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Abstract. This paper presents a design methodology and an accompa-
nying platform for the design and fast development of Context-Aware
Mobile mashUpS (CAMUS). The approach is characterized by the role
given to context as a first-class modeling dimension used to support i) the
identification of the most adequate resources that can satisfy the users’
situational needs and ii) the consequent tailoring at runtime of the pro-
vided data and functions. Context-based abstractions are exploited to
generate models specifying how data returned by the selected services
have to be merged and visualized by means of integrated views. Thanks
to the adoption of Model-Driven Engineering (MDE) techniques, these
models drive the flexible execution of the final mobile app on target
mobile devices. A prototype of the platform, making use of novel and
advanced Web and mobile technologies, is also illustrated.
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1 Introduction

The data deluge we are confronting today virtually drives people to continuously
search and discover new information. The opportunity to access a large amount
of information, however, does not always correspond to the growth of people
knowledge. Many times, indeed, one does not know how to filter data “on-the-
fly” to obtain the information that is the most suitable to the current context
of use. This aspect is even more critical for mobile devices. Smart phones, for
example, are often used to satisfy “quickly” very contingent information needs.
Also their reduced screen size and battery power do not favor neither visualizing
huge data sets nor executing multiple progressive queries to filter out irrelevant
data.

Given this evidence, our research focuses on the definition of a methodology
and related tools for the semi-automatic design and development of Context-
Aware Mobile mashUpS (CAMUS)[1]. CAMUS leverage the results of two main
research lines, related to the design of context-aware systems and mashups, with
the aim to support developers in the creation of flexible apps that dynamically
gather and combine data from heterogeneous data sources and filter and adapt



the integrated content to the users’ situational needs. With respect to tradi-
tional applications, designed to satisfy predefined requirements, the CAMUS
added-value is their intrinsic capability of identifying pertinent data sources,
i.e., adequate with respect to the current users’ needs, and pervasively present-
ing them to the final user in the form of context-aware integrated visualizations
deployed as mobile apps. This application paradigm overcomes the limits posed
by pre-packaged apps and offers to the users flexible and personalized applica-
tions, whose structure and content may even emerge at runtime based on the
actual user needs and situation of use.

In this paper we show how CAMUS design and development can be concretely
based on a set of high-level abstractions for context and mashup modeling. In
particular, we will present a novel design methodology and related tools for fast
prototyping of mobile mashups, where context becomes a first-class design di-
mension supporting: i) the identification of the most adequate resources that can
satisfy the users’ information needs and ii) the consequent tailoring at runtime
of the provided data and functions. We start from two consolidated approaches
for context modeling [2, 3] and mashup modeling [4] and show how the synergies
of the two approaches can be amplified to define a new design methodology for
the fast prototyping of flexible mobile apps.

This paper is organized as follows: Section 2 clarifies the motivations of our
work and summarizes the main elements that characterize our design method-
ology by also comparing it with other similar approaches. Section 3 describes
the main design steps based on the adoption of two consolidated approaches for
context and mashup modeling, which are however integrated and somehow re-
visited or augmented to comply with each other’s features. Section 4 illustrates
the organization of the resulting framework, as well as the architecture and the
implementation of the related platform supporting both the design of CAMUS
apps, by means of visual design environments, and the context-aware execution
of the generated mobile apps. Section 6 summarizes the main features of our
design framework in relation to some classifying dimensions adopted during the
Rapid Mashup Challenge. Section 7 then shortly describes the demo given dur-
ing the challenge. Section 8 finally outlines our conclusions and describes our
future work.

2 Rationale and Background

The CAMUS project merges techniques coming from two areas whose role is fun-
damental for the solution of problems related to the design of mobile systems.
The first area deals with the issue of information overload by introducing tai-
loring techniques based on context-awareness, while the other one addresses the
seamless integration of data and services. From different perspectives, both areas
promote the creation of flexible mobile applications that dynamically gather and
combine data from heterogeneous data sources, supporting the users’ situational
needs.



2.1 Context Awareness

The research on context made a significant step forward in the 90’s, when the
research community raised the problem of representing context-aware user and
system activities [5]. While the community of computer science professionals
initially perceived the context only as a matter of user location and time, this
notion has been extended including, in the idea of context, other personalization
aspects like current user interests, current role of the user in the system, the com-
pany the user keeps at the moment, and possibly other situational dimensions
that may depend on the specific application at hand [6].

