) =
∫
y(d)∈A

π
(
y(d)
)
dy(d) > 0 we have

P
(
x(d), A

)
> 0. The Markov chain is thus πD-irreducible, since it can reach any

set A of positive πD-probability in a single step.

To prove aperiodicity, it suffices to demonstrate that the Markov chain has

a positive probability of remaining at the same state for two consecutive times.

Following the discussion of Section 1.2, we want to show that

πD

({
x(d) : 1 −

∫

y(d)∈Rd

q
(
d,x(d),y(d)

)
α
(
x(d),y(d)

)
dy(d) > 0

})
> 0.

Define M =
{
x(d) : π

(
x(d)
)
≤ π

(
y(d)
)
, ∀y(d) ∈ Rd

}
to be the set containing the

values at which the target density reaches its minimum. By the continuity of

π on Rd and since πD

(
Rd
)

= 1, then it must be true that πD (M) < 1. For

x(d) ∈ M , the ratio π
(
y(d)
)
/π
(
x(d)
)

is greater or equal to 1 for all y(d) ∈ Rd

so α
(
x(d),y(d)

)
= 1 and hence 1 −

∫
y(d)∈Rd q

(
d,x(d),y(d)

)
α
(
x(d),y(d)

)
dy(d) = 0,

meaning that when the chain is at a state in M , it will almost surely leave the

next period. If x(d) /∈ M , then by the continuity of π there is at least a small

interval for which the ratio π
(
y(d)
)
/π
(
x(d)
)

is smaller than 1. This implies that

1−
∫
y(d)∈Rd q

(
d,x(d),y(d)

)
α
(
x(d),y(d)

)
dy(d) > 0 and since πD (M c) = 1−πD (M) >

0, we conclude that the Markov chain is aperiodic.

By its nature, the RWM algorithm is a discrete-time process. Since space
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(the proposal scaling) is a function of the dimension of the target distribution, we

also have to rescale the time between each step in order to get a nontrivial limiting

process as d → ∞. We can make a parallel between our case and Brownian motion

expressed as the limit of a simple symmetric random walk. Since we rescaled space

through the factor d−1/2 (the proposal standard deviation), we have to compensate

by speeding up time by a factor of d.

Consequently, let Z(d) (t) be the time-t value of the d-dimensional RWM pro-

cess sped up by a factor of d. In particular,

Z(d) (t) = X(d) ([td]) =
(
X

(d)
1 ([td]) , . . . , X

(d)
d ([td])

)
,

where [·] denotes the integer part function. That is, instead of proposing only

one move, the sped up process has the possibility to move d times during each

time interval. In other words, the algorithm proposes a move every 1/d time unit

and consequently, the process
{
Z(d) (t)

}
is asymptotically continuous as d → ∞.

We shall now study the limiting behavior of its first component, i.e. the limit of

the sequence of processes
{

Z
(d)
1 (t) , t ≥ 0

}
as the dimension increases. Note that

due to the iid assumption on the target components, we would obtain equivalent

results should we choose to study a different target component.

In order to state the theorem, we need to introduce further conditions on the

density f in (1.4). In addition to be a C2 density function on Rd, (log f (x))′ must

also be Lipschitz continuous (see (A.1)). Moreover, the following two moment
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conditions must be verified:

E

[(
f ′ (X)

f (X)

)8
]

=

∫ (
f ′ (x)

f (x)

)8

f (x) dx < ∞

and similarly E

[(
f ′′(X)
f(X)

)4
]

< ∞.

We denote weak convergence of processes in the Skorokhod topology by ⇒,

standard Brownian motion at time t by B (t), and the standard normal cumulative

distribution function (cdf ) by Φ (·).

Theorem 1.4.1. Consider a random walk Metropolis algorithm with proposal dis-

tribution Y(d) ∼ N
(
x(d), `2

d
Id

)
and applied to a target density as in (1.4). Consider

the process
{

Z
(d)
1 (t) , t ≥ 0

}
and let X(d) (0) be distributed according to the target

density π in (1.4). We have

{
Z

(d)
1 (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,

where Z (0) is distributed according to f and {Z (t) , t ≥ 0} satisfies the Langevin

stochastic differential equation (SDE)

dZ (t) = υ (`)1/2 dB (t) +
1

2
υ (`) (log f (Z (t)))′ dt.

Here, υ (`) = 2`2Φ
(
−`

√
I/2
)

and I = E

[(
f ′(X)
f(X)

)2
]
.

This results says that as d → ∞, the path of
{

Z
(d)
1 (t) , t ≥ 0

}
behaves ac-

cording to a Langevin diffusion process. It is interesting to note that the stationary

distribution of this diffusion process has density f .
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Here, υ (`) is sometimes interpreted as the speed measure of the diffusion

process. This means that the limiting process can be expressed as a sped up

version of {U (t) , t ≥ 0}, a Langevin diffusion process with unity speed measure:

{Z (t) , t ≥ 0} = {U (υ (`) t) , t ≥ 0} ,

where dU (t) = dB (t) + 1
2
(log f (U (t)))′ dt.

In fact, letting s = υ (`) t gives ds = υ (`) dt and thus

dU (s) = (ds)1/2 +
1

2

d

dU (s)
log f (U (s)) ds

= (υ (`) dt)1/2 +
1

2

d

dU (υ (`) t)
log f (U (υ (`) t)) υ (`) dt

= (υ (`))1/2 dB (t) +
1

2
υ (`)

d

dZ (t)
log f (Z (t)) dt

= dZ (t) .

The speed measure of the diffusion being proportional to the mixing rate of the al-

gorithm, it suffices to maximize the function υ (`) in order to optimize the efficiency

of the algorithm.

We now introduce a quantity which is closely related to the notion of algorithm

efficiency. Let the π-average acceptance rate be defined by

a (d, `) = E

[
1 ∧ π

(
Y(d)

)

π (X(d))

]
(1.5)

=

∫ ∫
π
(
x(d)
)
α
(
x(d),y(d)

)
q
(
d,x(d),y(d)

)
dx(d)dy(d)

for the d-dimensional symmetric RWM algorithm. The following corollary intro-
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duces the value of ` maximizing the speed measure, and thus the efficiency of

the RWM algorithm. It also presents the asymptotically optimal acceptance rate

(AOAR), which is of great use for applications.

Corollary 1.4.2. In the setting of Theorem 1.4.1 we have limd→∞ a (d, `) = a (`),

where a (`) = 2Φ
(
−`

√
I/2
)
. Furthermore, υ (`) is maximized at the unique value

ˆ̀= 2.38/
√

I for which a(ˆ̀) = 0.234 (to three decimal places).

It is possible to give a simple interpretation to these results. Consider a

high-dimensional target distribution as in (1.4) to which is applied the symmetric

RWM algorithm defined at the beginning of this section. The value ` should then

be chosen such that the acceptance rate is close to 0.234 in order to optimize the

efficiency of the algorithm. If it is realized that the acceptance rate is substantially

larger or smaller than 0.234, the value of σ2 (d) should be modified accordingly.

This rule is convenient and easy to apply, as the AOAR does not depend on the

particular target density considered. It is also interesting to note that although

asymptotic, these results work quite well in relatively low dimensions (d ≥ 10);

this is discussed in [31].

The quantity I is a measure of roughness of the density f : the smaller is

I, the smoother is thus the density. Consequently, the optimal scaling value ˆ̀

is inversely proportional to I. In other words, rougher densities require shorter

proposed moves.

Similar asymptotic results have been obtained by [30] for sampling from iid

distributions when using the MALA. They first determined the optimal form of

the proposal scaling to be σ2 (d) = `2/d1/3. Given some target density, the MALA

thus tolerates larger proposed moves than the RWM algorithm. They then proved



26

that if the algorithm is sped up by a factor of d1/3, each component in the se-

quence of processes
{
Z(d) (t) , t ≥ 0

}
=
{
X(d)

([
d1/3t

])
, t ≥ 0

}
converges weakly

to a Langevin diffusion process possessing some speed measure υ (`) which differs

from the RWM algorithm case. Optimizing this new speed measure yields an op-

timal scaling value ˆ̀, which corresponds this time to an AOAR of 0.574. This

acceptance rate is much higher than that obtained for the RWM algorithm, and

this makes sense since the MALA uses the gradient of the log density in order

to propose wiser moves. A drawback of this method is however the necessity to

compute this quantity for its implementation.

Since the publication of the asymptotic results in [29], several variations of

the iid model have been considered by different authors. Some of them relaxed the

”identically distributed” assumption for the d components forming the target dis-

tribution, while others considered specific statistical models. All these researchers

agreed on a same conclusion: the results in [29] show robustness to certain pertur-

bations of the iid target density. That is, 0.234 seems to hold far more generally

than for this type of target only. The goal of this dissertation is to study to what

extent these conclusions can be generalized to more general target distributions.

We consider a model where the d components, although independent, are not iden-

tically distributed. We provide a condition for the RWM algorithm to adopt the

same limiting behavior as for iid targets. We also show that when this condition

is not satisfied, the chain converges to a Langevin diffusion process with different

speed measures, yielding AOARs that are smaller than the usual 0.234. These

conclusions are the first instance of AOARs differing from 0.234 in the literature.



Chapter 2

Sampling from the Target

Distribution

In this chapter, we describe the d-dimensional target distribution setting consid-

ered, which consists in an extension of the iid model where the different components

are independent, but where each one of them has its own scaling term (possibly

depending on d). We also introduce a method for determining the optimal form of

the proposal variance as a function of the dimension when sampling from this type

of target. Measures of efficiency for the algorithm shall finally be discussed but in

order to clarify the purpose of the following sections, we begin with an example.

2.1 A Hierarchical Model

We present two examples of distributions satisfying the assumed target model;

the first distribution is formed of independent components, while the second one

admits a nontrivial correlation structure. Although MCMC methods would not

27
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be necessary for sampling from these particular targets, the aim is to illustrate

the importance and the stakes of the chosen target model for statisticians through

simple examples.

Consider the case where we wish to sample from the target density

π (d, x1, . . . , xd) ∝ x4
1e

−x1 x4
2e

−x2

d∏

i=3

x4
i e

−xi/5
√

d. (2.1)

The density π is then formed of d independent components, each having a gamma

density f (x) = (24λ5)
−1

x4 exp (−x/λ), x > 0. The parameter λ of the first two

components is 1, while that of the other d − 2 components is 5
√

d.

Because the majority of the d scaling parameters get larger as the dimension

of the target increases, the impact of selecting an inaccurate value for the proposal

variance on the efficiency of the algorithm can be huge. In order to choose a proper

value for this parameter, we first have to determine which form should be adopted

for the proposal variance as a function of d; then, we can figure out how to optimize

this function for greatest efficiency of the method.

For a relatively low-dimensional target density of this sort, say d = 10, the

density of the last eight components is spread out over (0,∞) while that of the first

two comparatively remains peaked, with their mass concentrated within a much

narrower interval of the state space (see Figure 2.1). Choosing a proper variance

for the proposal distribution is thus not an easy task: the last 8 components require

a large proposal variance for appropriate exploration of their state space, but the

selection of too large a value would result in frequent rejection of the proposed

moves by the variables X1 and X2. A compromise between these requirements

then becomes necessary. For this example, the optimal proposal variance turns
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Figure 2.1: Gamma density, d = 10. The solid and dashed lines represent the
density function for Xi, i = 1, 2 (λ = 1) and Xi, i = 3, . . . , 10 (λ = 5

√
d = 15.81)

respectively.

out to be close to σ2 = 61 for any dimension d, as shall be seen in Example 3.2.3.

Furthermore, this results in an AOAR lying around 0.098, and thus substantially

smaller than the usual 0.234. In fact, tuning the algorithm to accept a proportion

of 23.4% of the proposed moves would reduce the efficiency of the algorithm by

about 20% in the present case, from where the importance of determining the right

proposal scaling.

The target model we consider also includes, as a special case, any vector of

random variables which is jointly distributed according to a multivariate normal

density, no matter the correlation structure among the components.

To illustrate this, consider a normal-normal hierarchical model such that X1 ∼

N (0, 1) and Xi ∼ N (X1, 1), i = 2, . . . , d. The joint distribution of such a target
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is multivariate normal with mean vector 0 and covariance matrix

Σd =




1 1 · · · 1

1 2 1 · · · 1

. . .

1 · · · 1 2 1

1 · · · 1 2




d×d

.

A useful property of multivariate normal distributions is their invariance un-

der orthogonal transformations. It is therefore possible to transform the covariance

matrix Σd into a diagonal matrix where the diagonal elements consist in the eigen-

values of Σd. Applying such a transformation thus results in a multivariate normal

distribution with independent components.

Recall that the eigenvalues λ1, . . . , λd can be found by solving the equation

|Σd − λId| = 0, where Id is the d-dimensional identity matrix. This task is usually

simplified by making the matrix Σd − λId triangular and then taking the product

of the diagonal elements in order to obtain an expression for the determinant. By

using this method, we find that d − 2 of the eigenvalues are 1, and that the other

two are the solutions of the equation

(d + 1) ±
√

(d + 1)2 − 4

2
= 0.

These two eigenvalues can be approximated by 1
d+1

and d + 1. Our problem then

reduces to the case of a multivariate normal target distribution with independent

components and variances given by
(

1
d+1

, d + 1, 1, 1, 1, . . . ,
)
. This model agrees
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with the type of target we consider and in the following chapter, we shall present

how the RWM algorithm can be optimized to sample from this particular distri-

bution. In fact, we shall obtain an AOAR of 0.216, which this time is somehow

closer to 0.234 (see Example 3.2.4).

This example illustrates an interesting application of our results to multi-

dimensional target distributions with correlated components. Of course, in very

large dimensions, it becomes difficult to apply an orthogonal transformation and

determine the eigenvalues of Σd. Nonetheless, our results generally work pretty

well in relatively low dimensions. For these very high-dimensional models arising

in practice, we are currently investigating the optimal scaling problem for general

hierarchical models. Before discussing the optimal scaling results, we however start

by introducing the general model for the target density.

2.2 The Target Distribution

Suppose we are interested in generating data from the following d-dimensional

product density

π
(
d,x(d)

)
=

d∏

j=1

θj (d) f (θj (d) xj) . (2.2)

In what follows, we shall refer to θ−2
j (d), j = 1, . . . , d as the scaling terms of the

target distribution.

We impose the following regularity conditions on the density f : f is a positive
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C2 function, (log f (X))′ is Lipschitz continuous,

E

[(
f ′ (X)

f (X)

)4
]

=

∫

R

(
f ′ (x)

f (x)

)4

f (x) dx < ∞,

and similarly E

[(
f ′′(X)
f(X)

)2
]

< ∞. These assumptions are similar, but slightly

weaker than those stated in Section 1.4 for the iid case. The latter being a special

case of the model considered here, we shall then see in Chapter 3 that Theorem

3.1.1 strengthens the results presented in [29] (although other papers already stated

that the assumptions in [29] could be weakened, see for instance [31]).

The d target components, although independent, are however not necessarily

identically distributed. In particular, we consider the case where the scaling terms

θ−2
j (d) take the following form

Θ−2 (d) =




K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+1

dγ1︸ ︷︷ ︸
c(J (1,d))

, . . . ,
Kn+m

dγm
, . . . ,

Kn+m

dγm︸ ︷︷ ︸
c(J (m,d))


 , (2.3)

where 0 ≤ n < ∞, 1 ≤ m < ∞ and {Kj, j = 1, . . . , n + m} are some positive and

finite constant terms.

Ultimately, we shall be interested in the limit of the target distribution as d →

∞, and thus in the infinite-dimensional version of Θ−2 (d). The first particularity

to notice in (2.3) is that the first n terms appear only once each, while the balance

is repeated according to some functions of d. That is, the last d − n terms are

separated into m different groups, in each of which the number of terms grows

with the dimension. The n scaling terms appearing a finite number of times in

(2.3) are denoted Kj/d
λj , j = 1, . . . , n, while those appearing an infinite number
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of times in the limit are denoted Kn+i/d
γi for i = 1, . . . ,m. For now, we assume

the constants Ki+n, i = 1, . . . ,m, to be the same for all scaling terms within each

of the m groups. This assumption shall be relaxed in Chapter 4.

It shall reveal convenient to rearrange the terms of Θ−2 (d) so that all the

different scaling terms appear at one of the first n + m positions:

Θ−2 (d) =

(
K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+m

dγm
,

Kn+1

dγ1
, . . . ,

Kn+m

dγm
, . . . ,

Kn+1

dγ1
, . . . ,

Kn+m

dγm

)
. (2.4)

That is, we first enumerate each one of the n + m different scaling terms. After-

wards, we cycle through the remaining ones, i.e. the scaling terms that will appear

an infinite number of times in the limit. The m groups to which they belong might

however occupy different proportions of the vector Θ−2 (d), and we should make

sure to preserve the proportion in which they appear when cycling through them.

This method helps to clearly identify each component being studied as d → ∞

without referring to a component that would otherwise be at an infinite position.

To easily refer to the various groups of components whose scaling term appears

infinitely often, we define the sets

J (i, d) =

{
j ∈ {1, . . . , d} ; θ−2

j (d) =
Ki+n

dγi

}
, i = 1, . . . ,m.

The i-th set thus contains positions of components having a scaling term equal to

Ki+n/dγi . These sets are mutually exclusive and their union satisfies
⋃̇m

i=1J (i, d) =
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{n + 1, . . . , d}. We can then write the d-dimensional product density in (2.2) as

π
(
d,x(d)

)
=

n∏

j=1

(
dλj

Kj

)1/2

f

((
dλj

Kj

)1/2

xj

)

×
m∏

i=1

∏

j∈J (i,d)

(
dγi

Kn+i

)1/2

f

((
dγi

Kn+i

)1/2

xj

)
.

Since each of the m groups of scaling terms might occupy different proportions

of Θ−2 (d), we also define the cardinality of the sets J (i, d): for i = 1, . . . ,m,

c (J (i, d)) = d − n −
m∑

j=1,j 6=i

c (J (j, d))

= #

{
j ∈ {1, . . . , d} ; θ−2

j (d) =
Ki+n

dγi

}
, (2.5)

where c (J (i, d)) is some polynomial function of the dimension which satisfies

limd→∞ c (J (i, d)) = ∞ and subject to the constraint that the total number of

components in the target is d.

Without loss of generality, we assume the first n and the next m scaling

terms in (2.4) to be respectively arranged according to an asymptotic increasing

order. If � means ”is asymptotically smaller than or equal to”, then we have

θ−2
1 (d) � . . . � θ−2

n (d) and similarly θ−2
n+1 (d) � . . . � θ−2

n+m (d), which respectively

implies −∞ < λn ≤ λn−1 ≤ . . . ≤ λ1 < ∞ and −∞ < γm ≤ γm−1 ≤ . . . ≤ γ1 < ∞.

We finally point out that some of the first n components might have exactly the

same scaling term. When this happens, we still refer to them as say Kj/d
λj and

Kj+1/d
λj+1 , with Kj = Kj+1 and λj = λj+1.

According to this ordering, the asymptotically smallest scaling term θ̂−2 (d)
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obviously has to be either θ−2
1 (d) or θ−2

n+1 (d):

θ̂−2 (d) =





K1

dλ1
, if limd→∞

K1/dλ1

Kn+1/dγ1
= 0

Kn+1

dγ1
, if limd→∞

K1/dλ1

Kn+1/dγ1
diverges

min
(

K1

dλ1
, Kn+1

dγ1

)
, if limd→∞

K1/dλ1

Kn+1/dγ1
= K1

Kn+1

. (2.6)

The simple example that follows should help clarifying the notation just in-

troduced.

Example 2.2.1. Consider a d-dimensional target density as in (2.2) with the

following scaling terms: 1/
√

d, 4/
√

d, 10 and the other ones equally divided among

2
√

d and d/2. As the dimension increases, the last two scaling terms are replicated,

implying that n = 3 and m = 2. After respectively ordering the first three and the

next two scaling terms according to an asymptotically increasing order, we find

Θ−2 (d) =

(
1√
d
,

4√
d
, 10, 2

√
d,

d

2
, 2
√

d,
d

2
, . . .

)
.

All five different scaling terms thus appear at the first five positions.

The cardinality functions for the scaling terms appearing an infinite number

of times in the limit are

c (1, d) = #
{

j ∈ {1, . . . , d} ; θ−2
j (d) = 2

√
d
}

=

⌈
d − 3

2

⌉

and

c (2, d) = #

{
j ∈ {1, . . . , d} ; θ−2

j (d) =
d

2

}
=

[
d − 3

2

]
,

where d·e and [·] denote the ceiling and the integer part functions respectively.
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Note however that such rigorousness is superfluous for the application of the results

presented next chapter, and it is enough to affirm that both cardinality functions

grow according to d/2.

It is important to precise that the target model just introduced is not the most

general form under which the conclusions of the theorems presented subsequently

are satisfied. However, for simplicity’s sake, we decided to consider a slightly more

restrictive model in the first place. The results for more general cases shall be

presented as extensions in Chapter 4.

Our goal is to study the limiting distribution of each component forming

the d-dimensional Markov process. To this end, we set the scaling term of the

target component of interest equal to 1 (θi∗ (d) = 1). This adjustment, necessary

to obtain a nontrivial limiting process, is performed without loss of generality by

applying a linear transformation to the target distribution. In particular, when the

first component of the chain is studied (i∗ = 1), we set θ−2
1 (d) = 1 and adjust the

other scaling terms accordingly. Θ−2 (d) thus varies according to the component

of interest i∗ considered.

2.3 The Proposal Distribution and its Scaling

A crucial step in the implementation of RWM algorithms is the determination of

the optimal form for the proposal scaling as a function of d. There exist two factors

affecting this quantity: the asymptotically smallest scaling term and the fact that

some scaling terms appear infinitely often in the limit. If the first factor were

ignored, the proposed moves would possibly be too large for the corresponding
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component, resulting in high rejection rates and compromising the convergence of

the algorithm. The effect of the second factor is that as d → ∞, the algorithm

proposes more and more independent moves in a single step, increasing the odds

of proposing an improbable move for one of the components. In this case, a drop

in the acceptance rate can be overturned by letting σ2 (d) be a decreasing function

of the dimension.

Combining these two constraints, the optimal form for the variance of our

proposal distribution turns out to be σ2 (d) = `2/dα, where `2 is some constant

and α is the smallest number satisfying

lim
d→∞

dλ1

dα
< ∞ and lim

d→∞

dγic (J (i, d))

dα
< ∞, i = 1, . . . ,m. (2.7)

Therefore, at least one of these m + 1 limits converges to some positive constant,

while the other ones converge to 0. Since the scaling term of the component

studied is taken to be one (i.e. the scaling term of the component of interest is

independent of d), this implies that the largest possible asymptotical form for the

proposal variance is σ2 = σ2 (d) = `2, and hence it never diverges as the dimension

grows. In particular, the proposal variance will take its largest form when studying

the O
(
d−λ1

)
components, but only if the proposal scaling satisfies σ2 (d) = `2/dλ1 .

Having found the optimal form for the proposal variance, we can thus write

Y(d) −x(d) ∼ N
(
0, `2

dα Id

)
. Our goal is now to optimize the choice of the constant

` appearing in the proposal variance.

Example 2.3.1. Given a target density as in (2.2) with a vector of scaling terms

as in Example 2.2.1, we now determine the optimal form for the proposal variance

of the RWM algorithm. Since n > 0 and m = 2, we have three limits to verify: the
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first one involves the first scaling term, which is also the asymptotically smallest

one in the present case

lim
d→∞

dλ1

dα
= lim

d→∞

d1/2

dα
< ∞.

The smallest α satisfying the finite property is 1/2. For the second and third

limits, we have

lim
d→∞

dγ1c (1, d)

dα
= lim

d→∞

(
d − 3

2

)(
d−1/2

dα

)
< ∞

and

lim
d→∞

dγ2c (2, d)

dα
= lim

d→∞

(
d − 3

2

)(
d−1

dα

)
< ∞

The smallest α satisfying the finite property is 1/2 for the second limit and 0 for

the third one. Hence, the smallest α satisfying the constraint that all three limits

be finite is 1/2, and thus σ2 (d) = `2/
√

d.

As mentioned in Section 1.4, RWM algorithms are discrete-time processes

and thus on a microscopic level, the chain evolves according to the transition

kernel outlined earlier. The proposal scaling (space) being a function of d, an

appropriate rescaling of the elapsed time between each step will guarantee that

we obtain a nontrivial limiting process as d → ∞. This corresponds to study the

model from a macroscopic viewpoint and on this level, we shall see next section that

the component of interest most often behaves according to a Langevin diffusion

process. The only exception to this happens with the smallest order components,

and specifically when σ2 (d) = `2. In that case, the proposal scaling is independent

of d and thus a nontrivial limit is obtained without having to apply a time-speeding

factor. This means that the process is already moving fast enough, and that we
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can expect the limiting process to be of a discrete-time nature.

Following the previous discussion, let Z(d) (t) be the time-t value of the RWM

process sped up by a factor of dα. In particular,

Z(d) (t) = X(d) ([dαt]) =
(
X

(d)
1 ([dαt]) , . . . , X

(d)
d ([dαt])

)
, (2.8)

where [·] is the integer part function. In reality, the process
{
Z(d) (t) , t ≥ 0

}
is the

continuous-time, constant-interpolation version of the sped up RWM algorithm.

The periods of time between each step are thus shorter and instead of proposing

only one move, the sped up process proposes on average dα moves during each

time interval.

Note that the weak convergence results introduced in this thesis are proved in

the Skorokhod topology (see Section 7.1). In this topology, we could equivalently

consider a sped up RWM algorithm where the jumps, instead of occurring at

regular time intervals, happen according to a Poisson process with rate dα. In fact,

we show in Section 5.1 that both this continuous-time version and the discrete-

time sped up RWM algorithm possess the same generator. A desirable property

of such a process with exponential holding times is that it preserves the time-

homogeneous and Markovian attributes of the process. It is even possible to show

that this setting is the only one to yield a continuous-time process preserving these

properties, which can be justified by the memoryless property of the exponential

distribution.

The next chapter shall be devoted to the study of
{
Z(d) (t) , t ≥ 0

}
. That is,

for each such d-dimensional process we choose a particular component Z
(d)
i∗ and

study the limiting behavior of this sequence of processes as the dimension increases.
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Even though the process
{
Z(d) (t) , t ≥ 0

}
can equivalently be considered as the

constant-interpolation version or the exponential-holding-time version of the sped

up RWM algorithm, most often the latter shall reveal more convenient.

2.4 Efficiency of the Algorithm

In order to optimize the mixing of our RWM algorithm, it would be convenient to

determine criteria for measuring efficiency. We already mentioned that for diffusion

processes, all measures of efficiency are equivalent to optimizing the speed measure

of the diffusion. In our case however, diffusions occur as limiting processes only, and

we thus still need an efficiency criterion for finite-dimensional RWM algorithms;

this shall be useful for studying how well our theoretical results can be applied to

finite-dimensional problems.

Recall that the basic idea for calculating the expectation of some function g

with respect to the target density π (·), i.e.

µ = E
[
g
(
X(d)

)]
=

∫
g
(
x(d)
)
π
(
d,x(d)

)
dx(d),

is to use the generated Markov chain X(d) (1) ,X(d) (2) , . . . to compute the sample

average

µ̂k =
1

k

k∑

i=1

g
(
X(d) (i)

)

(see for instance [25] and [31]). Just like the Central Limit Theorem for indepen-

dent variables, the limiting theory for Markov chains then asserts that

√
k (µ̂k − µ) →d N

(
0, σ2

)
,
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provided that certain regularity conditions hold. The smaller is the variance σ2,

the more efficient is thus the algorithm for estimating the particular function g (·).

Minimizing σ2 would then be a good way to optimize efficiency, but the important

drawback of using such a measure resides in its dependence on the function of

interest g (·). Since we do not want to lose generality by specifying such a quantity

of interest, we instead choose to base our analysis on the first order efficiency

criterion, as used by [30] and [27]. This measures the average squared jumping

distance for the algorithm and is defined by

E

[(
X

(d)
n+1 (t + 1) − X

(d)
n+1 (t)

)2
]

. (2.9)

Note that we choose to base the first order efficiency criterion on the path of

the (n + 1)-st component of the Markov chain. Since the d components are not

all identically distributed, this detail is important (although we could have chosen

any of the last d − n components). Indeed, as d → ∞, we shall see in Chapters

3 and 4 (and prove in Chapters 5 and 6) that the path followed by any of the

last d− n components of an appropriately rescaled version of the RWM algorithm

converges to a diffusion process with some speed measure υ (`).

For a diffusion process, the only sensible measure of efficiency is its speed

measure: optimal efficiency is thus obtained by maximizing this quantity. This

means that no matter the efficiency measure selected when working with our

finite-dimensional RWM algorithm, it will end up being proportional to the speed

measure of the limiting diffusion process as d increases. Any efficiency measure

considered in finite dimensions will thus be asymptotically equivalent, including the

first order efficiency criterion introduced previously. The fact that we are choosing
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first order efficiency here is thus not as important as the fact that we compute it

with respect to the path of a component whose limit is a continuous-time process.

Indeed, in this case, the effect of choosing a particular efficiency criterion vanishes

as d gets larger.

Even though the last d − n terms always converge to some diffusion limit, it

might not be the case for the first n components, whose limit could remain discrete

as d → ∞. Trying to optimize the proposal scaling by relying on these components

would then result in conclusions that are specific to our choice of efficiency measure.



Chapter 3

Optimizing the Sampling

Procedure

We now present weak convergence and optimal scaling results for sampling from

the target distribution described in Section 2.2, using the RWM algorithm with a

proposal distribution as in Section 2.3.

Since we know the results in [29] to be robust to some perturbations of the

target density, we might expect these conclusions to be valid when the scaling terms

in Θ−2 (d) do not vary too greatly from one another. This first case is considered in

Section 3.1, in which we introduce a condition involving Θ−2 (d) and ensuring that

the algorithm asymptotically behaves as in [29]. The last two sections focus on the

asymptotic behavior of the algorithm when this condition is violated. We obtain a

result stating that when there exists at least one scaling term that is significantly

smaller than the others, then the limiting process and AOAR are different from

those obtained for the iid case. Under such circumstances, we can differentiate

two particular cases: the first one where the significantly small scaling terms are

43
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also reasonably small versus the other where they are excessively small. In this

last case, we shall not only see that it is impossible to optimize the efficiency of the

RWM algorithm for high-dimensional distributions, but also that every proposal

variance results in an ineffective algorithm. Several examples aiming to illustrate

the application of the various theorems are also included.

