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Abstract

In this paper, we address the robustness, in the sense of l2-stability, of the set-membership normalized least-mean-

square (SM-NLMS) and the set-membership affine projection (SM-AP) algorithms. For the SM-NLMS algorithm, we

demonstrate that it is robust regardless of the choice of its parameters and that the SM-NLMS enhances the

parameter estimation in most of the iterations in which an update occurs, two advantages over the classical NLMS

algorithm. Moreover, we also prove that if the noise bound is known, then we can set the SM-NLMS so that it never

degrades the estimate. As for the SM-AP algorithm, we demonstrate that its robustness depends on a judicious choice

of one of its parameters: the constraint vector (CV). We prove the existence of CVs satisfying the robustness condition,

but practical choices remain unknown. We also demonstrate that both the SM-AP and SM-NLMS algorithms do not

diverge, even when their parameters are selected naively, provided the additional noise is bounded. Numerical results

that corroborate our analyses are presented.
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1 Introduction
The classical adaptive filtering algorithms are iterative

estimation methods based on the point estimation theory

[1]. This theory focuses on searching for a unique solution

that minimizes (or maximizes) some objective function.

Two widely used classical algorithms are the normalized

least-mean-square (NLMS) and the affine projection (AP)

algorithms. These algorithms present a trade-off between

convergence rate and steady-state misadjustment, and

their properties have been extensively studied [2, 3].

On the other hand, there are few adaptive filtering algo-

rithms employing the set estimation theory [4]. This is the

case of the algorithms following the set-membership filter-

ing (SMF) paradigm. In set estimation theory, a set � of

feasible solutions is defined and any solution within � is

equally acceptable. As real-world problems face many dif-

ferent kinds of uncertainties (due to noise, quantization,

interference, and modeling errors, for example), it makes

more sense to search for an acceptable solution rather

than trying to find a single/unique solution, as in point

estimation theory.

*Correspondence: hamed.yazdanpanah@smt.ufrj.br

DEE–DEL/Poli & PEE/COPPE, Federal University of Rio de Janeiro, Rio de

Janeiro, Brazil

The SMF combines the set estimation theory with data

selection strategy to introduce the set-membership (SM)

adaptive filtering algorithms [5]. The data selection is

responsible for reducing the computational complexity of

the SM algorithms, as their filter coefficients are updated

only when the estimation error is larger than a prescribed

upper bound, i.e., SM algorithms evaluate the innova-

tion on the input data before incorporating them in the

learning process [2, 5–7]. Two important SM algorithms

are the set-membership NLMS (SM-NLMS) and the set-

membership AP (SM-AP) algorithms, proposed in [8, 9],

respectively. These algorithms keep the advantages of

their classical counterparts, but they are more accurate,

more robust against noise, and also reduce the compu-

tational complexities due to the data selection strategy

previously explained [2, 10–12]. Various applications of

SM algorithms and their advantages over the classical

algorithms have been discussed in the literature [13–21].

Despite the recognized advantages of the SM algo-

rithms, they are not broadly used, probably due to the

limited analysis of the properties of these algorithms.

The steady-state mean-squared error (MSE) analysis of

the SM-NLMS algorithm has been discussed in [22, 23].

Also, the steady-state MSE performance of the SM-AP

algorithm has been analyzed in [10, 24, 25]. In addition,
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the authors of the current paper have presented a few

properties of the SM-NLMS algorithm in [26].

In this paper, the robustness of the SM-NLMS and the

SM-AP algorithms are discussed in the sense of l2 stabil-

ity [3, 27]. Section 2 describes the robustness criterion.

The robustness of the SM-NLMS algorithm is studied in

Section 3, where we also discuss the cases in which the

noise bound is assumed known and unknown. Section 4

presents the local and global robustness properties of

the SM-AP algorithm with the details of the mathemati-

cal manipulations left to appendices A and B. Section 5

contains the simulations and numerical results. Finally,

concluding remarks are drawn in Section 6.

Notation: Scalars are denoted by lower-case letters. Col-

umn vectors (matrices) are denoted by lowercase (upper-

case) boldface letters. For a given iteration k, the optimum

solution, the adaptive filter coefficient vector, the differ-

ence between the optimal solution and the adaptive filter

coefficient vector, and the input vector are denoted by wo,

w(k), w̃(k), x(k) ∈ R
N+1, respectively, where N stands

for the filter order. The desired signal, output signal, error

signal, and noise signal are denoted by d(k), y(k), e(k),

n(k) ∈ R, respectively. The output signal and the error

signal are defined by y(k) � xT (k)w(k) = wT (k)x(k) and

e(k) � d(k)−y(k), respectively, where the superscript (·)T
stands for vector or matrix transposition. The l2-norm of

a vector w ∈ R
N+1 is denoted as ‖w‖ �

√
∑N

k=0 |w(k)|2.

2 Robustness criterion
At every iteration k, assume that the desired signal d(k) is

related to the unknown system wo by

d(k) � wT
o x(k)

︸ ︷︷ ︸

�yo(k)

+n(k), (1)

where n(k) denotes the unknown noise and accounts for

both measurement noise and modeling uncertainties or

errors. Also, we assume that the unknown noise sequence

{n(k)} has finite energy [3], i.e.,

j
∑

k=0

|n(k)|2 < ∞, for all j. (2)

Suppose that we have a sequence of desired signals

{d(k)} and we intend to estimate yo(k) = wT
o x(k). For

this purpose, assume that ŷk|k is an estimate of yo(k) and

it is only dependent on d(j) for j = 0, · · · , k. For a given

positive number η, we aim at calculating the following

estimates ŷk|k ∈ {ŷ0|0, ŷ1|1, · · · , ŷN |N }, such that for any

n(k) satisfying (2) and any wo, the following criterion

is satisfied:

j
∑

k=0

‖ŷk|k − yo(k)‖2

w̃T (0)w̃(0) +
∑j

k=0 |n(k)|2
< η2,

for all j = 0, · · · ,N (3)

where w̃(0) � wo − w(0) and w(0) is our initial guess

about wo. Note that the numerator is a measure of

estimation-error energy up to iteration j and the denom-

inator includes the energy of disturbance up to iteration

j and the energy of the error w̃(0) that is due to the

initial guess.