In CAMUS, the perspectives that characterize the different contextual situ-
ations in which the users can act in a given application scenario are modelled
by means of the so-called Context Dimension Model [3], which provides the
constructs to define at design-time the Universal Context Dimension Tree (Uni-
versal CDT ). As represented in Figure 1(a), the Universal CDT is a hierarchical
structure consisting of i) context dimensions (black nodes), modeling the differ-
ent perspectives through which the user perceives the application domain (e.g.,
time, interest topic, transport), ii) the allowed dimension values (white nodes),
i.e., the values used to tailor the context-aware information (e.g., “morning”,
“with car”, “culture”), and iii) variables (e.g., “geographic coordinates” for a
location dimension), that are either custom values supplied by the user at run-
time or data acquired by device sensors (e.g., the current GPS coordinates of
a given device). The dimension values and the variables are also called context
elements. Note that the adoption of a hierarchical structure allows us to employ
different abstraction levels to specify and represent contexts.

Any sub-tree of the Universal CDT with at most one element for each di-
mension represents a possible user context. Figure 1(b) shows a possible context
for the Universal CDT of Figure 1(a).

The CDT was originally introduced to tailor, at design time, the contextual
portions of a global database, in order to grant to the users run-time, context-
aware access to huge datasets. In this paper we will describe how, when a certain
context is detected at run-time by means of device sensors or using some infor-
mation provided by the user, the context-relevant services are invoked to build
a service mashup appropriate for the identified context.

2.2 Mobile Mashups

Mashups are “composite” applications constructed by integrating ready-to-use
functions and content exposed by public or private services and Web APIs [7].
The mashup composition paradigm was initially exploited in the consumer Web
for creating rapidly simple Web applications that reused programmable APIs and
content scraped out from other Web pages. Soon the potential of this lightweight
integration practice emerged in the other domains where the possibility to cre-
ate rapidly new applications, also by laypeople, is an important requirement. In
the last years many efforts have been devoted to the definition of usable and
intuitive composition paradigms. This aspect is indeed considered a factor en-
abling the addition of significant new value with respect to other development
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Fig. 1. Example of Universal CDT and a possible context.

practices. Intuitive notations and visual design environments can offer the ad-
vantage for designers, or even end users, to achieve effective applications that
match exactly their needs and that can be created in a short time by simply
reusing and customizing existing resources. Therefore, several approaches have
proposed composition paradigms based on visual notations that abstract rele-
vant mashup development aspects and reduce- or sometimes totally eliminate,
the need of programming.

Among the proposed approaches for mashup design, very few specifically
concentrate on mobile mashups. In [8] the authors illustrate a mobile generator
system that aims to support fast prototyping as it is able to automatically gener-
ate a large part of the application code. However, this approach does not support
content integration, while we believe this is a fundamental feature for the mo-
bile usage context where integrated views can greatly improve the information
access experience. Also, it proposes a domain specific language with abstrac-
tions that are very close to the ones of the Android execution platform. The
approach indeed focuses exclusively on Android apps and does not exploit mod-
eling as a means to abstract from specific technology and achieve multi-platform
deployment.

Recently proposed services, like IFTTT (If This Than That - https://

ifttt.com/wtf) and Atooma (http://www.atooma.com), enable users to syn-
chronize the behavior of different apps through simple conditional statements.
However, they do not support at all the integration of different data sets and of
the corresponding UIs.

For the design of CAMUS apps, we adopt the approach presented in [4].
It is based on a UI-centric paradigm for data integration, as it requires acting



directly on the user interface of the mashup under construction, in a kind of
live-programming paradigm where each composition action corresponds to a data
integration operation that generates an immediate visual feedback on the artifact
under construction [9, 10]. One of its distinguishing features is the capability
of abstracting from the specific technologies of the target applications. In line
with the Model-Driven Engineering (MDE) philosophy, it indeed leverages on
the generation of application schemas, and on their interpretation in different
execution platforms by means of engines supporting the generation of code for
native application. This is a very relevant feature: recent studies on device and
traffic share report on a generally observed attitude of users to access applications
through different devices (desktop and mobile)[11].

2.3 Context-aware Mobile Mashups

The literature reports different experiences for the development of context-aware
mobile applications, showing how applications can be extended to gather and
use context at run-time (see for example [12]). However, these works consider
context-awareness as an orthogonal dimension, to be programmed ad-hoc for any
application, while they do not provide conceptual models and design frameworks.