3.1 The Familiar Asymptotic Behavior

It is now an established fact that 0.234 is the AOAR for target distributions with

iid components, as demonstrated by [29]. [31] even showed that the id assumption

could be relaxed to some extent, implying for instance that the same conclusion

still applies in the case of a target density as in (2.2), but with scaling vector Θ−2

independent of d. It is thus natural to wonder how big a discrepancy between

the scaling terms is tolerated in order not to violate this established asymptotic

behavior.

The following theorem presents explicit asymptotic results allowing us to opti-

mize `2, the constant term of σ2 (d). We first introduce a weak convergence result

for the process
{
Z(d) (t) , t ≥ 0

}
in (2.8) and most importantly in practice, we

transform the conclusion achieved into a statement about efficiency as a function

of acceptance rate, as was done in [29].

As before, we denote weak convergence of processes in the Skorokhod topology

by ⇒, standard Brownian motion at time t by B (t), and the standard normal cdf

by Φ (·). Moreover, recall that the scaling term of the component of interest Xi∗

is taken to be one (θi∗ (d) = 1) which, as explained in Section 2.2, might require a

linear transformation of Θ−2 (d).
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Theorem 3.1.1. Consider a RWM algorithm with proposal distribution Y(d) ∼

N
(
X(d), `2

dα Id

)
, where α satisfies (2.7). Suppose that the algorithm is applied to

a target density as in (2.2) satisfying the specified conditions on f , with θ−2
j (d),

j = 1, . . . , d as in (2.4) and θi∗ (d) = 1. Consider the i∗-th component of the

process
{
Z(d) (t) , t ≥ 0

}
, that is

{
Z

(d)
i∗ (t) , t ≥ 0

}
=
{

X
(d)
i∗ ([dαt]) , t ≥ 0

}
, and let

X(d) (0) be distributed according to the target density π in (2.2).

We have
{

Z
(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,

where Z (0) is distributed according to the density f and {Z (t) , t ≥ 0} satisfies the

Langevin stochastic differential equation (SDE)

dZ (t) = υ (`)1/2 dB (t) +
1

2
υ (`) (log f (Z (t)))′ dt,

if and only if

lim
d→∞

θ2
1 (d)

∑d
j=1 θ2

j (d)
= 0. (3.1)

Here,

υ (`) = 2`2Φ
(
−`
√

ER/2
)

(3.2)

and

ER = lim
d→∞

m∑

i=1

c (J (i, d))

dα

dγi

Kn+i

E

[(
f ′ (X)

f (X)

)2
]

, (3.3)

with c (J (i, d)) as in (2.5).
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Intuitively, we might say that when none of the target components possesses a

scaling term significantly smaller than those of the other components, the limiting

process is the same as that found in [29]. Although the previous statement is one

involving the asymptotically smallest scaling term, we notice that the numerator of

Condition (3.1) is based on θ−2
1 (d) only, which is not necessarily the asymptotically

smallest scaling term. Technically, Condition (3.1) should then really be

lim
d→∞

θ̂2 (d)
∑d

j=1 θ2
j (d)

= 0,

with the reciprocal of θ̂2 (d) as in (2.6). Instead of explicitly verifying if the previous

condition is satisfied, we can equivalently check if Condition (3.1) is still satisfied

when θ−2
1 (d) is replaced by θ−2

n+1 (d) at the numerator. This is easily assessed given

the term c (J (1, d)) θ2
n+1 (d) at the denominator and the previous condition is thus

simplified as in (3.1).

Recall that the function a (d, `) is the π-average acceptance rate defined in

(1.5). The following corollary introduces the optimal value ˆ̀ and AOAR leading

to greatest efficiency of the RWM algorithm.

Corollary 3.1.2. In the setting of Theorem 3.1.1 we have limd→∞ a (d, `) = a (`),

where

a (`) = 2Φ

(
−`

√
ER

2

)
.

Furthermore, υ (`) is maximized at the unique value ˆ̀ = 2.38/
√

ER for which

a(ˆ̀) = 0.234 (to three decimal places).

This result provides valuable guidelines for practitioners. It reveals that when

the target distribution has no scaling term that is significantly smaller than the



47

others (ensured by Condition (3.1)), then the asymptotic acceptance rate optimiz-

ing the efficiency of the chain is 0.234. Alternatively, setting the parameter ` to

the value 2.38/
√

ER for which υ (`) is maximized leads to greatest efficiency of the

algorithm and the proportion of accepted moves is 0.234. In some situations, find-

ing ˆ̀ will be easier while in others, tuning the algorithm according to the AOAR

will reveal more convenient. In the present case, since the AOAR does not depend

on the particular choice of f , it is simpler in practice to monitor the acceptance

rate and to tune it to be about 0.234.

The results presented in this section can be applied, for instance, to the case

where f (x) = (2π)−1/2 exp (−x2/2), which yields a multivariate normal target dis-

tribution with independent components. In that case, note that the scaling terms in

(2.4) represent the variances of the individual components. The drift and volatility

terms of the limiting Langevin diffusion thus become −Z (t) /2 and 1 respectively,

and the expression for ER in (3.3) can be simplified since E

[(
f ′(X)
f(X)

)2
]

= 1.

More interestingly however, Theorem 3.1.1 can also be applied to any mul-

tivariate normal distribution with covariance matrix Σ, as mentioned in Section

2.1. After having applied the orthogonal transformation to obtain a diagonal co-

variance matrix formed of the eigenvalues of Σ, these eigenvalues can be used

to verify if Condition (3.1) is satisfied, and hence to determine whether or not

2.38/
√

ER is the optimal scaling value for the proposal distribution. For example,

consider a nontrivial covariance matrix Σ where the variance of each component

is 2 (σi = 2, i = 1, . . . , d) and where each covariance term is equal to 1 (σij = 1,

j 6= i). The d eigenvalues of Σ are (d, 1, . . . , 1) and satisfy Condition (3.1). For a

relatively high-dimensional multivariate normal with such a correlation structure,
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it is thus optimal to tune the acceptance rate to 0.234. Note however that not all

d components mix at the same rate. When studying any of the last d − 1 compo-

nents the vector Θ−2 (d) = (d, 1, . . . , 1) is appropriate, so σ2 (d) = `2/d and these

components thus mix in O (d) iterations. When studying the first component, we

need to linearly transform the scaling vector so that θ−2
1 (d) = 1. We then use

Θ−2 (d) = (1, 1/d, . . . , 1/d), so σ2 (d) = `2/d2 and this component mixes according

to O (d2).

While the AOAR is independent of the target distribution, ˆ̀ is not and varies

inversely proportionally to ER. Recall that two different factors influence ER: the

function f itself (through the expectation term in (3.3)) and the scaling terms.

The latter can have an effect through their size as a function of d, their constant

term, or the proportion of the vector Θ−2 (d) they occupy. Specifically, suppose

that c (i, d) θ2
n+i (d) is O (dα) for some i ∈ {1, . . . ,m}, implying that the i-th group

has an impact on the value of ER. Then, the value ˆ̀ increases with Kn+i but is

inversely proportional to the proportion of scaling terms included in the group.

The following examples shall clarify these concepts.

The next two examples aim to illustrate the impact on ˆ̀ of choosing different

functions f in (2.2) and different settings for the scaling vector Θ−2 (d), the two

factors influencing the quantity ER. The third example presents a situation where

the convergence of some components towards the AOAR is extremely slow.

Example 3.1.3. Consider a d-dimensional target distribution as in (2.2) with

f (x) = exp (−x2/2) /
√

2π and where the scaling terms are equally divided among

1 and 2d, i.e. Θ−2 (d) = (1, 2d, . . . , 1, 2d). Referring to the notation introduced

in Chapter 2 we find n = 0 and m = 2, with a proposal scaling of the form
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σ2 (d) = `2/d. Condition (3.1) is verified by computing

lim
d→∞

1

1
(

d
2

)
+ 1

2d

(
d
2

) = lim
d→∞

4

2d + 1
= 0

(in fact the satisfaction of the condition is trivial since n = 0), and we can thus

optimize the efficiency of the algorithm by setting the acceptance rate to be close

to 0.234. Finally, since E

[(
f ′(X)
f(X)

)2
]

= 1 then

ER = lim
d→∞

(
d

2
(1)

1

d
+

d

2

(
1

2d

)
1

d

)
=

1

2

and the optimal value for ` is ˆ̀= 2.38
√

2 = 3.366. What is causing an increase of ˆ̀

with respect to the baseline 2.38 for the case where all components are iid standard

normal is the fact that only half of the components affect the accept/reject ratio

in the limit. Since there are less components ruling the algorithm, a higher value

of ` is tolerated as optimal.

The first graph in Figure 3.1 presents the relation between first order efficiency

in (2.9) and the scaling parameter `2. The dotted curve has been obtained by

performing 100,000 iterations of the RWM algorithm in dimensions 100, and as

expected the maximum is located very close to (3.366)2 = 11.33. Furthermore, the

data agrees with the theoretical curve (solid line) of υ (`) in (3.2) versus `2. For the

second graph, we run the RWM algorithm with various values of ` and plot first

order efficiency as a function of the proportion of accepted moves for the different

proposal variances. That is, each point in a given curve is the result of a simulation

with a particular value for `. We again performed 100,000 iterations, but this time

we repeated the simulations for different dimensions (d = 10, 20, 50, 100), outlining
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Figure 3.1: Left graph: efficiency of X1 versus `2; the dotted line is the result of
simulations with d = 100. Right graph: efficiency of X1 versus the acceptance
rate; the dotted lines come from simulations in dimensions 10, 20, 50 and 100. In
both graphs, the solid line represents the theoretical curve υ (`).

the fact that the optimal acceptance rate converges very rapidly to its asymptotic

counterpart. The theoretical curve of υ (`) versus a (`) is represented by the solid

line.

We note that efficiency is a relative measure in our case. Consequently, choos-

ing an acceptance rate around 0.05 or 0.5, would necessitate to run the chain 1.5

times as long to obtain the same precision for a particular estimate.

Example 3.1.4. As a second example, we suppose that each of the d compo-

nents in (2.2) has a gamma density with a shape parameter of 5, that is f (x) =

1
24

x4 exp (−x) for x > 0. The scaling vector of the d-dimensional density is taken

to be Θ−2 (d) =
(

d
5
, 4, d, 4, 4, d, . . .

)
; the first term appears only once, while the

second and third ones are repeated infinitely often in the limit and appear in the

proportion 2:1.

We thus have n = 1, m = 2 and σ2 (d) = `2/d. Condition (3.1) is validated
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Figure 3.2: Left graph: efficiency of X2 versus `2; the dotted curve is the result of a
simulation with d = 500. Right graph: efficiency of X2 versus the acceptance rate;
the dotted curves come from simulations in various dimensions. In both cases, the
solid line represents the theoretical curve υ (`).

by checking that

lim
d→∞

5
d

5
d

+ 2(d−1)
3

(
1
4

)
+ d−1

3

(
1
d

) = lim
d→∞

30

28 + d + d2
= 0;

furthermore,

E

[(
f ′ (X)

f (X)

)2
]

= E

[
16

X2
− 8

X
+ 1

]
=

1

3
,

and then

ER = lim
d→∞

1

3

{
2 (d − 1)

3

(
1

4

)
1

d
+

d − 1

3

(
1

d

)
1

d

}
=

1

18
.

In Figure 3.2, we find results similar to those of Example 3.1.3. This time

we performed 500,000 iterations in dimensions 499 for the graph on the left and

in dimensions 49, 100, 199, and 499 for the graph on the right. The optimal

value for `2 is ˆ̀2 =
(
2.38

√
18
)2

= 101.96, which the first graph corroborates. The
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density f , the constant term 4 and the cardinality function c (1, d) = 2 (d − 1) /3

all contributed to boost the value of ˆ̀ (compared to a target with iid standard

normal components). As before, the second graph allows us to verify that the

optimal acceptance rate indeed converges to 0.234.

It was shown in the iid case that although asymptotic, the results are pretty

accurate in small dimensions (d ≥ 10). In the present case however, this fact

is not always verified and care must be exercised in practice. In particular, if

there exists a finite number of scaling terms such that λj is close to α (but with

λj < α, otherwise Condition (3.1) would be violated) then the optimal acceptance

rate converges extremely slowly to 0.234 from above. For instance, suppose that

Θ−2 (d) =
(
d−λ, 1, . . . , 1

)
with λ < 1. The proposal variance is then σ2 (d) = `2/d

and the closer to 1 is λ, the slower is the convergence of the optimal acceptance

rate to 0.234. In fact, for a multivariate normal target with λ = 0.75, the next

example shows that d must be as big as 100, 000 for the optimal acceptance rate

to be reasonably close to 0.234; simulations also show that for α − λ ≥ 0.5, the

asymptotic results are accurate in relatively small dimensions, just as in the iid

case.

Example 3.1.5. As a last example of the conventional asymptotic behavior, con-

sider the target in (2.2) with f the density of the standard normal distribution

and Θ−2 (d) = (d−0.75, 1, 1, 1, . . .) the vector of scaling terms. Under this setting,

we obtain n = m = 1 and σ2 (d) = `2/d; moreover, Condition (3.1) is verified since

lim
d→∞

d0.75

d0.75 + (d − 1)
= 0.
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Figure 3.3: Left graph: efficiency of X1 versus the acceptance rate; the dotted
curves are the results of simulations in dimensions 10, 100, 100,000 and 200,000.
Right graph: efficiency of X2 versus the acceptance rate; the dotted curves come
from simulations in dimensions 100 and 200,000. In both graphs, the solid line
represents the theoretical curve υ (`).

The quantity ER being equal to 1, the optimal value for ` is then the baseline 2.38.

The particularity of this case resides in the size of θ−2
1 (d), which is somewhat

smaller than the other terms but not enough to remain significant as d → ∞. As

a consequence, the dimension of the target distribution must be quite large before

the asymptotics kick in. In small dimensions, the optimal acceptance rate is thus

closer to the case where there exists at least one scaling term significantly smaller

than the others, which shall be studied in Section 3.2.

In the two previous examples, similar graphs would have been obtained no

matter which component would have been selected to compute first order efficiency.

In the present situation, this is still true in the limit. However, as Figure 3.3

demonstrates, the convergence of the component X1 is much slower than that of

the other components.

Even in small dimensions, the optimal acceptance rate of the last d− 1 com-
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ponents is very close to 0.234 so as not to make much difference in practice. For

the first component however, setting d = 100 yields an optimal acceptance rate

around 0.3 and dimensions must be raised as high as 100,000 to get an optimal

acceptance rate reasonably close to the asymptotic one. Relying on the first order

efficiency of X1 would then falsely suggest a higher optimal acceptance rate in the

present case, from where the importance of basing the efficiency on the (n + 1)-st

component as explained in Section 2.4.

Before moving to the next section, consider the normal-normal hierarchical

model presented in Section 2.1. We mentioned that by applying an orthogonal

transformation to this model, we obtain a target density of the form (2.2) with

scaling vector Θ−2 (d) = (O (1/d) , O (d) , 1, 1, . . .). Such a model thus violates

Condition (3.1) implying that 0.234 might not be optimal, even though the distri-

bution is normal (see Theorem 4.3.3 of Section 4.3 when dealing with more general

θj (d)’s). This might seem surprising as multivariate normal distributions have

long been believed to behave as iid target distributions in the limit. A natural

question to ask is then, what happens when Condition (3.1) is not satisfied? Those

issues shall be discussed in the next few sections.

3.2 A Reduction of the AOAR

In the presence of a finite number of scaling terms that are significantly smaller

than the other ones, choosing a correct proposal variance is a slightly more delicate

task. We can think for instance of the densities in Figure 2.1, which seem to

promote contradictory characteristics when it comes to the selection of an efficient
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proposal variance. In that example, the components X1 and X2 are said to rule

the algorithm since despite the fact that there is only two of them, they govern

the choice for the proposal variance by ensuring that it is not too big as a function

of d. When dealing with such target densities, we realize that Condition (3.1) is

violated and we then face the complemental case where

lim
d→∞

θ2
1 (d)

∑d
j=1 θ2

j (d)
> 0. (3.4)

According to the form of Θ−2 (d), the asymptotically smallest scaling term in

(2.4) would normally have to be either θ−2
1 (d) or θ−2

n+1 (d). However, it is interesting

to notice that under the fulfilment of the previous condition this uncertainty is

resolved and K1/d
λ1 is smallest for large d. Furthermore, the existence of other

target components having a O
(
dλ1
)

scaling term is also possible. In particular,

let b = max (j ∈ {1, . . . , n} ; λj = λ1); b is then the number of such components,

which is finite and at most n.

More can be said about the determination of the proposal variance. Under

the fulfilment of Condition (3.4), we show in Section 5.3.1 that λ1 has to be big

enough compared to γ1 so as to obtain σ2 (d) = `2/dλ1 . In words, this means that

the proposal variance is governed by the b asymptotically smallest scaling terms.

This then implies that the proposal variance takes its largest form (σ2 (d) = `2)

when studying one of the first b components only. This conclusion is the opposite

to that achieved in the previous section, where the form of the proposal variance

had to be based on one of the m groups of scaling terms appearing infinitely often

in the limit (this is proved in Section 5.2.1).

We now introduce weak convergence results which shall later be used to es-
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tablish an equation permitting numerically solving for the optimal `2 value.

Theorem 3.2.1. Consider a RWM algorithm with proposal distribution Y(d) ∼

N
(
X(d), `2

dλ1
Id

)
. Suppose that the algorithm is applied to a target density as in

(2.2) satisfying the specified conditions on f , with θ−2
j (d), j = 1, . . . , d as in (2.4)

and θi∗ (d) = 1. Consider the i∗-th component of the process
{
Z(d) (t) , t ≥ 0

}
,

that is
{

Z
(d)
i∗ (t) , t ≥ 0

}
=
{

X
(d)
i∗

([
dλ1t

])
, t ≥ 0

}
, and let X(d) (0) be distributed

according to the target density π in (2.2).

We have
{

Z
(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,

where Z (0) is distributed according to the density f and {Z (t) , t ≥ 0} is as below,

if and only if

lim
d→∞

θ2
1 (d)

∑d
j=1 θ2

j (d)
> 0

and there is at least one i ∈ {1, . . . ,m} satisfying

lim
d→∞

c (J (i, d)) dγi

dλ1
> 0, (3.5)

with c (J (i, d)) as in (2.5).

For i∗ = 1, . . . , b with b = max (j ∈ {1, . . . , n} ; λj = λ1), the limiting process

{Z (t) , t ≥ 0} is the continuous-time version of a Metropolis-Hastings algorithm

with acceptance rule

α
(
`2, Xi∗ , Yi∗

)
= EY(b)−,X(b)−

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)

+
b∏

j=1

f (θjYj)

f (θjXj)
Φ

(
−∑b

j=1 ε (Xj, Yj) − `2ER/2
√

`2ER

)]
. (3.6)
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For i∗ = b + 1, . . . , d, {Z (t) , t ≥ 0} satisfies the Langevin stochastic differen-

tial equation (SDE)

dZ (t) = υ (`)1/2 dB (t) +
1

2
υ (`) (log f (Z (t)))′ dt,

where

υ (`) = 2`2EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)]
. (3.7)

In both cases, ε (Xj, Yj) = log (f (θjYj) /f (θjXj)) and

ER = lim
d→∞

m∑

i=1

c (J (i, d))

dλ1

dγi

Kn+i

E

[(
f ′ (X)

f (X)

)2
]

. (3.8)

Interestingly, the b components of smallest order each possess a discrete-time

limiting process. In comparison with the other components, they already converge

fast enough so a speed-up time factor is superfluous. Furthermore, the acceptance

rule of the limiting Metropolis-Hastings algorithm is influenced by the components

affecting the form of the proposal variance only. These components are more likely

to cause the rejection of the proposed moves, and in that sense they constitute

the components having the deepest impact on the rejection rate of the algorithm,

ultimately becoming the only ones having an impact as d → ∞. Intuitively, we

know that if many components are ruling the algorithm then it will be harder to

accept moves. We thus expect the probability of accepting the proposed move yi∗

given that we are at state xi∗ to get smaller as b and/or ER get larger.

It is worth noticing the singular form of the acceptance rule, which verifies the
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detailed balance condition in (1.1) and can be shown to belong to the Metropolis-

Hastings family (i.e. to take the form in (1.2) for some symmetric function s (x, y)).

In particular when b = 1 the expectation operator can be dropped and for a general

proposal density q (x, y) we obtain

α
(
`2ER, x, y

)
= Φ

(
log f(y)q(y,x)

f(x)q(x,y)
− `2ER/2

√
`2ER

)

+
f (y) q (y, x)

f (x) q (x, y)
Φ

(
log f(x)q(x,y)

f(y)q(y,x)
− `2ER/2

√
`2ER

)
.

The effectiveness (in terms of asymptotic variance) of this new acceptance rule

depends on the parameter `2ER. When `2ER → ∞, then we find α (`2ER, x, y) →

0, meaning that the chain never moves. At the other extreme, if `2ER = 0 then this

term has no more impact on the acceptance probability and the resulting rule is the

usual one, i.e. 1∧ f(y)q(y,x)
f(x)q(x,y)

. In [28], the optimal Metropolis-Hastings acceptance rule

was shown to be 1∧ f(y)q(y,x)
f(x)q(x,y)

because it favors the mixing of the chain by improving

the sampling of all possible states. The efficiency of the modified acceptance rule

is thus inversely proportional to its parameter `2ER.

Figure 3.4 presents the acceptance function α (`2ER, x, y) of a symmetric

Metropolis-Hastings algorithm (i.e. with q (x, y) = q (y, x)) as a function of f(y)
f(x)

for various values of the parameter `2ER. We notice that as `2ER increases, it be-

comes more difficult to accept moves. Furthermore if `2ER > 0 the fact of drawing

a proposed move whose target density is higher than that of the current state does

not ensure that the move will be accepted. This thus confirms that our new accep-

tance rule is not optimal (in terms of asymptotic variance), as proposed moves are

more likely to be accepted with the usual acceptance rule. In fact, the acceptance
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probability of the new rule is seen to be scaled down by the cdf function Φ (·).

Note that the previous analysis is only valid for a proposal distribution which

is independent of both `2 and ER. In our particular case where Y(d) is a function

of `, setting ` = 0 is obviously not the optimal choice since this would yield a chain

that is static. The optimal value for ` thus lies in (0,∞), but also depends on the

particular measure of efficiency selected since we are dealing with a discrete-time

process.

For i∗ = b + 1, . . . , d, the variance of the proposal distribution is a function

of d and a speed-up time factor is then required in order to get a sensible limit.

Consequently, we obtain a continuous-time limiting process, and the speed measure

of the limiting Langevin diffusion is now different from those found in [29] and

Section 3.1. It now depends on exactly the same components as for the discrete-

time limit and as we shall see, this alters the value of the AOAR.

Since there are two limiting processes for the same algorithm, we now face
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the dilemma as to which should be chosen to determine the AOAR. Indeed, the

algorithm either accept or reject all d individual moves in a given step so it is

important to have a common acceptance rate in all directions. The limiting dis-

tribution of the first b components being discrete, their AOAR is governed by a

Metropolis-Hastings algorithm with a singular acceptance rule. This is however a

source of ambiguities since for discrete-time processes, measures of efficiency are

not unique and would yield different acceptance rates depending on which one is

chosen. Fortunately, this issue does not exists for the limiting Langevin diffusion

process obtained from the last d− b components, as all measures of efficiency turn

out to be equivalent. In our case, optimizing the efficiency corresponds to maxi-

mizing the speed measure of the diffusion (υ (`)), which is justified by the fact that

the speed measure is proportional to the mixing rate of the algorithm.

The following corollary provides an equation for the asymptotic acceptance

rate of the algorithm as d → ∞.

Corollary 3.2.2. In the setting of Theorem 3.2.1 we have limd→∞ a (d, `) = a (`),

where

a (`) = 2EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)]
.

An analytical solution for the value ˆ̀that maximizes the function υ (`) cannot

be obtained. However, this maximization problem can be easily resolved through

the use of numerical methods. For densities f satisfying the regularity conditions

mentioned in Section 2.2, ˆ̀will be finite and unique. This will thus yield an AOAR

a(ˆ̀) and although an explicit form is not available for this quantity either, we can

still draw some conclusions about ˆ̀ and the AOAR. First, Condition (3.4) ensures

the existence of a finite number of components having a scaling term significantly
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smaller than the others. Since this constitutes the complement of the case treated

in Section 3.1, we know that the variation in the speed measure is directly due to

these components. When studying any component Xi∗ with i∗ ∈ {b + 1, . . . , d},

we also know that θ−2
j (d) → 0 as d → ∞ for j = 1, . . . , b since these scaling

terms are of smaller order than θi∗ = 1. Hence, the first b components obviously

provoke a reduction of both ˆ̀and the AOAR, which is now necessarily smaller than

0.234. In particular, both quantities will get smaller as b increases. The AOAR is

unfortunately not independent of the target distribution anymore, and will vary

according to the choice of density f in (2.2) and vector Θ−2 (d). It is then easier to

optimize the efficiency of the algorithm by determining ˆ̀ rather than monitoring

the acceptance rate, since in any case finding the AOAR implies solving for ˆ̀.

We now revisit the examples introduced in Section 2.1; this shall illustrate

how to solve for the appropriate ˆ̀ and AOAR using (3.7). In the first example,

tuning the acceptance rate to be about 0.234 would result in an algorithm whose

performance is substantially less than when using the correct AOAR.

Example 3.2.3. Consider the d-dimensional target density mentioned in (2.1),

where each component is distributed according to the gamma density f (x) =

1
24

x4 exp (−x), x > 0. Consistent with the notation of Sections 2.2 and 2.3, the

scaling vector is taken to be Θ−2 (d) = (1, 1, 25d, 25d, 25d, . . .), so n = 2, m = 1

and σ2 (d) = `2. We remark that the first two scaling terms are significantly smaller

than the balance and cause the limit in (3.4) to be positive:

lim
d→∞

1

2 + (d − 2) 1
25d

=
25

51
> 0.

Even though the scaling parameters of X1 and X2 are significantly smaller than
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Figure 3.5: Left graph: efficiency of X3 versus `2; the dotted curve represents
the results of simulations with d = 500. Right graph: efficiency of X3 versus the
acceptance rate; the results of simulations with d = 20 and 500 are pictured by the
dotted curves. In both cases, the theoretical curve υ (`) is depicted (solid line).

the others, they still share the responsibility of selecting the proposal variance with

the other d − 2 components since

lim
d→∞

c (1, d) θ2
3 (d) σ2

α (d) = lim
d→∞

(d − 2)
1

25d
=

1

25
> 0.

Since Conditions (3.4) and (3.5) are satisfied, we thus use (3.7) to optimize

the efficiency of the algorithm. After having estimated the expectation term in

(3.7) for various values of `, a scan of the vector υ (`) produces ˆ̀2 = 61 and

a(ˆ̀) = 0.0980717. Note that the term ER = 1/75 causes an increase of ˆ̀, but the

components X1 and X2 (b = 2) force it downwards. This is why ˆ̀2 < 424.83, which

would be the optimal value for ` if X1 and X2 were ignored.

Figure 3.5 illustrates the result of 500,000 iterations of a Metropolis algorithm

in dimensions 500 for the left graph and in dimensions 20 and 500 for the right

one. On both graphs, the maximum occurs close to the theoretical values men-
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tioned previously. We note that the AOAR is now quite far from 0.234, and that

tuning the proposal scaling so as to produce this acceptance rate would contribute

to considerably lessen the performance of the method. In particular, this would

generate a drop of at least 20% in the efficiency of the algorithm.

Example 3.2.4. Let the target be the normal-normal hierarchical model consid-

ered in Section 2.1. That is, the location parameter satisfies X1 ∼ N (0, 1) and the

other d−1 components are also normally distributed and conditionally independent

given their mean X1, i.e. Xi ∼ N (X1, 1) for i = 2, . . . , d.

Note that in order to deal with a dependent distribution, it is necessary to

include the location parameter X1 in the joint distribution and to update it as a

regular component in the algorithm. Otherwise, the target distribution considered

would be a (d − 1)-dimensional iid distribution conditional on X1, which has been

studied by [29].

After having applied an orthogonal transformation to this target, we obtain

a d-dimensional normal density with independent components and variances given

by
(

1
d+1

, d + 1, 1, 1, . . .
)
.

In this case, n = 2, m = 1, σ2 (d) = `2/d and Condition (3.4) is satisfied:

lim
d→∞

d + 1

(d + 1) + 1
d+1

+ (d − 2)
=

1

2
> 0.

In addition, Condition (3.5) is also met since

lim
d→∞

c (1, d) θ2
3 (d) σ2

α (d) = lim
d→∞

d − 2

d
= 1 > 0.

In light of this information, (3.7) shall then be used to optimize the efficiency of
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Figure 3.6: Left graph: efficiency of X3 versus `2. Right graph: efficiency of X3

versus the acceptance rate. In both cases, the solid line represents the theoretical
curve υ (`) and the dotted curves portray the results of simulations in dimensions
10 and 100.

the Metropolis algorithm.

Using ER = 1 along with the method described in Example 3.2.3, we estimate

the optimal scaling value to be ˆ̀2 = 3.8, for which a(ˆ̀) = 0.2158. The value ˆ̀ =

1.95 thus differs from the baseline 2.38 in Section 3.1, but still yields an AOAR that

is somewhat close to 0.234. As before, Figure 3.6 displays graphs of the first order

efficiency of X3 versus `2 and the acceptance rate respectively; 100,000 iterations

were performed in dimensions 10 and 100. The curves obtained emphasize the rapid

convergence of finite-dimensional distributions to their asymptotic counterpart,

which is represented by the solid line.

In Examples 3.1.3 and 3.1.4, it did not matter which one of the d components

was selected to compute first order efficiency, as all of them would have yielded

similar efficiency curves. In Example 3.1.5, the choice of the component became

important since X1 had a scaling term much smaller than the others, resulting

in a lengthy convergence to the right optimal acceptance rate. In both Examples
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3.2.3 and 3.2.4, it is now crucial to choose this component judiciously since X1 has

an asymptotic distribution that remains discrete. The AOAR generated by this

sole component is thus specific to the chosen measure of efficiency, which is not

representative of the target distribution as a whole. As mentioned in Section 2.4,

the (n + 1)-th component (X3 in the last two examples) is always a good choice,

as is any of the last d − n components.

