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Abstract 

This report presents a perspective on the role of code comparison activities in 

verification and validation. We formally define the act of code comparison as the 

Code Comparison Principle (CCP) and investigate its application in both verification 

and validation. One of our primary conclusions is that the use of code comparisons 

for validation is improper and dangerous. We also conclude that while code 

comparisons may be argued to provide a beneficial component in code verification 

activities, there are higher quality code verification tasks that should take precedence. 

Finally, we provide a process for application of the CCP that we believe is minimal 

for achieving benefit in verification processes. 
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Section 1  

Introduction 
 

We present a perspective on the use of code-to-code comparisons, called code 

comparisons for short, in verification and validation (V&V) activities in this report. A 

“code” in our present usage is shorthand for the software implementation of a 

computational physics model, such as finite difference or finite element solution of the 

conservation laws of continuum mechanics. We will restrict the scope of our discussion 

to the case of comparison of two distinct and substantively different codes, denoted 

Code1 and Code2. We always assume that Code2 is the benchmark, or reference, code in 

a sense we will make more precise below. Code1 is always the subject of the code 

comparison exercise; it is intended that something be learned about Code1 through some 

kind of comparison with Code2. We recognize, however, this is not always the manner in 

which code comparisons are conducted. For example, in some cases no participating code 

is considered to be a benchmark. All of the conclusions in this report hold even more 

strongly for such a code comparison exercise. The strongest potential value for 

verification and validation relies upon an identified benchmark in the code comparison, 

and that is the underlying assumption that we apply. 

When the  “same physics” and “same algorithms” that are implemented in Code2 

(phrases we often hear) are also implemented in Code1, we still consider these codes to 

be distinct. We thus include the “same physics” and “same algorithms” situation to be in 

the scope of this report. We note two special cases of code comparisons that are excluded 

from our discussion below. In the first case, it is a realistic possibility that “Code1” and 

“Code2” could be different dimensional options of the same specific code (e.g. 1-D vs 2-

D, 2-D vs 3-D). In the second case, “Code1” and “Code2” could represent different 

meshing versions of the same specific code (e.g. hexahedral vs tetrahedral, or Eulerian vs 

Lagrangian). In each of these special cases, we believe that code comparisons, when 

performed carefully, are not only useful, but probably essential. All we will say about 

these cases in this report is that the process for performing code comparisons that we 

define in Section 5 below is clearly applicable to these situations and should, indeed, be 

applied. 

When Code1 and Code2 are distinctly different codes, however, our view of the value of 

code comparisons is very different. It is our belief that in the absence of other, more 

carefully formulated V&V activities, code comparisons are dangerous and have little real 

value. When the reasoning for this viewpoint is explained and understood, we believe that 

it is logical and inevitable that code comparisons will be de-emphasized in formal V&V 

activities. 

Stated even more explicitly, we claim the following: 
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 Code comparisons are not, strictly speaking, verification activities. They should 

not be used to replace one or more verification elements in a properly formulated 

verification plan. 

 Code comparisons are not validation activities in any circumstances. 

If code comparisons are used as part of a particular V&V activity, our recommendation is 

that they should be precisely defined and applied only as verification activities and that 

they should be performed along the lines of the process that we suggest in Section 5 

below. Our general position on the issue of code comparisons is that code comparisons 

would be performed only as part of a larger program of independent verification tasks, 

such as application of software quality engineering (SQE) methodologies, algorithm 

testing procedures, verification test suites, and comparison with analytical solutions (see 

Oberkampf and Trucano, 2002; Oberkampf, Trucano and Hirsch, 2002). The Accelerated 

Strategic Computing Initiative (ASCI) V&V program at Sandia has elaborated concepts 

for appropriate and needed verification activities that support a formal validation process 

(Trucano, Pilch and Oberkampf (2003). For verification, code comparisons represent the 

analog of phenomena discovery experiments for validation. Since we have argued that 

phenomena discovery experiments provide little real value to rigorous validation goals 

and have analyzed this statement in a previous report (Trucano, Pilch and Oberkampf, 

2002), we believe that the same conclusion is true for code comparisons in the 

verification arena. 

We vigorously oppose any attempts to use code comparisons as substitutes for authentic 

validation tasks, as we will explain below.  
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Section 2  

Formality of Code Comparisons 
 

 

Use of comparison of the Code2 benchmark with the subject Code1 in verification 

activities rests upon the following trivial but formal rule: 

 

Code Comparison Principle (CCP) 

 

Code1 Truth Code1 Code2 Code2 Truth− ≤ − + −  

 

Here, by “Code1” and “Code2” we mean any solutions output variables or functions of 

such variables that are compared mathematically and the difference quantified. This 

inequality is derived from the triangle inequality for norms. We emphasize norms 

(“metrics”) in the statement of the CCP because of the weight we have given to the rigor 

of comparison that should be applied in verification and validation in our previous 

writing (Oberkampf and Trucano, 2002; Oberkampf, Trucano, and Hirsch, 2002). We 

could also have used an equivalence relation (Simmons, 1963) instead, without changing 

the meaning of the CCP; and an equivalence relation might capture even better the logic 

underlying the usual application of code comparisons. Here, an example of an appropriate 

equivalence relation is “suitably accurate,” as measured by solutions to a set of test 

problems. “Truth” (see below) is then the correct solution to the problems. Code2 is 

equivalent to “Truth” if its solutions to the test problems are sufficiently close to the 

correct solutions (as defined by a verification metric, for example; Trucano, Pilch, and 