In [13] the authors show how a mashup design environment may implicitly
provide support for context-awareness, thanks to the introduction of mashup
components in charge of managing context, i.e., capturing context events and
activating related operations in other components of the mashup. Although ef-
fective, the approach does not provide any abstraction to model the context; the
designer is in charge of configuring the context components (basically location
and time) by means of parameter settings. We instead assign a fundamental role
to usage-situation modeling, from which we then derive the logics for selecting
services and dynamically build the final applications.

MyService is a mashup design framework that supports the creation of context-
aware services based on rules [14]. It provides an Android design environment
that allows end users to select pre-defined context-based recommendation rules
on top of a service directory. Proper services are thus selected depending on
the context gathered at runtime, and the code of a mashup is generated. This
approach is in line with our idea to filter at runtime services by means of a con-
text representation. However, MyService focusses especially on location-based
adaptations, while we are able to cover any dimension that can filter content.
The CDT model indeed is generic with respect to the specific domain, allowing
for the representation of all possible perspectives that characterize context by
means of the generic concept of context dimension. Also, MyService does not
support data integration and it is not clear whether the generated code also cov-
ers the rendering of User Interface views. In the following sections we will show
how we address this point – which is crucial especially when different execution
platforms are addressed – by means of advanced technologies that instantiate
views in the mobile app starting form an abstract schema of the integrated data
set to be provided by the app.



Fig. 2. Main system components and supported design and execution activities in
CAMUS.

3 The CAMUS Methodology

We now present the design methodology for the creation of CAMUS apps start-
ing from the specification of context requirements. Our approach is characterized
by the adoption of design environments that, in line with recent approaches to
visual programming of mashups, make intensive use of high-level visual abstrac-
tions [15, 4]. Visual paradigms indeed hide the complexity typical of service com-
position, data integration and the programming of context-aware mobile apps,
and assist CAMUS designers (even if non-experts in these technologies) in the
creation of multi-device personalized applications.

Figure 2 represents the general organization of the design framework and
highlights the flow of the different activities and related artifacts that enable the
transition from high-level modeling notations to running code. In the sequel, we
will describe the activities performed by three main personae, the administrator,
the mashup designer and the app user, who are the main actors interacting with
the framework at different levels and with different goals. In order to exemplify
how these activities are carried out, we will refer to a case study in the domain of
tourism, characterized by: i) a tourism service provider, who sets up an ecosystem
of tourism services and the platform for the delivery of CAMUS apps; ii) the
tourist, i.e., the end user of a CAMUS app created on top of the available services;
and iii) a tour agent, i.e., an intermediary player who assists the end user in
the creation of the specific tour and, consequently, acts as mash-up designer
customizing the CAMUS app according to preferences related to the specific
trip and person - which might not be entirely captured by the Universal CDT.



name: Eventful 

host: http://api.eventful.com 

basePath: /rest 

paths: 

/events/search: 

parameters: 

appkey: A56TR341ADCV876 

… … 
time: ? 

price:? 

Fig. 3. An excerpt of a service descriptor specifying properties for service invocation.

3.1 Creation of the Service Ecosystem

The administrator is in charge of managing the CAMUS server and resources.
One of the main roles is to create and maintain the service repository. S/He reg-
isters into the platform distributed resources (remote APIs or in-house services)
that are pertinent with respect to a given domain, as resulting from the spe-
cific requirements and from the requests of the final users. For example, in the
tourism domain the administrator will register services that provide information
about hotel, restaurants, points of interest, and any other information useful for
a trip. Service registration is taken by creating descriptors that specify:

– How the resources are to be invoked, e.g., the service endpoint, its opera-
tions and input parameters. In this phase, some parameters can be bound to
wrappers that perform transformations from symbolic context values gath-
ered at runtime to corresponding numerical service input. Figure 3 reports an
excerpt of a descriptor for a service returning data on events. The input pa-
rameter price is associated with a wrapper that transforms symbolic terms,
such as low, medium and high specified as user preferences, into specific price
values, as expected by the service.

