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On the Role of Estimate-and-Forward With Time
Sharing in Cooperative Communication

Ron Dabora and Sergio D. Servetto

Abstract—In this paper, we focus on the general relay channel.
We investigate the application of the estimate-and-forward (EAF)
relaying scheme to different scenarios. Specifically, we study
assignments of the auxiliary random variable that always satisfy
the feasibility constraints. We then consider the Gaussian relay
channel with coded modulation, where we show that a three-level
quantization outperforms the Gaussian quantization commonly
used to evaluate the achievable EAF rates in this scenario. Last,
we consider the cooperative general broadcast scenario with
a multistep conference between the receivers. We first apply
EAF to obtain a general achievable rate region with a multistep
conference. We then use an explicit assignment for the auxiliary
random variables to obtain an explicit rate expression for the
single common message case with a two-step conference.

Index Terms—Channel capacity, cooperative broadcast, es-
timate-and-forward (EAF), network information theory, relay
channels.

I. INTRODUCTION

T
HE relay channel was introduced by van der Meulen in

1971 [1]. In this setup, a single transmitter with channel

input communicates with a single receiver with channel

output , where the superscript denotes the length of a

vector. In addition, an external transceiver, called a relay, listens

to the channel and can input signals to the channel. We denote

the channel output at the relay with and its channel input

with . This setup is depicted in Fig. 1.

A. Relaying Strategies

In [2] Cover and El-Gamal introduced two relaying strategies

commonly referred to as decode-and-forward (DAF) and esti-

mate-and-forward (EAF). In DAF, the relay decodes the mes-

sage sent from the transmitter and then, at the next time interval,

transmits a codeword based on the decoded message. The rate

achievable with DAF is given in [2, Th. 1] stated below.

Manuscript received October 30, 2006; revised October 23, 2007. Current
version published September 17, 2008. This work was supported by the National
Science Foundation under Awards CCR-0238271 (CAREER), CCR-0330059,
and ANR-0325556. The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Nice, France, June 2007.

R. Dabora was with the School of Electrical and Computer Engineering, Cor-
nell University, Ithaca, NY 14853 USA. He is now with the Department of Elec-
trical Engineering, Stanford University, Stanford, CA 94305-9515 USA (e-mail:
rd97@cornell.edu).

S. D. Servetto, deceased, was with the School of Electrical and Computer
Engineering, Cornell University, Ithaca, NY 14853 USA (e-mail: servetto@ece.
cornell.edu).

Communicated by G. Kramer, Associate Editor for Shannon Theory.
Color versions of Figures 3–7 and 9 in this paper are available online at http://

ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2008.928981

Fig. 1. Relay channel. The encoder sends a messageW to the decoder.

Theorem 1 (Achievability of [2, Th. 1]): For the general relay

channel, any rate satisfying

(1)

for some joint distribution

, is achievable.

We note that for DAF to be effective, the rate to the relay has

to be greater than the point-to-point rate, i.e.,

(2)

otherwise higher rates could be obtained without using the relay

at all. For relay channels where DAF is not useful or not optimal,

Cover and El-Gamal proposed the EAF strategy. In this strategy,

the relay sends an estimate of its channel output to the destina-

tion, without decoding the source message at all. The achievable

rate with EAF is given in [2, Th. 6] stated below.

Theorem 2 [2, Th. 6]: For the general relay channel, any rate

satisfying

(3)

subject to (4)

for some joint distribution

, is an arbitrary

sample space, is achievable.

We note that a time-sharing (TS) random variable can im-

prove the achievable rate with EAF [18, Th. 2].

Of course, one can combine the DAF and EAF schemes

by performing partial decoding at the relay, thus obtaining

higher rates as in [2, Th. 7]. We note that the name “esti-

mate-and-forward” comes from the original description of

Cover and El-Gamal in [2, Sec. VI], where is referred to

as an estimate. Another common name for this strategy is

0018-9448/$25.00 © 2008 IEEE
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compress-and-forward (CAF, also sometimes abbreviated as

CF), and it is also referred to by the names observe-and-forward

and quantize-and-forward; see [8, Sec. I-B]. In the following,

we will refer to this method as EAF. Also, DAF is sometimes

abbreviated as DF.