Oberkampf, 2003). Code1 is equivalent to Code2 if its solutions are sufficiently close to 

the solutions of Code2. If this is the case, it then follows that Code1 is equivalent to 

“Truth.” The alternative formalism that results in this case is: 

Code2 Truth and Code1 Code2 implies Code1 Truth∼ ∼ ∼  

We have used the word Truth in the CCP because we wish to concisely emphasize the 

distinction between a decisive benchmark and less appropriate information. It is perfectly 

appropriate to replace “Truth” with the phrase “Benchmark Information” or “Acceptable” 

or any other suitable word that the springs to mind. It is in this way that Code2 epitomizes 

its role as a benchmark. We fully recognize that no such thing as “Truth” exists in these 

matters, and nowhere in this argument is the notion of some kind of absolute truth 
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required. “Truth” simply represents the information captured by Code2 that supports the 

belief that Code2 can be used as a verification benchmark in the application of the CCP. 

The notion of a logical equivalence relation captures this understanding more 

appropriately, but the norm formalism in our direct definition of the CCP more accurately 

captures the specific manner in which the CCP is applied in real code comparison 

activities.  

Specifically in verification of Sandia ASCI codes, the meaning of “Truth” to us is 

“correct solution of the partial differential equations and the specified initial and 

boundary conditions.” The norm in the definition of the CCP then denotes any formal 

mathematical comparison the reader might wish to apply, especially as given by the 

principles detailed in Trucano, Pilch, and Oberkampf (2003) – but not qualitative 

comparisons such as the viewgraph norm (Trucano, Pilch, and Oberkampf, 2002). 

To sum up, the entire focus of the CCP is to then argue that the left side of the CCP is 

small by arguing that the right side is small. Much of the time this argument is expressed 

in the following operational way: first, that it is “evident” or “well-understood” or “well 

accepted” that Code2 Truth− is small. Then, second, demonstrating that 

Code1 Truth− is small mainly only requires demonstrating that Code1 Code2− is 

small. We will now discuss this approach separately for both verification and validation.
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Section 3   

Verification Using the Code Comparison Principle 
 

Oberkampf and Trucano (2002) discuss the proper elements of verification. It is 

convenient to use a classification of these elements that is introduced in that reference. 

Verification, according to the thinking of Oberkampf and Trucano, naturally falls into 

asking and answering two questions. First, is the software system that implements the 

algorithms intended to accurately numerically solve the partial differential equations 

defining a computational science conceptual model free of errors? This element is called 

code verification (published use of this term by others, including Roache, 1998, is 

discussed in Oberkampf and Trucano and we do not repeat that discussion here). The 

element of code verification encompasses two general classes of underlying activities. 

Oberkampf and Trucano define these classes as “Numerical Algorithm Verification” and 

“Software Quality Assurance.”  

The second question that verification must address is whether a particular calculation of a 

specified problem is “correct.” More to the point as a matter of practicality, the question 

that must be addressed is really whether a particular calculation of a specified 

computational problem is “accurate enough.” The full resolution of this question for 

discrete algorithms which purport to solve systems of partial differential equations 

requires the activity of accuracy assessment on specified grids as well as evidence that the 

accuracy will improve as the discretization is refined (demonstration of convergence, for 

example). In the past we (and Roache, 1998) have referred to this element as calculation 

verification. More recently (Oberkampf, Trucano and Hirsch, 2002) we have emphasized 

the intent by referring to this element as numerical error estimation. For purposes of this 

document, we refer to this element as numerical error estimation. 

Clearly, code verification and numerical error estimation are coupled. For example, our 

ultimate belief in assessment of accuracy for a particular calculation requires belief that 

the software (code) is verified. Otherwise, there is no basis for arguing that an accurate 

calculation, if such is the case, did not result from mutually canceling errors in the 

software implementation, such as an inadequate algorithm incorrectly implemented. On 

the other hand, a code that has a great deal of code verification evidence, such as might 

lead optimistic individuals to proclaim that the code was “verified,” has no guarantee of 

producing an accurate calculation in any specific circumstances. Accurate calculations 

depend on software fidelity and resolution. For example, because of computer resource 

limitations, a “verified” code may have to be applied to calculations with meshes that are 

too under-resolved to yield accurate answers. How one develops and trusts numerical 

error estimation for applications of computational science codes is the heart of the matter.  
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It is then fair to ask how the CCP may help resolve the questions of code verification and 

numerical error estimation. 

3.1 Code Verification 

 

First, consider the problem of code verification. Can the CCP be used to provide realistic 

evidence of algorithmic verification, software quality assurance, or both? 

Software quality assurance (SQA) is virtually never the objective of code comparisons. 