So, the criterion given in (3) requires that we adjust esti-

mates {ŷk|k} such that the ratio of the estimation-error

energy (numerator) to the energy of the uncertainties

(denominator) does not exceed η2. When this criterion

is satisfied, we say that bounded disturbance energies

induce bounded estimation-error energies, and therefore,

the obtained estimates are robust. The interested reader

can refer to [3], pages 719 and 720, for more details about

this robustness criterion.

3 Robustness of the SM-NLMS algorithm
In this section, we discuss the robustness of the set-

membership NLMS (SM-NLMS) algorithm. In subsec-

tions 3.1 and 3.2, we briefly introduce the algorithm

and present some robustness properties, respectively. We

address the robustness of the SM-NLMS algorithm for

the cases of unknown noise bound and known noise

bound in subsections 3.3 and 3.4, respectively. Then,

in subsection 3.5, we introduce a time-varying error

bound aiming at achieving simultaneously fast conver-

gence, low computational burden, and efficient use of the

input data.

3.1 The SM-NLMS algorithm

The SM-NLMS algorithm is given by the following recur-

sion [2]:

w(k + 1) = w(k) + μ(k)

‖x(k)‖2 + δ
e(k)x(k), (4)

where

μ(k) �

{

1 − γ̄

|e(k)| if |e(k)| > γ̄ ,

0 otherwise,
(5)

and γ̄ ∈ R+ is the upper bound for the magnitude of

the error signal that is acceptable and it is usually chosen

as a multiple of the noise standard deviation σn [2, 10].

The parameter δ ∈ R+ is a regularization factor, generally

adopted as a small constant, used to avoid divisions by 0.
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3.2 Robustness of the SM-NLMS algorithm

Let us consider the problem of identifying the unknown

system wo ∈ R
N+1, such that

d(k) = wT
o x(k) + n(k), (6)

where d(k), n(k) ∈ R denote the desired (reference) signal

and the additive measurement noise, respectively.

The following relation can be derived from (4):

w̃(k + 1) = w̃(k) − μ̄(k)

α(k)
e(k)x(k)f (e(k), γ̄ ), (7)

where w̃(k) � wo − w(k) represents the discrepancy

betweenw(k) and the quantity we aim to estimatewo, and

μ̄(k), α(k), and the indicator function f are defined as

μ̄(k) � 1 − γ̄

|e(k)| , (8)

α(k) � ‖x(k)‖2 + δ, (9)

f (e(k), γ̄ ) �

{

1 if |e(k)| > γ̄ ,

0 otherwise.
(10)

In addition, observe that the error signal can be written

as

e(k) = d(k) − wT (k)x(k)

= wT
o x(k) + n(k) − wT (k)x(k)

= w̃T (k)x(k)
︸ ︷︷ ︸

�ẽ(k)

+n(k), (11)

where ẽ(k) represents the noiseless error, i.e., the error due

to a mismatch between w(k) and wo.

By computing the energy of (7) and using (11), the

robustness property given in Theorem 1 can be derived

after some mathematical manipulations (refer to [26] for

the proof).

Theorem 1 (Local Robustness of SM-NLMS) For the

SM-NLMS algorithm, it always holds that

‖w̃(k + 1)‖2 = ‖w̃(k)‖2, if f (e(k), γ̄ ) = 0 (12)

or

‖w̃(k + 1)‖2+ μ̄(k)

α(k)
ẽ2(k)

< ‖w̃(k)‖2 + μ̄(k)

α(k)
n2(k), (13)

if f (e(k), γ̄ ) = 1.

Theorem 1 presents local bounds for the energy of

the coefficient deviation when running from an iteration

to the next one. Indeed, (12) states that the coefficient

deviation does not change when no coefficient update is

actually implemented, whereas (13) provides a bound for

‖w̃(k + 1)‖2 based on ‖w̃(k)‖2, ẽ2(k), and n2(k), when an

update occurs. Using Theorem 1, Corollary 1 can be easily

demonstrated (refer to [26] for the proof).

Corollary 1 (Global Robustness of SM-NLMS) For the

SM-NLMS algorithm running from iteration 0 (initializa-

tion) to a given iteration K, the following relation holds

‖w̃(K)‖2 +
∑

k∈Kup

μ̄(k)
α(k) ẽ

2(k)

‖w̃(0)‖2 +
∑

k∈Kup

μ̄(k)
α(k)n

2(k)
< 1, (14)

where Kup �= ∅ is the set containing the iteration indexes

k in which w(k) is indeed updated. If Kup = ∅, then
‖w̃(K)‖2 = ‖w̃(0)‖2 due to (12), but this case is not of

practical interest since Kup = ∅ means that no update is

performed at all.

Corollary 1 states that, for the SM-NLMS algorithm,

l2-stability from its uncertainties {w̃(0), {n(k)}0≤k≤K } to

its errors {w̃(K), {ẽ(k)}0≤k≤K } is invariably guaranteed.

Unlike the NLMS algorithm, in which the step-size

parameter has to be selected properly to guarantee such

l2-stability, for the SM-NLMS algorithm it is taken for

granted (i.e., no restriction is imposed on γ̄ ).

3.3 Convergence of {‖w̃(k)‖2}with unknown noise

bound

The robustness results mentioned in subsection 3.2 pro-

vide bounds for the evolution of {‖w̃(k)‖2} in terms

of other variables. However, we have experimentally

observed that the SM-NLMS algorithm presents a well-

behaved convergence of the sequence {‖w̃(k)‖2}, i.e., for
most iterations we have ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2. There-
fore, in this subsection, we investigate under which condi-

tions the sequence {‖w̃(k)‖2} is (and is not) decreasing.

