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On the Role of Age of Information in the Internet

of Things
Mohamed A. Abd-Elmagid, Nikolaos Pappas, and Harpreet S. Dhillon

Abstract—In this article, we provide an accessible introduction
to the emerging idea of Age of Information (AoI) that quantifies
freshness of information and explore its possible role in the
efficient design of freshness-aware Internet of Things (IoT). We
start by summarizing the concept of AoI and its variants with
emphasis on the differences between AoI and other well-known
performance metrics in the literature, such as throughput and
delay. Building on this, we explore freshness-aware IoT design
for a network in which IoT devices sense potentially different
physical processes and are supposed to frequently update the
status of these processes at a destination node (such as a cellular
base station). Inspired by the recent interest, we also assume that
these IoT devices are powered by wireless energy transfer by
the destination node. For this setting, we investigate the optimal
sampling policy that jointly optimizes wireless energy transfer
and scheduling of update packet transmissions from IoT devices
with the goal of minimizing long-term weighted sum-AoI. Using
this, we characterize the achievable AoI region. We also compare
this AoI-optimal policy with the one that maximizes average
throughput (throughput-optimal policy), and demonstrate the
impact of system state on their structures. Several promising
directions for future research are also presented.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging digital fabric

that will tightly integrate our physical world into computer

networks by connecting billions of things, such as small

sensors, wearables, vehicles, and actuators, to the Internet.

This global revolution is already transforming our cities and

villages into smarter and more connected communities. An IoT

network consists of three main components: i) IoT devices, ii)

communication network, and iii) destination nodes. The IoT

devices are usually deployed to observe some physical char-

acteristic of the environment for a certain geographical area,

e.g., temperature, pollution levels, or humidity. The sensed

data measurements are transmitted through the communication

network to the destination nodes where they are processed

to extract meaningful information, e.g., controllable output

decisions or remote source reconstruction that can assist in

the prediction of its information status evolution. Clearly,

the accuracy of such output decisions, which determines the

performance of IoT-enabled applications, is directly related to

the freshness of the aggregated data measurements of the IoT

devices at the destination nodes [1]. Particularly, the duration

of time over which the information status at a destination node
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is still considered fresh is dependent on the application for

which IoT devices are being used. For instance, this duration

can be relatively large if the IoT devices are deployed to sense

temperature or humidity, whereas it may be very small for

human safety applications.

Before designing an IoT network that preserves freshness

of information at the destination nodes, we need to rigorously

quantify information freshness. In this article, we use the

concept of Age of Information (AoI) for this purpose [2]–

[7]. AoI was first proposed in [2] as a new metric that

captures how frequently the information status at a destination

node (also referred to as a monitor) needs to be updated

through status update transmissions from a source node. In

the context of IoT networks, the source node may refer to a

single IoT device or an aggregator located near a group of IoT

devices, which transmits measurements of sensed information

to the destination node [8]. The energy-constrained nature of

the IoT devices along with network congestion increase the

likelihood of packet loss or out of order reception, which

in turn reduces the value of update packets received at the

destination node and results in wastage of resources due to

obsolete transmissions. It becomes even worse for far-off IoT

devices whose direct links to the destination nodes may be

very poor [9]. This necessitates the need for characterizing

AoI for these networks.

Due to its ubiquity and cost efficient implementation, radio-

frequency (RF) energy harvesting has quickly emerged as an

appealing solution for powering IoT devices, the majority of

which are low power devices, such as sensors [10]. After

introducing the idea of AoI, our objective is to investigate

the role of AoI in designing freshness-aware RF-powered IoT

networks. Towards this objective, we first propose a generic

system setup for an IoT network, in which RF-powered IoT

devices are sensing different physical processes and need to

transmit their sensed data to a destination node. We then

investigate the optimal sampling policy for IoT devices that

minimizes the long-term weighted sum-AoI. Particularly, we

jointly optimize wireless energy transfer by the destination

node and scheduling of update packet transmissions from

IoT devices. Our results demonstrate that the AoI-optimal

and throughput-optimal policies have completely different

structures. We also characterize the achievable AoI region

and demonstrate a fundamental trade-off between achieving

fairness among different processes and achieving the minimum

sum-AoI. To the best of our knowledge, this article makes the

first attempt to efficiently design freshness-aware IoT networks

while incorporating RF-energy harvesting.
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II. AGE-OF-INFORMATION AND ITS VARIATIONS