Rather, SQA is centered on software engineering techniques that have no natural 

expression in terms of the CCP. Software reuse is an example that is a rather common 

practice. Suppose that a module is directly extracted from Code2 and implemented in 

Code1. (This is the most direct example of algorithm reuse, which is often very important 

in constructing new codes based on old codes.) Given such reuse of a module originating 

in Code 2, it always requires independent software engineering procedures to assess its 

implementation in Code 1 (for example, does it compile?). These procedures should be 

the same ones used to test the original implementation in Code 2. Simply comparing the 

two codes on one or more problems loses the power of the procedures that were originally 

applied to establish the benchmark quality of the Code 2 implementation. Such 

comparisons will also increase the amount of work performed. 

For example, unit testing is a typical software engineering technique for testing the 

implementation of modules. Unit tests are chosen because their correct solution is 

independently known. If the module implementation in Code 2 is indeed an appropriate 

benchmark, and if unit testing was applied as part of the assessment of the module 

implementation in Code2, then what would be the point of applying the CCP to each unit 

test? Or, how would one decide which of a subset of unit tests to apply the CCP to? In 

fact, we claim that the last thing anybody should do is to compare Code1 results with 

Code2 results on unit tests. The appropriate SQA technique is to directly apply the unit 

tests to the Code1 implementation and skip the intermediate and less forceful step of 

some kind of code comparison. 

This argument holds for the wide spectrum of software engineering based testing 

discussed in greater detail in Oberkampf and Trucano (2002). From another point of 

view, inferring code reliability from software testing should also involve probabilistic 

inference (see Singpurwalla and Wilson, 1999). Thus, given this point of view, code 

comparisons applied to test suites addressing SQA should also encompass statistical 

software reliability ideas. We have never seen this approach applied in any computational 

physics and engineering code comparison activity, either in the design of the activity or in 

the analysis of its results.  

The CCP doesn’t even make sense for other SQA techniques, such as complexity analysis 

or other static assessment procedures discussed, for example, by Hatton (1997). 
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The dominant role of the CCP for code verification is, in fact, algorithm verification. In 

this role, the CCP serves to define additional tests that populate the Verification Test 

Suite (VERTS) for Code1 (see Pilch, et al., 2001). For this purpose, Code2 must 

successfully assume the role of a trusted benchmark for the test problem defining the 

comparison. We emphasize that it is expected that the problem being solved does not 

have an analytic solution, or is solvable otherwise than through a code calculation. It is a 

complex problem by definition because it requires a Code2 calculation to define the 

benchmark. If the opposite were the case, Code1 would be directly compared with the 

analytic solution rather than with the Code2 solution. 

The entire effort of comparing a Code1 calculation with a Code2 calculation as an 

element of the Code1 VERTS makes sense in direct proportion to the degree that we 

believe that Code2 is indeed a benchmark. This is not a matter of proclaiming Code2 to 

be a benchmark by definition. Rather, the fact of the matter is that a lot of work is 

required to declare Code2 to be a benchmark, especially for the purpose of some kind of 

code verification. This work must include significant effort to specify and document the 

resulting evidence of the correct implementation and functioning of Code2. Our position 

as stated in the Sandia V&V program has been that evidence that is not clearly described 

and documented is of little or no value (Trucano, Pilch and Oberkampf, 2002). Code2 is 

an appropriate benchmark for code verification as a VERTS element for Code1 only 

when we have accumulated and documented a scientifically defensible body of 

convincing evidence that Code2 has undergone independent code verification and is 

functioning properly on carefully designed test suites. 

Unfortunately, it appears to often be the case that code comparisons are intended to short 

circuit the painstaking and labor-intensive accumulation of sound verification evidence 

for Code1. The CCP in reality offers the illusion of a labor- or budget-saving code 

verification procedure by focusing on the seemingly more constrained problem of 

estimating Code1 Code2− . This approach is not acceptable for formal verification 

activities. 

The fact remains that if a scientifically defensible code verification process has been 

applied to Code2, the same process should be directly applied to Code1 as well. The 

reason that the CCP may be chosen instead is either from the desire to reduce resource 

expenditures or because the verification process for Code2 may not be particularly well 

done or documented. We argue that code verification is a subject where you likely get 

what you pay for. Applying the CCP (mainly) because it saves time or money or both is 

neither compelling nor fulfilling.  

We strongly believe that the CCP would be a less attractive option for code verification if 

visible evidence of the existence and results of the Code2 verification process exists. We 

presume that this evidence provides understanding and support for the belief that Code2 

is indeed a benchmark. The accumulation of the same evidence for Code1 then seems to 

be demanded. As it is, applying the CCP because direct verification evidence is not 

visible invites the perverse belief that the attraction of code comparisons for code 
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verification is in direct proportion to the lack of scientifically defensible evidence that 

Code2 Truth− is small. On the other hand, if substantial evidence exists that 

Code2 Truth− is small and if similar evidence is accumulated for estimating 

Code1 Truth− , then estimating Code1 Code2− becomes simply extra and unneeded 

work and should not be done. 