In theory, it is necessary for the component studied to have a scaling term

of order 1 to obtain a nontrivial limiting distribution for this component. In

practice, this is not really an issue since we are not dealing with infinite dimensions.

Nonetheless, for large dimensions, care must be exercised because extreme scaling

terms could result in overflow or underflow when running the algorithm.

3.3 Excessively Small Scaling Terms: An Im-

passe

We finally consider the remaining situation where there exist b components having

scaling terms that are excessively small compared to the others, implying that they

are the only ones to have an impact on our choice for σ2 (d). This means that if the

first n components of the target density were ignored, i.e. by basing our prognostic

for α on the last d−n components only, we would opt for a proposal variance which

is of larger order. Consequently, there does not exist a group of components with

small or numerous enough scaling terms so as to have an equivalent influence on

the proposal distribution. The first b components thus become the only ones to

have an impact on the accept/reject ratio as the dimension of the target increases.
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Theorem 3.3.1. In the setting of Theorem 3.2.1 but with Condition (3.5) replaced

by

lim
d→∞

c (J (i, d)) dγi

dλ1
= 0 ∀ i ∈ {1, . . . ,m} , (3.9)

the conclusions of Theorem 3.2.1 are preserved, but the acceptance rule is now

α (Xi∗ , Yi∗) = EY(b)−,X(b)−

[
1 ∧

b∏

j=1

f (θjYj)

f (θjXj)

]
(3.10)

for the limiting Metropolis-Hastings algorithm and the speed measure is

υ (`) = 2`2PY(b),X(b)

(
b∑

j=1

ε (Xj, Yj) > 0

)
(3.11)

for the limiting Langevin diffusion.

As in Theorem 3.2.1 we obtain two different limiting processes, depending

on which component we focus. Since the proposal variance is now entirely ruled

by the first b components, it means that ER = 0. When b = 1, the acceptance

rule of the limiting RWM algorithm reduces to the usual rule. In that case, the

first component not only becomes independent of the others as d → ∞, but it

is completely unaffected by these d − 1 components in the limit, which move too

slowly compared to the pace of X1. For the last d − b components, the limiting

process is continuous and the speed measure of the diffusion is also affected by

the first b components only. As mentioned previously, we use the continuous-time

limit to attempt optimizing the efficiency of the chain.

Corollary 3.3.2. In the setting of Theorem 3.3.1, we have limd→∞ a (d, `) = a (`),
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where

a (`) = 2PY(b),X(b)

(
b∑

j=1

ε (Xj, Yj) > 0

)
.

Attempting to optimize υ (`) leads to an impasse, since this function is un-

bounded for basically any smooth density f . That is, υ (`) increases with `, which

implies that ˆ̀ must be chosen arbitrarily large; examining the function a (`) thus

leads us to the conclusion that the AOAR is null. This phenomenon can be ex-

plained by the fact that the scaling terms of the first b components are much smaller

than the others, determining the form of σ2 (d) as a function of d. However, the

moves generated by a proposal distribution with such a variance are definitely too

small for the other components, forcing the parameter ` to increase in order to

generate reasonable moves for them. In practice, it is thus impossible to find a

proposal variance that is small enough for the first b components, but at the same

time large enough so as to generate moves that are not compromising the conver-

gence speed of the last d−b components. In Section 3.2, the situation encountered

was similar, except that it was possible to achieve an equilibrium between these

two constraints. In the current circumstances, the discrepancy between the scaling

terms is too large and the disparities are irreconcilable. In theory, we thus obtain

a well-defined limiting process, but in practice we reach a useless conclusion as far

as the AOAR is concerned. In this case, we can even say that homogeneous pro-

posal scalings will result in an algorithm which is inefficient as d → ∞. We shall

see next chapter that for such cases, inhomogeneous proposal scalings constitute a

wiser option.

Note that if we were choosing a smaller α for the proposal variance (i.e. a

function of larger order for σ2 (d)), the proposed moves would be too big for the first
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Figure 3.7: Efficiency of X2 versus the acceptance rate. The solid line represents
the theoretical curve υ (`) and the dotted line has been obtained by running a
Metropolis algorithm in dimensions 101.

b components, resulting in a trivial limiting process (with a generator converging to

0). In fact, by examining the proof of Theorem 3.3.1 (and in particular Proposition

A.7 as well as a similar proposition for the case where λj > α), we realize that the

proposal variance we consider is the only one to yield a nontrivial limiting process.

Example 3.3.3. Suppose f is the standard normal density and consider a target

density as in (2.2) with scaling vector Θ−2 (d) =
(

1
d5 ,

1√
d
, 3, 1√

d
, 3 . . .

)
. The par-

ticularity of this setting resides in the fact that θ−2
1 (d) is much smaller than the

other scaling terms. Note that an immediate consequence of this is the satisfaction

of Condition (3.4).

In the present case, n = 1, m = 2 and the proposal variance is totally governed

by the first component as σ2 (d) = `2/d5. Since θ−2
1 (d) is the only component to

have an impact on the proposal variance then

lim
d→∞

c (1, d) θ2
2 (d) σ2

α (d) = lim
d→∞

(
d − 1

2

)√
d

1

d5
= 0
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and

lim
d→∞

c (2, d) θ2
3 (d) σ2

α (d) = lim
d→∞

(
d − 1

2

)(
1

3

)
1

d5
= 0,

implying that Condition (3.9) is also verified. We must then use (3.11) to determine

how to optimize the efficiency of the algorithm.

As explained previously and as illustrated in Figure 3.7, the optimal value for

` converges to infinity, resulting in an optimal acceptance rate which converges to

0. Obviously, it is impossible to reach a satisfactory level of efficiency in the limit

using the prescribed proposal distribution.



Chapter 4

Inhomogeneous Proposal Scalings

and Target Extensions

The optimal scaling results presented in Chapter 3 assumed the homogeneity of

the proposal distribution as well as a specific type of target density. The present

chapter aims to relax these assumptions to some extent, and to solve the deadlock

faced in Section 3.3, where the homogeneity assumption kept the algorithm from

converging efficiently.

Before relaxing any assumption, we start by considering the special case where

the target distribution is multivariate normal, in which case the theorems of Sec-

tions 3.2 and 3.3 can be somehow simplified. Then, in Section 4.2, we study

whether or not there is an improvement in the efficiency of the RWM algorithm

when applying a certain type of inhomogeneous proposal distributions. Section 4.3

focuses or relaxing the assumed form for Θ−2 (d), while the goal of Section 4 is to

present simulation studies to investigate the efficiency of the algorithm applied to

more complicated and widely used statistical models.

70
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4.1 Normal Target Density

The results of Sections 3.2 and 3.3 can be simplified when f is taken to be the

standard normal density function. Indeed, it then becomes possible to compute

the expectations with respect to X(b) and conditional on Y(b) in (3.6), (3.7), and

(3.11). We obtain the following results.

Theorem 4.1.1. In the setting of Theorem 3.2.1 but with f (x) = (2π)−1/2 exp (−x2/2),

the conclusions of Theorem 3.2.1 and Corollary 3.2.2 are preserved but with Metropolis-

Hastings acceptance rule

α
(
`2, xi∗ , yi∗

)
= E


Φ




ε (xi∗ , yi∗) − `2

2

(∑b
j=1,j 6=i∗

χ2
j

Kj
+ ER

)

√
`2
(∑b

j=1,j 6=i∗
χ2

j

Kj
+ ER

)


 (4.1)

+
f (yi∗)

f (xi∗)
Φ



−ε (xi∗ , yi∗) − `2

2

(∑b
j=1,j 6=i∗

χ2
j

Kj
+ ER

)

√
`2
(∑b

j=1,j 6=i∗
χ2

j

Kj
+ ER

)





 ,

where χ2
j , j = 1, . . . , b are independent chi square random variables with 1 degree

of freedom and ER simplifies to

ER = lim
d→∞

m∑

i=1

c (J (i, d))

dλ1

dγi

Kn+i

.

In addition, the Langevin speed measure is now given by

υ (`) = 2`2E


Φ


− `

2

√√√√
b∑

j=1

χ2
j

Kj

+ ER




 ,
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and the limiting average acceptance rate satisfies

a (`) = 2E


Φ


− `

2

√√√√
b∑

j=1

χ2
j

Kj

+ ER




 .

Finally, υ (`) is maximized at the unique value ˆ̀ and the AOAR is given by a(ˆ̀).

For the case where some components entirely rule the proposal variance, we

find the following result.

Theorem 4.1.2. In the setting of Theorem 3.3.1 but with f (x) = (2π)−1/2 exp (−x2/2),

the conclusions of Theorem 3.3.1 and Corollary 3.3.2 are preserved but with Langevin

speed measure

υ (`) = 2`2E


Φ


− `

2

√√√√
b∑

j=1

χ2
j

Kj




 ,

where χ2
j , j = 1, . . . , b are independent chi square random variables with 1 degree

of freedom. Furthermore, the limiting average acceptance rate now satisfies

a (`) = 2E


Φ


− `

2

√√√√
b∑

j=1

χ2
j

Kj




 .

When b = 1, the limiting process of X1 is the usual one-dimensional RWM

algorithm. As we said before, measures of efficiency are not unique in this case

but to understand the situation, suppose we consider first-order efficiency. We

then want to maximize the expected square jumping distance, which will result

in a better mixing of the chain. The acceptance rate maximizing this quantity is

0.45, as mentioned in [31]. As b increases, more and more components affect the

acceptance process and this results in a reduction of the AOAR towards 0. Indeed,
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when b → ∞, Condition (3.4) is not satisfied anymore and we find ourselves facing

the complemental case introduced in Section 3.1. In such a situation, the proposal

scaling σ2 (d) = `2/dλ1 is then inappropriate (too large) and in order to handle

this case, a new rescaling of space and time allows us to find a nontrivial limiting

process and an AOAR of 0.234. In the case of Theorem 4.1.1, the acceptance

rule is more restrictive and accepting moves is thus harder. First-order efficiency

is maximized when the acceptance rate is about 0.35 for b = 1, and decreases

towards 0 as b → ∞, in which case an appropriate rescaling of space and time is

again required to ultimately find an AOAR of 0.234. The difference between both

rules thus becomes insignificant for large values of b.

The previous analysis allows us to get some insight about the situation for

discrete-time limits. Nonetheless in practice, continuous-time limits must be used

to determine the AOAR that should be applied for optimal performance of the

algorithm. In Theorem 4.1.1, we notice that the expectation term in the speed

measure υ (`) is decreasing faster than the term Φ
(
−`

√
ER/2

)
in (3.2). Conse-

quently, the optimal value ˆ̀ is bounded above by 2.38/
√

ER and gets smaller as

the number b of components increases. As expected, the diminution of the param-

eter ` is not important enough to outdo the factors χ2
i /Ki and the AOAR is thus

continually smaller than 0.234. This difference is intensified with the growth of b.

The speed measure in Theorem 4.1.2 is particular in the sense that its expec-

tation term does not vanish fast enough to overturn the growth of `2. The optimal

value ˆ̀ is thus infinite, yielding an AOAR converging to 0. This means that any

acceptance rate will result in an algorithm that is inefficient in practice for large d.

The best solution is to resort to inhomogeneous proposal distribution, which shall
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be discussed next section.

4.2 Inhomogeneous Proposal Scalings: An Al-

ternative

So far, we have assumed the proposal scaling σ2 (d) = `2/dα to be the same for all d

components. In such a case, the results obtained in Chapter 3 demonstrate that the

components do not all mix at the same rate (unless we are in the iid case). Indeed,

a particular component Xi∗ mixes according to O (dα), where α is determined by

applying (2.7) to the scaling vector Θ−2 (d) with θi∗ (d) = 1. It is natural to wonder

if adjusting the proposal variance as a function of d for each component would yield

a better performance of the algorithm. An important point to keep in mind is that

for
{
Z(d) (t) , t ≥ 0

}
to be a stochastic process, we must speed up time by the same

factor for every component. Otherwise, we would face a situation where some

components move more frequently than others in the same time interval, and since

the acceptance probability of the proposed moves depends on all d components this

would violate the definition of a stochastic process. Despite the fact that we have

to speed up all components of a given vector by the same factor, we can however

use different speeding factors for studying different components (as was done in

Chapter 3). That is, we might speed up all components by d2 (say) when studying

X1, but speed up all components by d (say) when studying X2.

The inhomogeneous scheme we adopt is the following: we personalize the

proposal variances of the last d − n components only, implying that the proposal

variances of the first n components are the same as they would have been under
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the homogeneity assumption. In order to determine the proposal variances of the

last d−n terms, we treat each of the m groups of scaling terms appearing infinitely

often as a different portion of the scaling vector and determine the appropriate α

for each group.

In particular, consider the θj (d)’s appearing in (2.4) and let the proposal

variance of Xj be σ2
j (d) = `2/dαj , where αj = α for j = 1, . . . , n and αj is such

that limd→∞ c (J (i, d)) dγi/dαj = 1 for j = n + 1, . . . , d, j ∈ J (i, d). In order

to study the component Xi∗ , we still assume that θi∗ (d) = 1, but we now let

Z(d) (t) = X(d) ([dαi∗ t]). We have the following result.

Theorem 4.2.1. In the setting of Theorem 3.1.1 but with proposal variances and

process
{
Z(d) (t) , t ≥ 0

}
as just described, the conclusions of Theorem 3.1.1 and

Corollary 3.1.2 are preserved.

Since the variances are now adjusted, every constant term Kn+1, . . . , Kn+m

has an impact on the limiting process, yielding a larger value of ER. Hence, the

optimal value ˆ̀= 2.38/
√

ER is smaller than with homogeneous proposal scalings.

When the proposal variances of all components were based on the same value α,

the algorithm had to compensate for the fact that α is chosen as small as possible,

and thus maybe too small for certain groups of components, with a larger value

for ˆ̀2. Since the variances are now personalized, a smaller value for ˆ̀ is more

appropriate.

As realized previously, it is possible to face a situation where the efficiency

of the algorithm cannot be optimized under homogeneous proposal scalings. This

happens when a finite number of scaling terms request a proposal variance of very

small order, resulting in an excessively slow convergence of the other components.
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To overcome this problem, inhomogeneous proposal scalings will add a touch a

personalization and ensure a decent speed of convergence in each direction.

Theorem 4.2.2. In the settings of Theorems 3.2.1 and 3.3.1 (that is, no mat-

ter if Condition (3.5) is satisfied or not) but with proposal variances and process
{
Z(d) (t) , t ≥ 0

}
as just described, the conclusions of Theorem 3.2.1 and Corollary

3.2.2 are preserved.

In Theorem 4.2.1, it was easily verified that the AOAR is unaffected by the

use of inhomogeneous proposals. The same statement does not hold in the present

case, although we can still affirm that the AOAR will not be greater than 0.234.

Indeed, since ` is assumed to be fixed in each direction, the algorithm can hardly

do better than for iid targets even though the proposal has been personalized. As

explained previously, ˆ̀ is now smaller than with homogeneous proposal scalings

since the algorithm does not have to compensate for the fact that σ2 (d) = `2/dλ1

was maybe too small for certain groups of components. In fact, in the case of

Theorem 4.2.2, we expect the AOAR to lie somewhere in between the AOAR

obtained under homogeneous proposal scalings and 0.234. The inhomogeneity

assumption should then help us solving the problem of Section 3.3, in which case

ˆ̀ was arbitrarily large and the AOAR was null.

Example 4.2.3. We now revisit Example 3.3.3. That is, we let f be the standard

normal density and consider a d-dimensional target distribution as in (2.2) with

scaling vector Θ−2 (d) =
(

1
d5 ,

1√
d
, 3, 1√

d
, 3 . . .

)
.

In the present case, it was shown that the use of homogeneous proposal scal-

ings results in an optimal scaling value converging to infinity, and an AOAR con-

verging towards 0.
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To optimize the efficiency of this RWM algorithm, the idea is then to person-

alize the proposal variances of the last d − n terms, so the last d − 1 terms in our

case. The proposal variance for the first term just stays the same as before, i.e.

`2/d5. Using the method presented at the beginning of this section, the vector of

inhomogeneous proposal scalings is thus
(

`2

d5 ,
`2

d1.5 ,
`2

d
, . . . , `2

d1.5 ,
`2

d

)
. From the results

of Section 3.2, we then deduce that

ER = lim
d→∞

(
d − 1

2

√
d

1

d1.5
+

d − 1

2

(
1

3

)
1

d

)
=

1

2
+

1

6
=

2

3
.

Running the Metropolis algorithm for 100,000 iterations in dimensions 101

yields the curves in Figure 4.1, where the solid line again represents the theoretical

curve υ (`) in (3.7). The theoretical values obtained for ˆ̀2 and a(ˆ̀) are 6 and

0.181 respectively, which agree with the simulations. The inhomogeneous proposal

scalings have then contributed to decrease ˆ̀while raising the AOAR. Indeed, large

values for ˆ̀ are now inappropriate since components with larger scaling terms now

possess proposal variances that are suited to their size, ensuring an reasonable

speed of convergence for these components.

As illustrated in the previous example, the adjustment of the proposal vari-

ances of the last d − n components also affects the mixing rate of these com-

ponents. That is, each component Xj with j ∈ J (i, d) now mixes according

to O (c (J (i, d))), i = 1, . . . ,m, while the first n components still mix accord-

ing to O (dα) (for the particular values of α found when we set θi∗ (d) = 1 for

i∗ = 1, . . . , n). The inhomogeneous assumption thus results in an improved effi-

ciency for the majority of the last d − n components.

Note that we could also personalize the proposal variances of all d scaling
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Figure 4.1: Left graph: efficiency of X2 versus `2. Right graph: efficiency of X2

versus the acceptance rate. In both cases, the solid line represents the theoretical
curve and the dotted curve is the result of simulations in dimensions 101.

terms, meaning that we could adjust the proposal variances of the first n compo-

nents as a function of d by setting αj = λj, j = 1, . . . , n. Such a modification of the

proposal scaling vector would result in processes
{
Z

(d)
i∗ (t) , t ≥ 0

}
which asymp-

totically behave as in Theorem 3.2.1 and Corollary 3.2.2. This can be explained

by the fact that each of X1, . . . , Xn would now mix according to O (1), and thus

these components would always affect the limiting distribution of the process of

interest. We however feel that the first option presented is a better compromise

since in some cases, we might take advantage of the fact that the AOAR is 0.234,

which will not happen if the proposal variance of every component is personalized.

4.3 Various Target Extensions

It is important to see how the conclusions of Chapter 3 extend to more general tar-

get distribution settings. First, we can relax the assumption of equality among the

scaling terms θ−2
j (d) for j ∈ J (i, d). That is, we assume the constant terms within
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each of the m groups to be random and come from some distribution satisfying

certain moment conditions. In particular, let

Θ−2 (d) =

(
K1

dλ1
, . . . ,

Kn

dλn
,
Kn+1

dγ1
, . . . ,

Kn+c(J (1,d))

dγ1
, . . .

,
Kn+

∑m−1
i=1 c(J (i,d))+1

dγm
, . . . ,

Kd

dγm

)
. (4.2)

We assume that {Kj, j ∈ J (i, d)} are iid and chosen randomly from some distri-

bution with E
[
K−2

j

]
< ∞. Without loss of generality, we denote E

[
K

−1/2
j

]
= ai

and E
[
K−1

j

]
= bi for j ∈ J (i, d). Recall that the scaling term of the component

of interest is assumed to be independent of d, and we therefore have θ−2
i∗ (d) = Ki∗ .

To support the previous modifications, we now suppose that −∞ < γm <

γm−1 < . . . < γ1 < ∞. In addition, we suppose that there does not exist a λj,

j = 1, . . . , n equal to one of the γi, i = 1, . . . ,m. This means that if there is an

infinite number of scaling terms with the same power of d, they must necessarily

belong to the same of the m groups. We obtain the following results.

Theorem 4.3.1. Consider the setting of Theorem 3.1.1 with Θ−2 (d) as in (4.2)

and θi∗ = K
−1/2
i∗ . We have

{
Z

(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,

where Z (0) is distributed according to the density θi∗f (θi∗x) and {Z (t) , t ≥ 0}

satisfies the Langevin SDE

dZ (t) = (υ (`))1/2 dB (t) +
1

2
υ (`) (log f (θi∗Z (t)))′ dt,
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if and only if

lim
d→∞

dλ1

∑n
j=1 dλj +

∑m
i=1 c (J (i, d)) dγi

= 0. (4.3)

Here, υ (`) is as in Theorem 3.1.1 and

ER = lim
d→∞

m∑

i=1

c (J (i, d)) dγi

dα
biE

[(
f ′ (X)

f (X)

)2
]

,

with

c (J (i, d)) = #
{
j ∈ {n + 1, . . . , d} ; θj (d) is O

(
dγi/2

)}
.

Furthermore, the conclusions of Corollary 3.1.2 are preserved.

It is important to notice that Conditions (3.1) and (4.3) are equivalent since

the constant terms are assumed to be finite. Condition (4.3) is however easier to

verify in the present case due to the randomness of the constant terms.

The fact of admitting a certain level of variability among the scaling terms

slightly affects the efficiency of the algorithm. In order to illustrate this, suppose

that we transform the scaling vector so as to obtain θi∗ = 1. In that case, we would

replace ER in the previous theorem by

ER = Ki∗ lim
d→∞

m∑

i=1

c (J (i, d)) dγi

dα
biE

[(
f ′ (X)

f (X)

)2
]

.

Now, suppose that we study a target distribution similar to that described

previously but where the Kj’s, instead of being random, are equal to 1/a2
i for

j ∈ J (i, d). If we suppose, for this particular target, that θi∗ (d) = K
(1)
i∗ and that
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we transform the scaling vector so that θi∗ (d) = 1, we obtain

E∗
R = lim

d→∞
K

(1)
i∗

m∑

i=1

c (J (i, d)) dγi

dα
a2

i E

[(
f ′ (X)

f (X)

)2
]

.

We now compare the speed measure obtained for the respective Langevin

diffusion processes. Specifically, we can reexpress the speed measure in Theorem

4.3.1 as

υ (`) = 2`2Φ

(
−`

√
ER

2

)
=

E∗
R

ER

× 2

(
`2 ER

E∗
R

)
Φ

(
−
√

`2ER/E∗
R

√
E∗

R

2

)
,

which makes clear that the efficiency of the algorithm as a function of the accep-

tance rate is identical to (3.2) in Theorem 3.1.1, but now multiplied by the factor

E∗
R/ER. The component Xi∗ thus mixes according to O

(
ER

E∗
R

dα
)

and since a2
i ≤ bi,

we realize that (at least if K
(1)
i∗ ≤ Ki∗) this component is slowed down by a factor

of E∗
R/ER when compared to the corresponding target where the Kj’s are fixed.

In the case where Kj, j = n + 1, . . . , d are random and there exists a finite

number of scaling terms remaining significantly small as d → ∞, we have the

following result.

Theorem 4.3.2. Consider the setting of Theorem 3.2.1 (Theorem 3.3.1) with

Θ−2 (d) as in (4.2), θi∗ = K
−1/2
i∗ and replace Condition (3.4) by

lim
d→∞

dλ1

∑n
j=1 dλj +

∑m
i=1 c (J (i, d)) dγi

> 0. (4.4)

We have
{

Z
(d)
i∗ (t) , t ≥ 0

}
⇒ {Z (t) , t ≥ 0} ,



82

where Z (0) is distributed according to the density θi∗f (θi∗x) and {Z (t) , t ≥ 0}

is identical to the limit found in Theorem 3.2.1 (Theorem 3.3.1) for the first b

components, but where it satisfies the Langevin SDE

dZ (t) = (υ (`))1/2 dB (t) +
1

2
υ (`) (log f (θi∗Z (t)))′ dt

for the other d − b components, with υ (`) as in Theorem 3.2.1 (Theorem 3.3.1).

For both limiting processes, we now use

ER = lim
d→∞

m∑

i=1

c (J (i, d)) dγi

dα
biE

[(
f ′ (X)

f (X)

)2
]

instead of (3.8) in Theorem 3.2.1, with

c (J (i, d)) = #
{
j ∈ {n + 1, . . . , d} ; θj (d) is O

(
dγi/2

)}
.

In addition, the conclusion of Corollary 3.2.2 (Corollary 3.3.2) is preserved.

We note that if the terms Kj’s are known, it might be better to scale the

proposal distribution proportional to the Kj’s. In particular, this would allow us

to recover the loss in the efficiency attributed to the introduction of randomness

among the scaling terms. In fact, one only needs to know the Kj’s of the groups of

scaling terms having an impact on σ2 (d) (i.e. with O (c (J (i, d)) dγi) = O (dα)),

as well as those of the significantly small scaling terms if there is any. This would

yield slightly more efficient algorithms, with limiting results similar to those found

for each of the three different cases presented in Chapter 3. In particular, this

means that this adjustment would not be sufficient to obtain an efficient algorithm
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in the presence of extremely small scaling terms (Section 3.3), and inhomogeneous

proposal scalings would still be necessary in this case.

The previous results can also be extended to more general functions c (J (i, d)),

i = 1, . . . ,m and θj (d), j = 1, . . . , d. In order to have sensible limiting theory, we

however restrict our attention to functions for which the limit exists as d → ∞.

As before, we must also have c (J (i, d)) → ∞ as d → ∞. We can even allow the

scaling terms
{
θ−2

j (d) , j ∈ J (i, d)
}

to vary within each of the m groups, provided

that they are of the same order. That is, for j ∈ J (i, d) we suppose

lim
d→∞

θj (d)

θ′i (d)
= K

−1/2
j ,

for some reference function θ′i (d) and some constant Kj coming from the distribu-

tion described for Theorems 4.3.1 and 4.3.2. For instance, if θj (d) =
√

d2 + d + 1

for some j ∈ J (1, d) then we obtain θ′1 (d) = d.

As for the previous two theorems, we assume that if there is infinitely many

scaling terms of a certain order they must all belong to one of the m groups. Hence,

Θ−2 (d) contains at least m and at most n + m functions of different order. The

positions of the elements belonging to the i-th group are thus given by

J (i, d) =
{

j ∈ {1, . . . , d} ; 0 < lim
d→∞

θ−2
j (d) θ′2i (d) < ∞

}
, (4.5)

for i ∈ {1, . . . ,m}. We again suppose that the scaling terms are classified according

to an asymptotic increasing order. In particular, the first n terms of Θ−2 (d) satisfy

θ−2
1 (d) ≺ . . . ≺ θ−2

n (d) and the order of the following m terms is chosen to satisfy

θ′ −2
1 (d) ≺ . . . ≺ θ′ −2

m (d).
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For such target distributions we define the proposal scaling to be σ2 (d) =

`2σ2
α (d), with σ2

α (d) the function of largest possible order such that

limd→∞ θ2
1 (d) σ2

α (d) < ∞,

limd→∞ c (J (i, d)) θ′2i (d) σ2
α (d) < ∞ for i = 1, . . . ,m.

(4.6)

We then have the following results.

Theorem 4.3.3. Under the setting of Theorem 4.3.1, but with proposal scal-

ing σ2 (d) = `2σ2
α (d) where σ2

α (d) satisfies (4.6) and with general functions for

c (J (i, d)) and θj (d) as defined previously, the conclusions of Theorem 4.3.1 are

preserved, provided that

lim
d→∞

θ2
1 (d)∑n

j=1 θ2
j (d) +

∑m
i=1 c (J (i, d)) θ′2i (d)

= 0

holds instead of Condition (3.1) and with

ER = lim
d→∞

m∑

i=1

c (J (i, d)) θ′2i (d) σ2
α (d) biE

[(
f ′ (X)

f (X)

)2
]

,

where c (J (i, d)) is the cardinality function of (4.5).

Interestingly, the asymptotically optimal acceptance rate can be shown to be

0.234 as before.

Theorem 4.3.4. Under the setting of Theorem 4.3.2, but with proposal scal-

ing σ2 (d) = `2σ2
α (d) where σ2

α (d) satisfies (4.6) and with general functions for

c (J (i, d)) and θj (d) as defined previously, the conclusions of Theorem 4.3.2 are
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preserved, provided that

lim
d→∞

θ2
1 (d)∑n

j=1 θ2
j (d) +

∑m
i=1 c (J (i, d)) θ′2i (d)

> 0

holds instead of Condition (4.4),

∃i ∈ {1, . . . ,m} such that lim
d→∞

c (J (i, d)) θ′2i (d)

θ2
1 (d)

> 0

holds instead of Condition (3.5), and

lim
d→∞

c (J (i, d)) θ′2i (d)

θ2
1 (d)

= 0 ∀i ∈ {1, . . . ,m}

holds instead of Condition (3.9).

Under this setting, the quantity ER is now given by

ER = lim
d→∞

m∑

i=1

c (J (i, d)) θ′2i (d) σ2
α (d) biE

[(
f ′ (X)

f (X)

)2
]

,

where c (J (i, d)) is the cardinality function of (4.5).

Although the AOAR might turn out to be close to the usual 0.234 it is also

possible to face a case where this rate is inefficient, from where the importance to

determine the correct proposal variance.

These theorems assume quite a general form for the scaling terms of the target

distribution and allow for a lot of flexibility. This is important as the results of

Chapter 3 cannot always be applied due to the simplistic form of the assumed

scaling terms.
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4.4 Simulation Studies: Hierarchical Models

This section focuses on applying the results presented to some popular statistical

models. The examples illustrate how to deal with more intricate situations, and

also demonstrate that the results are robust to certain types of dependence among

the components of the target density.

In Section 4.4.1, we show how to optimize the performance of the RWM

algorithm for multivariate normal targets with correlated components. In Sections

4.4.2 and 4.4.3 we study the variance components model and the gamma-gamma

hierarchical model respectively. Although the results presented in this paper do

not directly apply to these last two cases, these examples allow to evaluate their

robustness to other types of targets.

4.4.1 Normal Hierarchical Model

The first example we consider is a three-level hierarchical model where all the den-

sities are normal, and whose goal is to illustrate how to deal with more complicated

covariance matrices. Indeed, computing the determinant of an intricate covariance

matrix is rarely an easy task, and it might reveal challenging to determine how

the eigenvalues of high-dimensional target distributions evolve with d. The follow-

ing example shall hopefully complement Example 3.2.4 of Section 3.2, in which

eigenvalues were straight-forwardly determined.

Consider a model with location parameters µ1 ∼ N (0, 1) and µ2 ∼ N (µ1, 1).