Real-time status updates are indispensable for many key

applications, such as predicting and controlling forest fires,

safety of an intelligent transportation system, and efficient

energy consumption in future smart homes. A common setup

for status update systems is the existence of a source node that

generates update packets, and then transmits them through a

communication system to a destination node. First introduced

in [2], AoI is a new metric that quantifies freshness of

information at a monitor about some remote stochastic process

observed by the source node. More formally, AoI is defined

as the time elapsed since the last successfully received update

packet at the monitor was generated at the source. In order

to introduce the idea of AoI concretely, we use Fig. 1, which

depicts a realization of AoI, denoted by a(t), at the monitor as

a function of time when the source transmits update packets

using a First-Come-First-Served (FCFS) discipline and only

one packet transmission may occur at any given time. Here,

tn and t′n denote the generation and reception time instants

of packet n at the source and monitor, respectively. Therefore,

we observe that: i) Xn is the interarrival time between packets

n  1 and n, i.e., the time elapsed between the generation of

packets n  1 and n, ii) Tn is the system time of packet n, i.e.,

the time elapsed from the generation of packet n at the source

until it is being received at the monitor, and iii) AoI is reset

to Tn at t′n since packet n becomes the latest received update

packet at t′n, and hence the AoI value at that time instant is

the time passed since the generation of packet n, which is Tn.

Since it is not straightforward to characterize the distribution

of AoI, the focus is mostly on characterizing average AoI

and its variants, which have enabled many useful analytical

studies. One can use a simple geometric construction for this

calculation by assuming that the AoI process is ergodic for

which the time average of any of its sample paths is the same

as its ensemble average. Therefore, the expression for average

AoI can be derived by computing the time average of any

sample path, e.g., a(t) depicted in Fig. 1, which comes out to

be a function of the interarrival time and the system time of

different update packets [2].

For analytical tractability, it is sometimes useful to work

with a lower bound on the average AoI obtained by ignoring

the waiting time between the generation of a packet and its

transmission. This is done by assuming that the source node

has a generate-at-will ability and adopts a just-in-time (also

referred to as zero-time) update policy [2]. Under the generate-

at-will policy, the source node is capable of both observing

the state of the communication channel (idle or busy) and

generating update packets at any time of its own choice.

Similarly, the just-in-time update policy means that a new

update packet is instantaneously generated by the source node

and starts its service time right after the current update packet

in service is delivered to the destination node.

In the above formulation, AoI increases linearly between

any two consecutive update packet receptions. In other words,

AoI assumes the cost of information staleness to be directly

proportional to the time elapsed since the last update packet

received at the monitor, where the cost is defined in time

Fig. 1. AoI evolution vs. time for n update packets.

units. Expanding the notion of AoI, a more generic cost of

information staleness metric, namely, age penalty function

(also referred to as Cost of Update Delay (CoUD) in [11]), has

been recently proposed [5]. The CoUD can take any form of

a payment function, which is non-negative and monotonically

increasing, to quantify the cost of information absence at the

monitor. The type of cost function needs to be properly chosen

based on the statistics of the observed stochastic process at the

source. For a generate-at-will model, the optimal update policy

was investigated in [5], while considering a general form for

the age penalty function. Surprisingly, it was shown that the

just-in-time policy is only optimal when the service times of

update packets are constant whereas it is not optimal for some

commonly used service time distributions in queueing theory,

such as exponential, geometric, Erlang, and hyperexponential.