Our conclusion is that without additional systematic verification tasks, it is unlikely that 

the use of the CCP will provide credible evidence of code verification of Code1. 

 

3.2 Solution Error Estimation and Accuracy Verification 

 

Now consider the element of numerical error estimation, which focuses on the accuracy 

of specific calculations. For ASCI codes, numerical error estimation is typically achieved 

by demonstrating to a lesser or greater degree that the code converges to an answer as the 

grid is refined (Oberkampf and Trucano, 2002). Can we thus demonstrate that a specific 

calculation of Code1 is accurate (enough) through the use of the CCP? 

Verification of numerical accuracy through the estimation of numerical error is easy to 

perform if we know what the exact solution of a problem is. Complex problems don’t 

have the luxury of mathematically rigorous exact solutions. One needs codes to solve 

these problems. This leads to great practical difficulties associated with determining the 

accuracy of specific calculations for these applications. While there are techniques for 

attempting to characterize and estimate numerical accuracy in some generality, such as 

formal convergence analysis and a posteriori error estimation, it is true that some 

understanding of numerical error must also depend upon studies of specific complex test 

problems. Because complex test problems do not have analytic solutions, this is the area 

where use of the CCP is believed to have significant power. The reasoning is roughly as 

follows: 

 For a given comparison problem, which could have been a previous application of 

Code2, Code2 defines the benchmark, in particular it is a numerical accuracy 

benchmark. 

 Comparison of Code1 with Code2 for this problem then allows quantitative error 

assessment for Code1. 

 Because the comparison problem is believed to be “relevant” or otherwise 

associated with a class of applications for Code1, the understanding of errors that 

results from the CCP is extrapolated to the class of applications and constitutes a 

statement of evidence about accuracy verification for Code1 for that class of 

applications. 
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We really face a conundrum. Our best chance for understanding numerical error is for test 

problems that are too simple to convincingly extrapolate to real applications. Complex 

test problems provide a much more convincing basis for extrapolation, but seemingly 

provide far riskier information about numerical errors. As described above, the use of the 

CCP seems to provide exactly what we need to break this conundrum. However, 

application of the CCP as argued above also begins to look like a self-fulfilling prophecy 

on these kinds of problems, because Code2 essentially is used as if by definition it 

specifies the “correct” solution (or solution with sufficiently small numerical error) of the 

problem. But does it? 

For increasingly complex problems the bitter fact remains that it becomes increasingly 

difficult to show that Code2 Truth− is small. This undermines the basis for the 

reasoning detailed in the above bullets. By an extension of our arguments above, 

however, attempting to reduce the amount of work in verification leads to an even greater 

application of the fiat argument in this case. Those who support code comparisons for the 

purpose of calculation verification will argue that it is self-evident that Code2 is 

computing the problem correctly, or that Code2 at least establishes a relevant benchmark 

based on the “history” of its use. This argument is often made without presenting the 

critical and necessary evidence that Code2 has “converged” to the “correct” solution to 

begin with; or, since we don’t know what the correct solution is but are using Code2 to 

define it, to at least demonstrate evidence of small numerical error. As we have 

emphasized in our recent writing on this topic (Oberkampf and Trucano, 2002; 

Oberkampf, Trucano, and Hirsch, 2002) Code2 numerical error estimation for the chosen 

comparison can only be based upon empirical demonstration of accuracy, not code 

developers’ claims or informal legacy history. 

In the absence of convincing accumulation of empirical verification evidence, this logic is 

too murky to hold up to rigorous scrutiny. One piece of evidence that suggests the appeal 

underlying code comparisons as elements of accuracy verification of complex test 

problem calculations is that most of these comparisons are simply code “bake offs” or 

beauty contests. A somewhat quantitative example (at least one doesn’t have to look at 

side-by-side color shaded plots when one reads the paper) chosen at random is found in 

Rose (2001). This article addresses a specific code calculation of a difficult opacity 

benchmark problem and compares results with nine other codes (in the role of Code2), 

with no attendant discussion at all of calculation numerical accuracy. What is one 

supposed to make of this? That the author assumes that the nine Code2’s are verified? 

That verification of the nine Code2’s isn’t worth discussing because that is self-evident?  

Even given the philosophical limitations that we have stressed, benefits achieved from the 

use of the CCP for verification of complex problem numerical accuracy would likely 

increase if a rational methodology was consistently applied. In Section 5 of this report, we 

suggest an appropriate methodology to apply to code comparisons if, indeed, one must 

perform them despite the warnings we voice in this report. It should be of little surprise to 

the reader that our proposed methodology is directly taken from the experimental 
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validation methodology that we have recently defined and published (Trucano, Pilch and 

Oberkampf, 2002).  