Further suppose that there exist 18 components which are conditionally iid given

µ1 and µ2: half of them (i.e. 9 components) are distributed according to Xi ∼

N (µ1, 1), while the other half satisfies Xi ∼ N (µ2, 1).
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Since each of these 20 components is normally distributed, the joint distribu-

tion of µ1, µ2, X1, ..., X18 will also be a multivariate (20-dimensional) normal dis-

tribution, where the unconditional mean turns out to be the null vector. Obtaining

the covariance between each pair of components is easily achieved by using condi-

tioning: for the variances, we obtain σ2
1 = 1, σ2

i = 2 for i = 2, . . . , 11 and σ2
i = 3

for i = 12, . . . , 20; for the covariances, we get σij = 2 for i = 2, j = 12, . . . , 20 (or

vice versa) and for i = 12, . . . , 20, j = 12, . . . , 20, i 6= j; all the other covariance

terms are equal to 1. The covariance matrix then looks like

Σ20 =




1 1 · · · 1 1 · · · 1

1 2 1 · · · 1 2 · · · 2

1 1 2 1 · · · 1 1 · · · 1 1

... 1 2
...

...
. . .

...
...

...
...

. . . 1 1 · · · 1 1

1 1 1 · · · 1 2 1 · · · 1 1

1 2 1 · · · 1 1 3 2 · · · 2

...
...

. . .
...

... 2 3
...

... 1 · · · 1 1
...

. . . 2

1 2 1 · · · 1 1 2 · · · 2 3




20×20

.

In order to determine which one of the speed measures in (3.2), (3.7) or (3.11)

should be used for the optimization problem, we need to know how the eigenvalues

of the d× d matrix Σd evolve as a function of d. Finding the eigenvalues of such a

covariance matrix can be tedious, especially in large dimensions. A useful method

is to transform the matrix into a triangular one, which allows us to determine
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Table 4.1: Eigenvalues for Σd in various dimensions

d λ1 (d) λ2 (d) λ3 (d) λ4 (d)

600 0.003305 0.003329 115.5865 786.4069

800 0.002484 0.002498 153.7839 1048.211

ai 1.982754 1.997465 0.192644 1.310678

ai

800
0.002478 0.002497 - -

800ai - - 154.1153 1048.542

the determinant by taking the product of the diagonal terms. By applying this

method, we find that d−4 of the eigenvalues are exactly equal to 1 while the other

four are the solutions of the equation

λ4 −
(

3d

2
− 1

)
λ3 +

(
d2

4
+

d

2
+ 2

)
λ2 − (d + 1) λ + 1 = 0.

Unfortunately, solving for the roots of a polynomial of degree 4 is possible but not

straight-forward as there does not exist a nice formula as for polynomials of degree

2.

Determining eigenvalues numerically for any given matrix is easily achieved

by using any statistical software (we used R). A way of obtaining the information

needed for λ1 (d), λ2 (d), λ3 (d) and λ4 (d), the four remaining eigenvalues ordered

in ascending order, is thus to examine the numerical eigenvalues of Σd in various

dimensions. A plot of λi (d) versus 1/d for i = 1, 2 clearly shows that the two

smallest eigenvalues are linear functions of 1/d, and satisfy ai/d = λi (d) for i =

1, 2. Similarly, a plot of λi (d) versus d for i = 3, 4 reveals a relation of the form

aid = λi (d) for the two largest eigenvalues.

We can even approximate the constant terms of λi (d) for i = 1, . . . , 4. Using
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Figure 4.2: Left graph: efficiency of X3 versus `2. Right graph: efficiency of X3

versus the acceptance rate. The solid line represents the theoretical curve, while
the dotted curve is the result of the simulation study.

the numbers obtained in dimensions 600 and recorded in Table 4.1, we fit the linear

equations stated previously and obtain fitted values for the slopes ai, i = 1, . . . , 4

(also recorded in the table). The eigenvalues in dimensions 800 are also included

along with their fitted counterpart, exhibiting the accuracy of this approach.

Optimizing the efficiency of the algorithm for sampling from the hierarchical

model presented previously then reduces to optimizing a 20-dimensional multivari-

ate normal distribution with independent components, null mean and variances

equal to
(

1.9828
20

, 1.9975
20

, 0.1926 (20) , 1.3107 (20) , 1, . . . , 1
)
.

It is easily verified that such a vector of scaling terms satisfies Conditions (3.4)

and (3.5), and leads to a proposal variance of the form σ2 (`) = `2/d. In light of

this information, we should then turn to equation (3.7) to optimize the efficiency

of the algorithm. Since ER = 1, we conclude that ˆ̀ = 3.4 and that the AOAR is

0.2214368.

Figure 4.2 presents graphs based on 100,000 iterations of the RWM algorithm,

depicting how the first order efficiency of X5 relates to `2 and the acceptance
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rate respectively. This clearly illustrates that the algorithm behaves similarly to

corresponding high-dimensional target distributions (solid curve).

4.4.2 Variance Components Model

It would be interesting to have an idea as to which extend the results presented in

this paper are robust to the inclusion of certain relations of dependence between

the components of the target density. We are already aware that our results are

valid for any multivariate normal target distribution, and thus for any normal

hierarchical model where the randomness affects the location parameter (i.e. the

mean) only. In this section and the next one, we consider two different hierarchical

models engendering distributions that are not jointly normal.

The second simulation study focuses on the variance components model. Let

µ ∼ N (0, 1), σ2
θ ∼ IG (3, 1) and σ2

e ∼ IG (2, 1). The means θi are conditionally

iid given µ, σ2
θ and are distributed according to θi ∼ N (µ, σ2

θ) for i = 1, . . . , 30.

The 30 groups of data values are conditionally independent given the mean vector

(θ1, . . . , θ30) and the variance σ2
e , while the values within each group are iid. In

particular, Yi,j ∼ N (θi, σ
2
e) for i = 1, . . . , 30 and j = 1, . . . , 10. Graphically, this

can be expressed as

µ, σ2
θ

↙ ↘

θ1 · · · θ30

σ2
e

↓ ↙ ↘ ↓

Y1,1, . . . , Y1,10 · · · Y30,1, . . . , Y30,10
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Figure 4.3: Left graph: efficiency of θ1 versus `2. Right graph: efficiency of θ1

versus the acceptance rate.

Under this model, not only the means of the various components are ran-

dom, but so are the variances. We are interested in the posterior distribution of

µ, σ2
θ , σ

2
e , θ1, . . . , θ30 given the data Yi,j , i = 1, . . . , 30, j = 1, . . . , 10, and thus the

target and is such that

π
(
µ, σ2

θ , σ
2
e , θ1, . . . , θ30 |Y

)
∝
(
σ2

θ

)−19 (
σ2

e

)−153

× exp

(
− µ2

2σ2
0

− 1

σ2
θ

− 1

σ2
e

−
30∑

i=1

(θi − µ)2

2σ2
θ

−
30∑

i=1

10∑

j=1

(θi − Yi,j)
2

2σ2
e

)
. (4.7)

The algorithm does not work well when generating moves from a normal

proposal to mimic moves from an inverse gamma distribution. In order for the

algorithm to behave well, we instead deal with gamma distributions and use the

inverse transformation. Hence, it is more convenient to use the target

π (µ, ϕθ, ϕe, θ1, . . . , θ30 |Y ) ∝ (ϕθ)
17 (ϕe)

151

× exp

(
− µ2

2σ2
0

− ϕθ − ϕe −
30∑

i=1

ϕθ (θi − µ)2

2
−

30∑

i=1

10∑

j=1

ϕe (θi − Yi,j)
2

2

)
.(4.8)
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To sample from (4.7), it then suffices to sample values from (4.8) using the RWM

algorithm, and apply the transformations σ2
θ = 1/ϕθ and σ2

e = 1/ϕe in order to

retrieve the two variances.

For the sake of the example, the data was simulated from the target distri-

bution and the same sample was used for each simulation. We performed 100,000

iterations of the RWM algorithm and plotted first order efficiency of the fourth

component versus `2 and the acceptance rate. The maximum is located around 0.17

for ˆ̀2 and choosing an acceptance rate close to 0.2 then optimizes the efficiency of

the algorithm. The AOAR thus seems to lie close to 0.234, but it is hard to tell its

exact value from the graph. According to the previous results, we suspect that it

might differ from 0.234, which might become clearer when simulating from target

distributions possessing a greater number of non-normal components. Since the

joint distribution is not normally distributed, we cannot directly use the results in-

troduced in this paper to optimize the performance of the algorithm. Nonetheless,

we observe that it seems possible to study the optimal scaling issue not only for

hierarchical targets where the mean of normally distributed variables is random,

but also for hierarchical targets with more layers and where the variance is random

as well.

4.4.3 Gamma-Gamma Hierarchical Model

As a last example, consider a hierarchical target model where the conditionally

independent variables are not normally distributed anymore, producing an AOAR

substantially smaller than 0.234.

Let λ ∼ Γ (4, 1) and, assuming conditional independence, Xi ∼ Γ (4, λ) for
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Figure 4.4: Left graph: efficiency of X1 versus `2. Right graph: efficiency of X1

versus the acceptance rate.

i = 1, . . . , 20. The dependency between the 20 variables then appears through

the randomness of the scaling parameter λ, and the unconditional 21-dimensional

target density satisfies

π (λ, x1, . . . , x20) ∝ λ83 exp

(
−λ

(
1 +

20∑

i=1

xi

))
20∏

i=1

x3
i .

This time, 10,000,000 iterations of the algorithm were required to reduce

Monte Carlo errors and obtain clear curves. Figure 4.4 shows the existence of a

finite value of ` optimizing the efficiency of the method (ˆ̀ = 1.6), resulting in an

optimal acceptance rate lying around 0.16.

This small AOAR appears to corroborate the discussion at the end of last

section. That is, it seems feasible to optimize the efficiency of RWM algorithms

for general hierarchical target models, but this will yield an AOAR that varies

according to the target distribution.



Chapter 5

Weak Convergence of the

Rescaled RWM Algorithm:

Proofs

In this chapter, we prove the various theorems introduced in Chapters 3 and 4.

Detailed proofs are included for Theorems 3.1.1, 3.2.1, and 3.3.1; the demonstra-

tions of the theorems in Chapter 4 being similar, we shall just outline the main

differences. In order to be as clear as possible, the proofs have been divided among

three chapters. In particular, Chapter 6 contains lemmas building to the proofs

that are presented subsequently. That chapter thus complements the present one,

and consequently we shall regularly refer to the results it contains.

For the proofs presented subsequently to be complete, it is also essential to

refer to various results appearing in [16]; the pillars of the results introduced in this

thesis are Theorem 8.2 and Corollary 8.6 of Chapter 4. The first result roughly says

that for the finite-dimensional distributions of a sequence of processes to converge

94
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weakly to those of some Markov process, it is enough to verify L1 convergence

of their generators. To reach weak convergence of the stochastic processes them-

selves, Theorem 7.8 of Chapter 3 in [16] states that it is sufficient to assess relative

compactness of the sequence of stochastic processes under study. This is achieved

using the second result, Corollary 8.6 of Chapter 4, which introduces conditions

for the sequence of stochastic processes considered to be relatively compact. The

last chapter is devoted to the study of these results.

For now, our task is then to focus on the proof of the L1 convergence of

the generators. To this end, we base our approach on the proof for the RWM

algorithm case in [26]. Note however that the authors instead refer to Corollary

8.7 of Chapter 4 in [16] and prove uniform convergence of generators, which could

not be used in the present situation.

The generator is written in term of an arbitrary test function h, which can

usually be any smooth function. In our case, we shall most often restrict our

attention to functions in C∞
c , the space of infinitely differentiable functions on

compact support. Since the limiting process obtained generally is a diffusion, then

C∞
c is a core for the generator by Theorem 2.1 of Chapter 8 in [16], meaning that

it is representative enough so as to focus on the functions it contains only. This

shall also be discussed in Chapter 7.

In order to lighten the formulas, we adopt the following convention for defin-

ing vectors: X(b−a) = (Xa+1, . . . , Xb) . The minus sign appearing outside the

brackets (e.g. X(b−a)−) means that the component of interest Xi∗ is excluded

from the vector. We also use the following notation for conditional expectations:

E [f (X,Y ) |Y ] = EX [f (X,Y )]. When there is no subscript, the expectation is
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taken with respect to all random variables included in the expression.

5.1 Generator of the Rescaled RWM Algorithm

Before proving the different results, we first determine the form of the genera-

tor to be used in the demonstrations. Recall that the process we are studying

is the i∗-th component of the sped up RWM algorithm. It is interesting to pre-

cise that although RWM algorithms are Markovian, the fact that the acceptance

probability depends on all d components keeps this one-dimensional process from

being Markovian as well. We are aware that the RWM algorithm considered is

originally a discrete-time process. We shall see that if we let the time between

each proposed move be exponentially distributed with mean 1/dα (i.e. the process

jumps according to a Poisson process with rate dα), then the generator obtained

is identical to that of the discrete-time process. In our case, it is thus equiv-

alent to talk about the i∗-th component of the sped up RWM algorithm (and

its continuous-time, constant-interpolation version) or its continuous-time version

with exponential holding times. Because the results in [16] are expressed in terms

of continuous-time processes, it shall then reveal convenient to treat the generator

as originating from the latter.

We start by deriving the generator of discrete-time and continuous-time Markov

processes. Then, we shall obtain the generator of our (discrete-time) RMW algo-

rithm and make the liaison with its continuous-time version. We should then be

in a good position to introduce what we call (maybe abusively since the process in

question is not Markovian) the generator of {Zi∗ (t) , t ≥ 0}, the continuous-time

version of the process of interest.
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5.1.1 Generator of Markov Processes

We define the generator of a Markov process to be an operator G acting on smooth

functions h : R → R such that

M (t) = h (X (t)) −
∫ t

0

Gh (X (s)) ds, (5.1)

is a martingale.

Replacing the integral by a Riemann sum in the previous formula results

in an expression for the generator of discrete-time processes. We find that for

discrete-time Markov processes, the generator satisfies

Gh (X (s)) =
1

k
E [h (X (s + k)) − h (X (s)) |X (s) ] , (5.2)

where k is the time interval between successive steps. In order to verify the martin-

gale condition for this generator, it suffices to check that E [M (t) − M (s) |F (s) ] =

0. We have

E [M (t) − M (s) |F (s) ]

= E


h (X (t)) − h (X (s)) − k

t/k−1∑

u=s/k

Gh (X (ku)) |F (s)




= E [h (X (t)) − h (X (s)) |F (s) ]

−
t/k−1∑

u=s/k

E [E [h (X (k (u + 1))) − h (X (ku)) |X (ku) ]| F (s)] .
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By the Markov property, we find

t/k−1∑

u=s/k

E [E [h (X (k (u + 1))) − h (X (ku)) |X (ku) ]| F (s)]

=

t/k−1∑

u=s/k

E [E [h (X (k (u + 1))) − h (X (ku)) |F (ku) ]| F (s)]

= E




t/k−1∑

u=s/k

(h (X (k (u + 1))) − h (X (ku)))

∣∣∣∣∣∣
F (s)




= E [h (X (t)) − h (X (s)) |F (s) ] ,

implying that M (t) is a martingale and that (5.2) is indeed the discrete-time

generator of a Markov process.

In a similar fashion, we define the generator of a continuous-time Markov

process to be such that

Gh (X (s)) = lim
k→0

1

k
E [h (X (s + k)) − h (X (s)) |X (s) ]

=
d

dt
E [h (X (t)) |X (s) ]

∣∣∣∣
t=s

. (5.3)

By reproducing the previous development, it is simple to verify that (5.1) is a

martingale.

5.1.2 Generator of RWM Algorithms

We now find the generator of our RWM algorithm, which is a d-dimensional

discrete-time Markov process. Specifically, we want to find the generator of the

sped up version of the algorithm. Since the time interval between each step is
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1/dα, the generator becomes

Gh
(
d,Z(d) (s)

)
= dαE

[
h

(
Z(d)

(
s +

1

dα

))
− h

(
Z(d) (s)

) ∣∣Z(d) (s)

]
.

Since the process either jumps to the proposed move Y(d) (dαs + 1) or stays at the

current state Z(d) (s), we then have

(
h

(
Z(d)

(
s +

1

dα

))
− h

(
Z(d) (s)

)) ∣∣Z(d) (s)

=





h
(
Y(d) (dαs + 1)

)
− h

(
Z(d) (s)

)
, w.p.

(
1 ∧ π(d,Y(d)(dαs+1))

π(d,Z(d)(s))

)

0, w.p. 1 −
(

1 ∧ π(d,Y(d)(dαs+1))
π(d,Z(d)(s))

) .

Using the law of total probabilities, we can express the discrete-time generator

of the rescaled RWM algorithm as

Gh
(
d,Z(d) (s)

)
=

dα EY(d)

[
(
h
(
Y(d) (dαs + 1)

)
− h

(
Z(d) (s)

))
(

1 ∧ π
(
d,Y(d) (dαs + 1)

)

π (d,Z(d) (s))

)]
.

Note that since
{
Z(d) (t) , t ≥ 0

}
is just a sped up version of

{
X(d) (t) , t ≥ 0

}
, we

can equivalently express the previous expectation in terms on the latter process:

Gh
(
d,X(d) (dαs)

)
=

dα EY(d)

[
(
h
(
Y(d) (dαs + 1)

)
− h

(
X(d) (dαs)

))
(

1 ∧ π
(
d,Y(d) (dαs + 1)

)

π (d,X(d) (dαs))

)]
.

Furthermore, since the generator does not depend explicitly on s, but merely on
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the last state of the process, we shall subsequently use the simpler expression

Gh
(
d,X(d)

)
= dα EY(d)

[
(
h
(
Y(d)

)
− h

(
X(d)

))
(

1 ∧ π
(
d,Y(d)

)

π (d,X(d))

)]
. (5.4)

Even though the process we are considering is a discrete-time process, we

mentioned previously that the results used to prove weak convergence involve

continuous-time Markov processes. The only way to preserve the Markov prop-

erty of this discrete-time process while making it a continuous-time process is to

resort to the memoryless property of the exponential distribution. That is, we let

the time between each step be exponentially distributed with mean 1/dα, so the

process will jump at times of a Poisson process with rate dα.

For a d-dimensional continuous-time (sped up) Markov process, we have

Gh
(
x(d)
)

= lim
k→0

1

k
E
[
h
(
Z(d) (s + k)

)
− h

(
Z(d) (s)

) ∣∣Z(d) (s) = x(d)
]
.

In order to have the process moving to Y(d) at time s + k given that the process

is at x(d) at time s, the Poisson process must first jump, which happens with

probability dαk + o (k). Then, given that the process jumps, we have a probability(
1 ∧ π(d,Y(d))

π(d,x(d))

)
that the process actually goes to Y(d), otherwise it stays where it

is. The generator thus becomes

Gh
(
d,x(d)

)
= lim

k→0

1

k
E

[
(
h
(
Y(d)

)
− h

(
x(d)
))
(

1 ∧ π
(
d,Y(d)

)

π (d,x(d))

)
(dαk + o (k))

]

= dαE

[
(
h
(
Y(d)

)
− h

(
x(d)
))
(

1 ∧ π
(
d,Y(d)

)

π (d,x(d))

)]
. (5.5)

As we can see, the generator of the continuous-time RWM algorithm in (5.5)
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is identical to the (rescaled) discrete-time version in (5.4). Because the results of

this thesis are proven in the Skorokhod topology, we are allowed to transform our

discrete-time algorithm into an equivalent continuous-time process, and to use the

latter to derive weak convergence results. The particularity of this topology is that

it allows a small deformation of the time scale, justifying why we can use these

two processes interchangeably. The Skorokhod topology shall be briefly described

in Section 7.1.

5.1.3 Generator of the i∗-th Component

Although we obtained the generator of RWM algorithms, the process under study is

formed of the i∗-th component of this d-dimensional algorithm only. As mentioned

previously, this process is not Markovian by itself, but is part of a d-dimensional

Markov process. Keeping this in mind, we now make an abuse of notation and

define what we call the generator of the i∗-th component of a multidimensional

Markov process as

Gh
(
X

(d)
i∗ (s)

)
= lim

k→0

1

k
E
[
h
(
X

(d)
i∗ (s + k)

)
− h

(
X

(d)
i∗ (s)

) ∣∣∣FX
(d)
i∗ (s)

]
.

In spite of the fact that
{

X
(d)
i∗ (t) , t ≥ 0

}
is not Markovian, the previous expression

does satisfy the martingale condition in (5.1). In particular, we can show that M (t)

is an FX
(d)
i∗ (t)-martingale when G is defined as above; this can be verified by using

a method similar to that presented in Section 5.1.1.

Starting from the definition of our sped up RWM algorithm, we then find that
{

Z
(d)
i∗ (t) , t ≥ 0

}
, the i∗-th component of the d-dimensional sped up process, has
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generator

Gh (d,Xi∗) = dαEY(d),X(d)−

[
(h (Yi∗) − h (Xi∗))

(
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

)]
, (5.6)

where the expectation is taken with respect to all random variables included in

the expression except Xi∗ .

Since the generator of our RWM algorithm is identical to that of its continuous-

time version, this shall be the same for the generator of this one component.

As mentioned previously, we can then associate the generator in (5.6) to the

continuous-time version of the sped up RWM algorithm with exponential hold-

ing times. This detail shall allow us to use the results in [16].

5.1.4 Generators’ Dilemma

Traditionally, optimal scaling results have been derived by studying the limit of

Gh
(
d,X(d)

)
, the generator of the (sped up) RWM algorithm. In particular, to

study only one component of this algorithm, researchers use the following expres-

sion for the generator:

Gh
(
d,X(d)

)
= lim

k→0

1

k
E
[
h
(
Z

(d)
i∗ (s + k)

)
− h

(
Z

(d)
i∗ (s)

) ∣∣∣FZ(d)

(s)
]

= dαEY(d)

[
(h (Yi∗) − h (Xi∗))

(
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

)]
. (5.7)

That is, they study the limiting distribution of one particular component of

the algorithm and to do so, they have access to all the past information of the

d-dimensional process, FZ(d)
(s). This makes much sense, as the ultimate goal in
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deriving these weak convergence results is to find an optimal scaling value which

is, by assumption, the same for every component; this optimal value should then

take into account the moves of the whole process and not just one component.

So far, this method has served the case pretty well. Indeed, the limiting

distributions obtained have been Markovian in the limit, and thus independent of

the other components of the algorithm. In fact, the limiting distributions found

have yielded a simple optimization problem: optimize the speed measure of the

limiting Langevin diffusion, and find an AOAR of 0.234.

In this work, Gh (d,Xi∗) in (5.6) is used to prove L1 convergence of the gen-

erators and study the limiting behavior of the RWM algorithm. Using such a

generator is equivalent to studying the ”marginal” distribution of the i∗-th com-

ponent, i.e. studying the limiting behavior of this component without knowing

what happens to the other d − 1 components of the process. We thus possess

information on the path of the i∗-th component only, FZ
(d)
i∗ (s). From a mathe-

matical viewpoint, it does not cause any problem to study this type of ”marginal”

process. However, since the proposal scaling value is assumed to be the same for

every component of the algorithm, then using this generator to solve the optimal

scaling problem might not seem as intuitive as the usual method. For this reason,

we now justify this choice of generator.

In the cases considered in the literature, where the the limiting processes

are Markovian given FZ(d)
(t), note that using the generator in (5.6) to study the

marginal distribution of every component of the algorithm would yield the same

conclusions. Indeed, since the limiting processes obtained are Markovian, they do

not depend on the variables Xi, i 6= i∗; taking an extra expectation of the generator
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in (5.7) with respect to those variables thus leaves the processes intact, implying

that both methods are equivalent. This is exactly what happened in Section 3.1,

where there did not exist a finite number of components with significantly small

scaling terms.

The particularity of our problem is that in certain cases (see Sections 3.2 and

3.3), there exists a finite number of components that are affecting the accept/reject

ratio of the algorithm in the limit; consequently, the limiting distribution obtained

by using a generator as in (5.7) depends specifically on these b components having

significantly small scaling terms. As far as the first b components are concerned,

they weakly converge to a b-dimensional discrete-time RWM algorithm. Hence,

it would not be a wise move to use the limiting distribution of those components

to determine the optimal scaling value ˆ̀, because as mentioned in Section 2.4,

efficiency measures are not unique for discrete-time processes; we thus have to

base our analysis on the last d − b components.

Given FZ(d)
(t), the limiting distribution of the i∗-th component (i∗ = b +

1, . . . , d) is thus not Markovian in the strict sense, but is part of a multidimen-

sional Markov process. Since the limiting distribution of the last d− b components

each depends on the first b components, we then face a problem when it comes to

determining the optimal scaling value. First, because we obtain a limiting diffusion

process whose drift and volatility terms depend on `2, X1, . . . , Xb (that is, we can-

not factorize a speed measure for the diffusion), it becomes difficult to determine

how the equation can be optimized. Secondly, even it we had a nice optimization

problem (i.e. a speed measure for the diffusion), then the optimal scaling value

ˆ̀ would be a function of X1, . . . , Xb, and would thus depend on the current state
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of the algorithm. Since we want to determine a global value ˆ̀ for the algorithm,

the natural way to reach this goal would then be to take the expectation of the

various ˆ̀(X1, . . . , Xb). In the present case, we unfortunately cannot obtain those

quantities; however, we can overturn this problem by considering the probability

to obtain a particular diffusion, and thus take the expectation of the limiting pro-

cess with respect to the variables X1, . . . , Xb. Looking for a global value ˆ̀ is then

equivalent to studying some component given its own past only. In other words,

we do not want to possess any information about the other components, in order

to avoid obtaining a limiting process that depends on them.

By applying this method, we see in Sections 3.2 and 3.3 that we obtain a

limiting Langevin diffusion with some speed measure which is a function of ` only,

and which can be used to find an optimal value ˆ̀and an AOAR. Of course, ˆ̀might

not be optimal at a given state (i.e. for specific values of X1, . . . , Xb); however, ˆ̀

will yield better results than any other constant `. It is also important to precise

that the reason why such a method makes sense is due, among other things, to the

fact that each of the last d−b components possesses the same limiting distribution;

if it were not the case, then it would be impossible to obtain a sensible value ˆ̀ by

studying the marginal limit of one component only.

From the previous discussion, we realize that the limiting process obtained

by considering the generator in (5.6) might be different from that obtained when

working with (5.7). In general, we can say that if (5.7) weakly converges to a

Markovian process, then the limit will be identical when working with (5.6); how-

ever, the converse is not necessarily true. From a mathematical viewpoint, it does

not cause any problem to study one limit or the other. When it comes to the
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optimal scaling problem however, it might become necessary to use (5.6) in order

to obtain a global value ˆ̀, as was the case in Sections 3.2 and 3.3. For a matter

of consistency, the weak convergence results in this thesis are all derived by using

(5.6), even though (5.7) would have worked equally well in Section 3.1.

5.2 The Familiar Asymptotic Behavior

We now present the proofs of the results presented in Section 3.1, where the con-

clusions are identical to those established for the iid case.

5.2.1 Restrictions on the Proposal Scaling

The first step of the proof is to transform Condition (3.1) into a statement about

the proposal variance and its parameter α. For this condition to be satisfied, we

must equivalently have

lim
d→∞

K1

dλ1

(
dλ1

K1

+ . . . +
dλn

Kn

)

+ lim
d→∞

K1

dλ1

(
c (J (1, d))

dγ1

Kn+1

+ . . . + c (J (m, d))
dγm

Kn+m

)
= ∞.

Letting b = max (j ∈ {1, . . . , n} ; λj = λ1), i.e. the number of components

with a scaling term of the same order as that of X1, we obtain

lim
d→∞

K1

dλ1

(
dλ1

K1

+ . . . +
dλn

Kn

)
= 1 +

b∑

j=2

K1

Kj

< ∞.

To have an overall limit that is infinite, there must then exist at least one i ∈



107

{1, · · · ,m} such that

lim
d→∞

c (J (i, d)) dγi

dλ1
= ∞. (5.8)

This implies that the form of the proposal variance, i.e. the choice of the

parameter α, must be based on one of the groups of scaling terms appearing

infinitely often. In other words, it cannot possibly be based on K1/d
λ1 , the smallest

scaling term appearing a fixed number of times. If it was, this would mean that

lim
d→∞

c (J (i, d)) dγi

dα
= lim

d→∞

c (J (i, d)) dγi

dλ1
= ∞,

for all i for which (5.8) was diverging, which would contradict the definition of α.

Therefore when Condition (3.1) is satisfied, it follows that limd→∞ dλ1/dα = 0 and

θ−2
1 (d) does not have any impact on the determination of the parameter α. This

thus implies that α is always strictly greater than 0, no matter which component

is under study.

5.2.2 Proof of Theorem 3.1.1

We now demonstrate that the generator in (5.6) converges in L1 to that of the

Langevin diffusion. To this end, we shall use results appearing in Sections 6.1, 6.2,

and 6.3.

We need to show that for an arbitrary test function h ∈ C∞
c ,

lim
d→∞

E [|Gh (d,Xi∗) − GLh (Xi∗)|] = 0,
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where GL (Xi∗) = υ (`)
[

1
2
h′′ (Xi∗) + 1

2
h′ (Xi∗) (log f (Xi∗))

′] is the generator of a

Langevin diffusion process with speed measure υ (`) as in Theorem 3.1.1.

We begin by introducing a third generator G̃h (d,Xi∗) (as in (6.1) of Lemma

6.1.2) that is asymptotically equivalent to the original generator Gh (d,Xi∗). By

the triangle’s inequality,

E
[∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗) + G̃h (d,Xi∗) − GLh (Xi∗)

∣∣∣
]

≤ E
[∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)

∣∣∣
]

+ E
[∣∣∣G̃h (d,Xi∗) − GLh (Xi∗)

∣∣∣
]
.

From Lemma 6.1.2, the first expectation on the RHS converges to 0 as d → ∞.

To prove the theorem, we are thus left to show L1 convergence of the generator

G̃h (d,Xi∗) to that of the Langevin diffusion.

Substituting explicit expressions for the generators and the speed measure,

grouping some terms and using the triangle’s inequality yield

E
[∣∣∣G̃h (d,Xi∗) − GLh (Xi∗)

∣∣∣
]

≤ `2

∣∣∣∣
1

2
E
[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
− Φ

(
−`

√
ER

2

)∣∣∣∣E [|h′′ (Xi∗)|]

+ `2

∣∣∣∣∣E
[
e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗

ε (d,Xj, Yj) < 0

]
− Φ

(
−`

√
ER

2

)∣∣∣∣∣

× E
[∣∣h′ (Xi∗) (log f (Xi∗))

′∣∣] .