– The schema of the responses of the returned service. To ensure homogeneity
of data formats, needed to merge the data that must be visualized by the
final app, the response schema of each registered service is annotated with
terms (e.g., title, description, address) indicating categories of attributes,
according to a vocabulary that is defined and maintained in the service
repository. These annotating terms have a double role: when the mashup is
defined (see Section 3.3), they allow the designer to select service attributes
by reasoning on abstract categories, instead of specific attributes resulting
from service queries; at run time they assist the merging progress of different
result sets, since it is easier to identify attributes that refer to the same entity
properties.



For these annotations we currently assume the availability of a set of ad-
hoc defined category tags, which the administrator explicitly associates to the
attributes returned by registered services. Domain ontologies can of course be
exploited as well to automatically associate service attributes to semantic terms.

3.2 Universal CDT augmentation

The administrator also specifies the Universal CDT, providing a representation
of all the possible usage contexts. In order to support the context-aware se-
lection of services at runtime, s/he augments the Universal CDT by defining
mappings between the identified context elements and the services registered in
the platform.

Services belong to two different categories. Core services provide the main
data that contribute to forming the core content of the final app. As represented
in Figure 4, they are associated with the so-called primary dimensions, i.e.,
dimensions for whose values some “primary’ content” has to be provided in
the final application. Such content is considered as primary as it is supposed
to be the main object of the users’ requests. For example, services providing
data on restaurants are associated with the food&drink value of the interest

topic dimension. Therefore, their selection at runtime occurs if the food&drink
dimension is the emerging user interest in the identified context.

Support services supply auxiliary content (e.g., the meteo condition or the
public transportation in a given location) or functionality (e.g., the localization
on a map of a restaurant retrieved by some core service).

Do consider that, when the app is working, the available support services
may vary depending on the usage context. This means that, during the Universal
CDT augmentation, the association is operated at the service category level. For
example, a “transport” service category is associated with a given context node
(e.g., food&drink) to represent that, within the final mashups, transport services
will be selected when the user’s context is characterized by the food&drink

interest topic. Then, at runtime a specific service belonging to this category will
be selected and invoked, based on the identified geographical area. This requires
specifying, within the service descriptor, the category the service belongs to
and its characterization with respect to the context values its final selection
depends on .So, during The Universal CDT augmentation, the administrator
characterizes the role that every node in the Universal CDT plays in the runtime
selection of services, by assigning two typologies: filter or ranking. By default,
all the nodes have a filter role, meaning that reaching them while traversing the
tree implies adding a corresponding filter for service selection. The administrator
can characterize some nodes as ranking when they can provide a ranking criteria
for sorting different candidate services. For example, location is a ranking node
because its related context parameters might influence the selection of services
that provide relevant data in a given geographical area(e.g., the information
services provided by the local transportation company of a certain city are to be
preferred to a generic transport information service).



Primary	  

dimension(s)	  

•  Primary	  dimensions	  are	  the	  ones	  that	  

content	  is	  provided	  for	  

•  Other	  dimensions	  mainly	  provide	  filters	  	  

Fig. 4. An excerpt of a service descriptor specifying properties for service invocation.

3.3 Mashup Visual Design

The mashUp designer starts from the image of the available resources repre-
sented by the augmented Universal CDT and, using a Design Visual Environ-
ment, defines a Tailored CDT by further refining the selection of possible con-
texts and the mapping with services (both core and support). This is needed to
fulfill the needs and preferences of specific users or user groups.

Given the services associated with a given context dimension (e.g., all the
services providing data on restaurants associated with the food&drink context
dimension) the designer can select the categories of attributes (i.e., the annotat-
ing terms specified at service-registration time) to be visualized in the mobile
app. As schematically represented in Fig. 5, this selection is operated visually, ac-
cording to a composition paradigm for mobile mashup creation already defined
and implemented in the PEUDOM mashup tool [4]. The designer drags and
drops the semantic terms associated with the attributes of the service response.
A “virtual device” provides an immediate representation of how the final app
will be shown on the client device. In addition, the designer can include support
services that can provide additional information and enrich the user experience
(e.g., provide transport indications to reach a restaurant, or extend the core
content with descriptions of places taken from Wikipedia). Support services are
also context dependent: for instance, if the user expresses that s/he is in a situa-
tion where s/he wants to use “transportation by car”, the system provides route
information; otherwise, if s/he selects “public transport” it suggests a bus line.
This requires that also for support services the inclusion of data attributes be
operated by exploiting annotating terms describing attribute categories exposed
by classes of services, not the actual data attributes exposed by single, specific
services. At runtime, the binding defined at service registration time between
semantic terms and service attributes will be exploited to query the services
actually selected.