For numerical error estimation of calculations, we will repeat the broad argument we 

made above in slightly different language. The crux of the matter for use of the CCP on 

complex calculations is that Code2 Truth− is shown to be small, not that 

Code1 Code2− is shown to be small. Establishing this “fact” requires a chain of logic 

and accompanying set of evidence, which we write as {Evidence1, Evidence2, …, 

EvidenceN}. If this was in fact the case and such a chain of logic and evidence existed, 

then the same chain of logic and procedures could be and should be applied to developing 

the same set of evidence for Code1. There would be no need to execute the CCP, nor 

would there be a perception that such a comparison would provide real value. However, 

when a fiat argument is used to “prove” that Code2 Truth− is small, then the CCP 

becomes attractive because investigation of how small Code1 Code2− is a simpler 

problem that requires fewer resources and less time.  

Once again, the perverse fact remains that the CCP is more likely to be applied in solution 

accuracy assessment when the most critical information that the CCP relies on for 

scientific credibility, that Code2 Truth− is small, is missing.  

There is one other danger associated with the use of the CCP when insufficient evidence 

exists that Code2 Truth−  is small, especially when focusing on calculation accuracy. If 

it turns out that Code1 Code2− is large for a given problem then it is quite clearly 

dangerous to conclude that Code1 is wrong if one has not adequately demonstrated that 

Code2 Truth− is small. Exactly the opposite conclusion could be true instead. Code1 

could have implemented an algorithmic correction that was neglected in Code2 that 

causes divergence in the results of the two codes. We believe that this problem is 

widespread, and leads to real difficulties in successfully concluding verification tasks that 

are CCP-centric. Especially when algorithms are substantially different between Code1 

and Code2 the result of a divergence of their results seems to be never ending debate 

about which code is “correct.” We argue that this question shouldn’t even be asked in 

such a context. Only solid verification evidence that Code2 Truth− is small 

convincingly avoids this problem of drawing false conclusions from code comparisons.  

We emphasize our fundamental point one more time. One of the biggest challenges that 

we face in verification is the understanding of just what aggregation of evidence is 

sufficient to claim that a code is verified and specific calculations are accurate. If Code2 

is in fact claimed to be “verified” for justifiable reasons – in other words, because of an 

accumulation and documentation of a rigorous body of evidence – whatever approach led 

to this conclusion for Code2 is too valuable to not be applied to Code1. The CCP simply 

blurs the clarity and rigor of the process successfully used on Code2. 
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Section 4  

Validation Using the Code Comparison Principle 
 

 

When the norm at issue in the CCP is a validation metric (see Trucano, et al. 2001), the 

same general criticisms that we have presented above for verification can also be applied 

in exactly the same way. We will therefore not repeat the above arguments in a way that 

is specific to validation. But, we have a more grave criticism of the appropriateness of the 

CCP for validation that is different than the arguments used above for verification, and 

which is therefore worth emphasizing. 

From its inception in 1999 the position of the ASCI V&V program at Sandia has been 

that validation is only accomplished through the confrontation of calculations with 

experimental data. Experimental uncertainty characterization is a key component in 

performing high quality validation. Using Code2 as a benchmark for a CCP procedure in 

validation eliminates explicit attention on experimental uncertainty and is thus 

unacceptable. In fact, it may be the case that one reason that code comparisons are 

preferred in particular cases is because Code2 may so effectively obscure experimental 

uncertainty and provide a fictitious level of filtering of the data for benchmark purposes. 

Avoiding the need to deal with “dirty” experimental data may be desirable from certain 

perspectives, but it is completely inappropriate from a rigorous validation perspective. 

Most of the time it is a severe mistake to believe that Code2 represents a significant 

interpolation or extrapolation of experimental data for complex problems. The ultimate 

form of a mistake along these lines is summarized by the pompous claim “Code2 is better 

than the experimental data.” Such perceptions, if honestly held, usually arise from 

confusing calibration with validation. Dealing with experimental uncertainty estimation, 

whether it is for calibration or for validation, is indeed difficult and it opens new and 

complex issues. However, the history of science has learned that experimental uncertainty 

must be dealt with. We believe that there is ultimately little logical basis for such 

fallacious claims, although we would not deny some potential for a limited version of 

them in the future in very specific circumstances. At best, just as for verification, a 

carefully constructed chain of evidence may have led to a rational basis for believing in 

Code2-based interpolation or extrapolation of experimental data. If this is the case, the 

process that accumulates this evidence should be applied directly to Code1. 

A comparison with Code2 may serve as the basis for believing that Code1 is not 

modeling physics correctly. However, as is the case in verification discussed above, in the 
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absence of carefully assembled and documented understanding of why Code2 is an 

appropriate validation benchmark, the attendant danger of applying the CCP is exactly as 

stated for verification. The truth may be that Code2 may be wrong while Code1 turns out 

to be correct. 
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Section 5  

A Process for the Code Comparison Principle 
 

Despite our analysis above, we recognize that it is unlikely that people will avoid the use 

of the CCP. Therefore, if code comparisons are going to continue to be performed at least 

there should be minimal expectations concerning the manner in which code comparisons 

are performed and results are presented. We believe that code comparisons should only be 

performed as a structured part of a spectrum of verification tasks, so that there is a 

significant body of evidence for verification in addition to only having code comparisons. 

We firmly believe that code comparisons should not be performed for validation. Finally, 

when code comparisons are performed we believe that their execution should mirror 

elements in a methodology that we have recently advocated for performing experimental 

validation (Trucano, Pilch and Oberkampf, 2002). The purpose of this section is to 

discuss this final point in greater detail. 