Since the function h has compact support, it implies that h itself and its

derivatives are bounded in absolute value by some constant. Therefore, E [|h′′ (Xi∗)|]

and E
[∣∣h′ (Xi∗) (log f (Xi∗))

′∣∣] are both bounded by K, say. Using Lemmas 6.2.1

and 6.3.1, we then conclude that the first absolute difference on the RHS goes to
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0 as d → ∞; we reach the same conclusion for the second absolute difference by

applying Lemmas 6.2.2 and 6.3.2.

5.3 The New Limiting Behaviors

In this section, we prove results admitting conclusions which differ from the iid

case; these results were introduced in Sections 3.2 and 3.3.

5.3.1 Restrictions on the Proposal Scaling

Condition (3.4) ensures that there exists a finite number of scaling terms signifi-

cantly smaller than the others. An impact of this condition is that it also deter-

mines the variance of the proposal distribution as a function of d, which we now

demonstrate. For this condition to be verified, we must equivalently have

lim
d→∞

K1

dλ1

(
dλ1

K1

+ . . . +
dλn

Kn

)

+ lim
d→∞

K1

dλ1

(
c (J (1, d))

dγ1

Kn+1

+ . . . + c (J (m, d))
dγm

Kn+m

)
< ∞.

It must then be true that

lim
d→∞

c (J (i, d)) dγi

dλ1
< ∞, ∀i ∈ {1, . . . ,m} ,

in which case limd→∞
∑d

j=1 θ̂−2 (d) θ2
j (d) = 1 +

∑b
j=2 K1/Kj < ∞, where b =

max (j ∈ {1, . . . , n} ; λj = λ1). In other words, θ−2
1 (d) is not only the asymptot-

ically smallest scaling term, but it is also small enough so as to act of proposal

variance for the algorithm, implying that σ2 (d) = `2/dλ1 .
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5.3.2 Proof of Theorem 3.2.1

We now show that the generator

Gh (d,Xi∗) = dλ1EY(d),X(d)−

[
(h (Yi∗) − h (Xi∗))

(
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

)]
(5.9)

converges in L1 to the generator of a one-dimensional Metropolis-Hastings algo-

rithm with a particular acceptance rule in some cases, and to that of a Langevin

diffusion in other cases. To this end, we shall use the results appearing in Sections

6.1, 6.2 and 6.4.

We first need to show that for i∗ ∈ {1, . . . , b} and an arbitrary test function

h ∈ C, the space of bounded and continuous functions on R,

lim
d→∞

E [|Gh (d,Xi∗) − GMHh (Xi∗)|] = 0,

where

GMHh (Xi∗) = EYi∗

[
(h (Yi∗) − h (Xi∗)) α

(
`2, Xi∗ , Yi∗

)]

with acceptance rule

α
(
`2, Xi∗ , Yi∗

)
= EY(b)−,X(b)−

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)

+
b∏

j=1

f (θjYj)

f (θjXj)
Φ

(
−∑b

j=1 ε (Xj, Yj) − `2ER/2
√

`2ER

)]
.

Since the component of interest is assumed to have a scaling term equal to 1,

we have λj = λ1 = 0 for j = 1, . . . , b and the proposal scaling is σ2 (d) = `2. Since

σ2 (d) does not depend on the dimension of the target, there is thus no need to
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speed up the RWM algorithm in order to obtain a nontrivial limit, justifying the

discrete-time nature of the limiting process.

We first introduce a third generator asymptotically equivalent to the original

generator Gh (d,Xi∗). Specifically, let

Ĝh (d,Xi∗) = EY(d),X(d)−

[
(h (Yi∗) − h (Xi∗))

(
1 ∧ ez(d,Y(d),X(d))

)]
,

with z
(
d,Y(d),X(d)

)
as in (6.6). By the triangle’s inequality,

E [|Gh (d,Xi∗) − GMHh (Xi∗)|]

≤ E
[∣∣∣Gh (d,Xi∗) − Ĝh (d,Xi∗)

∣∣∣
]

+ E
[∣∣∣Ĝh (d,Xi∗) − GMHh (Xi∗)

∣∣∣
]
,

and the first expectation on the RHS converges to 0 as d → ∞ by Lemma 6.1.3. To

complete the proof, we are then left to show L1 convergence of the third generator

Ĝh (d,Xi∗) to that of the modified Metropolis-Hastings algorithm.

Substituting explicit expressions for the generators and using the triangle’s

inequality along with the fact that the function h is bounded give

E
[∣∣∣Ĝh (d,Xi∗) − GMHh (Xi∗)

∣∣∣
]

≤ KEXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α

(
`2, Xi∗ , Yi∗

)∣∣∣
]
,

where K is chosen such that |h (Yi∗) − h (Xi∗)| < K. Since the expectation on the

RHS converges to 0 as ascertained by Lemma 6.4.1, this proves the first part of

Theorem 3.2.1.

To complete the proof, we must show that for i∗ ∈ {b + 1, . . . , d} and an
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arbitrary test function h ∈ C∞
c ,

lim
d→∞

E [|Gh (d,Xi∗) − GLh (Xi∗)|] = 0,

where GL (Xi∗) = υ (`)
[

1
2
h′′ (Xi∗) + 1

2
h′ (Xi∗) (log f (Xi∗))

′] and υ (`) is as in (3.7).

Similar to the first part of the proof, we introduce a third generator G̃h (d,Xi∗)

as in Lemma 6.1.2. From this same lemma, we conclude that this new gen-

erator is asymptotically equivalent to the original generator and hence we have

E
[∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)

∣∣∣
]
→ 0 as d → ∞. We then complete the proof by

showing that this third generator also converges in mean to the generator of the

Langevin diffusion.

Substituting explicit expressions for the generators and the speed measure,

grouping some terms and using the triangle’s inequality yield

E
[∣∣∣G̃h (d,Xi∗) − GLh (Xi∗)

∣∣∣
]
≤

`2E [|h′′ (Xi∗)|]

×
∣∣∣∣∣
1

2
E
[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
− EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)]∣∣∣∣∣

+ `2

∣∣∣∣∣E
[
e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗

ε (d,Xj, Yj) < 0

]

−EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)]∣∣∣∣∣E
[∣∣h′ (Xi∗) (log f (Xi∗))

′∣∣] .

Since the function h has compact support, this implies that both E [|h′′ (Xi∗)|] and

E
[∣∣h′ (Xi∗) (log f (Xi∗))

′∣∣] are bounded by K, say. Using Lemmas 6.2.1 and 6.4.2,

we then conclude that the first term on the RHS goes to 0 as d → ∞. We reach the
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same conclusion for the second term by applying Lemma 6.2.2 along with Lemma

6.4.3.

5.3.3 Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 is essentially the same as that of Theorem 3.2.1. In

fact, all we need to do is to use Lemma 6.5.1 in place of Lemma 6.4.1, and to

replace Lemmas 6.4.2 and 6.4.3 by Lemma 6.5.2.

5.4 Inhomogeneity and Extensions

In Chapter 4, we presented various extensions of the results introduced in Chapter

3. Since the proofs of these extensions can be carried in a similar fashion to those

presented previously, we shall only outline the main differences.

5.4.1 Proofs of Theorems 4.1.1 and 4.1.2

The proof of Theorem 4.1.1 is almost identical to the proof of Theorem 3.2.1. For

the discrete-time limit, it suffices to use Lemma 6.6.1 instead of Lemma 6.4.1 to

achieve the desired conclusion. For the continuous-time limit, the proof also stays

the same but a modification is needed in Lemmas 6.4.2 and 6.4.3. That is, the

body of these proofs remains unchanged but to find the appropriate speed measure,

we use the conditional distribution for z
(
d,Y(d),X(d)

)
developed in (6.20) rather

than that developed in (6.15). Theorem 4.1.2 then follows by letting ER = 0 in

Theorem 4.1.1.
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5.4.2 Proofs of Theorems 4.3.1 and 4.3.2

Most of the proofs is very similar to those of Theorems 3.1.1, 3.2.1, and 3.3.1. The

main difference happens when working with any one of the m groups formed of

infinitely many components. Since the constant terms are now random, we cannot

factorize the scaling terms of components belonging to a same group. This difficulty

is however easily overcome by changes of variables and the use of conditional

expectations; for instance, a typical situation we face is

E
Θ

(d)
J (i,d)

,X
(d)
J (i,d)


 ∑

j∈J (i,d)

(
d

dXj

log θj (d) f (θj (d) Xj)

)2



= E
Θ

(d)
J (i,d)


 ∑

j∈J (i,d)

∫ (
θj (d) f ′ (θj (d) xj)

f (θj (d) xj)

)2

θj (d) f (θj (d) xj) dxj




=
∑

j∈J (i,d)

E
[
θ2

j (d)
] ∫ (f ′ (x)

f (x)

)2

f (x) dx

= c (J (i, d)) bid
γiE

[(
f ′ (X)

f (X)

)2
]

,

where X
(d)
J (i,d) is the vector containing the random variables {Xj, j ∈ J (i, d)} and

similarly for Θ
(d)
J (i,d). Instead of carrying the term θ2

n+i (d) = dγi/Kn+i, we thus

carry bid
γi .

5.4.3 Proofs of Theorems 4.3.3 and 4.3.4

The general forms of the functions c (J (i, d)), i = 1, . . . ,m and θj (d), j = 1, . . . , d

necessitate a fancier notation, but do not affect the body of the proofs. What alters

the demonstrations is rather the fact that the scaling terms θj (d) for j ∈ J (i, d)

are allowed to be different functions of the dimension as long as they are of the



115

same order. Because of this particularity of the model, we have to write θj (d) =

K
−1/2
j θ′i (d)

θ∗j (d)

θ′i(d)
, where θ∗j (d) is implicitly defined. We can then carry with the

proofs as usual, factoring the term bi (θ
′
i (d))2 instead of θ2

n+i (d) in Theorems 3.1.1

and 3.2.1 (or bid
γi in Theorems 4.3.1 and 4.3.2). Since limd→∞ θ∗j (d) /θ′i (d) = 1 for

j ∈ J (i, d), the rest of the proofs can be repeated with minor modifications.



Chapter 6

Weak Convergence of the

Rescaled RWM Algorithm:

Lemmas

This chapter presents and demonstrates the results used in the proofs of Chapter

5. In particular, Section 6.1 focuses on the asymptotically equivalent generators

G̃h (d,Xi∗) and Ĝh (d,Xi∗); similarly, Section 6.2 introduces drift and volatility

terms which are asymptotically equivalent to those of G̃h (d,Xi∗). The remaining

sections aim to simplify the expressions for the drift and volatility terms found

in Section 6.2, as well as for the acceptance rule of Ĝh (d,Xi∗). Sections 6.3, 6.4,

and 6.5 are respectively associated with Theorems 3.1.1, 3.2.1, and 3.3.1, while

Section 6.6 is related to Theorems 4.1.1 and 4.1.2 (where the target is assumed to

be normally distributed).

116
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6.1 Asymptotically Equivalent Generators

6.1.1 Approximation Term

The following lemma shall be of great use to prove the results presented in Section

6.1.3, as well as for the demonstrations of several of the subsequent lemmas.

Lemma 6.1.1. For i = 1, . . . ,m, let

Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)
=

1

2

∑

j∈J (i,d)

(
d2

dX2
j

log f (θj (d) Xj)

)
(Yj − Xj)

2

+
`2

2dα

∑

j∈J (i,d)

(
d

dXj

log f (θj (d) Xj)

)2

,

where Yj |Xj ∼ N (Xj, `
2/dα) and Xj, j = 1, . . . , d are independently distributed

according to the density θj (d) f (θj (d) xj). Then for i = 1, . . . ,m

E
[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣
]

→ 0 as d → ∞.

Proof. By Jensen’s inequality

E
Y

(d)
J (i,d)

[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣
]
≤
√

E
Y

(d)
J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
.
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Developing the square and computing the expectation conditional on X
(d)
J (i,d) yield

E
Y

(d)
J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
=

`4

4d2α
×



3

∑

j∈J (i,d)

(
d2

dX2
j

log f (θj (d) Xj)

)2

+
∑

j∈J (i,d)

(
d

dXj

log f (θj (d) Xj)

)4

+2
∑

k∈J (i,d)

Jc(J (i,d))(i,d)∑

j=Jk+1(i,d)

d2

dX2
j

log f (θj (d) Xj)
d2

dX2
k

log f (θk (d) Xk)

+2
∑

k∈J (i,d)

Jc(J (i,d))(i,d)∑

j=Jk+1(i,d)

(
d

dXj

log f (θj (d) Xj)

)2(
d

dXk

log f (θk (d) Xk)

)2

+2
∑

k∈J (i,d)

∑

j∈J (i,d)

d2

dX2
j

log f (θj (d) Xj)

(
d

dXk

log f (θk (d) Xk)

)2



 .

The previous expression can be reexpressed as

E
Y

(d)
J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]
=

`4

2d2α

∑

j∈J (i,d)

(
d2

dX2
j

log f (θj (d) Xj)

)2

+
`4

4d2α




∑

j∈J (i,d)

(
d2

dX2
j

log f (θj (d) Xj) +

(
d

dXj

log f (θj (d) Xj)

)2
)


2

,

and hence

√
E

Y
(d)
J (i,d)

[
W 2

i

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)]

≤ `2

√
2dα


 ∑

j∈J (i,d)

(
d2

dX2
j

log f (θj (d) Xj)

)2



1/2

+
`2

2dα

∣∣∣∣∣∣

∑

j∈J (i,d)

(
d2

dX2
j

log f (θj (d) Xj) +

(
d

dXj

log f (θj (d) Xj)

)2
)∣∣∣∣∣∣

.
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Using changes of variables, the unconditional expectation then satisfies

E
[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣
]

≤ `2

√
2dα

θ2
n+i (d)

√
c (J (i, d))E

[(
d2

dX2
log f (X)

)2
]1/2

+
`2

2dα
θ2

n+i (d) c (J (i, d))

× E



∣∣∣∣∣∣

1

c (J (i, d))

∑

j∈J (i,d)

(
d2

dX2
j

log f (Xj) +

(
d

dXj

log f (Xj)

)2
)∣∣∣∣∣∣


 .

Since dα > dγi

√
c (J (i, d)) and the first expectation on the RHS is bounded by

some constant, the first term converges to 0 as d → ∞. Given that the expres-

sion θ2
n+i (d) c (J (i, d)) /dα is O (1) for at least one i ∈ {1, . . . ,m}, we must also

show that the second expectation on the RHS converges to 0. Because (log f (x))′

is Lipschitz continuous, then Lemma A.1 affirms that f ′ (x) → 0 as x → ±∞.

Consequently,

E

[
d2

dX2
log f (X) +

(
d

dX
log f (X)

)2
]

= E

[
f ′′ (X)

f (X)

]
=

∫
f ′′ (x) dx = 0.

Since Var
(

f ′′(X)
f(X)

)
= E

[(
f ′′(X)
f(X)

)2
]

< ∞, then by the Weak Law of Large Numbers

(WLLN) we find that

|Si (d)| ≡

∣∣∣∣∣∣
1

c (J (i, d))

∑

j∈J (i,d)

(
d2

dX2
j

log f (Xj) +

(
d

dXj

log f (Xj)

)2
)∣∣∣∣∣∣

→p 0

as d → ∞.

We now want to verify if we could bring the limit inside the expectation. By
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independence between the Xj’s, we find

E
[
(Si (d))2] = E




 1

c (J (i, d))

∑

j∈J (i,d)

f ′′ (Xj)

f (Xj)




2


=
1

c (J (i, d))
E

[(
f ′′ (X)

f (X)

)2
]

,

which is finite for all d. Then, as a → ∞,

sup
d

E
[
|Si (d)|1{|Si(d)|≥a}

]
≤ sup

d

1

a
E
[
(Si (d))2 1{|Si(d)|≥a}

]
≤ K

a
→ 0.

Since the uniform integrability condition is satisfied (see, for instance, [10],

[19] or [36]), we find limd→∞ E [|Si (d)|] = E [limd→∞ |Si (d)|] = 0, which completes

the proof of the lemma.

6.1.2 Continuous-Time Generator

We now introduce the generator G̃h (d,Xi∗), which is asymptotically equivalent

to the generator in (5.6) for the cases where the RWM algorithm is sped up by

a factor dα > 1. It is interesting to note that G̃h (d,Xi∗) is the generator of a

Langevin diffusion process with a drift and volatility depending on d.

Lemma 6.1.2. For any function h ∈ C∞
c , let

G̃h (d,Xi∗) =
1

2
`2h′′ (Xi∗) E

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
(6.1)

+ `2h′ (Xi∗) (log f (Xi∗))
′ E

[
e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗

ε (d,Xj, Yj) < 0

]
,
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where

ε (d,Xj, Yj) = log
f (θj (d) Yj)

f (θj (d) Xj)
. (6.2)

If α > 0 as defined in (2.7), then limd→∞ E
[∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)

∣∣∣
]

= 0.

Proof. As mentioned in Section 5.1.3, the generator of the i∗-th component of the

sped up RWM algorithm is given by

Gh (d,Xi∗) = dαEY(d),X(d)−

[
(h (Yi∗) − h (Xi∗))

(
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

)]

= dαEYi∗

[
(h (Yi∗) − h (Xi∗)) EY(d)−,X(d)−

[
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

]]
.

We first concentrate on the inner expectation. Using the properties of the log

function, we obtain

EY(d)−,X(d)−

[
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

]

= EY(d)−,X(d)−

[
1 ∧ exp

{
log

f (Yi∗)

f (Xi∗)
+

d∑

j=1,j 6=i∗

log
f (θj (d) Yj)

f (θj (d) Xj)

}]

= EY(d)−,X(d)−

[
1 ∧ exp

{
ε (Xi∗ , Yi∗) +

d∑

j=1,j 6=i∗

ε (d,Xj, Yj)

}]
,

where ε (Xi∗ , Yi∗) = log f(Yi∗ )
f(Xi∗ )

and ε (d,Xj, Yj) = log
f(θj(d)Yj)

f(θj(d)Xj)
. We can thus express

the generator as

Gh (d,Xi∗) = dαEYi∗

[
(h (Yi∗) − h (Xi∗)) EY(d)−,X(d)−

[
1 ∧ e

∑d
j=1 ε(d,Xj ,Yj)

]]
. (6.3)
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We shall compute the outside expectation. To this effect, a Taylor expansion

of the minimum function with respect to Yi∗ and around Xi∗ is used. Since f is a

C2 density function, the minimum function in (6.3) is twice differentiable as well

except at the countable number of points where
∑d

j=1 ε (d,Xj, Yj) = 0. However,

this does not affect the value of the expectation since the set of values at which

the derivatives do not exist has Lebesgue probability 0. The first and second

derivatives of the minimum function are

∂

∂Yi∗
1 ∧ e

∑d
j=1 ε(d,Xj ,Yj) =





∂
∂Yi∗

ε (Xi∗ , Yi∗) e
∑d

j=1 ε(d,Xj ,Yj) if
∑d

j=1 ε (d,Xj, Yj) < 0

0 if
∑d

j=1 ε (d,Xj, Yj) > 0
,

and

∂2

∂Y 2
i∗

1 ∧ e
∑d

j=1 ε(d,Xj ,Yj) =





(
∂2

∂Y 2
i∗

ε (Xi∗ , Yi∗) +
(

∂
∂Yi∗

ε (Xi∗ , Yi∗)
)2
)

e
∑d

j=1 ε(d,Xj ,Yj) if
∑d

j=1 ε (d,Xj, Yj) < 0

0 if
∑d

j=1 ε (d,Xj, Yj) > 0

.

Expressing the inner expectation in (6.3) as a function of these derivatives, we find

EY(d)−,X(d)−

[
1 ∧ e

∑d
j=1 ε(d,Xj ,Yj)

]
= EY(d)−,X(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]

+ (Yi∗ − Xi∗) (log f (Xi∗))
′ EY(d)−,X(d)−

[
e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗

ε (d,Xj, Yj) < 0

]

+
1

2
(Yi∗ − Xi∗)

2
((

(log f (Ui∗))
′)2 + (log f (Ui∗))

′′
)

EY(d)−,X(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]
,
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where g (Ui∗) = ε (Xi∗ , Ui∗) +
∑d

j=1,j 6=i∗ ε (d,Xj, Yj) for some Ui∗ ∈ (Xi∗ , Yi∗) or

(Yi∗ , Xi∗). Using this expansion, the generator becomes

Gh (d,Xi∗)

= dαEYi∗
[(h (Yi∗) − h (Xi∗))] EY(d)−,X(d)−

[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]

+ dα (log f (Xi∗))
′ EYi∗

[(h (Yi∗) − h (Xi∗)) (Yi∗ − Xi∗)]

× EY(d)−,X(d)−

[
e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗

ε (d,Xj, Yj) < 0

]

+
dα

2
EYi∗

[
(h (Yi∗) − h (Xi∗)) (Yi∗ − Xi∗)

2 ((log f (Ui∗))
′)2

×EY(d)−,X(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]]

+
dα

2
EYi∗

[
(h (Yi∗) − h (Xi∗)) (Yi∗ − Xi∗)

2 (log f (Ui∗))
′′

×EY(d)−,X(d)−

[
eg(Ui∗ ); g (Ui∗) < 0

]]
.

Expressing h (Yi∗) − h (Xi∗) as a three-term Taylor’s expansion, we obtain

h (Yi∗) − h (Xi∗) = h′ (Xi∗) (Yi∗ − Xi∗)

+
1

2
h′′ (Xi∗) (Yi∗ − Xi∗)

2 +
1

6
h′′′ (Vi∗) (Yi∗ − Xi∗)

3 , (6.4)

for some Vi∗ lying between Xi∗ and Yi∗ . Since the function h has compact support,

then h itself and its derivatives are bounded in absolute value by some positive

constant (say K), which gives

dαEYi∗
[h (Yi∗) − h (Xi∗)] ≤ `2

2
h′′ (Xi∗) +

`3

6

√
8

π

K

dα/2
,
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along with

dαEYi∗
[h (Yi∗) − h (Xi∗) (Yi∗ − Xi∗)] ≤ `2h′ (Xi∗) +

`4

2dα
K.

Substituting these expressions in the equation for Gh (d,Xi∗), noticing that

all expectations computed with respect to Y(d)− and X(d)− are bounded by one

and that
∣∣(log f (Ui∗))

′′∣∣ is bounded by some positive constant K, we obtain

∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)
∣∣∣ ≤ `3

6

√
8

π

K

dα/2
+

`4

2dα
K
∣∣(log f (Xi∗))

′∣∣

+
dα

2
EYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

2 ((log f (Ui∗))
′)2]

+
dα

2
KEYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

2] . (6.5)

Using a two-term Taylor expansion around Xi∗ , we find

(log f (Ui∗))
′ = (log f (Xi∗))

′ + (log f (Vi∗))
′′ (Ui∗ − Xi∗)

≤
∣∣(log f (Xi∗))

′∣∣+ K |Yi∗ − Xi∗ | ,

where Vi∗ ∈ (Xi∗ , Ui∗) or (Ui∗ , Xi∗). Using (6.4), the expectation on the third line

of (6.5) becomes

dαEYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

2 ((log f (Ui∗))
′)2]

≤ dα
(
(log f (Xi∗))

′)2 EYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

2]

+ dαK
∣∣(log f (Xi∗))

′∣∣EYi∗

[
|h (Yi∗) − h (Xi∗)| |Yi∗ − Xi∗ |3

]

+ dαKEYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

4]
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for some K > 0. Again using (6.4), we first find

dαEYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

2]

≤ `3

dα/2

√
8

π
K +

3`4

2dα
K +

`5

d3α/2

√
32

π

K

3
,

then

dαEYi∗

[
|h (Yi∗) − h (Xi∗)| |Yi∗ − Xi∗ |3

]

≤ 3
`4

dα
K +

`5

d3α/2

√
32

π
K +

`6

d2α

5

2
K,

and finally

dαEYi∗

[
|h (Yi∗) − h (Xi∗)| (Yi∗ − Xi∗)

4]

≤ 2

√
32

π

`5

d3α/2
K +

15

2

`6

d2α
K +

√
128

π

`7

d5α/2
K.

We can then simplify (6.5) further and write

∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)
∣∣∣ ≤ K

(
`3

dα/2
+

`4

dα
+

`5

d3α/2

)(
(log f (Xi∗))

′)2

+ K

(
`4

dα
+

`5

d3α/2
+

`6

d2α

)(
1 +

∣∣(log f (Xi∗))
′∣∣)+ K

`3

dα/2
+ K

`7

d5α/2
,

for some constant K > 0. By assumption E
[(

(log f (Xi∗))
′)2] < ∞, so it follows

that E
[∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)

∣∣∣
]

converges to 0 as d → ∞.



126

6.1.3 Discrete-Time Generator

The discrete-time generator Ĝh (d,Xi∗) introduced in this section shall reveal a

good asymptotic approximation of the generator in (5.6), but only when the RWM

algorithm does not require a speed-up time factor.

Lemma 6.1.3. For any function h ∈ C, the space of bounded and continuous

functions on R, let

Ĝh (d,Xi∗) = EY(d),X(d)−

[
(h (Yi∗) − h (Xi∗))

(
1 ∧ ez(d,Y(d),X(d))

)]
,

with

z
(
d,Y(d),X(d)

)
=

n∑

j=1

ε (d,Xj, Yj) (6.6)

+
m∑

i=1

∑

j∈J (i,d)

d

dXj

log f (θj (d) Xj) (Yj − Xj) −
`2

2

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

)
.

Here, ε (d,Xj, Yj) is as in (6.2) and for i = 1, . . . ,m, we let

Ri

(
d,X

(d)
J (i,d)

)
=

1

dα

∑

j∈J (i,d)

(
d

dXj

log f (θj (d) Xj)

)2

, (6.7)

where X
(d)
J (i,d) is the vector containing the random variables {Xj, j ∈ J (i, d)}. If

α = 0, then we have limd→∞ E
[∣∣∣Gh (d,Xi∗) − Ĝh (d,Xi∗)

∣∣∣
]

= 0.

Proof. As mentioned in the previous lemma, the generator of the process consid-

ered satisfies

Gh (d,Xi∗) = EYi∗

[
(h (Yi∗) − h (Xi∗)) EY(d)−,X(d)−

[
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

]]
,
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and we can express the inner expectation as

EY(d)−,X(d)−

[
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

]
=

EY(d)−,X(d)−

[
1 ∧ exp

{
n∑

j=1

ε (d,Xj, Yj) +
d∑

j=n+1

(log f (θj (d) Yj) − log f (θj (d) Xj))

}]
.

Using a three-term Taylor expansion to express the difference of the log func-

tions, we obtain

EY(d)−,X(d)−

[
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

]
= EY(d)−,X(d)−

[
1 ∧ exp

{
n∑

j=1

ε (d,Xj, Yj)

+
m∑

i=1

d∑

j∈J (i,d)

[
d

dXj

log f (θj (d) Xj) (Yj − Xj) (6.8)

+
1

2

d2

dX2
j

log f (θj (d) Xj) (Yj − Xj)
2 +

1

6

d3

dU 3
j

log f (θj (d) Uj) (Yj − Xj)
3

]}]
.

for some Uj ∈ (Xj, Yj) or (Yj, Xj). Note that to compare the terms in the exponen-

tial function with z
(
d,Y(d),X(d)

)
, we have also grouped the last d−n components

according to their scaling term.

Before verifying if Ĝh (d,Xi∗) is asymptotically equivalent to Gh (d,Xi∗), we

find an upper bound on the difference between the original inner expectation and

the new acceptance rule involving z
(
d,Y(d),X(d)

)
. By the triangle inequality, we

have

∣∣∣∣∣EY(d)−,X(d)−

[
1 ∧ π

(
d,Y(d)

)

π (d,X(d))

]
− EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]∣∣∣∣∣

≤ EY(d)−,X(d)−

[∣∣∣∣∣

{
1 ∧ exp

(
log

π
(
d,Y(d)

)

π (d,X(d))

)}
−
{

1 ∧ ez(d,Y(d),X(d))
}∣∣∣∣∣

]
.
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By the Lipschitz property of the function 1 ∧ ex (see Proposition A.4 in the Ap-

pendix) and noticing that the first two terms of the function z
(
d,Y(d),X(d)

)
cancel

out with the first two terms of the exponential term in (6.8), we obtain

EY(d)−,X(d)−

[∣∣∣∣∣

{
1 ∧ exp

(
log

π
(
d,Y(d)

)

π (d,X(d))

)}
−
{

1 ∧ ez(d,Y(d),X(d))
}∣∣∣∣∣

]

≤ EY(d)−,X(d)−



∣∣∣∣∣∣

m∑

i=1

∑

j∈J (i,d)

(
1

2

d2

dX2
j

log f (θj (d) Xj) (Yj − Xj)
2

+
`2

2dα

(
d

dXj

log f (θj (d) Xj)

)2
)

+
1

6

m∑

i=1

∑

j∈J (i,d)

d3

dU 3
j

log f (θj (d) Uj) (Yj − Xj)
3

∣∣∣∣∣∣


 .

Noticing that the first double summation consists in the random variables

Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)
’s of Lemma 6.1.1, we find

EY(d)−,X(d)−

[∣∣∣∣∣

{
1 ∧ exp

(
log

π
(
d,Y(d)

)

π (d,X(d))

)}
−
{

1 ∧ ez(d,Y(d),X(d))
}∣∣∣∣∣

]

≤ EY(d)−,X(d)−

[∣∣∣∣∣

m∑

i=1

Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣∣∣

]

+
1

6
EY(d)−,X(d)−



∣∣∣∣∣∣

m∑

i=1

∑

j∈J (i,d)

d3

dU 3
j

log f (θj (d) Uj) (Yj − Xj)
3

∣∣∣∣∣∣




≤
m∑

i=1

E
[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣
]

+
m∑

i=1

c (J (i, d)) `3K
d3γi/2

d3α/2
(6.9)

for some constant K > 0.

We are now ready to verify L1 convergence of the generators. By the triangle’s
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inequality and (6.9), we observe

E
[∣∣∣Gh (d,Xi∗) − G̃h (d,Xi∗)

∣∣∣
]
≤

m∑

i=1

E
[∣∣∣Wi

(
d,X

(d)
J (i,d),Y

(d)
J (i,d)

)∣∣∣
]
E [|h (Yi∗) − h (Xi∗)|]

+
m∑

i=1

c (J (i, d)) `3K
d3γi/2

d3α/2
E [|h (Yi∗) − h (Xi∗)|] .