Corollary 2 When an update occurs (i.e., f (e(k), γ̄ ) = 1),

ẽ2(k) ≥ n2(k) implies ‖w̃(k + 1)‖2 < ‖w̃(k)‖2.

Proof By rearranging the terms in (13) we obtain

‖w̃(k + 1)‖2 + μ̄(k)

α(k)

(

ẽ2(k) − n2(k)
)

< ‖w̃(k)‖2, (15)

which is valid for f (e(k), γ̄ ) = 1. Observe that μ̄(k)
α(k) > 0

since α(k) ∈ R+ and μ̄(k) ∈ (0, 1) when f (e(k), γ̄ ) = 1.

Thus μ̄(k)
α(k)

(

ẽ2(k) − n2(k)
)

≥ 0 when f (e(k), γ̄ ) = 1 and

ẽ2(k) ≥ n2(k). Therefore, when an update occurs, ẽ2(k) ≥
n2(k) ⇒ ‖w̃(k + 1)‖2 < ‖w̃(k)‖2.

In words, Corollary 2 states that the SM-NLMS algo-

rithm improves its estimatew(k+1) every time an update

is required and the energy of the error signal e2(k) is dom-

inated by ẽ2(k), the component of the error which is due

to the mismatch between w(k) and wo.
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Corollary 2 also explains why the SM-NLMS algorithm

usually presents a monotonic decreasing sequence

{‖w̃(k)‖2} during its transient period. Indeed, in the early

iterations, the absolute value of the error is generally

large, thus |e(k)| > γ̄ and ẽ2(k) > n2(k), implying that

‖w̃(k + 1)‖2 < ‖w̃(k)‖2. In addition, there are a few

iterations during the transient period in which the input

data do not bring enough innovation so that no update is

performed, which means that ‖w̃(k + 1)‖2 = ‖w̃(k)‖2 for
these few iterations. As a conclusion, it is very likely to

have ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2 for all iterations k belonging
to the transient period.

After the transient period, however, the SM-NLMS

algorithm may yield ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 in a few iter-

ations. Although it is hard to compute how often such

an event occurs, we can provide an upper bound for the

probability of this event as follows:

P
[

‖w̃(k + 1)‖2 > ‖w̃(k)‖2
]

≤ P[ {|e(k)| > γ̄ } ∩ {ẽ2(k) < n2(k)}]

< P[ |e(k)| > γ̄ ]= erfc

(√

τ

2

)

, (16)

where P[ ·] and erfc(·) are the probability operator and

the complementary error function [28], respectively. The

first inequality follows from the fact that we do not know

exactly what will happen with ‖w̃(k+1)‖2 when an update

occurs and ẽ2(k) < n2(k) at the same time1, and therefore,

it corresponds to a pessimistic bound. The second inequal-

ity is trivial and the subsequent equality follows from [29]

by parameterizing γ̄ as γ̄ =
√

τσ 2
n , where τ ∈ R+ (typi-

cally τ = 5) and bymodeling the error e(k) as a zero-mean

Gaussian random variable with variance σ 2
n .

From (16), one can observe that the probability of

obtaining ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 is small. For instance,

for 2 ≤ τ ≤ 9 we have 0.0027 ≤ erfc
(√

τ
2

)

≤ 0.1579, and

for the usual choice τ = 5, we have erfc
(√

τ
2

)

= 0.0253.

The results in this subsection show that ‖w̃(k + 1)‖2 ≤
‖w̃(k)‖2 for most iterations of the SM-NLMS algorithm,

meaning that the SM-NLMS algorithm uses the input data

efficiently. Indeed, having ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 means

that the input data was used to obtain an estimatew(k+1)

which is further away from the quantity we aim to estimate

wo, which is a waste of computational resources (it would

be better not to update at all). Here, we showed that this

rarely happens for the SM-NLMS algorithm, a property

not shared by the classical algorithms, as it will be verified

experimentally in Section 5.

3.4 Convergence of {‖w̃(k)‖2}with known noise bound

In this subsection, we demonstrate that if the noise bound

is known, then it is possible to set the threshold parameter

γ̄ of the SM-NLMS algorithm so that {‖w̃(k)‖2} is amono-

tonic decreasing sequence. Theorem 2 and Corollary 3

address this issue.

Theorem 2 (Strong Local Robustness of SM-NLMS)

Assume the noise is bounded by a known constant B ∈ R+,
i.e., |n(k)| ≤ B,∀k. If one chooses γ̄ ≥ 2B, then

{

‖w̃(k)‖2
}

is a monotonic decreasing sequence, i.e., ‖w̃(k + 1)‖2 ≤
‖w̃(k)‖2, ∀k.

Proof If f (e(k), γ̄ ) = 1, then |e(k)| = |ẽ(k) + n(k)| > γ̄ ,

which means that: (i) ẽ(k) > γ̄ − n(k) for the positive val-

ues of ẽ(k) or (ii) ẽ(k) < −γ̄ − n(k) for the negative values

of ẽ(k). Recalling that n(k) ∈[−B,B] and γ̄ ∈[ 2B,∞), now

we can find the bound for ẽ(k) by finding the minimum of

(i) and the maximum of (ii) as follows:

(i) ẽ(k) > γ̄ − n(k) ⇒ ẽmin > γ̄ − B ≥ B;

(ii) ẽ(k) < −γ̄ − n(k) ⇒ ẽmax < −γ̄ + B ≤ −B.

Results (i) and (ii) above state that if γ̄ ≥ 2B, then |ẽ(k)| >

B, which means that |ẽ(k)| > |n(k)|, ∀k. Consequently, by
using Corollary 2 it follows that ‖w̃(k+1)‖2 < ‖w̃(k)‖2, ∀k
in which f (e(k), γ̄ ) = 1. In addition, if f (e(k), γ̄ ) = 0 we

have ‖w̃(k + 1)‖2 = ‖w̃(k)‖2. Therefore, we can conclude

that γ̄ ≥ 2B ⇒ ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2, ∀k.