Well-established scientific principles for experimental validation require: 

 Experimental data of sufficient quality to perform the role of a benchmark. 

 Logically defensible methods of comparing calculations with the benchmark 

experimental data. 

 Logically defensible methods of drawing conclusions from the comparison of 

calculations with experimental data. 

Similarly, code comparisons require the same approach, with an appropriate transcription 

of the basic meaning of the concepts. Thus, we argue that code comparisons require: 

 Code2 has been thoroughly tested, documented and shown to be a benchmark. 

This means that Code2 Truth− has been systematically analyzed and evaluated 

using a wide range of procedures. 

 Logically defensible methods of comparing Code1 calculations with Code2 

calculations. 

 Logically defensible methods of drawing conclusions from the comparison of 

Code1 calculations with the Code2 calculations.  

Anything less cannot be scientifically defended and should not be undertaken.  

Trucano, Pilch, and Oberkampf (2002) define the main elements of a methodology that 

addresses these concerns with regard to experimental validation. We have transcribed the 
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validation emphasis of this methodology in their original report to an emphasis on code 

comparisons below. Figure 5.1 transcribes their fundamental diagram modified 

specifically to emphasize code comparisons. While other processes for performing code 

comparisons may be usable, we believe this process emphasizes elements that are 

important for performing a rational code comparison. 

 

 

Figure 5.1 Key elements of a defensible code comparison process. 

 

 

A. Defense Programs application requirements 

All code comparison activities should have the goal of assessing credibility of a 
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the code comparison activity in exactly the same way that they influence 

experimental validation activities. 

B. Planning 

All code comparison activities require planning that is influenced by the intended 

DP application. All code comparison activities and planning should therefore be 

integrated in the overall V&V plan(s) through element G below for the given DP 

application. All code comparison activities should have specific technical plans 

associated with them, integrating means and ends and establishing priorities. 

C. Appropriateness 

Appropriateness plays the same role in code comparisons that code and solution 

verification do in experimental validation. Evidence of the appropriateness of 

Code1for undergoing a code comparison with Code2 should be accumulated and 

documented; this also involves asking this question about specific Code1 

calculations too. In addition, evidence for the appropriateness of Code2 must be 

presented. This particularly centers on evidence of verification of Code2 and its 

benchmark calculations. We will discuss this issue further below.   

D. Comparison design, execution, and analysis 

The “experiment” is now the specific planned code comparison activity. The 

comparison should be designed, executed and analyzed in a scientifically 

defensible manner. A point of particular concern for this element is to quantify the 

uncertainty in the benchmark Code2 or, more specifically, the computational error 

in its particular calculations. 

E. Metrics 

Viewgraph norms are as unacceptable for code comparisons as they are for 

experimental validation. Code comparison metrics should be quantitatively 

precise and scientifically defensible as a means for comparing codes. We argue 

that rigorous metrics are more important for code comparisons given the likely 

difficulty in suitably quantifying the uncertainty in the benchmark.  

F. Assessment 

All code comparison metrics of code comparisons should be assessed using 

scientifically defensible means. Assessment especially must define quantitative 

measures of agreement for specific system response quantities. Assessment must 

also emphasize that precise and logical conclusions be drawn from the exercise of 

comparison, and whether the comparison is acceptable or unacceptable for the DP 

requirements. The whole point of a code comparison should be an underlying 

notion of precision. If one can’t define precise assessment criteria for code 

comparisons then just what is the purpose of the activity?  
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G. Prediction and Credibility 

The goal of code comparisons is to improve the credibility of the subject code for 

the stated DP application. The results of code comparison activities should 

therefore be cast in this light, i.e. the code comparison activities should clearly 

and directly relate to system response functions stated in the DP application. For 

example, use of the CCP in this case should be expected to contribute to our 

understanding of elements that influence predictive use of the code in 

interpolation and extrapolation, such us uncertainty quantification. 

 

H. Documentation 

Details of code comparisons should be traceable, reproducible, and fully 

documented. The consequences, and the means by which those consequences 

were determined, should be traceable and reproducible. Detailed documentation is 

essential for achieving traceable and reproducible code comparison, including, for 

example, input files and geometry specifications.  

It is worth discussing more about the issue of  “appropriateness” when one decides to 

apply the CCP. Figure 5.2 illustrates the resulting logical options in code comparisons 

that result from appropriateness or lack thereof. Appropriate in Figure 5.2 means that 

there is substantial evidence that the code is suitable for use in its defined role in the code 

comparison exercise. Inappropriate means that there is evidence that the code is not 

suitable for use in the code comparison exercise. A couple of simple but effective 

examples will make this clear. Appropriateness of Code2 means there must be a weight 

of evidence that it is a suitable benchmark. Inappropriateness of Code2 means that there 

is little or no evidence. What people think and “legacy” history is not evidence; evidence 

is documented and quantified. 