Fig. 5. Schematic representation of the visual mapping activities to associate service
attribute classes to elements of the final app UI.

All the visual design actions are translated by the design environment in
a JSON-based mashup schema, which specifies rules that at runtime guide the
instantiation of the resulting app and the creation of its views.

It is worth noting that, in comparison to other approaches to mashup design
[7], the composition activity and, more specifically, the selection of services are
not exclusively driven by the functional characteristics of the available services
or by the compatibility of their input and output parameters. Rather, the initial
specification of context requirements enables first the progressive filtering of
services and then the tailoring of service data to support the final situations of
use.

3.4 App Execution

The CAMUS (app) users are the final recipients of the mobile app that offers
a different bouquet of content and functions in each different situation of use.
When the app is executed, the context elements that characterize the current sit-
uation, identified by means of a client-side sensor wrapper or explicitly selected
by the user, are communicated to the server; this, in turn, chooses the pertinent
services to be invoked and returns an integrated data set that includes the at-
tributes corresponding to the semantic terms selected during the mashup design.
The mashup schema created by the designer is thus interpreted locally on the de-
vice (by means of a Schema Interpreter), and the generated views are populated
with the returned data as defined during the visual mapping step. The platform
indeed exploits generative techniques: modeling abstractions guide the design of
the final applications, while generative layers mediate between high-level visual



models and low-level engines that execute the final mashups. Execution engines,
created as hybrid-native applications for different mobile devices, then make it
possible the interpretation and pervasive execution of schemas.

4 Platform Organization and Implementation

In order to support the CAMUS methodology, we developed a proof-of-concept
prototype; the demo given at the Rapid Mashup Challenge focused on it. Its
architecture is server-centric, meaning that a Server manages the main functions
for the execution of the mobile app, i.e.: i) analyzing of the user’s context,
detected through the mobile device, to select the services to be queried and, ii)
querying the selected services and transforming their results into an integrated
data set to be rendered by the mobile app.

The Server exposes several endpoints to enable the execution of service
queries as well as CRUD operations on other system data, such as users’ pro-
files, and the descriptors for the Universal CDT and the service repository. The
framework used for its implementation is Node.js and the database is MongoDB.
The main API invoked by the mobile client to access the server functionality is
compliant with the GraphQL API specification [16]. GraphQL offers a layer that
enforces a set of custom-defined typing rules on the data sent and received via
HTTP. Besides, it provides a flexible way to specify the response format, by
making it easier to support different generations of APIs.

The Visual Design Environment consists of a suite of Web applications to:
i) easily register new services to the system, ii) specify visually (and automat-
ically generate an internal representation of) the CDTs and the associations of
services with pertinent nodes, and iii) design visually the final mashups and
automatically generate their schema.

The Client App is the front-end enabling the interaction of the end-user with
the whole system. During its initialization, the app loads the user CDT and the
JSON-based specification of mashup schemas to be rendered from the server. The
schema specifies the structure of the app views and drives their instantiation.
The transformation of the schema into concrete views exploits React Native
[17], a framework recently introduced by Facebook to streamline the production
of cross-platform mobile apps. The app logic is written in Javascript and, for
the most part, is agnostic with respect to the target platform. React enforces a
pseudo-functional/reactive approach that involves a central state (which holds
the model of the application) and a number of pure functions that render the
view. The view elements, in turn, can produce actions that act on the state
through a dispatcher, while network responses represent another source of actions
that can change the state. The state of the app serves the rendering of the views
and their data: it is mainly composed of the mashup data, the current interest
topic, the CDT and the result of the current context-based query.

A typical request from the client is composed of a JSON payload that de-
scribes the context and a specification of the format of the data that is expected
by the client. As represented in Figure 6, the request is thus processed through
the following steps:



Fig. 6. Server request flow.

– The Context Manager parses the context and “decorates” it with all the
Augmented UCDT information (services, ranks, etc.) related to its elements.

– Based on the analyzed context, the Primary Service Selection component
selects the services to be queried.

– The Query Handler queries the selected services by using service-specific
bridges that wrap the retrieved result sets and transform them into a com-
mon internal representation that complies with the semantic terms associ-
ated to the different service attributes. This internal representation enables
merging the different data sets based on attributes associated with the same
terms.