Corollary 3 (Strong Global Robustness of SM-NLMS)

Consider the SM-NLMS algorithm running from iteration

0 (initialization) to a given iteration K. If γ̄ ≥ 2B, then

‖w̃(K)‖2 ≤ ‖w̃(0)‖2, in which the equality holds only when
no update is performed along all the iterations.

The proof of Corollary 3 is omitted because it is a

straightforward consequence of Theorem 2.

3.5 Time-varying γ̄ (k)

After reading subsections 3.3 and 3.4, one might be

tempted to set γ̄ as a high value since it reduces the num-

ber of updates, thus saving computational resources and

also leading to a well-behaved sequence
{

‖w̃(k)‖2
}

that

has high probability of being monotonously decreasing.

However, a high value of γ̄ leads to slow convergence,

because the updates during the learning stage (transient

period) are less frequent and the step-size μ(k) is reduced

as well. Hence, γ̄ represents a compromise between con-

vergence speed and efficiency and therefore should be

chosen carefully according to the specific characteristics

of the application.

An alternative approach is to allow a time-varying error

bound γ̄ (k) generally defined as γ̄ (k) �
√

τ(k)σ 2
n , where

τ(k) �

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Low value (e.g., τ(k) ∈[ 1, 5])
if k ∈ transient period,

High value (e.g., τ(k) ∈[ 5, 9])
if k ∈ steady-state.

(17)
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By using such a γ̄ (k), one obtains the best features of

the high and low values of γ̄ discussed in the first para-

graph of this subsection. In addition, if the noise bound

B is known, then one should set γ̄ (k) ≥ 2B for all k dur-

ing the steady-state, as explained in subsection 3.4. It is

worth mentioning that (17) provides a general expression

for τ(k) that allows it to vary smoothly along the itera-

tions even within a single period (i.e., transient period or

steady-state).

In order to apply the γ̄ (k) defined above, the algorithm

should be able to monitor the environment to determine

when there is a transition between transient and steady-

state periods. An intuitive way to do this is to monitor

the values of |e(k)|. In this case, one should form a win-

dow with the E ∈ N most recent values of the error,

compute the average of these |e(k)| within the window,

and compare it against a threshold parameter to make

the decision. An even more intuitive and efficient way

to monitor the iterations relies on how often the algo-

rithm is updating. In this case, one should form a window

of length E containing Boolean variables (flags, i.e., 1-bit

information) indicating the iterations in which an update

was performed considering the E most recent iterations.

Clearly, if many updates were performed within the win-

dow, then the algorithm must be in the transient period;

otherwise, the algorithm is likely to be in steady-state.

4 Robustness of the SM-AP algorithm
In this section, we address the robustness of the set-

membership affine projection (SM-AP) algorithm. First,

we introduce the SM-AP algorithm in subsection 4.1 and

then we study its robustness properties in subsection 4.2.

In subsection 4.3, we demonstrate that the SM-AP algo-

rithm does not diverge.

4.1 The SM-AP algorithm

It is widely known that data-reusing algorithms can

increase convergence speed significantly for correlated-

input signals [2, 30, 31]. For this purpose, let us define the

input matrix X(k), the error vector e(k), the desired vec-

tor d(k), the additive noise vector n(k), and the constraint

vector (CV) γ (k) as follows:

X(k) =[ x(k) x(k − 1) · · · x(k − L)]∈ R
(N+1)×(L+1),

e(k) =[ e(k) ǫ(k − 1) ... ǫ(k − L)]T ∈ R
L+1,

d(k) =[ d(k) d(k − 1) · · · d(k − L)]T ∈ R
L+1,

n(k) =[ n(k) n(k − 1) ... n(k − L)]T ∈ R
L+1,

γ (k) =[ γ0(k) γ1(k) · · · γL(k)]
T ∈ R

L+1,

(18)

where N is the order of the adaptive filter and L is the

data-reusing factor, i.e., L previous data are used together

with the data from the current iteration k. The error sig-

nal is given by e(k) � d(k) − XT (k)w(k), and the entries

of the constraint vector should satisfy |γi(k)| ≤ γ̄ , for

i = 0, . . . , L, where γ̄ ∈ R+ is the upper bound for the

magnitude of the error signal e(k).

The SM-AP algorithm is described by the following

recursion [9]:

w(k + 1) =
{

w(k) + X(k)A(k)(e(k) − γ (k)) if |e(k)| > γ̄ ,

w(k) otherwise,
(19)

where we assume that A(k) �
(

XT (k)X(k)
)−1 ∈ R

L+1×L+1

exists, i.e., XT (k)X(k) is a full-rank matrix. Otherwise, we

could add a regularization parameter as explained in [2].

4.2 Robustness of the SM-AP algorithm

Suppose that in a system identification problem the

unknown system is denoted bywo ∈ R
N+1 and the desired

(reference) vector is given by

d(k) � XT (k)wo + n(k). (20)

By defining the coefficient mismatch w̃(k) � wo −w(k),

the error vector can be written as

e(k) = XT (k)wo + n(k) − XT (k)w(k)

= XT (k)w̃(k)
︸ ︷︷ ︸

�ẽ(k)

+n(k) , (21)

where ẽ(k) denotes the noiseless error vector (i.e., the

error due to a nonzero w̃(k)). By defining the indicator

function f : R × R+ → {0, 1} as in (8) and using it in (19),

the update rule of the SM-AP algorithm can be written

as follows:

w(k + 1) =w(k)

+ X(k)A(k)(e(k) − γ (k))f (e(k), γ̄ ). (22)

After subtracting wo from both sides of (22), we obtain

w̃(k + 1) =w̃(k)

− X(k)A(k)(e(k) − γ (k))f (e(k), γ̄ ). (23)

Notice thatA(k) is a symmetric positive definite matrix.

To simplify our notation, we will omit the index k and the

arguments of function f that appear on the right-hand side

(RHS) of the previous equation, then by decomposing e(k)

as in (21) we obtain

w̃(k + 1) = w̃ − XAẽf − XAnf + XA γ f , (24)

from which Theorem 3 can be derived.