Because h ∈ C, there exists a constant such that |h (Yi∗) − h (Xi∗)| ≤ K and thus

Lemma 6.1.1 implies that the previous expression converges to 0 as d → ∞.

6.2 The Asymptotically Equivalent Continuous-

Time Generator

6.2.1 Asymptotically Equivalent Volatility

The goal of the following result is to replace the volatility term of the generator

G̃h (d,Xi∗) by an asymptotically equivalent, but more convenient expression.

Lemma 6.2.1. If α > 0, we have

lim
d→∞

∣∣∣E
[
1 ∧ e

∑d
j=1,j 6=i∗ ε(d,Xj ,Yj)

]
− E

[
1 ∧ ez(d,Y(d)−,X(d)−)

]∣∣∣ = 0,
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where ε (d,Xj, Yj) is as in (6.2) and

z
(
d,Y(d)−,X(d)−) =

n∑

j=1,j 6=i∗

ε (d,Xj, Yj) (6.10)

+
m∑

i=1

∑

j∈J (i,d),j 6=i∗

d

dXj

log f (θj (d) Xj) (Yj − Xj) −
`2

2

m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

)
,

where Ri

(
d,X

(d)−
J (i,d)

)
is as in (6.7), except that the i∗-th component is explicitly

excluded from the sum. That is, z
(
d,Y(d)−,X(d)−) is the version of (6.6) where

Xi∗ is omitted.

Proof. The proof is basically the same as the proof of the previous lemma with h =

1, the only difference lying in the fact that the i∗-th component is now omitted.

6.2.2 Asymptotically Equivalent Drift

The following result aims to replace the drift term of G̃h (d,Xi∗) in Lemma 6.1.2

by an asymptotically equivalent, but more convenient expression.

Lemma 6.2.2. We have

lim
d→∞

∣∣∣∣∣E
[
e
∑d

j=1,j 6=i∗ ε(d,Xj ,Yj);
d∑

j=1,j 6=i∗

ε (d,Xj, Yj) < 0

]

−E
[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]∣∣∣ = 0, (6.11)

where the functions ε (d,Xj, Yj) and z
(
d,Y(d)−,X(d)−) are as in (6.2) and (6.10)

respectively.



131

Proof. First, let

T (x) = ex1(x<0) =





ex, x < 0

0, x ≥ 0
.

It is important to realize that the function T (x) is not Lipschitz, which keeps us

from reproducing the proof of Lemma 6.2.1. Now, let

A
(
d,Y(d)−,X(d)−) = T

(
d∑

j=1,j 6=i∗

ε (d,Xj, Yj)

)
− T

(
z
(
d,Y(d)−,X(d)−))

and

δ (d) =

(
m∑

i=1

E
[∣∣∣Wi

(
d,X

(d)−
J (i,d),Y

(d)−
J (i,d)

)∣∣∣
]

+
m∑

i=1

c (J (i, d)) `3K
d3γi/2

d3α/2

)1/2

.

We shall show that A
(
d,Y(d)−,X(d)−) →p 0, and then use this result to prove

convergence of expectations.

In order to simplify the expressions involved in the following development, we

shall omit the arguments Y(d)− and X(d)− in the functions ε (·), z (·) and A (·). We

have

P (|A (d)| ≥ δ (d)) = P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) ≥ 0; z (d) ≥ 0

)

+P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) < 0; z (d) < 0

)

+P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) ≥ 0; z (d) < 0

)

+P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) < 0; z (d) ≥ 0

)
.
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We can bound the third term on the RHS by

P
(
|A (d)| ≥ δ (d) ;

∑
ε (d) ≥ 0; z (d) < 0

)

≤ P
(∑

ε (d) ≥ 0; z (d) < 0;
∣∣∣
∑

ε (d) − z (d)
∣∣∣ < δ (d)

)

+P
(∑

ε (d) ≥ 0; z (d) < 0;
∣∣∣
∑

ε (d) − z (d)
∣∣∣ ≥ δ (d)

)
,

and similarly for the fourth term. Also note that if
∑

ε (d) ≥ 0 and z (d) ≥ 0, or

∑
ε (d) < 0 and z (d) < 0, then |A (d)| ≤ |∑ ε (d) − z (d)|. Therefore,

P (|A (d)| ≥ δ (d)) ≤ P
(∣∣∣
∑

ε (d) − z (d)
∣∣∣ ≥ δ (d)

)

+P
(∑

ε (d) ≥ 0; z (d) < 0;
∣∣∣
∑

ε (d) − z (d)
∣∣∣ < δ (d)

)

+P
(∑

ε (d) < 0; z (d) ≥ 0;
∣∣∣
∑

ε (d) − z (d)
∣∣∣ < δ (d)

)
.

Since
∑

ε (d) and z (d) are of different sign but the difference between them

must be less than δ (d), we can bound the last two terms and obtain

P (|A (d)| ≥ δ (d))

≤ P
(∣∣∣
∑

ε (d) − z (d)
∣∣∣ ≥ δ (d)

)

+P (−δ (d) < z (d) < 0) + P (0 ≤ z (d) < δ (d))

= P
(∣∣∣
∑

ε (d) − z (d)
∣∣∣ ≥ δ (d)

)
+ P (−δ (d) < z (d) < δ (d)) . (6.12)

By Markov’s inequality and the proof of Lemma 6.1.2, then as d → ∞ the first
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term on the RHS of (6.12) satisfies

P

(∣∣∣∣∣

d∑

j=1,j 6=i∗

ε (d,Xj, Yj) − z
(
d,Y(d)−,X(d)−)

∣∣∣∣∣ ≥ δ (d)

)

≤ 1

δ (d)
E

[∣∣∣∣∣

d∑

j=1,j 6=i∗

ε (d,Xj, Yj) − z
(
d,Y(d)−,X(d)−)

∣∣∣∣∣

]
≤
√

δ (d) → 0.

Now consider the second term on the RHS of (6.12). From the proof of

Lemma 6.3.1, we know the distribution of z
(
d,Y(d)−,X(d)−) ∣∣Y(n)−,X(d)− . Using

conditional theory, we have

P
(∣∣z
(
d,Y(d)−,X(d)−)∣∣ < δ (d)

)

= EY(n)−,X(d)−

[
PY(d−n)−

(∣∣z
(
d,Y(d)−,X(d)−)∣∣ < δ (d)

)]
.

Focusing on the conditional probability, we write

PY(d−n)−

(∣∣z
(
d,Y(d)−,X(d)−)∣∣ < δ (d)

)

= Φ




δ (d) −∑n
j=1,j 6=i∗ ε (d,Xj, Yj) + `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

`

√∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)




−Φ



−δ (d) −∑n

j=1,j 6=i∗ ε (d,Xj, Yj) + `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

`

√∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)


 .

Using the convergence results developed in the proof of Lemma 6.3.1 along

with the fact that δ (d) → 0 as d → ∞, we deduce that

PY(d−n)−

(∣∣z
(
d,Y(d)−,X(d)−)∣∣ < δ (d)

)
→ 0.
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Using the Bounded Convergence Theorem, we then find that the unconditional

probability P
(∣∣z
(
d,Y(d)−,X(d)−)∣∣ < δ (d)

)
converges to 0 as well. Since we showed

that P (|A (d)| ≥ δ (d)) → 0 as d → ∞, then we can use the Bounded Convergence

Theorem to verify (6.11).

6.3 Volatility and Drift for the Familiar Limit

We now simplify the expressions for the drift and volatility obtained in the previous

section. This shall, by the same fact, allow us to determine the speed measure of

the limiting Langevin diffusion process.

6.3.1 Simplified Volatility

Lemma 6.3.1. If Condition (3.1) is satisfied, then

lim
d→∞

∣∣∣∣E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
− 2Φ

(
−`

√
ER

2

)∣∣∣∣ = 0,

where z
(
d,Y(d)−,X(d)−) and ER are as in (6.10) and (3.3) respectively.

Proof. Making use of conditioning allows us to write

E
[
1 ∧ exp

(
z
(
d,Y(d)−,X(d)−))]

= EY(n)−,X(d)−

[
EY(d−n)−

[
1 ∧ exp

(
z
(
d,Y(d)−,X(d)−))]] . (6.13)

To solve the inner expectation, we need to find the distribution of the random

variable z
(
d,Y(d)−,X(d)−) ∣∣Y(n)−,X(d)− . Since (Yj − Xj) |Xj , j = 1, · · · , d, are
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iid and normally distributed with mean 0 and variance `2/dα, then

z
(
d,Y(d)−,X(d)−) ∣∣Y(n)−,X(d)−

∼ N

(
n∑

j=1,j 6=i∗

ε (d,Xj, Yj) −
`2

2

m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

)
, `2

m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
.

Applying Proposition A.5 in the Appendix allows us to express the inner expecta-

tion in (6.13) in terms of Φ (·), the cdf of a standard normal random variable

EY(d−n)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]
=

Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)




+ exp

(
n∑

j=1,j 6=i∗

ε (d,Xj, Yj)

)

×Φ



−∑n

j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)




≡ M
(
d,Y(n)−,X(d)−) .

We are then left to evaluate the expectation of M (·). Again using conditional

expectations, we find

E
[
M
(
d,Y(n)−,X(d)−)] = EX(d−n)−

[
EY(n)−,X(n)−

[
M
(
d,Y(n)−,X(d)−)]] .

From Proposition A.6, we find that both terms included in the function

M
(
d,Y(n)−,X(d)−) have the same inner expectation. The unconditional expec-
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tation thus simplifies to

E
[
M
(
d,Y(n)−,X(d)−)] =

2E


Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)





 .

We now find the limit of the term inside the function Φ (·) as d → ∞. From

Proposition A.7, we have that ε (d,Xj, Yj) converges in probability to 0 for all

j ∈ {1, . . . , n} but excluding j = i∗. Similarly, we use Proposition A.8 to conclude

that
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)
→p ER. Furthermore, ER > 0 since there exists at least

one i ∈ {1, . . . ,m} such that limd→∞ c (J (i, d)) dγi/dα > 0.

By applying Slutsky’s Theorem, the Continuous Mapping Theorem and by

recalling that convergence in probability and convergence in distribution are equiv-

alent when the limit is a constant, we conclude that

Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)


→p Φ

(
−`

√
ER

2

)
.

Since Φ (·) is positive and bounded by 1, we finally use the Bounded Conver-
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gence Theorem to find

E
[
1 ∧ ez(d,Y(d−),X(d−))

]

= 2E


Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)







→ 2Φ

(
−`

√
ER

2

)
as d → ∞,

which completes the proof of the lemma.

6.3.2 Simplified Drift

Lemma 6.3.2. If Condition (3.1) is satisfied, then

lim
d→∞

∣∣∣∣E
[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]
− Φ

(
−`

√
ER

2

)∣∣∣∣ = 0,

where the functions ε (d,Xj, Yj) and z
(
d,Y(d)−,X(d)−) are as in (6.2) and (6.10)

respectively.

Proof. The proof is similar to that of Lemma 6.3.1 and for this reason, we just out-

line the differences. We know the distribution of z
(
d,Y(d)−,X(d)−) ∣∣Y(n)−,X(d)−
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from the proof of Lemma 6.3.1, so we can use Proposition A.5 to obtain

EY(d−n)−

[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]

= exp

(
n∑

j=1,j 6=i∗

ε (d,Xj, Yj)

)

×Φ



−∑n

j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)


 .

Applying Proposition A.6, we find

E
[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]

= E


Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)





 .

Repeating the last part of the proof of Lemma 6.3.1 completes the demonstration

of the present lemma.

6.4 Acceptance Rule, Volatility and Drift for the

New Limit

6.4.1 Modified Acceptance Rule

This section determines the limiting acceptance rule for the case where the RWM

algorithm is not sped up by any time factor, and where the first b components of

the target are not solely ruling the chain.
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Lemma 6.4.1. If α = 0 and Conditions (3.4) and (3.5) are satisfied, then

EXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α

(
`2, Xi∗ , Yi∗

)∣∣∣
]
→ 0

as d → ∞, with z
(
d,Y(d),X(d)

)
as in (6.6) and α (`2, Xi∗ , Yi∗) as in (3.6).

Proof. We first use conditional expectations to obtain

EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]

= EY(n)−,X(d)−

[
EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]]
. (6.14)

In order to evaluate the inner expectation, we need to find the distribution of the

function z
(
d,Y(d),X(d)

)
conditional on Y(n) and X(d). From the proof of Lemma

6.3.1 and from the fact that α = 0, we have

z
(
d,Y(d),X(d)

)∣∣Y(n),X(d) ∼

N

(
n∑

j=1

ε (d,Xj, Yj) −
`2

2

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

)
, `2

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

))
. (6.15)

Applying Proposition A.5, we can express the inner expectation in (6.14) in
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terms of Φ (·), the cdf of a standard normal random variable

EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]
=

Φ




∑n
j=1 ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)




+ exp

(
n∑

j=1

ε (d,Xj, Yj)

)
Φ



−∑n

j=1 ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)


 .

We need to study the convergence of every term included in previous function.

Condition (3.4) implies that θ−2
1 (d) is the asymptotically smallest scaling term and

along with α = 0, this means that the fastest converging component has an O (1)

scaling term. However there might be a finite number of other components also

having an O (1) scaling term. Recall that b is the number of such components and

in the present case is defined as b = max (j ∈ {1, . . . , n} ; λj = λ1 = 0). It is thus

pointless to study the convergence of these b variables since they are independent

of d. However, we can study the convergence of the other n − b components and

from Proposition A.7 we know that ε (d,Xj, Yj) →p 0 for j = b + 1, . . . , n since

λj < 0 . Similarly, we can use Proposition A.8 and Condition (3.5) to conclude

that
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)
→p ER > 0, with ER as in (3.8).
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Using Slutsky’s and the Continuous Mapping Theorems, we conclude that

EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]
→p Φ

(∑b
j=1 ε (Xj, Yj) − `2

2
ER√

`2ER

)

+ exp

(
b∑

j=1

ε (Xj, Yj)

)
Φ

(
−∑b

j=1 ε (Xj, Yj) − `2

2
ER√

`2ER

)

≡ M
(
`2,Y(b),X(b)

)
.

Using the triangle’s inequality, we obtain

EXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α

(
`2, Xi∗ , Yi∗

)∣∣∣
]

≤ EY(n),X(d)

[∣∣∣EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]
− M

(
`2,Y(b),X(b)

)∣∣∣
]
.

Since each term in the absolute value is positive and bounded by 1 and since

the difference between them converges to 0 in probability, we can use the Bounded

Convergence Theorem to conclude that the previous expression converges to 0.

6.4.2 Simplified Volatility

Lemma 6.2.1 established that `2E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
is an asymptotically valid

volatility term for the continuous-time generator G̃h (d,Xi∗). We now wish to find

a convenient expression for this volatility term as d → ∞. This is achieved in the

following lemma.

Lemma 6.4.2. If Conditions (3.4) and (3.5) are satisfied, then

lim
d→∞

∣∣∣∣∣E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
− 2EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)]∣∣∣∣∣ = 0,
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where z
(
d,Y(d)−,X(d)−) is as in (6.10) and ER is as in (3.8).

Proof. From the proof of Lemma 6.3.1, we have

EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d)−,X(d)−)

]

= 2EY(n)−,X(d)−


Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)





 .

By Proposition A.7, we have ε (d,Xj, Yj) →p 0 since λj < λ1 for j = b +

1, . . . , n. From Proposition A.8, we also know that
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)
→p ER,

where ER is as in (3.8) and is strictly positive by Condition (3.5). Applying

Slutsky’s and the Continuous Mapping Theorems thus yields

Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)


→p

Φ

(∑b
j=1,j 6=i∗ ε (Xj, Yj) − `2

2
ER√

`2ER

)
. (6.16)

Using the Bounded Convergence Theorem concludes the proof of the lemma.

6.4.3 Simplified Drift

Lemma 6.2.2 introduced a drift term that is asymptotically equivalent to the drift

term of the continuous-time generator G̃h (d,Xi∗) in (6.1). The goal of the follow-

ing lemma is to determine a simple expression for this new drift term as d → ∞.
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Lemma 6.4.3. If Conditions (3.4) and (3.5) are satisfied, then

lim
d→∞

∣∣∣E
[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]

−EY(b),X(b)

[
Φ

(∑b
j=1 ε (Xj, Yj) − `2ER/2

√
`2ER

)]∣∣∣∣∣ = 0,

where z
(
d,Y(d)−,X(d)−) and ER are as in (6.10) and (3.8) respectively.

Proof. The proof of this result is similar to that of Lemma 6.4.2 and for this reason,

we shall not repeat every detail. Since we know the conditional distribution of

z
(
d,Y(d)−,X(d)−) ∣∣Y(n)−,X(d)− , we can use Proposition A.5 to obtain

EY(d−n)−

[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]
=

exp

(
n∑

j=1,j 6=i∗

ε (d,Xj, Yj)

)
Φ



−∑n

j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)


 .

From Proposition A.9, the unconditional expectation simplifies to

E
[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]

= E


Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)





 .

Using (6.16) along with the Bounded Convergence Theorem completes the proof

of the lemma.
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6.5 Acceptance Rule, Volatility and Drift for the

Limit with Unbounded Speed

This section determines the acceptance rule of the limiting Metropolis-Hastings

algorithm, as well as the drift and volatility terms of the Langevin diffusion process

in the case where the first b components are the only ones to govern the proposal

variance.

6.5.1 Modified Acceptance Rule

Lemma 6.5.1. If α = 0 and Conditions (3.4) and (3.9) are satisfied, then

EXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α (Xi∗ , Yi∗)

∣∣∣
]
→ 0

as d → ∞, with z
(
d,Y(d),X(d)

)
as in (6.6) and α (Xi∗ , Yi∗) as in (3.10).

Proof. We first note that z
(
d,Y(d),X(d)

)
→p

∑b
j=1 ε (Xj, Yj), since

lim
d→∞

P

(∣∣∣∣∣z
(
d,Y(d),X(d)

)
−

b∑

j=1

ε (Xj, Yj)

∣∣∣∣∣ ≥ ε

)

= lim
d→∞

EY(n),X(d)

[
PY(d−n)

(∣∣∣∣∣z
(
d,Y(d),X(d)

)
−

b∑

j=1

ε (Xj, Yj)

∣∣∣∣∣ ≥ ε

)]

≤ lim
d→∞

1

ε2
EY(n),X(d)

[
VarY(d−n)

(
z
(
d,Y(d),X(d)

))]

=
1

ε2
lim
d→∞

m∑

i=1

E
[
Ri

(
d,X

(d)
J (i,d)

)]
= 0;

the inequality has been obtained by applying Chebychev’s inequality and the last

equality has been obtained from the conditional distribution in (6.15).
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Since 1∧ez(d,Y(d),X(d)) is a continuous and bounded function, we then conclude

that EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
→p EY(b)−,X(b)−

[
1 ∧∏b

j=1
f(θjYj)

f(θjXj)

]
.

6.5.2 Simplified Volatility and Drift

Lemma 6.5.2. If Conditions (3.4) and (3.9) are satisfied, then

lim
d→∞

∣∣∣∣∣E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
− 2P

(
b∏

j=1

f (θjYj)

f (θjXj)
> 1

)∣∣∣∣∣ = 0,

where z
(
d,Y(d)−,X(d)−) is as in (6.10) and ER is as in (3.8). Furthermore,

lim
d→∞

∣∣∣∣∣E
[
ez(d,Y(d)−,X(d)−); z

(
d,Y(d)−,X(d)−) < 0

]
− P

(
b∏

j=1

f (θjYj)

f (θjXj)
> 1

)∣∣∣∣∣ = 0.

Proof. It suffices to use the fact that

E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
→p EY(b),X(b)

[
1 ∧

b∏

j=1

f (θjYj)

f (θjXj)

]

along with the following decomposition

E

[
1 ∧

b∏

j=1

f (θjYj)

f (θjXj)

]
= P

(
b∏

j=1

f (θjYj)

f (θjXj)
> 1

)
+E

[
b∏

j=1

f (θjYj)

f (θjXj)
;

b∏

j=1

f (θjYj)

f (θjXj)
< 1

]

and Proposition A.9 to conclude that

∣∣∣∣∣E
[
1 ∧ ez(d,Y(d)−,X(d)−)

]
− 2P

(
b∏

j=1

f (θjYj)

f (θjXj)
> 1

)∣∣∣∣∣→ 0 as d → ∞.

The approach is the same for the second limit.
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6.6 Acceptance Rule for Normal Targets

We now consider the case where the target distribution is normally distributed.

The aim of this section is to determine the acceptance rule for the limiting Metropolis-

Hastings algorithm when one of the first b components is studied.

Lemma 6.6.1. If f (x) = (2π)−1/2 exp (x2/2), α = 0 and if Conditions (3.4) and

(3.5) are satisfied, then

EXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α

(
`2, Xi∗ , Yi∗

)∣∣∣
]
→ 0 as d → ∞,

with z
(
d,Y(d),X(d)

)
as in (6.6) and α (`2, Xi∗ , Yi∗) as in (4.1).

Proof. We first use conditional expectations to obtain

EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]

= EY(n)−,X(d−n)

[
EY(d−n),X(n)−

[
1 ∧ ez(d,Y(d),X(d))

]]
. (6.17)

In order to evaluate the inner expectation, we need to find the distribution of the

function z
(
d,Y(d),X(d)

)
conditional on Y(n), X(d−n) and Xi∗ . First of all, we find




m∑

i=1

∑

j∈J (i,d)

d

dXj

log f (θj (d) Xj) (Yj − Xj) −
`2

2

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

)


∣∣∣∣∣∣
X(d−n)

∼ N

(
−`2

2

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

)
, `2

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

))
. (6.18)

Due to the normal form of the target components, it is possible to find the distribu-
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tion of
∑n

j=1,j 6=i∗ ε (d,Xj, Yj). Since Yj |Xj ∼ N (Xj, `
2) and Xj ∼ N

(
0, Kj/d

λj
)
,

we obtain Yj = Xj +Uj, where Uj ∼ N (0, `2) is independent of Xj for j = 1, . . . , n.

We then have

ε (d,Xj, Yj) =
dλj

2Kj

(
X2

j − (Xj + Uj)
2) = − dλj

2Kj

(
2XjUj + U 2

j

)

= −
(

`X̃jŨj +
`2

2
Ũ2

j

)
,

where X̃j ∼ N (0, 1) and Ũj ∼ N
(
0, dλj/Kj

)
. By independence between X̃j and

Ũj we have X̃j

∣∣∣Ũj ∼ N (0, 1), and hence

(
`2

2
Ũ2

j + `ŨjX̃j

) ∣∣∣Ũj ∼ N

(
`2

2
Ũ2

j , `2Ũ2
j

)
. (6.19)

Combining (6.18) and (6.19), we obtain the conditional distribution

z
(
d,Y(d),X(d)

) ∣∣Y(n), Xi∗ ,X
(d−n)

∼ N

(
ε (Xi∗ , Yi∗) −

`2

2

(
n∑

j=1,j 6=i∗

Ũ2
j +

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

))
, (6.20)

`2

(
n∑

j=1,j 6=i∗

Ũ2
j +

m∑

i=1

Ri

(
d,X

(d)
J (i,d)

)))
.

Applying Proposition A.5, we can express the inner expectation in (6.17) in
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terms of Φ (·)

EY(d−n),X(n)−

[
1 ∧ ez(d,Y(d),X(d))

]
=

Φ




ε (Xi∗ , Yi∗) − `2

2

(∑n
j=1,j 6=i∗ Ũ2

j +
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

))

√
`2
(∑n

j=1,j 6=i∗ Ũ2
j +

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

))




+eε(Xi∗ ,Yi∗ )Φ



−ε (Xi∗ , Yi∗) − `2

2

(∑n
j=1,j 6=i∗ Ũ2

j +
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

))

√
`2
(∑n

j=1,j 6=i∗ Ũ2
j +

∑m
i=1 Ri

(
d,X

(d)
J (i,d)

))


 .

We need to study the convergence of every term appearing in the preced-

ing equation. From Proposition A.8, we know that
∑m

i=1 Ri

(
d,X

(d)
J (i,d)

)
→p ER.

Because the variance of the components Ũ1, . . . , Ũb does not vary with the dimen-

sion of the target, it is not relevant to talk about convergence for these variables.

We can however study the convergence of the components Ũb+1, . . . , Ũn. Using

Chebychev’s inequality, we have for all ε > 0

P
(∣∣∣Ũj

∣∣∣ ≥ ε
)

≤
Var

(
Ũj

)

ε2
=

1

ε2

dλj

Kj

→ 0 as d → ∞,

since λj < λ1 = 0 for j = b + 1, . . . , n. Therefore, Ũj →p 0 for j = b + 1, . . . , n.

Using Slutsky’s Theorem, the Continuous Mapping Theorem and the fact that

Ũ2
j = χ2

j/Kj with χ2
j , j = 1, . . . , b distributed as independent chi square random
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variables with 1 degree of freedom, we conclude that

EY(d−n),X(n)−

[
1 ∧ ez(d,Y(d),X(d))

]
→p

Φ




ε (Xi∗ , Yi∗) − `2

2

(∑b
j=1,j 6=i∗

χ2
j

Kj
+ ER

)

√
`2
(∑b

j=1,j 6=i∗
χ2

j

Kj
+ ER

)




+ exp (ε (Xi∗ , Yi∗)) Φ



−ε (Xi∗ , Yi∗) − `2

2

(∑b
j=1,j 6=i∗

χ2
j

Kj
+ ER

)

√
`2
(∑b

j=1,j 6=i∗
χ2

j

Kj
+ ER

)




≡ M

(
`2, Xi∗ , Yi∗ ,

(
Ũ(b)−

)2
)

.

Using the triangle’s inequality, we therefore obtain

EXi∗ ,Yi∗

[∣∣∣EY(d)−,X(d)−

[
1 ∧ ez(d,Y(d),X(d))

]
− α

(
`2, Xi∗ , Yi∗

)∣∣∣
]
≤

E
Yi∗ ,(Ũ(n)−)

2
,Xi∗ ,X(d−n)

[∣∣∣∣EY(d−n)

[
1 ∧ ez(d,Y(d),X(d))

]
− M

(
`2, Xi∗ , Yi∗ ,

(
Ũ(b)−

)2
)∣∣∣∣
]

.

Since each term in the absolute value is positive and bounded by 1 and since

the difference between them converges to 0 in probability, we can use the Bounded

Convergence Theorem to conclude that the previous expression converges to 0.



Chapter 7

Weak Convergence of Stochastic

Processes

The theorems and proofs presented in this thesis are based on a specific result

providing general conditions for a sequence of processes to converge weakly (in the

Skorokhod topology) to some Markov process. This result (Theorem 8.2 of Chapter

4 in [16]) exploits the fact that Markov processes can be expressed according to a

corresponding operator semigroup, and can then be characterized by the generator

of this semigroup. The present chapter thus aims to clarify these concepts and to

justify why this particular result is applicable in our situation.

We first introduce the basics about operator semigroups, and relate them

to Markov processes. We then discuss some notions about weak convergence of

probability measures, before studying the details of the key convergence result. We

conclude this chapter with the concept of core, which greatly simplifies the proofs

presented in Chapters 5 and 6. Most of the results presented in this chapter can

be found in [16]. Since there is quite a lot of notation involved, we found it simpler
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to use the same notation as that of the book for introducing the following results.

We shall however relate the theory to our specific situation when required.

7.1 Skorokhod Topology

The space DE [0,∞) is defined to be the space of functions x : [0,∞) → E admit-

ting discontinuities of the first kind. A function x is said to have a discontinuity of

the first kind at t if x (t−) and x (t+) exist but differ and x (t) lies between them.

It has become conventional to assume, when this can be done without altering the

finite-dimensional distributions, that sample paths of this type of stochastic pro-

cesses are right continuous with left limits (or càdlàg). Therefore, for each t ≥ 0

and each function x in DE [0,∞), limx→t+ x (s) = x (t) and limx→t− x (s) ≡ x (t−)

exists. Note that the process
{

Z
(d)
i∗ (t) , t ≥ 0

}
, which admits a countable number

of discontinuities and is right continuous, perfectly fits into this setting.

The availability of complete and separable metric spaces is an asset when deal-

ing with results about convergence of probability measures. Therefore, it would be

appropriate to define a metric on DE [0,∞) that satisfies these two characteristics.

Let (E, r) denote a metric space; it is possible to define a metric on DE [0,∞) (say

ρ) under which this metric space is separable if E is separable, and complete if

(E, r) is complete (for more details, see [16] on pages 116-118).

The topology induced on DE [0,∞) by the metric ρ is called the Skorokhod

topology, in which the weak convergence results of this thesis have been proven.

The particularity of this topology is that besides admitting a small perturbation

of the ordinates (as for the uniform topology), it also allows a small deformation of

the time scale. This turns out to be quite useful, as this allows us to transform our



152

discrete-time RWM algorithm into a continuous-time one, and to use the latter to

derive weak convergence results.

7.2 Operator Semigroups

In this section, definitions and basic properties related to operator semigroups,

which provide a primary tool in the study of Markov processes, are introduced.

Bear in mind that L denotes a real Banach space with norm ‖·‖.

Definition 7.2.1. A one-parameter family {T (t) ; t ≥ 0} of bounded linear oper-

ators on a Banach space L is called a semigroup if

(a) T (0) = I, the identity matrix;

(b) T (s + t) = T (t) T (s) for all s, t ≥ 0.

A semigroup is thus an operator varying with t. Two desirable properties of

semigroups are to be a strongly continuous and a contraction semigroup.

Definition 7.2.2. A semigroup {T (t)} on L is said to be strongly continuous if

lim
t→0

T (t) h = h, ∀h ∈ L.

Definition 7.2.3. A contraction semigroup is such that ‖T (t)‖ ≤ 1 for all t ≥ 0,

where

‖T (t)‖ = sup
h∈L, h6=0

‖T (t) h‖
‖h‖

is the operator norm.
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The generator of the semigroup can sometimes be used to determine a semi-

group on L; it is defined as follows.

Definition 7.2.4. The (infinitesimal) generator of a semigroup {T (t)} on L is

the linear operator A defined by

Ah = lim
t→0

(
T (t) h − h

t

)
.

The domain D (A) of A is the subspace of all h ∈ L for which this limit exists.

The next proposition says that strongly continuous contraction semigroups

are uniquely determined by their corresponding generator.