One way to keep the information status fresh at the monitor

is to minimize the average AoI. However, this may not be

mathematically tractable in many situations. This has inspired

some simpler measures for the information age. Next, we

present two such tractable information staleness metrics:

• Peak Age of Information (PAoI). The PAoI characterizes

the maximum value of AoI immediately before an update

packet is received at the monitor [3]. For instance, as

observed in Fig. 1, the value of PAoI associated with

update n is An. Clearly, PAoI provides information

about the worst case values of AoI, and its probability

distribution can be derived relatively easily (compared to

AoI) owing to its simpler structure. Therefore, the PAoI is

particularly applicable when the prime goal is to maintain

the worst value of AoI below a system design threshold

with a certain probability.

• Value of Information of Update (VoIU). The VoIU quan-

tifies the importance of the update packet received at

the monitor [11]. More specifically, when the monitor

receives a new update packet, its uncertainty about the

current value of the observed stochastic process at the

source is reduced. The importance of this newly re-

ceived update is defined by how much it improves the

monitor’s prediction accuracy about the current status of

the observed stochastic process. For a concrete example,

consider Fig. 1, where the information age reduction due

to the reception of update packet n is Xn, and the VoIU

quantifies how large this reduction is with respect to the

PAoI associated with packet n, i.e., the VoIU associated
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Comparison with traditional metrics. Two of the most pop-

ular design goals in communication systems are maximizing

the system throughput and minimizing the end-to-end delay.

The takeaway message of [2] is that, for a fixed service rate

of update packets, the optimal rate at which the source should

generate its update packets in order to minimize the average

AoI is different from the optimal rates that either maximize

throughput or minimize delay. Intuitively, maximizing the

system throughput is equivalent to transmitting update packets

as fast as possible. As a result, the update packets become

backlogged in the communication system, and the VoIU asso-

ciated with each update packet received at the monitor will be

significantly reduced. On the other hand, minimizing the delay

or equivalently minimizing the system time of each update

packet is achieved by reducing the rate of update generations

at the source. In this case, the monitor will unnecessarily have

outdated status information due to the lack of update packet

receptions. Unlike these well-known performance metrics, the

concept of AoI allows to include contextual aspects of system

design. More specifically, the transmitted packets do not have

the same importance or equivalently the VoIU associated with

different update packet receptions are not the same. We revisit

this point in the next section in the context of freshness-aware

IoT. In particular, we demonstrate the differences between the

structures of the AoI-optimal and throughput-optimal polices

as a function of system state variables.

III. AGE-OF-INFORMATION FOR IOT: NETWORK DESIGN

AND OPERATION

A. Network Model

We consider an IoT network composed of a destination

node (for instance, a cellular base station) and K IoT devices,

as shown in Fig. 2. As already discussed in Section I, each

“IoT device” may refer to a single device (as considered in

the sequel) or an aggregator located near a group of IoT

devices. Each IoT device is deployed to observe some physical

process (e.g., temperature, humidity, etc.) and to transmit

update packets to the destination so that the information status

of its observed process at the destination remains fresh. Note

that this is a generalization of the single source-destination pair

model considered in most prior works on AoI in the literature

[2], [3], [5], [7], [11].

To enable a self-perpetuating operation of the IoT network,

each IoT device is equipped with an RF energy harvesting

circuitry as its only source of energy. Particularly, each device

harvests energy from the RF signals transmitted by the des-

tination in the downlink, and stores it in a battery with finite

capacity. The stored energy is then used for transmitting update

packets to the destination. Note that the destination node is

assumed to have a stable energy supply. It is assumed that

all IoT devices operate over the same frequency channel and

each device is equipped with a single antenna. Therefore, at a

given time instant, each IoT device can either harvest wireless

energy in the downlink or transmit data in the uplink. Time is

assumed to be slotted with the duration of each slot being T

seconds. It is assumed that both downlink and uplink channels

between the destination node and IoT devices are affected by

quasi-static flat fading.