– Finally, the activation of support services – if any –, is bound to the selection
of specific attributes in the integrated result set, as defined by the mashup
designer when creating the mashup.

The rest of this section will illustrate in more details the steps involved in
the request flow.

Primary service selection. As mentioned above, the Context Manager takes
care of decorating the user’s current context with the information coming from
the Augmented Universal CDT. Service selection is thus operated by interpret-
ing the request context as a key-value query, and using this representation to
“navigate” through the Universal CDT specification. The result of this naviga-
tion is the set of Service Associations (SA) found in the different visited nodes,
that suggest the use of service that can be pertinent with respect to the current
context. Each association is composed by the priority that characterizes the ser-
vice for the reached node and the node weight. These values are set when the
Universal CDT is modeled: the priority is an increasing integer starting from
1, and weights are predefined values assigned with the constraint that a filter



node’s weight must be less than that of a ranking node. The final relevance value
for each service s is thus computed from the weights wi and node priorities pi
as:

Rs =
∑

i∈SA(s)

wi

pi
(1)

The obtained value is used to rank and filter the N top relevant services for
the query.

Query handling. The Query Handler is in charge of identifying the queries
to be posed to the selected services; a number of bridges than actually invoke
the services by formulating the queries in accordance with the protocol exposed
by the service APIs. We supply a default bridge for REST-type services plus
an abstract class that can be extended for implementing new bridges covering
further service types.

A bridge receives the service descriptor provided by the Query Handler and
builds the URL where the service should be queried. During this composition,
the bridge uses the context to retrieve the list of parameter nodes which, in
turn, store the values that are needed to perform the query. When all the nec-
essary queries are completed, it sends the responses obtained back to the Query
Handler.

Response aggregation. The Response Aggregator executes two main tasks:
i) merging items from different services that refer to a same instance and ii)
scoring each instance. In fact, two or more services might return data referring
to a same instance, thus duplicate identification is needed to discover equal or
similar instances and fuse them into a unique object. The fusion then might
produce a richer set of attributes for an instance, as one service can provide
attributes not supplied by the others.

Merging is computationally intensive, since it requires pairwise comparison
of all the instances in any of the service result set. To reduce this complexity
we devised some optimizations: first, each instance item is classified on the basis
of the phonetic code of its key attribute (for example, the title), using some
phonetic string matching metrics1. Then, inside each class, pairwise comparison
of the common attributes is used to compute a similarity index. If this value is
greater than a predefined threshold, the two items are considered similar and
they are fused together. The complexity of this comparison strategy is O(n) (i.e.,
linear in the number of analyzed instances).

Support service selection. The selection of support services is similar to the
one operated for primary services. However, a support service is selected and
included in the mashup if and only if all the bindings defined between the mashup
core data and the operations exposed by the support service, as defined by the

1 Our current prototype uses the Chapman’s Soundex metrics[18].



mashup designer, are satisfied. This avoids runtime invocation of services that
are not applicable in a particular context, for instance because the needed input
parameters are not provided by the integrated result set or by the usage context.
The result of the support service selection is a set of service endpoints that are
communicated to the client within the mashup schema, so that the mobile app
can directly invoke the services to retrieve and visualize the auxiliary data.

App life cycle. At the application startup, the user chooses the current in-
terest topic. The context selection page supports the user in editing the current
context, and also probes the hardware for sensors data. When the user finalizes
the context input, a GraphQL query is built and sent to the server. The request
specifies the structure the incoming data should have in order to be rendered in
the results page. An important difference with respect to a more traditional ap-
proach like REST is that different clients can request different data formats from
the same end point. Once received, the data is stored in the main application
state and the app view is re-rendered by hydrating a React Native template.

The view schema provides a very flexible mashup design. As reported in
Figure 7, every page is associated with the corresponding key in the file (e.g.:
results, details, ...) and, at render time, the view builder loads the schema
dedicated to the rendering of data for the current topic (tag topics); poten-
tially, the app is able to render a different view for each possible topic. The tag
contents specifies the view elements; thanks to the style attribute it is possible
to pass directly to the app CSS-like style attributes used in React. The elements
within the contents tag are defined recursively, thus enabling a very customiz-
able design of the app: in principle, any single view element can be defined in
this way and then dynamically instantiated.