Proposition 7.2.5. Let {T (t)} and {S (t)} be strongly continuous contraction

semigroups on L with generators A and B, respectively. If A = B, then T (t) =

S (t) for all t ≥ 0.

Proof. The proof of this proposition can be found in [16], on page 15.

The graph of a linear operator A is given by G (A) = {(h,Ah) : h ∈ D (A)} ⊂

L × L. We say that A is single-valued since (0, g) ∈ G (A) implies g = 0. More

generally, we can define a multivalued operator on L as an arbitrary subset A

of L × L with domain D (A) = {h : (h, g) ∈ A for some g} and range R (A) =

{g : (h, g) ∈ A for some h}. This concept allows us to extend the notion of gener-

ator of a semigroup, and to define the full generator Â of a measurable contraction

semigroup {T (t)} on L by

Â =

{
(h, g) ∈ L × L : T (t) h − h =

∫ t

0

T (s) gds, t ≥ 0

}
. (7.1)
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We shall see next section that the full generator Â is a useful way to characterize

Markov processes.

7.3 Markov Processes and Semigroups

Basic theory about time-homogeneous continuous-time Markov processes on gen-

eral state spaces is now introduced, and related to operator semigroups.

Consider the metric space (E, r). The collection of all real-valued, Borel

measurable functions on E is denoted M (E). The Banach space of bounded

functions with norm ‖h‖ = supx∈E |h (x)| is B (E) ⊂ M (E). Finally, C (E) ⊂

B (E) is the subspace of bounded continuous functions.

Let {X (t) , t ≥ 0} be a stochastic process defined on a probability space

(Ω,F , P ) with values in E, and let FX (t) = σ (X (s) ; s ≤ t). Then, X is a Markov

process if

P
(
X (t + s) ∈ Γ

∣∣FX (t)
)

= P (X (t + s) ∈ Γ |X (t)) ,

for all s, t ≥ 0 and Γ ∈ B (E), the Borel σ-algebra corresponding to the metric

space E. Basically, this means that even if all the movements of the process up to

time t are known, the probability of the process being in some set Γ at time t + s

only depends on the position of the process at time t (i.e. on the latest information

available). Since this equality is true for all Borel sets in B (E), this implies that

E
[
h (X (t + s))

∣∣FX (t)
]

= E [h (X (t + s)) |X (t) ] ,

for all s, t ≥ 0 and h ∈ B (E).

A function P (t, x, Γ) defined on [0,∞) × E × B (E) is said to be a time-
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homogeneous transition function if

(1) P (t, x, ·) ∈ P (E), the set of Borel probability measures on E, for (t, x) ∈

[0,∞) × E;

(2) P (0, x, ·) = δx, the point-mass at x, for x ∈ E;

(3) P (·, ·, Γ) ∈ B ([0,∞) × E), for Γ ∈ B (E) ;

(4) P (t + s, x, Γ) =
∫

P (t, x, dy) P (s, y, Γ), for s, t ≥ 0, x ∈ E, and Γ ∈ B (E) .

The last property is referred to as the Chapman-Kolmogorov property.

P (t, x, Γ) is a transition function for a time-homogeneous Markov process X

if

P
(
X (t + s) ∈ Γ

∣∣FX (t)
)

= P (s,X (t) , Γ) , (7.2)

for all s, t ≥ 0 and Γ ∈ B (E). When a Markov process is not time-homogeneous,

such a relation is not true since the term on the RHS varies with t. That is, the fact

that the latest information is at time t1 or t2 yields different probabilities if t1 6= t2

(i.e. P (s,X (t1) , Γ) 6= P (s,X (t2) , Γ)). It then becomes necessary to define a new

function P (t, s,X (t) , Γ) that also depends on t.

The relation in (7.2) can equivalently be expressed in terms of expectations.

For a function h belonging to B (E),

E
[
h (X (t + s))

∣∣FX (t)
]

=

∫
h (y) P (s,X (t) , dy) ,

for all s, t ≥ 0.

The initial distribution of X is defined to be a probability measure ν ∈ P (E) ,

given by ν (Γ) = P (X (0) ∈ Γ). A transition function and an initial distribution
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for X are sufficient to determine the finite-dimensional distributions of X. These

are defined as

P (X (0) ∈ Γ0, X (t1) ∈ Γ1, ..., X (tn) ∈ Γn, ) =
∫

Γ0

...

∫

Γn−1

P (tn − tn−1, yn−1, Γn) P (tn−1 − tn−2, yn−2, dyn−1) (7.3)

· · ·P (t1, y0, dy1) ν (dy0) .

Moreover, if the metric space (E, r) is complete and separable, then we can affirm

that for a specific transition function P (t, x, Γ) there exists a Markov process X

on E whose finite-dimensional distributions are uniquely determined by (7.3) (see

Theorem 1.1 of Chapter 4 in [16]). Since it is a well-known fact that the metric

space
(
Rd, ‖ · ‖

)
satisfies these two conditions for all d ≥ 1 (here, ‖ · ‖ denotes the

Euclidean metric), the previous statement is applicable to the Markov processes

we consider.

Unfortunately, formulas for transition functions can only rarely be obtained.

Consequently, it becomes necessary to find alternate ways of specifying Markov

processes. One method is to use the concept of operator semigroups. It is possible

to define an operator semigroup as follows

T (t) h (x) =

∫
h (y) P (t, x, dy) . (7.4)

It can be verified that {T (t)} defines a measurable contraction semigroup on B (E).

The first condition of Definition 7.2.1 is indeed satisfied, since

T (0) h (x) =

∫
h (y) P (0, x, dy) =

∫
h (y) δx (dy) = h (x) .
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For the second condition, we find

T (t) T (s) h (x) = T (t)

∫
h (y) P (s, x, dy)

=

∫ ∫
h (y) P (s, z, dy) P (t, x, dz) .

Applying Fubini’s Theorem (this is possible since both h and the transition function

are bounded),

T (t) T (s) h (x) =

∫
h (y)

∫
P (s, z, dy) P (t, x, dz) ,

and by the Chapman-Kolmogorov property, we have for all s, t ≥ 0

T (t) T (s) h (x) =

∫
h (y) P (s + t, x, dy) = T (s + t) h (x) .

Furthermore, since

‖T (t)‖ = sup
h∈B(E), h6=0

‖T (t) h‖
‖h‖

= sup
h∈B(E), h6=0

(
supx∈R |T (t) h (x)|

supx∈R |h (x)|

)

= sup
h∈B(E), h6=0

(
supx∈R

∣∣∫ h (y) P (t, x, dy)
∣∣

supx∈R

∣∣∫ h (y) δx (dy)
∣∣

)

≤ 1,

then {T (t)} is a contraction semigroup. Note that the inequality follows from the

fact that the numerator is necessarily smaller than the denominator, since the term

at the denominator puts all its mass on one value, chosen to be the supremum.
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For the particular types of Markov processes we consider (i.e. continuous-

time version of the d-dimensional RWM algorithm and Langevin diffusion), we

can even show that the corresponding semigroups {T (t)} are strongly continuous.

With reference to (7.4), we say that an E-valued Markov process X corresponds

to {T (t)} if

E
[
h (X (t + s))

∣∣FX (t)
]

= T (s) h (X (t)) ,

for all s, t ≥ 0 and h ∈ L ⊂ B (E).

For the RWM algorithm, we find by using the law of total probabilities that

lim
t→0

E
[
h
(
Z(d) (t)

) ∣∣Z(d) (0)
]

=

lim
t→0

E
[
h
(
Z(d) (t)

) ∣∣Z(d) (0) , N (t) ≥ 1
]
P (N (t) ≥ 1)

+ lim
t→0

E
[
h
(
Z(d) (t)

) ∣∣Z(d) (0) , N (t) = 0
]
P (N (t) = 0) ,

where N (t) is the jump (Poisson) process. Given that the process jumps, the ex-

pectation in the first term on the RHS does not depend on t. Since P (N (t) ≥ 1) =

dαt + o (t), then the first term of the RHS converges to 0 as t → 0. Given

that the process does not jump, then the process remains at the same state and

we have E
[
h
(
Z(d) (t)

) ∣∣Z(d) (0) , N (t) = 0
]

= h
(
Z(d) (0)

)
. Since P (N (t) = 0) =

1 − dαt − o (t), this implies that

lim
t→0

E
[
h
(
Z(d) (t)

) ∣∣Z(d) (0)
]

= h
(
Z(d) (0)

)

and the semigroup {T (t)} corresponding to the Markov process
{
Z(d) (t) , t ≥ 0

}

is strongly continuous.
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For the Langevin diffusion process {Z (t) , t ≥ 0} (in fact for any diffusion

process), we have that ∀ε > 0,

P (|Z (t) − Z (0)| > ε |Z (0) = x) = o (t)

(see [19] on page 493). Since convergence in probability implies convergence in

distribution, we then obtain limt→0 E [h (Z (t)) |Z (0)] = h (Z (0)) for h ∈ B (E).

Therefore, the semigroup {T (t)} on B (E) corresponding to the Langevin diffusion

process is strongly continuous.

In our specific case, we know that the finite-dimensional distributions of each

of our Markov processes are determined by a corresponding semigroup {T (t)} (see

Theorem 1.1 and Proposition 1.6 of Chapter 4 in [16]); this thus implies that they

are in turn determined by a corresponding full generator Â. Combining (7.1) and

(7.4), we can then conclude that for some Markov process, the pairs of functions

(h, g) belonging to Â are such that M (t) = h (X (t)) −
∫ t

0
g (X (s)) ds is an FX

t -

martingale.

Since both Markov processes we consider correspond to strongly continu-

ous contraction semigroups, we even know from Proposition 7.2.5 that they are

uniquely determined by their corresponding single-valued generator A (and also

their initial distribution ν). Therefore, when studying the (continuous-time) RWM

algorithm and the Langevin diffusion, we can focus on functions h ∈ L such that

M (t) = h (X (t)) −
∫ t

0
Ah (X (s)) ds is an FX

t -martingale, which corresponds to

the argument used in Section 5.1. In that section we verified, using the martingale

property, that the generator of a continuous-time Markov process is an operator
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G acting on smooth functions h : R → R such that

Gh (x) = lim
k→0

1

k
E [h (X (t + k)) − h (X (t)) |X (t) = x ] .

By expressing the Markov process in terms of its semigroup, we find

Gh (x) = lim
k→0

1

k
{T (k) h (x) − T (0) h (x)}

= lim
k→0

1

k
{T (k) h (x) − h (x)} ,

which implies that Gh = limk→0

(
T (k)h−h

k

)
and hence both definitions are equiva-

lent.

7.4 Convergence of Probability Measures

We now present some concepts related to the convergence of probability measures.

We first introduce the definition of weak convergence, which is of major importance

to us. Recall that C (E) is the subspace of real-valued, Borel measurable bounded

continuous functions on E. Moreover, P (E) is the set of Borel probability measures

on E.

Definition 7.4.1. A sequence of probability measures {Pn} ⊂ P (E) is said to

converge weakly to P ∈ P (E) if

lim
n→∞

∫
h dPn =

∫
h dP, ∀h ∈ C (E) . (7.5)

Equivalently, a sequence {Xn} of E-valued random variables is said to converge in
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distribution to the E-valued random variable X if

lim
n→∞

E [h (Xn)] = E [h (X)] , ∀h ∈ C (E) .

Weak convergence is denoted by Pn ⇒ P and convergence in distribution by Xn ⇒

X.

We now define two useful properties about sets of functions.

Definition 7.4.2. A set M ⊂ C (E) is called separating if whenever P,Q ∈ P (E)

and ∫
h dP =

∫
h dQ, (7.6)

for h ∈ M , we have P = Q.

In words, it suffices to verify (7.6) for the functions belonging to the separating

set M in order to conclude that P and Q really are equal.

Definition 7.4.3. A set M ⊂ C (E) is called convergence determining if whenever

{Pn} ⊂ P (E) , P ∈ P (E), and

lim
n→∞

∫
h dPn =

∫
h dP, (7.7)

for h ∈ M , the sequence of probability measures {Pn} converges weakly to P as

n goes to ∞ (i.e. Pn ⇒ P ).

Therefore, if the set M is convergence determining, it is enough to verify (7.7)

for the functions belonging to M in order to assess weak convergence.

We should note that if M ⊂ C (E) is convergence determining, then M is

separating. This statement is easily verified. If M is convergence determining,
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then we only need to check (7.7) for the functions in M to conclude that {Pn}

converges weakly to P . However, suppose there exists another probability measure

Q such that P 6= Q and such that for all h ∈ M we have
∫

h dP =
∫

h dQ. In

that case, since we verified (7.7) for the functions in M only, then the weak limit

could also be Q. But this contradicts the fact that M is convergence determining,

and so M must be separating.

As noticed in the previous definitions, sets of functions play an important role

when assessing convergence of probability measures. In order to study the weak

convergence results that shall be presented next section, we need to introduce

further definitions related to sets of functions and their properties.

Definition 7.4.4. An algebra of functions on E is a subset Ca of the space of

all continuous functions on E such that for all functions h, g ∈ Ca, we have that

hg ∈ Ca, h + g ∈ Ca, and for all constants c, ch ∈ Ca.

The following example presents an example of an algebra of functions on R.

Example 7.4.5. Consider C
∞

(R), the subspace of infinitely differentiable bounded

functions on R. We show that C
∞

(R) is an algebra of functions on R.

We start by verifying the last condition. If h is bounded, then ch also is.

Furthermore, if h is infinitely differentiable, then (ch)(n) = ch(n) for all n ∈ N, so

ch is infinitely differentiable.

For the second condition, we have that if h and g are in C
∞

(R), then h + g

is bounded as well. Also, the n-th derivative of h + g is (h + g)(n) = h(n) + g(n) for

all n ∈ N, so h + g is infinitely differentiable.

Finally, if both h and g are bounded, then hg clearly bears the same property.
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Moreover, (hg)′ = h′g + hg′ and more generally, the n-th derivative of hg is

(hg)(n) =
n∑

i=0

(
n

i

)
h(i)g(n−i)

for all n ∈ N. Hence, hg is infinitely differentiable and since all three conditions

are verified, then C
∞

(R) is an algebra of functions on R.

Before moving to the notion of relative compactness of a family of stochastic

processes, we present two additional properties of collections of functions.

Definition 7.4.6. A collection of functions M ⊂ C (E) is said to separate points

if for every x, y ∈ E with x 6= y there exists f ∈ M such that f (x) 6= f (y).

Definition 7.4.7. A collection of functions M ⊂ C (E) is said to strongly separate

points if for every x ∈ E and δ > 0 there exists a finite set {f1, . . . , fk} ⊂ M such

that

inf
y:r(x,y)≥δ

max
1≤i≤k

|fi (y) − fi (x)| > 0. (7.8)

Roughly, the second definition says that if we take some x ∈ E and δ > 0,

there exists a finite set of functions in M such that at least one of the functions

fi belonging to the finite set satisfies fi (x) 6= fi (y), for some y that yields the

”smallest” difference, but such that r (x, y) ≥ δ. It is thus pretty clear from the

definitions that if M strongly separates points, then M separates points. Also, in

the case where M is a finite set that separates points, then obviously M strongly

separates points.

It is easily verified that the set of functions C
∞

(R) considered in the pre-

vious example separates points. To realize this, consider the function f (x) =
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exp (−1/x2)1(x>0) − exp (−1/x2)1(x<0); f is thus strictly increasing, bounded be-

low by -1, and above by 1. Moreover, since f (0) = 0, then this function is infinitely

differentiable. Since f clearly separates points by itself, then obviously C
∞

(R) sep-

arates points as well. Because C
∞

(R) contains a finite subset of functions which

separates points (formed by f only), then it also strongly separates points.

By using a method similar to that of Example 7.4.5, it is easy to show that

C∞
c (R), the subspace of infinitely differentiable functions on R with compact

support, is an algebra of functions. Furthermore, for every x ∈ R, we can find

f ∈ C∞
c (R) such that f (y) < f (x) (or equivalently f (x) < f (y)) for all y with

y 6= x; that is, x is the only point reaching the absolute maximum (or minimum) of

the function f . It then follows that C∞
c (R) is an algebra that strongly separates

points.

An important concept when talking of weak convergence is that of relative

compactness. Indeed, for a sequence of probability measures to converge weakly,

it is necessary that they be relatively compact. We say that a family of probability

distributions {Pn} ⊂ P (E) is relatively compact if the closure of {Pn} in P (E) is

compact. We have the following result.

Lemma 7.4.8. Let {Pn} ⊂ P (E) be relatively compact, let P ∈ P (E), and let

M ⊂ C (E) be separating. If

lim
n→∞

∫
h dPn =

∫
h dP,

holds for h ∈ M , then Pn ⇒ P.

Proof. The proof of this lemma can be found in [16], p.112.



165

This basically says that if a sequence of probability measures is relatively

compact and there exists a separating set of functions in C (E), then this set of

functions is also convergence determining. Hence, if a sequence of probability mea-

sures is relatively compact, then we only need to consider the functions belonging

to a separating set to assess weak convergence of probability measures.

In this work, we are interested in stochastic processes with sample paths in

DE [0,∞). It this case, the notion of relative compactness of a sequence of proba-

bility measures can equivalently be expressed in terms of a sequence of stochastic

processes.

Definition 7.4.9. Let {Xn} be a family of stochastic processes with sample paths

in DE [0,∞), and let {Pn} ⊂ P (DE [0,∞)) be the family of associated probability

distributions. We say that {Xn} is relatively compact if {Pn} is relatively compact.

In order to define criteria for assessing relative compactness of processes in

DE [0,∞), it becomes necessary to define compact subsets for collections of step

functions. The following corollary presents necessary and sufficient conditions for

a sequence of stochastic processes with sample paths in DE [0,∞) to be relatively

compact.

Corollary 7.4.10. Let (E, r) be complete and separable, and let {Xn} be a se-

quence of processes with sample paths in DE [0,∞). Then {Xn} is relatively com-

pact if and only if the following two conditions hold:

(a) For every η > 0 and rational t ≥ 0, there exists a compact set Γη,t ⊂ E such

that

lim inf
n→∞

P
(
Xn (t) ∈ Γη

η,t

)
≥ 1 − η.
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(b) For every η > 0 and T > 0, there exists δ > 0 such that

lim sup
n→∞

P (w (Xn, δ, T ) ≥ η) ≤ η,

with

w (x, δ, T ) = inf
ti

max
i

sup
s,t∈[ti−1,ti)

r (x (s) , x (t)) ,

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tk−1 <

T ≤ tk with min1≤i≤k (ti − ti−1) > δ and k ≥ 1.

Proof. The proof of this corollary can be found in [16], on page 130.

If the sequence {Xn} is relatively compact, then the weaker compact contain-

ment condition holds. That is, for every η > 0 and T > 0 there is a compact set

Γη,T ⊂ E such that

lim inf
n→∞

P (Xn (t) ∈ Γη,T for 0 ≤ t ≤ T ) ≥ 1 − η.

We conclude this section with the result stating that for a sequence of rel-

atively compact processes, weak convergence of the stochastic processes follows

from the weak convergence of their finite-dimensional distributions.

Theorem 7.4.11. Let E be separable, and let Xn, n = 1, 2, . . ., and X be processes

with sample paths in DE [0,∞). If {Xn} is relatively compact and there exists a

dense set D ⊂ [0,∞) such that (Xn (t1) , . . . , Xn (tk)) ⇒ (X (t1) , . . . , X (tk)) for

every finite set {t1, . . . , tk} ⊂ D, then Xn ⇒ X.

Proof. The proof of this theorem can be found in [16], on page 132.
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As mentioned at the beginning of Chapter 5 and as we shall see next section,

verifying L1 convergence of the generators leads us to the weak convergence of the

finite-dimensional distributions only. To reach weak convergence of the stochastic

processes, the previous result affirms that we should verify a priori the relative

compactness of {Xn}. Unfortunately, it is often difficult to verify the necessary and

sufficient conditions for relative compactness presented in Corollary 7.4.10. In the

case of our RWM algorithm (or, more specifically, its component of interest Xi∗),

the first condition is easily assessed through a continuity of probabilities argument,

but the second is far more difficult to verify. Consequently, it becomes necessary

to refer to alternate results. This is where the compact containment condition, as

well as the different characteristics of collections of functions defined previously

in this section, come into action. Indeed, there exist various results introducing

sufficient conditions for assessing relative compactness, and which involve the tools

introduced previously. The results we use for the RWM shall be presented next

section, and applied to our particular case.

7.5 Weak Convergence to a Markov Process

The following results about weak convergence of stochastic processes are the foun-

dations of the work presented in this thesis. They allow us to deduce that proving

L1 convergence of the generators is sufficient to assess weak convergence of the

specific stochastic processes we consider in this thesis. The first result leads us to

weak convergence of the finite-dimensional distributions, and is complemented by

the second one which verifies relative compactness of the sequence of stochastic

processes considered.
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For n = 1, 2, . . . let Gn (t) be a complete filtration, and let Ln be the space of

real-valued Gn (t)-progressive processes ξ satisfying

sup
t≤T

E [|ξ (t)|] < ∞

for each T > 0. Let Ân be the collection of pairs (ξ, ϕ) ∈ Ln × Ln such that

ξ (t) −
∫ t

0

ϕ (s) ds (7.9)

is a Gn (t)-martingale.

Note that a Gn (t)-progressive process is such that for each t ≥ 0, the restric-

tion of X to [0, t]×Ω is B [0, t]×Gn (t)-measurable. From [16], we know that every

right-continuous Gn (t)-adapted process (that is, X (t) is Gn (t)-adapted if it is

Gn (t)-measurable for each t ≥ 0) is Gn (t)-progressive. Therefore, this implies that

our sequence of processes
{

Z
(d)
i∗ (t) , t ≥ 0

}
, d = 1, 2, . . . is FZ

(d)
i∗ (t)-progressive.

Theorem 7.5.1. Let (E, r) be complete and separable. Let A ⊂ C (E) × C (E)

be linear, and suppose the closure of A generates a strongly continuous contrac-

tion semigroup {T (t)} on L ≡ D (A). Suppose Xn, n = 1, 2, . . ., is a Gn (t)-

progressive E-valued process, X is a Markov process corresponding to {T (t)}, and

Xn (0) ⇒ X (0). Let M ⊂ C (E) be separating and suppose either L is separating

and {Xn (t)} is relatively compact for each t ≥ 0, or L is convergence determining.

Then the following are equivalent:

(a) The finite-dimensional distributions of Xn converge weakly to those of X.
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(b) For each (h, g) ∈ A,

lim
n→∞

E

[(
h (Xn (t + s)) − h (Xn (t)) −

∫ t+s

t

g (Xn (u)) du

) k∏

i=1

fi (Xn (ti))

]
= 0

for all k ≥ 0, 0 ≤ t1 < t2 < . . . < tk ≤ t < t + s, and f1, . . . , fk ∈ M .

(c) For each (h, g) ∈ A and T > 0, there exist (ξn, ϕn) ∈ Ân such that

sup
n

sup
s≤T

E [|ξn (s)|] < ∞, (7.10)

sup
n

sup
s≤T

E [|ϕn (s)|] < ∞, (7.11)

lim
n→∞

E

[
(ξn (t) − h (Xn (t)))

k∏

i=1

fi (Xn (ti))

]
= 0, (7.12)

lim
n→∞

E

[
(ϕn (t) − g (Xn (t)))

k∏

i=1

fi (Xn (ti))

]
= 0, (7.13)

for all k ≥ 0, 0 ≤ t1 < t2 < . . . < tk ≤ t ≤ T , and f1, . . . , fk ∈ M .

Proof. For a proof of this theorem, see [16] on page 227.

The previous theorem establishes weak convergence of the finite-dimensional

distributions of some sequence of processes to those of a certain Markov process. In

our case, we choose to verify condition (c) in order to prove the weak convergence

result. First, since the limiting Markov process corresponds to a strongly contin-

uous contraction semigroup, then by Proposition 7.2.5 it is uniquely determined

by its single-valued generator A; it thus suffices to verify the conditions in (c) for

each pair of functions (h,Ah), where h ∈ D (A) ⊂ C (E).
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Furthermore, note that (7.12) and (7.13) are implied by

lim
n→∞

E [|ξn (t) − h (Xn (t))|] = lim
n→∞

E [|ϕn (t) − g (Xn (t))|] = 0. (7.14)

Indeed, since f1, · · · , fk ∈ M ⊂ C (E), where C (E) is the set of bounded con-

tinuous functions on E, then fi ≤ B (say). Using the triangle’s inequality then

yields

E

[
(ξn (t) − h (Xn (t)))

k∏

i=1

fi (Xn (ti))

]

≤ E

[∣∣∣∣∣(ξn (t) − h (Xn (t)))
k∏

i=1

fi (Xn (ti))

∣∣∣∣∣

]

≤ BkE [|ξn (t) − h (Xn (t))|] ,

and similarly for (7.13). We thus use (7.14) instead of (7.12) and (7.13).

Now, let’s apply this theorem to the particular case we are studying in

this thesis. First, suppose that the process {Xd (t) , t ≥ 0} is in fact the process
{

Z
(d)
i∗ (t) , t ≥ 0

}
formed by the i∗-th component of a d-dimensional Markov pro-

cess. If we let Gd (t) = FZ
(d)
i∗ (t), then we have access to the past movements of the

component of interest Xi∗ only (see the discussion in Section 5.1.4). Setting ξd (t) =

h
(
Z

(d)
i∗ (t)

)
and ϕd (t) = limk→0

1
k
E
[
h
(
Z

(d)
i∗ (t + k)

)
− h

(
Z

(d)
i∗ (t)

) ∣∣∣FZ
(d)
i∗ (t)

]
, it is

easily verified using the developments in Section 5.1.3 that the martingale condi-

tion in (7.9) is satisfied (with respect to FZ
(d)
i∗ (t)). Because h ∈ C, then (7.10)

is trivial; given that (7.12) is exactly equal to 0, then the only equations left to

verify are (7.11) and (7.13) (or the second part of (7.14)), which in our case are
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respectively given by supd E [|Gh (d,Xi∗)|] < ∞ and

lim
d→∞

E [|Gh (d,Xi∗) − Ah (Xi∗)|] = 0,

where Gh (d,Xi∗) is as in (5.6). Furthermore, since we know that the limiting

process is either a Langevin diffusion or a Metropolis-Hastings algorithm, then

Ah (Xi∗ (t)) is either given by GLh (Xi∗) in Section 5.2.2 with appropriate speed

measure υ (`) or by GMHh (Xi∗) in Section 5.3.2 with appropriate acceptance rule

α (`2, Xi∗ , Yi∗).

All is left to do to assess weak convergence of the finite-dimensional distribu-

tions is thus to determine for which set of functions L the previous two conditions

should be verified. From Theorem 7.5.1, we know that L ⊂ C; for the case where

the limiting process is a Metropolis-Hastings algorithm, we can prove the relations

for all h ∈ C. Since C is clearly separating (see the discussion in Section 7.4) then

Theorem 7.5.1 can be applied without any concern. For the case where the limit is

a Langevin diffusion process however, it is not as simple to verify L1 convergence

of the generators for all continuous and bounded functions h. To overcome this

problem, we resort to the convenient concept of core (see Section 7.6) and conclude

that it is sufficient to verify both conditions for all functions h ∈ C∞
c .

In Chapters 5 and 6, we concentrated on verifying L1 convergence of the gen-

erators. However, to apply Theorem 7.5.1, we see that there is a second condition

that still needs to be checked. We shall see shortly that this condition is satisfied,

as a stronger statement is verified at the end of this section when talking about

relative compactness.

In order to conclude that the sequence of processes converges weakly to the
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Markov process in question, Theorem 7.4.11 states that we should assess relative

compactness of this same sequence of processes. To do so, we use the following

result.

Corollary 7.5.2. Suppose in Theorem 7.5.1 that the Xn and X have sample path

in DE [0,∞), and there is an algebra Ca ⊂ L that separates points. Suppose

either that the compact containment condition holds for {Xn} or that Ca strongly

separates points. If {(ξn, ϕn)} in condition (c) can be selected so that

lim
n→∞

E

[
sup

t∈Q ∩ [0,T ]

|ξn (t) − h (Xn (t))|
]

= 0 (7.15)

and

lim sup
n→∞

E [‖ϕn‖p,T ] < ∞ for some p ∈ (1,∞] , (7.16)

where ‖ϕn‖p,T =
[∫ T

0
|ϕn (t)|p dt

]1/p

if p < ∞ and ‖ϕn‖∞,T = ess sup0≤t≤T |ϕn (t)|,

then Xn ⇒ X.

Proof. For a proof of this theorem, see [16] on page 232.

To verify the conditions of this result, it will be necessary to focus on our

specific problem. From Section 7.4, we know that C∞
c ⊂ L is an algebra that

strongly separates points. From our previous choice of (ξd, ϕd), we know that
∣∣∣ξd (t) − h

(
Z

(d)
i∗ (t)

)∣∣∣ is exactly 0, so (7.15) is trivial. To verify the second condi-

tion, we set p = 2 and realize that by Jensen’s inequality,

E

[(∫ T

0

ϕ2
d (t) dt

)1/2
]
≤
(

E

[∫ T

0

ϕ2
d (t) dt

])1/2

.

We first concentrate on the integral appearing on the RHS, keeping in mind the
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fact that
{

Z
(d)
i∗ (t) , t ≥ 0

}
is a step function and proposes moves according to a

Poisson process with rate dα; furthermore, ϕd (t) = Gh (d,Xi∗).

Using Theorem 5.2 in [38], it is easy to show that

E




N(T )∑

i=1

ϕ2
d (Ti)


 = E

[
N∑

i=1

ϕ2
d (Ui)

]
= dα

∫ T

0

ϕ2
d (t) dt,

where Ti is the time of the n-th event of the Poisson process {N (t) , t ≥ 0} having

rate dα, and where U1, U2, . . . is a sequence of iid uniform (0, T ) random variables

that is independent of N , a Poisson random variable with mean λT . Therefore,

we find

E

[∫ T

0

ϕ2
d (t) dt

]
=

1

dα
E

[
EN

[
EU1,U2,...

[
N∑

i=1

ϕ2
d (Ui)

]]]

=
1

dα
E
[
EN

[
NEU1

[
ϕ2

d (U1)
]]]

.

Recall that we chose ϕd (t) = Gh (d,Xi∗ (t)); since by assumption X(d) (0) is

distributed according to the target density π which is stationary for the Markov

chain, then the unconditional distribution of Xi∗ (t) has density f for all t ≥ 0.