B. State and Action Spaces

At the beginning of a time slot, the state of each IoT device

is characterized by its battery level, its uplink and downlink

channel power gains and the AoI value for its observed process

at the destination node. The system state is then defined as the

combination of all different states of IoT devices. In addition,

the AoI value for each process at the destination node is

assumed to be upper bounded by a finite value which can

be chosen to be arbitrarily large [12]. This value signifies that

the information is too stale to be of any use at the destination

node. Based on the system state, one of two potential actions

is decided:

• Information transmission. When a time slot is dedicated

for information transmission, one of the IoT devices

transmits an update packet about its observed process

to the destination node. We consider a generate-at-will

policy, where whenever an IoT device is allocated a time

slot for data transmission, it generates an update packet

at the beginning of that time slot. Clearly, the choice

of a given IoT device for information transmission is

constrained by the availability of energy required for an

update packet transmission at its battery, and the amount

of this required energy mainly depends on the quality of

its uplink channel and the packet size.

• Wireless energy transfer. When a time slot is allocated for

wireless energy transfer, the destination node broadcasts

wireless energy in the downlink. The amount of energy

harvested by each IoT device depends on the quality

of its downlink channel and the efficiency of its energy

harvesting circuitry. We assume that the transmit power

by the destination node is sufficiently large such that the

energy harvested at each IoT device due to uplink data

transmissions by other devices is negligible compared to

the energy it harvests from the downlink transmissions.

C. Problem Statement and System Design Insights

Given an importance weight for each process at the des-

tination node, we investigate the optimal strategy, which

establishes the decisions taken at different states of the system,

achieving the minimum weighted sum of average AoI values

for different processes at the destination node. The problem

can be formulated as a Markov Decision Process (MDP) with
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TABLE I
TABLE OF SIMULATION SETUP

Parameter Value

T 1 second

β 2

Bandwidth 1 MHz

Transmit power of the destination node 37 dBm

Noise power  95 dBm

Efficiency of the energy harvesting circuitry 0.5

Antenna gain at the destination node G = 7 dB

Upper bound to the AoI value A1,max = 10
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Fig. 3. Comparison between AoI and throughput for the case of a single IoT
device. Battery capacity is 0.3 mjoules, update packet size is 12 Mbits and
d1 = 40 meters.

finite state and action spaces via discretizing the battery levels

and channel power gains, and hence it could be solved using

the Value Iteration Algorithm (VIA) or the Policy Iteration

Algorithm (PIA).

For the classical single source-destination pair setting stud-

ied in the literature, i.e., considering the case of a single IoT

device in our system setup, we first compare the structures of

the AoI-optimal and throughput-optimal policies in Fig. 3. The

downlink and uplink channel power gains between IoT device

i and the destination node are modeled as 2 × 10 2ψ2

i d
 β
i ,

where ψ2

i ∼ exp(1) denotes the small-scale fading gain and

d
 β
i represents standard power law path-loss with exponent

β. The default values of the system parameters are given in

Table I. The channel power gains and battery are discretized

into 10 levels, where each blue point in Fig. 3 represents a

potential state of the system, and the battery state denotes

the number of energy quanta inside the battery. Since the slot

length is unity, the AoI state represents the number of time

slots passed since the generation of the latest received update

packet at the destination. Note that the polygons inside Fig.

3 represent the optimal solutions of the MDPs modeling the

average AoI minimization problem and the average throughput

maximization problem, respectively. For the combinations of

battery and channel states that lie inside a given polygon, the

optimal decision is to transmit an update packet. Similarly,

for the combinations located outside the polygon, the optimal

decision is to allocate the time slot for wireless energy transfer.

Fig. 4. Illustration of achievable AoI region for K = 2.