Theorem 3 (Local Robustness of SM-AP) For the SM-

AP algorithm, at every iteration we have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2, if f (e(k), γ̄ ) = 0 (25)
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otherwise
⎧

⎪
⎪
⎨

⎪
⎪
⎩

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
< 1, if γ TA γ < 2 γ TAn

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
= 1, if γ TA γ = 2 γ TAn

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
> 1, if γ TA γ > 2 γ TAn

, (26)

where the iteration index k has been dropped for the sake

of clarity, and we assume that ‖w̃(k)‖2 + nTAn �= 0 just

to allow us to write the theorem in a compact form.

Proof Proof is left to Appendix A.

The combination of the first two inequalities in (26),

which corresponds to the case γ TA γ ≤ 2 γ TAn,

has an interesting interpretation. It describes that for any

constraint vector γ satisfying this condition we have

‖w̃(k + 1)‖2 + ẽTAẽ ≤ ‖w̃(k)‖2 + nTAn, (27)

no matter what the noise vector n(k) is. In this way, we

can derive the global robustness property of the SM-AP

algorithm.

Corollary 4 (Global Robustness of SM-AP) Suppose

that the SM-AP algorithm running from 0 (initialization)

to a given iteration K employs a constraint vector γ sat-

isfying γ TA γ ≤ 2 γ TAn at every iteration in which an

update occurs. Then, it always holds that

‖w̃(K)‖2 +
∑

k∈Kup

ẽTAẽ

‖w̃(0)‖2 +
∑

k∈Kup

nTAn
≤ 1, (28)

whereKup �= ∅ is the set comprised of the iteration indexes

k in which w(k) is indeed updated and the equality holds

when γ TA γ = 2 γ TAn for every k ∈ Kup. If Kup =
∅, then ‖w̃(K)‖2 = ‖w̃(0)‖2, a case that has no practical

interest since no update is performed.

Proof Proof is left to Appendix B.

Observe that, unlike the SM-NLMS algorithm,

the SM-AP algorithm requires the condition

γ TA γ ≤ 2 γ TAn to be satisfied in order to guarantee

l2-stability from its uncertainties {w̃(0), {n(k)}0≤k≤K } to

its errors {w̃(K), {ẽ(k)}0≤k≤K }. The next question is: are

there constraint vectors γ satisfying such a condition?

This is a very interesting point because the LHS of the

condition is always positive, whereas the RHS is not.

Corollary 5 answers this question and shows an example

of such a constraint vector.

Corollary 5 Suppose the CV is chosen as γ (k) = cn(k)

in the SM-AP algorithm, where n(k) is the noise vector

defined in (20). If 0 ≤ c ≤ 2, then the condition γ TAγ ≤

2γ TAn always holds, implying that the SM-AP algorithm

is globally robust by Corollary 4.

Proof Substituting γ (k) = cn(k) in γ TAγ ≤ 2γ TAn

leads to the following condition (c2−2c)nT (k)A(k)n(k) ≤
0, which is satisfied for c2−2c ≤ 0 ⇒ 0 ≤ c ≤ 2 sinceA(k)

is positive definite. Hence, due to Corollary 4 the proposed

γ (k) leads to a globally robust SM-AP algorithm.

It is worth mentioning that the constraint vector γ (k) in

Corollary 5 is not practical because n(k) is not observable.

Therefore, Corollary 5 is actually related to the existence

of γ (k) satisfying γ TAγ < 2γ TAn.

Unlike the SM-NLMS algorithm, the l2-stability of the

SM-AP algorithm is not guaranteed. Indeed, as demon-

strated in Theorem 3 and Corollary 4, a judicious choice

of the CV is required for the SM-AP algorithm to be

l2-stable. It is worth mentioning that practical choices of

γ (k) satisfying the robustness condition γ TAγ ≤ 2γ TAn

for every iteration k are not known yet! Even widely used

CVs, like the simple-choice CV [32], sometimes violate

this condition as will be shown in Section 5. However,

this does not mean that the SM-AP algorithm diverges. In

fact, it does not diverge regardless the choice of γ (k), as

demonstrated in the next subsection.

4.3 The SM-AP algorithm does not diverge

Whenthe SM-AP algorithmupdates (i.e., when |e(k)| > γ̄ ),

it generates w(k + 1) as the solution to the following

optimization problem [2, 9]:

minimize ‖w(k + 1) − w(k)‖2

subject tod(k) − XT (k)w(k + 1) = γ (k). (29)

The constraint essentially states that the a posteriori

errors ǫ(k − l) � d(k − l) − xT (k − l)w(k + 1) are equal

to their respective γl(k), which in turn are bounded by γ̄ ,

as explained in subsection 4.1. This leads to the following

derivation:

|ǫ(k − l)| = |d(k − l) − xT (k − l)w(k + 1)| ≤ γ̄ ,

|xT (k − l)w̃(k + 1) + n(k − l)| ≤ γ̄ , (30)

which should be valid for all iterations and suitable values

of the involved variables. Therefore, we have

−γ̄ − n(k − l) ≤ xT (k − l)w̃(k + 1)

≤ γ̄ − n(k − l). (31)

Since the noise sequence is bounded and γ̄ < ∞,

we have

−∞ <

N
∑

i=0

xi(k − l)w̃i(k + 1) < ∞, (32)

where xi(k − l), w̃i(k + 1) ∈ R denote the ith entry of vec-

tors x(k − l), w̃(k + 1) ∈ R
N+1, respectively. As a result,
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|w̃i(k + 1)| is also bounded implying ‖w̃(k + 1)‖2 < ∞,

which means that the SM-AP algorithm does not diverge

even when its CV is not properly chosen. In section 5 we

verify this fact experimentally by using a general CV, i.e.,

a CV whose entries are randomly chosen but satisfying

|γi(k)| ≤ γ̄ . Such general CV leads to poor performance,

in comparison to the SM-AP algorithm using adequate

CVs, but the algorithm does not diverge.