5 Evaluation

In this section we provide a preliminary characterization of the performance of
the system. Since the application is still under active development, the numbers
shown here are to be considered with care. However, we think that they provide
some interesting insights on the feasibility of context-aware strategies for service
selection and querying, as the ones illustrated in the previous sections.

System and workload model. To model the system, we use a basic M/G/1
queue [19]. In fact our system behaves as:

– M/*/*: a service node where request arrival follows a markovian process, i.e.
requests arrive continuously and independently at a constant average rate
λ. We will use this assumption in the characterization of the response time.

– */G/*: the service rate distribution is not yet known, so we assume it being
a general distribution with fixed mean and variance.

– */*/1: a single process (Node.js) serves incoming requests.

The system used for workload evaluation is characterized by an Intel Core
i5-5257U CPU, with 2 cores and a 3GHz frequency, a 8 GB DDR3 RAM, and
an SSD disk of 128GB.



Fig. 7. App data flow.

Service time. The service time is the time it takes for a single request to be
served. To better understand the distribution of the service time (which has
been assumed as general in the previous paragraph), we use a sequence of 500
back-to-back requests, where each request is sent once the previous one has been
served. Requests are served by the system with a first-come/first served (FCFS)
policy. We stubbed the query handler in such a way as to measure just the
internal delays of the system components.

Figure 8 shows the histogram of the measured response time. To a first inspec-
tion, the shape of the distribution seems to agree with a log-normal distribution
whose parameters are µ = 202(ms), σ = 6.4(ms). This suggests an ability to
sustain almost 5 requests per second. We use this information to generate a
workload of independent requests.

Response time. When receiving independent requests (which can arrive be-
fore the current one is effectively served), the system can show a delay due to
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Fig. 9. Distribution of the response time under varying workload.

requests queuing up. To characterize the behavior under this type of workload,
we generate a sequence of requests using an exponential arrival-rate distribution.
The exponential distribution is in fact congruent with the markovian arrival-rate
assumption made above:

f(x;λ) = λe−λx,where x ≥ 0

where λ characterizes the rate of generation of independent requests and x is
the time between one request and the next.

Figure 9 shows the box-plot charts for a varying request rate, from 1 to 5
requests per seconds (saturation threshold). As can be seen, the system exhibits
a robust response up to λ < 4. After that point, both variance and mean of the
response time exponentially diverge, approaching the saturation point individu-
ated in the previous paragraph.

Discussion. The above analysis brings us to an interesting insight which we
are going to investigate further in our work: the service time is log-normally dis-
tributed. This type of distribution is characteristic of a process which is a product
of many independent random variables. Our conjecture is that this could be due
to the way in which the response elaboration has been split across the compo-
nents, thus the software composition might play a role in the performance of the
system. This is however a preliminary observation that needs to be corroborated
by means of wider and deeper investigation.



6 Features and Level of Maturity

We now summarize the main characteristics of our design approach in rela-
tion to some dimensions for the classification of mashup paradigms used at the
Rapid Mashup Challenge. Our approach mainly supports the generation of data
mashups. The platform backend indeed exploits data fusion techniques to com-
bine the data sets extracted from the selected core services. This process involves
mainly the invocation of data components. However, the generated mashups also
include mechanisms for UI synchronization: an event-driven logic at the UI level
is used to activate the generation and synchronization of different views in the
app. For example, when an item is selected in a view displaying core data, a new
view is instantiated to display related support data.

The execution of the generated mashup is distributed between the mobile app
and the backend server. Besides capturing the context parameters and composing
the requests to the backend, the app is also in charge of interpreting the mashup
schema and instantiating corresponding views. The identification of pertinent
services and the generation of the mashup schema is however executed by the
server. The integration logics is based on an orchestration of the involved services:
decoupled components are indeed invoked by the Query Handler, according to
a schema determined by the selection of the primary and support services. The
resulting mashups are short-living as the involved services and the way they are
integrated in the app depend on the current context, which is reconsidered at
any new requests generated by the app. However, the app allows the user to
materialize on the server some data, like reservation data and tickets, that can
be useful for future sessions.

The tool assisting the design of CAMUS apps targets both developers and
non-programmers: the former (e.g., the platform administrators having experi-
ence with service registration and requirements modeling) are supposed to pre-
pare the instruments (e.g., the CDT specification) that the latter can visually
refine according to a WYISIWIG visual language, to better capture the require-
ments of the specific usage domain. The design tool then offers a full automation
for the generation of the final app starting from the schemas visually defined by
the mashup designers.