More specifically, one could argue that there must be evidence that there are not software 

bugs in Code2 that will degrade the accuracy of its benchmark calculations in order for it 

to be appropriate for a code comparison exercise. This is indeed a complex problem to 

solve for the elaborate computational physics and engineering codes that are often most 

involved in code comparison exercises. 

For example, Code1 is inappropriate for the comparison if bugs in the code prevent 

achieving the objective of the comparison. Suppose the purpose of the comparison is to 

compare a new algorithm in Code1 with an old algorithm in Code 2. Suppose further that 

Code1 has a data structure error that corrupts a database used in either the calculation or 

the post-processing of its results. When Code1 and Code2 are then compared, whatever 

the result is it is not relevant to the objective of comparing two algorithms because of the 

corruption of the comparison by the Code1 database error.  
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Code1 (or Code2 for that matter) could be inappropriate because of user errors in 

construction of input files. This would be comic if it did not happen so frequently, to be 

discovered only after intense effort to understand why the codes either agreed or 

disagreed. 

There are a huge number of practical experiences that could be used to detail what we 

mean by “appropriateness” for the comparison. The present discussion is sufficient to 

make the point. It should be clear from Figure 5.2 that only two out of eight logical cases 

dealing with the issue of appropriateness, those cases where both codes are “appropriate,” 

turn out to produce results that are defensible. In our opinion, this suggests that the odds 

are against code comparisons being fruitful for just this reason alone. Needless to say, 

confirming the appropriateness of the participating codes for the comparison activity is 

not a result of the CCP, it is a necessary condition for applying the CCP. 

 

 

Figure 5.2 The multiplicity of challenges in using the CCP. 
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Section 6  

Potentially Useful Code Comparison Activities 
 

 

There are several areas where code comparisons may be a useful tool for achieving 

specific goals (not V&V!). Examples of such potential uses in our minds include: 

1. Code1 calibration based on Code2 performance. 

This use performs calibration of Code1 parameters to achieve agreement with the 

results of Code2 on one or more problems. This is valuable in proportion to the 

degree that Code2 has been rigorously demonstrated to be a benchmark for the 

defined problems. 

2. Code1 anomaly (unexpected gross failure) identification via comparison with 

Code2 under controlled conditions. 

This use is a testing technique, primarily aimed at identifying (probable) errors in 

Code1. A typical illustration of qualitative use of this technique is to execute 

Code1 for the same problem, with the same computational grid, as Code2. “Gross 

failure” means that Code1 doesn’t even run the problem, while Code2 does, 

suggesting the presence of bugs in Code1 to be identified and removed. Note that 

we do not assume that Code2 runs the calculation correctly, which is why we do 

not claim that this is a verification activity. To the degree that it helps debug 

Code1, though, it might be a useful software development activity.  

3. Use of multiple codes in a manner analogous to multiple “experimental facilities.”  

Multiple codes and a careful code comparison exercise can be used to investigate 

possible bias errors due to widely varying models of physical phenomena. 

Investigations such as code comparison studies can be thought of as attempts to 

understand and quantify epistemic uncertainty (lack of knowledge uncertainty). 

Epistemic uncertainty is of particular concern and difficulty and the CCP may 

provide insight into its nature for particular simulation problems if carefully 

applied.  

Code comparisons are also used in certain segments of the computational science 

community to understand uncertainty, or potential uncertainty bounds, in complex 

modeling endeavors. It is easy to uncover published evidence of this approach to 

understanding complex systems, both physical and human. Astrophysics, for example, is 

a field that is dominated by speculative numerical modeling at its theoretical frontiers, 

simply because of the difficulty of performing controlled experiments, and the sparseness 
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and intrinsic complexity of astrophysical data. Corresponding numerical model 

comparison activities clearly probe the level of model uncertainty (an example of 

epistemic uncertainty; Helton, 1997) that is present in fundamental astrophysics research. 

A canonical example of the use of code comparisons in theoretical opacity models is 

found in Serduke et al. (2000). This paper briefly documents the latest in a series of 

opacity model comparison workshops that Serduke has organized for years. The clear 

intent of these workshops is to explore uncertainty bounds on opacity modeling, which is 

of importance in bounding stellar evolution models, supernova modeling, star formation, 

and so on. This activity is directly in line with the item #3 above. This paper is also 

revealing about why we would consider this activity to be an uncertainty estimation 

endeavor, and not a V&V task. While some control is exerted over the form of the model 

comparisons, there is in fact no benchmark identified (because there is none). Therefore, 

there are no formal means of drawing conclusions from the stated comparisons. The 

closest thing to a stated comparison benchmark is in fact a summary benchmark – the 

reported closeness of agreement of the various models, defined in specific ways. It 

suffices to quote the authors: “How close an agreement is good enough? Unfortunately, 

the answer depends closely upon the application.” (Serduke et al., 2000, p. 532).  

Some statistical analysis of these code comparisons is performed, which is certainly an 

improvement over other code comparison practice that we have observed over the years. 