The same reasoning could be applied to demonstrate

that the SM-NLMS algorithm does not diverge as well.

However, from Corollary 1, it is straightforward to verify

that ‖w̃(K)‖2 < ∞ for every K, as the denominator in (14)

is finite.

5 Simulations
In this section, we provide simulation results for the SM-

NLMS and SM-AP algorithms in order to verify their

robustness properties addressed in the previous sections.

These results are obtained by applying the aforemen-

tioned algorithms to a system identification problem. The

unknown systemwo is comprised of 10 coefficients drawn

from a standard Gaussian distribution. The noise n(k) is a

zero-mean white Gaussian noise with variance σ 2
n = 0.01

yielding a signal-to-noise ratio (SNR) equal to 20 dB. The

regularization factor and the initialization for the adap-

tive filtering coefficient vector are δ = 10−12 and w(0) =
[ 0 · · · 0]T ∈ R

10, respectively. The error bound parame-

ter is usually set as γ̄ =
√

5σ 2
n = 0.2236, unless otherwise

stated.

5.1 Confirming the results for the SM-NLMS algorithm

Here, the input signal x(k) is a zero-mean white Gaussian

noise with variance equal to 1. Figure 1 aims at verify-

ing Theorem 1. Thus, for the iterations k with coefficient

update, let us denote the left-hand side (LHS) and the
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Fig. 1 Values of g1(k) and g2(k) over the iterations for the SM-NLMS

algorithm corroborating Theorem 1

right-hand side (RHS) of (13) as g1(k) and g2(k), respec-

tively. In addition, to simultaneously account for (12), we

define g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2 for

the iterations without coefficient update. Figure 1 depicts

g1(k) and g2(k) considering the system identification sce-

nario described in the beginning of Section 5. In this

figure, we can observe that g1(k) ≤ g2(k) for all k. Indeed,

we verified that g1(k) = g2(k) (i.e., curves are overlaid)

only in the iterations without update, i.e., w(k + 1) =
w(k). In the remaining iterations, we have g1(k) < g2(k),

corroborating Theorem 1.

Figure 2 depicts the sequence
{

‖w̃(k)‖2
}

for the SM-

NLMS algorithm and its classical counterpart, the NLMS

algorithm. For the SM-NLMS algorithm, we consider

three cases: fixed γ̄ with unknown noise bound (blue solid

line), fixed γ̄ with known noise bound B = 0.11 (cyan

solid line), and time-varying γ̄ (k), defined as
√

5σ 2
n dur-

ing the transient period and
√

9σ 2
n during the steady-state,

with unknown noise bound (green solid line). For the

results using the time-varying γ̄ (k), the window length is

E = 20 and when the number of updates in the window is

less than 4, we assume the algorithm is in the steady-state

period. For the NLMS algorithm, two different step-sizes

are used: μ = 0.9, which leads to fast convergence but

high misadjustment, and μ = 0.05, which leads to slow

convergence but low misadjustment.

In Fig. 2, the blue curve confirms the discussion in Sub-

section 3.3. Indeed, we can observe that the sequence
{

‖w̃(k)‖2
}

represented by this blue curve increases only

30 times along the 2500 iterations, meaning that the SM-

NLMS algorithm did not improve its estimate w(k + 1)

only in 30 iterations. Thus, in this experiment we have

P
[

‖w̃(k + 1)‖2 > ‖w̃(k)‖2
]

= 0.012, whose value is

lower than its corresponding upper bound given by

erfc(
√
2.5) = 0.0253, as explained in Subsection 3.3. Also,

Fig. 2 ‖w̃(k)‖2 � ‖wo − w(k)‖2 for the NLMS and the SM-NLMS

algorithms
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we can observe that the event ‖w̃(k + 1)‖2 > ‖w̃(k)‖2
did not occur in the early iterations because in these

iterations ẽ2(k) is usually large due to a significant mis-

match between w(k) and wo, i.e., the condition specified

in Corollary 2 is frequently satisfied.

Also in Fig. 2, the cyan curve shows that when the noise

bound is known we can obtain a monotonic decreasing

sequence
{

‖w̃(k)‖2
}

by selecting γ̄ ≥ 2B, corroborat-

ing Theorem 2 and Corollary 3. The sequence
{

‖w̃(k)‖2
}

represented by the green curve in Fig. 2 increases only

3 times, thus confirming the advantage of using a time-

varying γ̄ (k) when the noise bound is unknown, as

explained in Subsection 3.5. As compared to the SM-

NLMS algorithm, the behavior of the sequence
{

‖w̃(k)‖2
}

for the NLMS algorithm is very irregular. Indeed, for

the NLMS algorithm there are many iterations in which

‖w̃(k + 1)‖2 > ‖w̃(k)‖2, even when using a small step-

sizeμ. Hence, the NLMS algorithm does not use the input

data as efficiently as the SM-NLMS algorithm does, given

that the NLMS performs many “useless updates”.

In conclusion, an interesting advantage of the SM-

NLMS algorithm over the NLMS algorithm is that the

former can achieve fast convergence and has a well-

behaved sequence
{

‖w̃(k)‖2
}

(which rarely increases) at

the same time. In addition, the SM-NLMS algorithm also

saves computational resources by not updating the filter

coefficients at every iteration. In Fig. 2, the update rates

of the blue, cyan, and green curves are 4.6, 1.5, and 1.9%,

respectively. They confirm that the computational cost of

the SM-NLMS algorithm is significantly lower than that

of the NLMS algorithm2.

5.2 Confirming the results for the SM-AP algorithm

For the case of the SM-AP algorithm, the input is a first-

order autoregressive signal generated as x(k) = 0.95x(k −
1) + n(k − 1). We test the SM-AP algorithm employing

L = 2 (i.e., reuse of two previous input data) and three

different constraint vectors (CVs) γ (k): a general CV, the

simple choice CV, and the noise vector CV. The general

CV γ (k), in which the entries are set as γl(k) = γ̄ for

0 ≤ l ≤ L, illustrates a case where the CV is not properly

chosen [5, 32]. The simple choice CV [5, 32] is defined as

γ0(k) = γ̄
e(k)
|e(k)| and γl(k) = ǫ(k − l) for 1 ≤ l ≤ L. The

noise vector CV is given by γ (k) = n(k).