We then obtain

E

[∫ T

0

ϕ2
d (t) dt

]
=

1

dα
E [N ] E

[
ϕ2

d (0)
]

= TE
[
ϕ2

d (0)
]
.

If we can show that E [ϕ2
d (0)] is bounded by some constant for all d ≥ 1, then

(7.16) will be verified (and this will imply by the same fact that (7.11) is satisfied

as well). For the case where the limiting process is a discrete-time RWM algorithm,

this follows directly from the definition of Gh (d,Xi∗) in (5.9). Since α = λ1 = 0 in
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this case and h ∈ C, then the expectation is bounded by some constant. For the

case where the limiting process is a Langevin diffusion process, α > 0 and thus we

have to develop (5.6) further if we want to reach the same conclusion. From the

proof of Lemma 6.1.2, we know that

|Gh (d,Xi∗)| ≤
∣∣∣G̃h (d,Xi∗)

∣∣∣+ K

(
`3

dα/2
+

`4

dα
+

`5

d3α/2

)(
(log f (Xi∗))

′)2

+ K

(
`4

dα
+

`5

d3α/2
+

`6

d2α

)(
1 +

∣∣(log f (Xi∗))
′∣∣)

+ K
`3

dα/2
+ K

`7

d5α/2

for some positive constant K. From the definition of G̃h (d,Xi∗) in (6.1) and using

the fact that both its expectation terms are bounded, along with the fact that h

and its derivatives are bounded in absolute value, we obtain

|Gh (d,Xi∗)| ≤ K + K
∣∣(log f (Xi∗))

′∣∣+ K
1

dα/2

+ K
1

dα/2

(
(log f (Xi∗))

′)2 + K
1

dα

∣∣(log f (Xi∗))
′∣∣

≤ K + K
∣∣(log f (Xi∗))

′∣∣+ K
1

dα/2

(
(log f (Xi∗))

′)2 ,

for some K > 0. By assumption (see Section 2.2), we know that E
[(

(log f (X))′
)4]

<

∞, which implies that E [ϕ2
d (0)] = E

[
(Gh (d,Xi∗))

2] < ∞ for all d; therefore,

(7.16) follows.

Since the conditions of Corollary 7.5.2 are satisfied, we then proved that
{

Z
(d)
i∗ (t) , t ≥ 0

}
is relatively compact and thus the weak convergence of the finite-

dimensional distributions in Theorem 7.5.1 implies the weak convergence of the

stochastic processes.
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7.6 Cores

We finally briefly introduce the notion of cores, which was mentioned in the pre-

vious section and sometimes constitutes a useful alternative to the domain of an

operator.

Definition 7.6.1. A subspace D of D (A) is said to be a core for A if the closure

of the restriction of A to D is equal to A, that is A|D = A.

More intuitively, a core is a representative subspace of the domain of an

operator which can be used in its place to simplify the problem.

It turns out that a core can be found for the generator of the Langevin diffusion

process considered in this thesis. Consequently, instead of verifying L1 convergence

of the generators for all functions h in the domain of GL, we shall be allowed to

work with functions belonging to this core only.

Specifically, we are given that the generator of a diffusion process satisfies:

A =
1

2
a (x)

d2

dx2
+ b (x)

d

dx
,

where a (x) and b (x) are the volatility and drift terms respectively (see [36], for

instance). The domain of A is C2, the subspace of twice differentiable functions

on R.

Theorem 7.6.2. Suppose a ∈ C2, a ≥ 0, a′′ is bounded, and b : R → R is

Lipschitz continuous. Then, C∞
c is a core for A.

Proof. For the proof of this theorem, refer to [16] on pages 371-372.
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The generator of a Langevin diffusion is given by

GLh (x) =
1

2
h′′ (x) +

1

2
(log f (x))′ h′ (x) .

Since a (x) = 1/2 is a constant, it is easily verified that a (x) ∈ C2, is strictly

positive and also has a bounded second derivative. Moreover, since (log f)′ is

Lipschitz continuous by assumption, then C∞
c is a core for GL.

Since the Langevin diffusion is uniquely determined by its generator GL and

from the definition of a core, we know that C∞
c is convergence determining (this

also follows from Theorem 4.5 of Chapter 3 in [16], along with the fact that C∞
c is

an algebra that strongly separates points); from the discussion in Section 7.4, C∞
c

is thus also separating. Using Lemma 7.5.1, it is thus sufficient to prove L1 con-

vergence of generators for functions h ∈ C∞
c in order to achieve weak convergence

of the processes
{

Z
(d)
i∗ (t) , t ≥ 0

}
to the Langevin diffusion as d → ∞.



Conclusion

The well-known acceptance rate 0.234 has long been believed to hold under certain

perturbations of the target density. In this thesis, we extended the iid work of [29]

to a more general setting where the scaling term of each target component is

allowed to depend on the dimension of the target distribution. The particularity

of our results is that they provide, for the specified target setting, a necessary and

sufficient condition under which the (rescaled) RWM algorithm has an asymptotic

behavior that is identical to the iid case, yielding an AOAR of 0.234. This condition

ensures that the target distribution does not admit components having scaling

terms that are significantly smaller than the others. We also proved that when this

condition is not verified, the process of interest has a different limiting behavior,

yielding AOARs that are smaller than 0.234. In particular, we introduced an

equation from which the appropriate AOAR can be numerically solved for optimal

performance of the algorithm. These results are the first to admit limiting processes

and AOARs that are different from those found by [29] for RWM algorithms. This

work should then act as a warning for practitioners, who should be aware that the

usual 0.234 might be inefficient even with seemingly regular targets.

It is worth mentioning that although asymptotic, the results presented in this

paper work well in relatively small dimensions. In addition, the results provided
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about the optimal form for the proposal variance as a function of d constitute

useful guidelines in practice. The results of this paper are then relatively easy to

apply for practitioners, as it suffices to verify which conditions are satisfied, and

then numerically optimize the appropriate equation to find the optimal scaling

value.

As a special case, our results can be used to determine the AOAR for vir-

tually any correlated multivariate normal target distribution. Contrarily to what

seemed to be a common belief, multivariate normal distributions do not always

adopt a conventional limiting behavior. However, a drastic variation in the AOAR

seems to be more common as target distributions get further from normality. In

general, AOARs for multivariate normal targets appear to lie relatively close to

0.234, regardless of the correlation structure existing among the components. As

discussed in Section 3.3 however, even for the most regular target distributions,

an extremely small scaling term causes the algorithm to be inefficient and forces

us to resort to inhomogeneous proposal distributions. The AOAR obtained under

this method is then not necessarily close to 0.234.

Since our results can be used to optimize any multivariate normal target distri-

bution, this also includes cases where the target is a hierarchical model possessing

a distribution which is jointly normal. This raises the question as to whether RWM

algorithms can be optimized and similar results derived for broader hierarchical

target models. The examples presented in Section 4.4 seem to answer this question

positively, but AOARs appear to differ from 0.234 with increasing significance as

the distribution gets further from normality. The optimization problem for general

hierarchical models is presently under investigation (see [7]).



Appendix A. Miscellaneous

Results for the Lemmas Proofs

This appendix contains various results used in the proofs of the lemmas in Chapter

6. The results are presented in the same order as they appear in the text. Note

that Propositions A.4 and A.5 can be found in [29].

Lemma A.1. Let f be a C2 probability density function (pdf). If (log f (x))′ is

Lipschitz continuous, i.e.

sup
x,y∈R,x 6=y

∣∣∣f
′(x)

f(x)
− f ′(y)

f(y)

∣∣∣
|x − y| < ∞, (A.1)

then f ′ (x) → 0 as x → ±∞.

Proof. The asymptotic behavior of a C2 pdf can be one of three things:

1) f (x) → 0 as x → ±∞ and f ′ (x) → 0 as x → ±∞;

2) f (x) → 0 as x → ±∞ and f ′ (x) 9 0 as x → ±∞;

3) f (x) 9 0 as x → ±∞ and f ′ (x) 9 0 as x → ±∞.

We prove that if we are in case (2) or (3), then (log f (x))′ is not Lipschitz

continuous, thus implying that (1) is the only possible option.
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Case (2): We might face the case where the density f converges to 0, but

where its first derivative f ′ does not. Since f → 0, then ∀ε > 0 there exists

x0 (ε) ∈ R such that ∀x ≥ x0 (ε), we have f (x) < ε.

Also, since f ′
9 0, then for all ε > 0 we can find x∗ ≥ x0 (ε) + 1 such that

(a) f ′ (x∗) < − lim sup |f ′| /2 or (b) f ′ (x∗) > lim sup |f ′| /2. We now demonstrate

that in both cases, the Lipschitz continuity assumption is violated, ruling out the

option where f → 0 but f ′
9 0.

Case (a): f ′ (x∗) < − lim sup |f ′| /2. Note that a function taking the value

ε at time 0 and with a slope of −ε will reach 0 at time 1. Since f is C2, then

∀0 < ε < lim sup |f ′| /2 there exists at least one value y < x∗ with x∗ − y ≤ 1

such that f ′ (y) = −ε. If this was not true, this would mean that f ′ (x) < −ε

for x ∈ (x∗ − 1, x∗) and then f would cross 0, violating the fact that f ≥ 0.

Now, let y∗ be the largest of those y’s, which implies that f (y∗) > f (x∗). Given

0 < ε < lim sup |f ′| /2, we then have

sup
x,y∈R,x6=y

∣∣∣f
′(x)

f(x)
− f ′(y)

f(y)

∣∣∣
|x − y| ≥

∣∣∣f
′(x∗)

f(x∗)
− f ′(y∗)

f(y∗)

∣∣∣
1

≥
∣∣∣∣
f ′ (x∗)

f (x∗)
− −ε

f (x∗)

∣∣∣∣

≥
∣∣∣∣
− lim sup |f ′| /2 + ε

f (x∗)

∣∣∣∣ ≥
∣∣∣∣
lim sup |f ′| /2 − ε

ε

∣∣∣∣ .

Since this is true for all 0 < ε < lim sup |f ′| /2, then

sup
x,y∈R,x 6=y

∣∣∣f
′(x)

f(x)
− f ′(y)

f(y)

∣∣∣
|x − y| = ∞

and the Lipschitz continuity assumption is violated.

Case (b): f ′ (x∗) > lim sup |f ′| /2. In a similar fashion, we note that a function
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starting at 0 and with slope equal to ε will reach ε after one unit of time. Since

f is C2, then ∀0 < ε < lim sup |f ′| /2 there exists at least one value y > x∗

with y − x∗ ≤ 1 such that f ′ (y) = ε; if this was not true, then f would cross

ε, which would contradict the fact that f (x) < ε for all x ≥ x0 (ε). Now, let y∗

be the smallest such value, which implies that f (y∗) > f (x∗). Given 0 < ε <

lim sup |f ′| /2 and repeating what was done in (a), we obtain

sup
x,y∈R,x6=y

∣∣∣f
′(x)

f(x)
− f ′(y)

f(y)

∣∣∣
|x − y| ≥

∣∣∣∣
lim sup |f ′| /2 − ε

ε

∣∣∣∣ ,

and therefore the Lipschitz continuity assumption is again violated.

Note that although we focused on the behavior of f as x → ∞ in both (a)

and (b), we can repeat the same reasoning for x → −∞.

Case (3): We might also face the case where f does not converge to 0. Since

f is continuous, positive, and
∫

f = 1, we then have that ∀ε > 0, there exists

x0 (ε) ∈ R such that f (x) < ε for x ≥ x0 (ε), except on a set Aε of Lebesgue

measure λ (Aε) < ε. In other words, we can find x0 (ε) ∈ R such that f (x) < ε for

the majority of x ≥ x0 (ε), and such that the other x ≥ x0 (ε) with f (x) ≥ ε have

a probability smaller than ε of occurring, i.e. P ({x : x ≥ x0 (ε) , f (x) ≥ ε}) < ε.

Since (−∞, ε) is an open set and f is continuous, it follows that the set

B = {x ∈ R : f (x) < ε} must be an open set as well (in our case, this set is a

countable union of open intervals). We then conclude that the complement of this

set (Bc = {x ∈ R : f (x) ≥ ε}) must be formed of closed intervals (which might

include singletons). Since Aε = Bc ∩ [x0,∞), then it is also formed of closed

intervals over which f (x) ≥ ε.
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Since f is a C2 density, then f (x) < ∞ for all x ∈ R. Also, since f 9 0,

then for all ε > 0 we can find an interval [x (ε) , y (ε)] in Aε where the maximum

value reached by the function f over this interval (h (ε) say) is such that h (ε) >

lim sup |f | /2. There might be more than just one value in this interval for which

f attains its maximum, but for all of those values we will have f ′ (x) = 0. Since

the maximum and minimum values taken by f over the interval [x (ε) , y (ε)] are

h (ε) and ε respectively (since f (x (ε)) = f (y (ε)) = ε), then supx∈R f ′ (x) ≥
h(ε)−ε

y(ε)−x(ε)
> h(ε)−ε

ε
, where the last inequality comes from the fact that |y (ε) − x (ε)| =

λ ([x (ε) , y (ε)]) ≤ λ (Aε) < ε; hence, supx∈R
f ′(x)
f(x)

> h(ε)−ε
εh(ε)

. Since this is true for all

ε > 0, then supx∈R
f ′(x)
f(x)

= ∞.

With this information in hand, we now verify if the Lipschitz continuity as-

sumption is satisfied. Given ε > 0, we take y to be one of the points in [x (ε) , y (ε)]

such that f (y) = h (ε) and f ′ (y) = 0. We then have

sup
x,y∈R,x6=y

∣∣∣f
′(x)

f(x)
− f ′(y)

f(y)

∣∣∣
|x − y| ≥ sup

x∈R

∣∣∣f
′(x)

f(x)
− 0
∣∣∣

|x (ε) − y (ε)| > sup
x∈R

∣∣∣f
′(x)

f(x)
− 0
∣∣∣

ε
= ∞,

and since this inequality must be verified ∀ε > 0, then we conclude that the

Lipschitz continuity assumption is violated. Note that we have considered the

case where x → ∞, but we can repeat a similar reasoning for the case where

x → −∞.

Proposition A.2. If Z ∼ N (0, σ2), then

E
[
Zk
]

= 0, k = 1, 3, 5, ... (A.2)

E
[
Zk
]

= σk

k
2
−1∏

i=0

(k − (2i + 1)) , k = 2, 4, 6, ... (A.3)
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Proof. Since this distribution is symmetric and centered at 0, then for k = 1, 3, 5, ...

E
[
Zk
]

=

∫

R

(
2πσ2

)−1/2
zk exp

(
− z2

2σ2

)
dz = 0.

For the case where k is even,

E
[
Zk
]

=

∫

R

(
2πσ2

)−1/2
zk exp

(
− z2

2σ2

)
dz

= 2

∫ ∞

0

(
2πσ2

)−1/2
zk exp

(
− z2

2σ2

)
dz.

Letting u = z2, we get du = 2z dz and

E
[
Zk
]

=

∫ ∞

0

(
2πσ2

)−1/2
u

k−1
2 exp

(
− u

2σ2

)
du

=
(
2πσ2

)−1/2
∫ ∞

0

u
k−1
2 exp

(
− u

2σ2

)
du.

The integrand is the unormalized density of a Γ
(

k+1
2

, 1
2σ2

)
, and then

∫ ∞

0

u
k−1
2 exp

(
− u

2σ2

)
du = Γ

(
k + 1

2

)(
2σ2
) k+1

2 .

Since Γ (x + 1) = xΓ (x) and since Γ
(

1
2

)
=

√
π, we have that

Γ

(
k + 1

2

)
=

√
π 2−

k
2

k
2
−1∏

i=0

(k − (2i + 1)) .
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Therefore, for k = 2, 4, 6, ...,

E
[
Zk
]

=
(
2πσ2

)−1/2 √
π 2−

k
2

k
2
−1∏

i=0

(k − (2i + 1))
(
2σ2
) k+1

2

= σk

k
2
−1∏

i=0

(k − (2i + 1)) .

Proposition A.3. If Z ∼ N (0, σ2), then

E
[
|Z|k

]
=

2
k
2

√
π

Γ

(
k + 1

2

)
σk, k = 1, 3, 5, ... (A.4)

E
[
|Z|k

]
= E

[
Zk
]
, k = 2, 4, 6, ...

Proof. For k = 1, 3, 5, ...,

E
[
|Z|k

]
= 2

∫ ∞

0

(
2πσ2

)−1/2
zk exp

(
− z2

2σ2

)
dz.

Letting u = z2, then du = 2z dz and

E
[
|Z|k

]
=

(
2πσ2

)−1/2
∫ ∞

0

u
k−1
2 exp

(
− u

2σ2

)
du

=
(
2πσ2

)−1/2
Γ

(
k + 1

2

)(
2σ2
) k+1

2

=
2

k
2

√
π

Γ

(
k + 1

2

)
σk.
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Proposition A.4. The function g (x) = 1∧ex is Lipschitz with coefficient 1. That

is, for all x, y ∈ R, |g (x) − g (y)| ≤ |x − y|.

Proof. The graph of g (x) versus x is convex, increases from 0 to 1 over (−∞, 0),

and then remains constant at 1 over the positive axis.

We then have three possible cases:

1. If x, y > 0, we have |g (x) − g (y)| = |1 − 1| = 0 ≤ |x − y|.

2. If x, y ≤ 0, we have

|g (x) − g (y)|
|x − y| =

|ex − ey|
|x − y| ≤ 1 ⇒ |g (x) − g (y)| ≤ |x − y| ,

since d
dx

ex = ex ≤ 1 for all x ≤ 0 (and then the slope is always ≤ 1).

Note that in the special case where y = 0 and x < 0 (or equivalently x = 0

and y < 0), we have

1 − ex ≤ |x| . (A.5)

3. Finally, if x ≤ 0, y > 0 (or x > 0, y ≤ 0) then the LHS is the same as in

(A.5) but the RHS is bigger, i.e. |g (x) − g (y)| = 1 − ex ≤ |x| ≤ |x − y|.

Proposition A.5. If A ∼ N (µ, σ2), then

E
[
1 ∧ eA

]
= Φ

(µ

σ

)
+ exp

(
µ +

σ2

2

)
Φ
(
−σ − µ

σ

)
,

where Φ (·) is the standard normal cumulative distribution function.
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Proof. By the law of total probabilities, we get

E
[
1 ∧ eA

]
= E

[
1 ∧ eA; A ≤ 0

]
+ E

[
1 ∧ eA; A > 0

]

= E
[
eA; A ≤ 0

]
+ Φ

(µ

σ

)
.

The first term satisfies

E
[
eA; A ≤ 0

]

=

∫ 0

−∞
exp (a)

(
2πσ2

)−1/2
exp

(−1

2σ2
(a − µ)2

)
da

= exp

(−µ2

2σ2

)∫ 0

−∞

(
2πσ2

)−1/2
exp

(−1

2σ2

(
a2 − 2

(
µ + σ2

)
a
))

da.

Completing the square in the exponential term, we get

E
[
eA; A ≤ 0

]
= exp

(
(µ + σ2)

2

2σ2
− µ2

2σ2

)

×
∫ 0

−∞

(
2πσ2

)−1/2
exp

(−1

2σ2

(
a −

(
µ + σ2

))2
)

da

= exp

(
µ +

σ2

2

)
Φ
(
−µ

σ
− σ

)
.

Proposition A.6. Let Y(d)
∣∣X(d) ∼ N

(
X(d), σ2 (d) Id

)
, where Xj is distributed

according to the density θj (d) f (θj (d) xj) for j = 1, . . . , d. If ε (d,Xj, Yj) is as in
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(6.2), then we have

EY(n)−,X(n)−

[
exp

(
n∑

j=1,j 6=i∗

ε (d,Xj, Yj)

)

×Φ



−∑n

j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)







= EY(n)−,X(n)−


Φ




∑n
j=1,j 6=i∗ ε (d,Xj, Yj) − `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)





 .

Proof. Developing the expectation on the LHS and simplifying the integrand yield

∫ ∫
Φ




log
∏n

j=1,j 6=i∗
f(θj(d)xj)

f(θj(d)yj)
− `2

2

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)

√
`2
∑m

i=1 Ri

(
d,X

(d)−
J (i,d)

)




n∏

j=1,j 6=i∗

θj (d) f (θj (d) yj) C exp

(
− 1

2σ2 (d)

n∑

j=1,j 6=i∗

(xj − yj)
2

)
dy(n)−dx(n)−.

Using Fubini’s Theorem and swapping y(n−) and x(n−) then yield the desired result.

Proposition A.7. Let ε (d,Xj, Yj), j = 1, . . . , n be as in (6.2). If λj < α, then

ε (d,Xj, Yj) →p 0.

Proof. By Taylor’s Theorem, we have for some Uj ∈ (Xj, Yj) or (Yj, Xj)

E [|ε (d,Xj, Yj)|] = E
[∣∣(log f (θj (d) Xj))

′ (Yj − Xj) +

1

2
(log f (θj (d) Xj))

′′ (Yj − Xj)
2 +

1

6
(log f (θj (d) Uj))

′′′ (Yj − Xj)
3

∣∣∣∣
]

.
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Applying changes of variables and using the fact that
∣∣(log f (X))′′

∣∣ and
∣∣(log f (U))′′′

∣∣ are bounded by a constant, we get for some K > 0

E [|ε (d,Xj, Yj)|] ≤ `
dλj/2

dα/2
KE

[∣∣(log f (X))′
∣∣]+

(
`2dλj

dα
+ `3d3λj/2

d3α/2

)
K.

By assumption, E
[∣∣(log f (X))′

∣∣] is bounded by some finite constant. Since λj < α,

the previous expression converges to 0 as d → ∞. To complete the proof of the

proposition we use Markov’s inequality and find that ∀ε > 0, P (|ε (d,Xj, Yj)| ≥ ε) ≤

E [|ε (d,Xj, Yj)|] /ε → 0 as d → ∞.

Proposition A.8. Let Ri

(
d,X

(d)−
J (i,d)

)
, i = 1, . . . ,m be as in (6.7). We have

∑m
i=1 Ri

(
d,X

(d)−
J (i,d)

)
→p ER, where ER is as in (3.3).

Proof. For i = 1, . . . ,m, we have

E
[
Ri

(
d,X

(d)−
J (i,d)

)]
=

1

dα

∫

R

...

∫

R

∑

j∈J (i,d),j 6=i∗

(
d

dxj

log θj (d) f (θj (d) xj)

)2

×
∏

k∈J (i,d),k 6=i∗

θk (d) f (θk (d) xk) dxk

=
θ2

n+i (d)

dα

∑

j∈J (i,d),j 6=i∗

∫

R

(
f ′ (x)

f (x)

)2

f (x) dx,

and writing the integral as an expectation yields

E
[
Ri

(
d,X

(d)−
J (i,d)

)]
=

c (J (i, d))

dα

dγi

Kn+i

E

[(
f ′ (X)

f (X)

)2
]

.



189

In the limit, we obtain

ER ≡ lim
d→∞

m∑

i=1

E
[
Ri

(
d,X

(d)−
J (i,d)

)]

= lim
d→∞

m∑

i=1

c (J (i, d))

dα

dγi

Kn+i

E

[(
f ′ (X)

f (X)

)2
]

< ∞.

Since all Xj’s are independent, the variance satisfies

Var

(
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
=

m∑

i=1

1

d2α

∑

j∈J (i,d),j 6=i∗

Var
([

(log θj (d) f (θj (d) Xj))
′]2) ,

and using the fact that Var (X) ≤ E [X2] along with a change of variable yield

Var

(
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
≤

m∑

i=1

1

d2α

∑

j∈J (i,d),j 6=i∗

θ4
j (d) E

[[
(log f (X))′

]4]

=
m∑

i=1

1

d2α

d2γi

K2
n+i

c (J (i, d)) E

[(
f ′ (X)

f (X)

)4
]

.

By assumption, we know that the expectation involved in the previous expression

is finite. Since c (J (i, d)) dγi ≤ dα and c (J (i, d)) → ∞ as d → ∞ for i = 1, . . . ,m,

the variance thus converges to 0 as d → ∞.

To conclude the proof of the lemma, we use Chebychev’s inequality and find

that for all ε > 0

P

(∣∣∣∣∣

m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

)
− ER

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2
Var

(
m∑

i=1

Ri

(
d,X

(d)−
J (i,d)

))
→ 0

as d → ∞.
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Proposition A.9. Let Xj be distributed according to the density θjf (θjxj) for

j = 1, . . . , d and also let Y(d)
∣∣X(d) ∼ N

(
X(d), σ2 (d) Id

)
. We have

E

[
b∏

j=1

f (θjYj)

f (θjXj)
;

b∏

j=1

f (θjYj)

f (θjXj)
< 1

]
= P

(
b∏

j=1

f (θjYj)

f (θjXj)
> 1

)
.

Proof. Developing the LHS leads to

E

[
b∏

j=1

f (θjYj)

f (θjXj)
;

b∏

j=1

f (θjYj)

f (θjXj)
< 1

]

=

∫ ∫
1

(
b∏

j=1

f (θjyj)

f (θjxj)
< 1

)
b∏

j=1

f (θjyj)

f (θjxj)

×C exp

(
− 1

2σ2 (d)

b∑

j=1

(yj − xj)
2

)
b∏

j=1

θjf (θjxj) dy(b)dx(b)

=

∫ ∫
1

(
b∏

j=1

f (θjxj)

f (θjyj)
> 1

)

×C exp

(
− 1

2σ2 (d)

b∑

j=1

(xj − yj)
2

)
b∏

j=1

θjf (θjyj) dy(b)dx(b),

where C is a constant term. Using Fubini’s Theorem and swapping yj and xj yield

the desired result.



Appendix B: R Functions

In this section, we present examples of the programming involved in the imple-

mentation of the RWM algorithm.

The function gam that follows has been used to obtain the curves from the

finite-dimensional RWM algorithm in Figure 3.5, while the function gamtheo has

produced the theoretical curves of the same example. The last function presented,

norm, has been used to sample from the (finite-dimensional) normal-normal hier-

archical model of Example 3.2.4 (see Figure 3.6).

gam < − function(it = 500000, dim = 100, ep = 0, n = 50) {
ell < − 10 + (1:n) * 3

vsd < − ell/dim^ ep

a < − 5

lamb < − c(rep(1/sqrt(dim)/5, dim - 2), 1, 1)

ll < − n * dim

x < − rgamma(ll, a, rep(lamb, n))

xp1 < − x[((0:(n-1)) * dim) + 1]

sx1 < − 0

accr < − rep(0, n)

for(i in 1:(it - 1)) {
y < − rnorm(ll, mean = x, sd = rep(vsd^ 0.5, each = dim))

y[y < 0] < − rep(0, ll)[y < 0]

vv < − cumsum((y == 0) * 1)[(1:n) * dim]

vv < − diff(c(0, vv))

y < − (rep(vv, each = dim) == 0) * y

yl < − y
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yl[yl == 0] < − x[yl == 0]

suml < − cumsum(log(yl) - log(x))[(1:n) * dim]

suml < − diff(c(0, suml))

sumxy < − cumsum(rep(lamb, n) * (yl - x))[(1:n) * dim]

sumxy < − diff(c(0, sumxy))

alphal < − pmin((a - 1) * suml - sumxy, 0) + (vv != 0)

* (-10000000)

rrl < − log(runif(n))

x[rep(rrl, each = dim) < rep(alphal, each = dim)] < −
y[rep(rrl, each = dim) < rep(alphal, each = dim)]

sx1 < − sx1 + (x[((0:(n-1)) * dim) + 1] - xp1)^ 2

xp1 < − x[((0:(n-1)) * dim) + 1]

accr < − accr + (rrl < alphal)

}
accr < − accr/it

par(mfrow = c(2, 1))

plot(ell, dim^ ep * sx1/it)

plot(accr, dim^ ep * sx1/it)

return(ell, accr, dim^ ep * sx1/it)

}

gamtheo < − function(it = 500000, dim = 5000, ep = 0, n = 50) {
ell < − 10 + (1:n) * 3

ER < − 1/75

vsd < − ell/dim^ ep

a < − 5

esp < − 0

for(i in (1:it)){
x < − rgamma(2 * n, a, 1)

y < − rnorm(2 * n, x, rep(vsd^ 0.5, each = 2))

eps < − matrix(log(dgamma(y, a, 1)/dgamma(x, a, 1)),

2, n)

eps < − (eps[1, ] + eps[2, ] - ell * ER/2)/sqrt(ell

* ER)

esp < − esp + pnorm(eps)

}
ellhat < − ell[which.max(2 * ell * esp/it)]

OAR < − 2 * esp[which.max(2 * ell * esp/it)]/it

plot(ell, 2 * ell *esp/it, pch = 16)

return(ell, 2 * esp/it, 2 * ell * esp/it, which.max(2
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* ell * esp/it), ellhat, OAR)

}

hiernorm < − function(it = 100000, dim = 10, n = 50, ell

= (1:50) * 0.2) {
vsd < − ell/dim

mu1 < − 0

s1 < − 1

s2 < − 1

ll < − n * dim

mp < − rnorm(n, mu1, s1)

x < − rnorm(ll, rep(mp, each = dim), s2)

xp1 < − x[((0:(n-1)) * dim) + 1]

sx < − 0

accr < − rep(0, n)

for(i in 1:(it - 1)) {
y1 < − rnorm(ll, mean = x, sd = rep(vsd^ 0.5,

each = dim))

y2 < − rnorm(n, mean = mp, sd = vsd^ 0.5)

sumxy < − cumsum((x - rep(mp, each = dim))^ 2 - (y1 -

rep(y2, each = dim))^ 2)[(1:n) * dim]

sumxy < − diff(c(0, sumxy))

alpha1 < − pmin(exp((sumxy/s2 + ((mp - mu1)^ 2 - (y2 -

mu1)^ 2)/s1)/2), 1)

rr1 < − runif(n)

mp[rr1 < alpha1] < − y2[rr1 < alpha1]

x[rep(rr1, each = dim) < rep(alpha1, each = dim)] < −
y1[rep(rr1, each = dim) < rep(alpha1, each = dim)]

sx < − sx + (x[((0:(n-1)) * dim) + 1] - xp1)^ 2

xp1 < − x[((0:(n-1)) * dim) + 1]

accr < − accr + (rr1 < alpha1)

}
accr < − accr/it

par(mfrow = c(1, 1))

plot(ell, dim * sx/it)

plot(accr, dim * sx/it)

return(ell, accr, dim * sx/it)

}
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