For this simulation setup, the set of numbers of energy packets

required for transmitting update packets with the increase

of the channel state is {12, 4, 3, 2, 2, 1, 1, 1, 1, 1}. Here the

number 12 means that the IoT device can not transmit an

update packet in the worst channel state even if its battery is

full of energy since the capacity of battery is 9.

In order to highlight the effect of the AoI state on the

AoI-optimal policy, we compare the throughput-optimal pol-

icy, represented by the solid polygon, with the AoI-optimal

policy in two different regimes: (a) when the AoI value is

1 (represented by the inner dotted polygon), which indicates

that the previous time slot was dedicated for information

transmission, and (b) when the AoI value is 10 (represented

by the outer dotted polygon), i.e., AoI reaches its maximum

possible value, which indicates that the information status

has expired at the destination node. The key message from

the AoI-optimal policy is that it is wise not to transmit an

update packet when the AoI state is low as long as the

battery state value is small (for instance when the battery state

lies between 1 and 5 and the AoI state value is 1). Instead,

allocating the time slot for wireless energy transfer will help

(by increasing the available energy in the battery) to transmit

update packets in future slots when the value of AoI grows. On

the other hand, if the AoI state is high, it is always optimal to

transmit an update packet whenever the IoT device has enough

energy required for information transmission. The structures of

the AoI-optimal and throughput-optimal policies are different,

as can be observed from the solid polygon. Although, for

example, we have the ability of transmitting an update packet

when the battery state value lies in the range 1 → 3 and

the channel state is quite good, we prefer instead to allocate

the time slot for wireless energy transfer and utilize the high

amount of energy harvested in that good channel state for

update packet transmissions in future slots.

Next, we aim at characterizing the achievable AoI region.

The achievable AoI region can be obtained by evaluating

the optimal average AoI values of all processes for different

combinations of their importance weights at the destination

node. More concretely, in Fig. 4, the achievable AoI region

is represented by the shaded region for the case of two IoT

devices. Particularly, for different combinations of importance
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Fig. 5. Achievable AoI region for the case of two IoT devices. We use
d1 = 25 meters, d2 = 40 meters, A1,max = A2,max = 6 and G = 10 dB.

weights, different operating points inside the boundary of

the AoI region could be achieved. Two operating points of

particular interest are as follows.

• Sum-AoI. This operating point is represented by S in Fig.

4 and can be obtained by choosing the same importance

weights for different processes. Note that the devices

that are located closer to the destination node experience

better channels in both downlink (resulting in a higher

harvested energy) and uplink (thus requiring less energy

for uplink transmission) than the far-off devices. Hence,

the associated optimal policy with sum-AoI allocates, on

average, more time slots for update packet transmissions

of closer devices to the destination node, thereby making

it unfair for far-off devices.

• Min-max AoI. This operating point is represented by F

in Fig. 4 and can be obtained by choosing the values

of importance weights for different processes such that

the maximum average AoI among them is minimized.

Equivalently, this problem could also be viewed as min-

imizing the achievable common AoI value for all pro-

cesses. Hence, the associated optimal policy guarantees

fairness between the achievable average AoI values for

all processes.

We now consider the case of two IoT devices in Fig. 5,

which are observing two arbitrary physical processes and are

deployed at different distances from the destination node. Note

that the distance between each IoT device and the destination

node greatly affects the quality of their channel. This, in turn,

has a direct impact on the amounts of energy harvested at

each IoT device and the energy required for an update packet

transmission about each process, which mainly determine the

achievable average AoI values for the two observed processes.

Particularly, Fig. 5 shows the impact of size of update packets

and battery capacities on the achievable AoI region. It is

observed that the achievable AoI region shrinks as the size

of the update packets increases or the battery capacities

decreases. This is due to the fact that in both cases the

allowable number of update packet transmissions by both

devices would decrease. Furthermore, as expected, achieving

fairness comes at the expense of a performance degradation

in terms of the achievable sum-AoI value, and the situation

worsens as the size of update packets increases or the capacity

of batteries decreases. This can be seen by comparing, for each

curve, the minimum sum-AoI value achieved by the sum-AoI

operating point with the sum-AoI value associated with the

min-max operating point. This demonstrates a fundamental

trade-off between achieving fairness among both processes and

achieving the minimum sum-AoI.