The results depicted in Figs. 3, 4, 5, and 6 aim at ver-

ifying Theorem 3 and Corollary 5. We define g1(k) and

g2(k) as the numerator and the denominator of (26) in

Theorem 3, respectively, when an update occurs; other-

wise, we define g1(k) = ‖w̃(k+1)‖2 and g2(k) = ‖w̃(k)‖2.
The results depicted in Fig. 3 illustrate that, for the

general CV, there are many iterations in which g1(k) >

g2(k) (about 293 out of 1000 iterations). This is an

expected behavior since the general CV does not take

into account (directly or indirectly) the value of n(k) and,
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Fig. 3 Values of g1(k) and g2(k) over the iterations for the SM-AP

algorithm with γ (k) as the general CV, where g1(k) and g2(k) are the

numerator and denominator of (26) in Theorem 3, when an update

occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2

therefore, it does not consider the robustness condition

γ T (k)A(k)γ (k) ≤ 2γ T (k)A(k)n(k).

For the SM-AP algorithm employing the simple choice

CV, however, there are very few iterations in which

g1(k) > g2(k) (only 19 out of 1000 iterations), as shown in

Fig. 4. This means that even the widely used simple choice

CV does not lead to global robustness.

Figure 5 depicts the results for the SM-AP algorithm

with γ (k) = n(k). In this case, we can observe that

g1(k) ≤ g2(k) for all k, corroborating Corollary 5. In other

words, this CV guarantees the global robustness of the

SM-AP algorithm.
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numerator and denominator of (26) in Theorem 3, when an update

occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2
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Fig. 5 Values of g1(k) and g2(k) over the iterations for the SM-AP

algorithm with γ (k) = n(k), where g1(k) and g2(k) are the

numerator and denominator of (26) in Theorem 3, when an update

occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2

Figure 6 illustrates g1(k) and g2(k) for the SM-AP algo-

rithm with simple choice CV when the noise bound is

known and 10 times smaller than γ̄ . In contrast with

the SM-NLMS algorithm, for the SM-AP algorithm even

when the noise bound is known and much smaller than γ̄ ,

we cannot guarantee that g1(k) ≤ g2(k) for all k. In Fig. 6,

for example, we observe g1(k) > g2(k) in 15 iterations.

Figure 7 depicts the sequence
{

‖w̃(k)‖2
}

for the AP and

the SM-AP algorithms. For the AP algorithm, the step-size

μ is set as 0.9 and 0.05, whereas for the SM-AP algo-

rithm the three previously defined CVs are tested. For

the AP algorithm, we can observe an irregular behavior
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Fig. 6 Values of g1(k) and g2(k) over the iterations for the SM-AP

algorithm with γ (k) as the SC-CV when the noise bound is known,

where g1(k) and g2(k) are the numerator and denominator of (26) in
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Fig. 7 ‖w̃(k)‖2 � ‖w(k) −wo‖2 for the AP and the SM-AP algorithms

of
{

‖w̃(k)‖2
}

, i.e., this sequence increases and decreases

very often. Even when a low value of μ is applied we still

observe many iterations in which ‖w̃(k + 1)‖2 > ‖w̃(k)‖2
(425 out of 1000 iterations). The SM-AP algorithm using

the general CV performs similar to the AP algorithm with

high μ. But when the CV is properly chosen, like the sim-

ple choice CV for example, we observe that the number

of iterations in which ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 is dramati-

cally reduced (26 out of 1000 iterations), whichmeans that

the SM-AP with an adequate CV performs fewer “use-

less updates” than the AP algorithm. Another interesting,

although not practical, choice of CV is γ (k) = n(k), which

leads to a monotonic decreasing sequence
{

‖w̃(k)‖2
}

.

The MSE learning curves for the AP and the SM-AP

algorithms are depicted in Fig. 8. These results were com-

puted by averaging the squared error over 1000 trials for

each curve. Observing the results of the AP algorithm, the

Fig. 8 Learning curves for the AP and SM-AP algorithm using

different constraint vectors
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trade-off between convergence rate and steady-state MSE

is evident. Indeed, excluding the SM-AP with general CV

(which is not an adequate choice for the CV), the AP algo-

rithm could not achieve fast convergence and low MSE

simultaneously, as the SM-AP algorithm did.

In addition, observe that γ (k) = n(k) leads to the best

results in terms of convergence rate and steady-stateMSE,

but the performance of the SM-AP with simple choice CV

is quite close. The average number of updates required

by the SM-AP algorithm using the general CV, the simple

choice CV, and the noise CV are 35, 9.7, and 3.6%, respec-

tively, implying that the last two CVs also have lower

computational cost. It is worth noticing that even when

using the general CV, the SM-AP algorithm still converges

although it presents poor performance, as explained in

subsection 4.3.

6 Conclusions
In this paper, we addressed the robustness (in the sense

of l2-stability) of the SM-NLMS and the SM-AP algo-

rithms. In addition to the already known advantages of the

SM-NLMS algorithm over the NLMS algorithm, regard-

ing accuracy and computational cost, in this paper we

demonstrated that: (i) the SM-NLMS algorithm is robust

regardless the choice of its parameters and (ii) the SM-

NLMS algorithm uses the input data very efficiently, i.e.,

it rarely produces a worse estimate w(k + 1) during its

update process. For the case where the noise bound is

known, we explained how to set properly the parame-

ter γ̄ so that the SM-NLMS algorithm never generates a

worse estimate, i.e., the sequence
{

‖w̃(k)‖2
}

(the squared

Euclidean norm of the parameters deviation) becomes

monotonously decreasing. For the case where the noise

bound is unknown, we designed a time-varying parameter

γ̄ (k) that achieves simultaneously fast convergence and

efficient use of the input data.