Any change to the schemas requires a re-initialization of the final app. Our
composition approach, indeed, supports live programming during the app design,
as it offers a preview of the final app in a virtual device where each composition
action is “materialized” into a change visible in the app UI. However, once
an application schema is downloaded on a mobile device, the local execution
engine keeps instantiating the app according to that schema. Possible changes
will be applied only if a new execution of the app starts (and a new schema is
downloaded on the device).

While we have a stable implementation of the platform backend and of the
app runtime, we still need efforts to achieve an integrated visual design environ-
ment. At the time of the demo at the Rapid Mashup Challenge, all the JSON
descriptors (service descriptors and CDT representation) had to be written man-
ually. We have now started developing visual editors for service registration and
for the CDT specification. The PEUDOM visual editor [4] assists the visual map-



(a) View for the Interest
Topic selection

(b) View displaying
search results

(c) View for data and
functions offered by sup-
port services

Fig. 10. App screenshots from the demonstration.

ping activity for the design of the app views; however, we still need to reconcile
the syntactic format of the mashup schema generated by the design tool with
the one required by the current app execution engine.

7 Demo at the Rapid Mashup Challenge

As explained above, we still do not have an integrated visual design environ-
ment, since our research so far has especially focused on proving the feasibility
of the approach for the context-driven, dynamic selection of services. There-
fore, at the Rapid Mashup Challenge we illustrated the main features of the
design methodology: we emphasized the role that context modeling plays in the
dynamic selection of services and showed that the context-driven, dynamic con-
struction of mobile mashups is feasible. The dynamic generation of CAMUS apps
starting from the representation of possible usage situations is indeed the most
characterizing feature of our approach.

During the presentation we illustrated the steps needed to set up the service
ecosystem, as well as the mechanisms that, starting from the context captured at
run-time and the representation of the augmented CDT, enable i) the selection
of pertinent services, ii) the production of a result set integrating data extracted
from the single services, and iii) the dynamic generation of the mobile app views
for data visualization.

Figure 10 shows the sequence of app views that were shown during the chal-
lenge to illustrate such mechanisms. The first view (Figure 10.a) allows the user
to select an interest topic; this selection plus other parameters characterizing



the usage situations (e.g., time and geographical position) are sent to the plat-
form back-end and trigger the selection of pertinent services. In case of multiple
selected services, data fusion procedures are also executed; thus the composed
result set is sent back to the client, where it is displayed through the view illus-
trated in Figure 10.b. Finally, the view in Figure 10.c shows further details made
available by support services (in the example GoogleMaps and the device-local
dialing service) for an item selected in the previous view.

The steps undertaken by the server that correspond to the previous interac-
tion flow, and especially the actions to manage the context and to instantiate
the app views, can be seen in the video available at: https://www.dropbox.
com/s/nitnsehsv38x5co/demo\%20camus.mov?dl=0.

8 Conclusions

This paper illustrates the CAMUS methodology and its related platform, whose
aim is to empower non-expert developers to create context-aware, mobile apps
by integrating multiple and heterogeneous APIs acting on situational needs. It
discusses in particular the major role that the CAMUS design approach gives to
context modeling. The specification of the Universal CDT is the central design
activity; around it the construction of the mashup is performed. At design time
the designer defines mashup schemas by reasoning at a high level of abstraction
on possible context dimensions and associated service categories; at execution
time, specific services are dynamically selected and integrated by taking into
account the actual user context. The paper also discusses how taking into account
context elements in the automatic instantiation of the final app, and especially
selecting on the fly the services to be queried, is feasible and does not affect the
performance of the server components.

This paper does not discuss the usability of the design methodology (i.e., how
the methodology is perceived by designers) and the usability of the generated
apps (i.e., if they are considered useful and usable by the end users). However,
since the CAMUS framework still exploits the composition paradigms and the
final app organization that we already defined in our previous work, we capitalize
on the large body of data and user feedback collected in the last years through
families of user studies (see for example [15, 4] for an extensive discussion on
the conducted evaluations). Our current work is devoted to refining the imple-
mentation of the platform, and especially to defining a tight integration among
the different visual design environments that we developed so far. Other efforts
are being devoted to the formal characterization of the operations for service
selection and composition based on the CDT representation.
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