IV. OPEN PROBLEMS AND TAKEAWAY MESSAGES

After introducing the concept of AoI and exploring its

application to IoT, we will now discuss several key open

problems in this area. Our hope is that this section will be

useful for the new researchers trying to enter this exciting

new area.

• Characterization of the distribution of AoI. With the

average AoI and its variants being fairly well studied

by now, the next meaningful step is to characterize the

distribution of AoI (which is a random process). In this

direction, a formula for the stationary distribution of

AoI has been recently derived in [13] in terms of the

stationary distributions of the system delay and the Peak

AoI. While this is a useful step forward, the analysis is

for the case when the AoI increases linearly between any

two consecutive time instants of update packet receptions.

Therefore, a promising avenue of future work is to

extend the analysis of [13] to the case where a more

general cost of information staleness is considered (e.g.,

CoUD). Thereafter, it will be useful to study second order

properties of the AoI random process, such as the auto

correlation function.

• Network-level analysis of AoI. Although the average AoI

has been well-studied under queueing-theoretic models

in the literature [2], [3], [7], the proposed approaches

do not lend themselves to the analysis of large-scale IoT

networks. Particularly, such queueing-theoretic analyses

do not account for key system effects such as the potential

coupling between the locations of deployed IoT devices

and their destination nodes, the level of interference

at different destination nodes and the density of IoT

deployment. This necessitates the need for extending the

analysis of AoI to large-scale settings using ideas from

random spatial models and stochastic geometry.

• Low-complexity online schemes. The computational com-

plexity of solving the MDP encountered in this article

using VIA or PIA mainly depends on the number of

discrete levels considered for each state variable, i.e.,

battery, channel gain or AoI. Owing to the generality of

our proposed system setup in which actions are taken

while taking into account different system parameters

as state variables, increasing the number of discrete

levels for state variables greatly reduces the feasibility of

characterizing the optimal policy in practice. This calls

for the need to construct low-complexity schemes suitable
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for large-scale problems using tools from Approximate

dynamic programming [14].

• Non-linear RF energy harvesting models. Although the

conventional linear RF energy harvesting model used

in this article is highly tractable, it may not always be

accurate [15]. This is because of the non-linear nature

of the RF-to-DC power conversion in practical RF en-

ergy harvesting systems, which can lead to significant

losses in the amount of harvested energy, thus degrading

the performance of RF-powered communication systems.

Mathematical treatment of these models in the context of

AoI is a useful avenue for future work.

• Machine learning-based algorithms. In practice, the des-

tination node may not have complete CSI. In such sce-

narios, machine learning techniques could be leveraged

to learn the state of channel power gains from past

experience while dynamically taking decisions. Particu-

larly, reinforcement learning algorithms could be used to

predict the values of unknown parameters and statistically

improve the network performance. Investigation of such

machine-learning driven techniques in the context of AoI

is a fruitful direction of future work.

V. CONCLUSION

This article provided an accessible introduction to the AoI

and its variants. In addition, it also investigated the role of AoI

in designing and operating RF-powered freshness-aware IoT

networks. We considered a system setup in which IoT devices

observe different physical processes and need to transmit

status updates about these processes to a destination node.

IoT devices were assumed to be solely powered by RF energy

transfer by the destination node. We studied the problem

of long-term weighted sum-AoI minimization in which we

jointly optimized wireless energy transfer by the destination

node and scheduling of update packet transmissions from

IoT devices. Our results concretely demonstrated that the

AoI-optimal and throughput-optimal policies have completely

different structures. They also demonstrated a fundamental

trade-off between achieving fairness among different processes

and achieving the minimum sum-AoI.
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