Unlike the SM-NLMS algorithm, we demonstrated that

there exists a condition to guarantee the l2-stability of

the SM-AP algorithm. This robustness condition depends

on a parameter known as the constraint vector (CV)

γ (k). We proved the existence of vectors γ (k) satisfying

such a condition, but practical choices remain unknown.

In addition, it was shown that the SM-AP with an ade-

quate CV uses the input data more efficiently than the AP

algorithm.

We also demonstrated that both the SM-AP and SM-

NLMS algorithms do not diverge, even when their param-

eters are not properly selected, provided the noise is

bounded. Finally, numerical results that corroborate our

study were presented.

Endnotes
1This is because Corollary 2 provides a sufficient, but

not necessary, condition for ‖w̃(k + 1)‖2 < ‖w̃(k)‖2.

2 In comparison to the NLMS algorithm, whenever the

SM-NLMS algorithm updates it performs two additional

operations: one division and one subtraction due to the

computation of μ(k). However, for most of the itera-

tions the SM-NLMS algorithm requires fewer operations

because it does not update often.

Appendix A: Proof of Theorem 3
For convenience, let us start by rewriting Eq. (24):

w̃(k + 1) = w̃ − XAẽf − XAnf + XAγ f . (33)

By computing the Euclidean norm of this equation and

rearranging the terms, we get

‖w̃(k + 1)‖2

=w̃T w̃ − w̃TXAẽf − w̃TXAnf

+ w̃TXAγ f − ẽTATXT w̃f

+ ẽTATA−1Aẽf 2 + ẽTATA−1Anf 2

− ẽTATA−1Aγ f 2 − nTATXT w̃f

+ nTATA−1Aẽf 2 + nTATA−1Anf 2

− nTATA−1Aγ f 2 + γ TATXT w̃f

− γ TATA−1Aẽf 2 − γ TATA−1Anf 2

+ γ TATA−1Aγ f 2

=‖w̃‖2 − ẽTAẽf − ẽTAnf + ẽTAγ f

− ẽTAẽf + ẽTAẽf 2 + ẽTAnf 2

− ẽTAγ f 2 − nTAẽf + nTAẽf 2

+ nTAnf 2 − nTAγ f 2 + γ TAẽf

− γ TAẽf 2 − γ TAnf 2 + γ TAγ f 2 , (34)

where it was used that A−1 = XT (k)X(k) and ẽ(k) =
XT (k)w̃(k). From the above equation, we observe that

when f = 0 we have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2 (35)

as expected, since f = 0 means that the algorithm does

not update its coefficients. However, when f = 1 the

following equality is achieved from (34):

‖w̃(k + 1)‖2 = ‖w̃‖2 − ẽTAẽ + nTAn

− 2γ TAn + γ TAγ . (36)

After rearranging the terms of the previous equation,

we obtain

‖w̃(k + 1)‖2 + ẽTAẽ =
‖w̃‖2 + nTAn − 2γ TAn + γ TAγ . (37)

Therefore, ‖w̃(k + 1)‖2 + ẽTAẽ < ‖w̃‖2 + nTAn if

γ TAγ < 2γ TAn, ‖w̃(k + 1)‖2 + ẽTAẽ = ‖w̃‖2 +nTAn if
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γ TAγ = 2γ TAn, and ‖w̃(k+1)‖2+ẽTAẽ > ‖w̃‖2+nTAn

if γ TAγ > 2γ TAn.

Assuming ‖w̃‖2 + nTAn �= 0 we can summarize the

discussion above in a compact form as follows:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
< 1, if γ TAγ < 2γ TAn

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
= 1, if γ TAγ = 2γ TAn

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
> 1, if γ TAγ > 2γ TAn

. (38)

Appendix B: Proof of Corollary 4
Denote byK � {0, 1, 2, . . . , K − 1} the set of all iterations.
Let Kup ⊆ K be the subset containing only the iterations

in which an update occurs, whereas Kc
up � K \ Kup is

comprised of the iterations in which the filter coefficients

are not updated.

As a consequence of Theorem 3, when an update occurs

the inequality given in (27) is valid provided γ is chosen

such that γ TAγ ≤ 2γ TAn is respected. In this way, by

summing such inequality for all k ∈ Kup we obtain

∑

k∈Kup

(

‖w̃(k + 1)‖2 + ẽTAẽ
)

≤
∑

k∈Kup

(

‖w̃(k)‖2 + nTAn
)

. (39)

Observe that γ , ẽ, n, and A all depend on the indepen-

dent variable k, which we have omitted for the sake of

simplification. In addition, for the iterations without coef-

ficient update, we have (25), which can be summed for all

k ∈ Kc
up leading to

∑

k∈Kc
up

‖w̃(k + 1)‖2 =
∑

k∈Kc
up

‖w̃(k)‖2. (40)

Summing (39) and (40) yields

∑

k∈K
‖w̃(k + 1)‖2 +

∑

k∈Kup

ẽTAẽ

≤
∑

k∈K
‖w̃(k)‖2 +

∑

k∈Kup

nTAn. (41)

Then, we can cancel several of the terms ‖w̃(k)‖2 from
both sides of the above inequality simplifying it as follows

‖w̃(K)‖2+
∑

k∈Kup

ẽTAẽ

≤ ‖w̃(0)‖2 +
∑

k∈Kup

nTAn. (42)

Assuming a nonzero denominator, we can write the

previous inequality in a compact form

‖w̃(K)‖2 +
∑

k∈Kup

ẽTAẽ

‖w̃(0)‖2 +
∑

k∈Kup

nTAn
≤ 1. (43)

This relation holds for all K, provided γ TAγ ≤ 2γ TAn

is satisfied for every iteration in which an update occurs,

i.e., for every k ∈ Kup. The only assumption used in the

derivation is that Kup �= ∅. Otherwise, we would have

‖w̃(K)‖2 = ‖w̃(0)‖2, which would occur only if w(k) is

never updated, which is not of practical interest.
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