But the published comparisons of one of the most important quantities (iron X-ray 

transmission in a temperature range that may be accessible to National Ignition Facility 

experiments; Lindl, 1998) in this paper are qualitative and difficult to definitively apply 

for purposes of V&V (Trucano, Pilch, and Oberkampf, 2002). As far as the real relevance 

to V&V goes, the authors appear to understand the core issue. Again we quote: 

“…Further development of experimental techniques and their application to a wide range 

of opacity problems is not only welcomed but essential [our emphasis] for continuing 

progress in the field.” (Serduke et al., 2000, p. 540) In other words, the code comparison 

exercise has emphasized the need for useful and applicable experimental data. The real 

value of this published model comparison exercise is now obvious. By engaging in 

formal, controlled model comparisons, the resulting improved understanding of the 

epistemic uncertainty in current opacity models allows better prioritization and targeting 

of future experimental efforts. In this regard, this study is a useful example of a helpful 

code comparison exercise. 

Earlier in this report we pointedly discussed the dangers of using the CCP for verification 

and validation per se. We also provide a specific warning regarding the use of the CCP 

for “code qualification.” Code qualification is essentially a technical and management 

decision that a code is appropriate to use for a specific application. Such a decision can be 

based on many factors, depending on the approach chosen to make the decision. In our 

view, qualification can be and should be based on verification and validation; it is also 

true that the absence of appropriate verification and validation evidence could be 

neglected in a qualification decision. Instead, it might be the preference of the people who 

have to make this decision to base it on the conduct and results of code comparisons, or at 

least to make the CCP an important factor in qualification decisions. Because of the 
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logical and operational weaknesses associated with the CCP that we have detailed above, 

we must emphasize that we disagree with such a basis for qualification and believe it to 

be dangerous.  
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Section 7  

Conclusions 
 

 

Code comparisons do not provide substantive evidence that software is functioning 

correctly (code verification). Instead, carefully planned, executed, and measured software 

verification procedures are required. If these procedures have been applied to Code2, the 

benchmark, they should also be directly applied to Code1. If this is the case, comparing 

Code2 with Code1 becomes extra, unnecessary work. If these procedures have not been 

applied to Code2, then comparing Code2 with Code1 is inconclusive, and probably 

dangerous, because there is insufficient scientifically credible evidence that Code2 is an 

appropriate benchmark. 

Assessment of the numerical accuracy of calculations (for calculations that do not have 

analytic solutions) via comparison of Code1 with Code2 does not provide substantive 

evidence that Code1 calculations are accurate. Instead, a careful assessment of numerical 

error, relying upon convergence studies and empirical error estimation, is required. If this 

assessment has been performed for Code2 calculations, it should be performed for Code1 

calculations. If numerical error estimation has not been performed for Code2, then there 

is insufficient scientifically credible evidence that Code2 is an appropriate benchmark. 

The myth that we must recognize is that verification of Code1 software as well as 

verification of the accuracy of Code1 calculations can be placed on some kind of 

“resource discount plan” through the operation of the CCP. This myth rests firmly on the 

fiat argument that Code2 is believed to be a sufficient benchmark because of the vast 

amount of experience accumulated over the years using Code2, not because Code2 has 

been subjected to a stressing scientific verification process. Accumulated experience is an 

untrustworthy basis for drawing this conclusion because this “experience” is neither 

formally aggregated, nor quantified, nor documented. The proof of this lies simply in the 

fact that some users of Code2 are more trustworthy than others. This kind of 

“accumulated experience” is little better than a medieval guild. The real logic of the CCP 

in this circumstance is “I think Code2 works well, therefore I will use it as a benchmark 

for Code1.” 

In reality, well-designed code comparison procedures will at most produce evidence that 

Code1 is not functioning properly on specific calculations. In the absence of a credible 

basis for giving Code2 the status of a benchmark, we may compound our problems 

disastrously if we act as if Code1 is wrong simply because it produces a calculation that 

does not agree with Code2. However, the exact opposite could be the case – Code2 is 

wrong while CODE1 is right. 
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A second myth that is ever present is the belief that Code2 embodies wide physical 

modeling experience and understanding, thus allowing Code1 validation to be placed on 

the same kind of discount plan through operation of the CCP. A comparison with Code2 

may indeed serve as the basis for believing that Code1 is not modeling physics correctly. 

In the absence of carefully assembled and documented understanding of why Code2 is an 

appropriate validation benchmark, the attendant danger of applying the CCP is exactly as 

stated for verification, especially in the case where Code2 may be wrong while Code1 

turns out to be correct. The more complex the physics is, the weaker the argument for the 

CCP with regard to validation. 

Finally, we think that it is wise to recall and stress Bill Rider’s (of Los Alamos National 

Laboratory) Seven Deadly Sins of Verification (Kamm, 2002) when one considers 

applying the CCP: 

 

The Seven Deadly Sins of VerificationThe Seven Deadly Sins of VerificationThe Seven Deadly Sins of VerificationThe Seven Deadly Sins of Verification    

Assume the code is correct. 

Qualitative comparison. 

Use of problem-specific settings. 

Code-to-code comparisons only. 

Computing on one mesh only. 

Show only results that make the code “look good.” 

Don’t differentiate between accuracy and robustness. 
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