B. Related Work

In recent years, the research in relaying has mainly fo-

cused on multiple-level relaying and the multiple-input–mul-

tiple-output (MIMO) relay channel. In the context of mul-

tiple-level relaying based on DAF, several DAF variations

were considered. In [3], Cover and El-Gamal’s block Markov

encoding/successive decoding DAF method was applied to the

multiple-relay case. Later work [4]–[6] applied the so-called

regular encoding/sliding-window decoding and the regular

encoding/backward decoding techniques to the multiple-relay

scenario. In [7], the DAF strategy was applied to the MIMO

relay channel. The EAF strategy was also applied to the mul-

tiple-relay scenario. The work in [8], for example, considered

the EAF strategy for multiple-relay scenarios and the Gaussian

relay channel, in addition to considering the DAF strategy. The

EAF strategy in the multiple-relay setup was also considered

in [9]. Another approach applied recently to the relay channel

is that of iterative decoding. In [10], the three-node network in

the half-duplex regime was considered. In the relay case, [10]

uses an iterative scheme where the receiver first uses EAF to

send information to the relay and then the relay decodes and

uses DAF at the next time interval to help the receiver. Combi-

nations of EAF and DAF were also considered in [11], where

conferencing schemes over orthogonal relay–receiver channels

were analyzed and compared. Both [10] and [11] focus on the

Gaussian case. EAF was also applied to tree networks in [12],

where the links between the nodes in the network (except the

source node) were assumed orthogonal.

An extension of the relay scenario to a hybrid broadcast/relay

system was introduced in [13] in which the authors applied a

combination of an EAF step followed by a DAF step to the in-

dependent broadcast channel (BC) with a single common mes-

sage, and then extended this scheme to a multistep conference.

In [14], we used both a single-step and a two-step conference

with orthogonal conferencing channels in the discrete memory-

less framework. A thorough investigation of the broadcast–relay

channel was carried out in [15], where the authors applied the

DAF strategy to the case where only one user is helping the other

user, and also presented an upper bound for this case. Then, the

fully cooperative scenario was analyzed. The authors applied

both the DAF and the EAF methods to that case. Finally, we

note the work in [16] where both transmitter cooperation and

receiver cooperation were considered (separately) over wire-

less (i.e., correlated) cooperation channels, with a single coop-

eration cycle. In transmitter cooperation, DAF in combination

with dirty-paper coding (see [17]) was considered and for re-

ceiver cooperation EAF and DAF were considered, focusing on

Gaussian channels.

C. The Gaussian Relay Channel With Coded Modulation

One important instance of the relay channel we consider in

this work is the Gaussian relay channel with coded modulation.

This scenario is important in evaluating the rates achievable with

practical communication systems, where components in the re-

ceive chain, such as equalization, for example, require a uni-

formly distributed finite constellation for optimal operation. In

Gaussian relay channel scenarios, the following three types for

relaying schemes are most frequently encountered.

• The DAF scheme. This scheme achieves capacity for the

physically degraded Gaussian relay channel (see [2, Sec.

IV]). In [8, Sec. VII-B], it is shown that for asymptotically

high signal-to-noise ratio (SNR) on the source-relay link,

DAF achieves the capacity of the Gaussian relay channel.

• The EAF scheme in which the auxiliary variable

is assigned a Gaussian distribution. For example, in [18,

Sec. IV], a Gaussian auxiliary random variable (RV) is

used together with TS at the transmitter. The Gaussian as-

signment achieves capacity for the Gaussian relay channel

when the SNR on the relay-destination link approaches in-

finity [8, Remark 31]. In [19], an achievable rate with full

duplex relay transmission employing Gaussian EAF over

the Rayleigh relay channel is obtained for the high SNR

regime.1

• The linear relaying scheme in which the relay transmits a

weighted sum of all its previously received channel out-

puts [18, Sec. V]. Amplify-and-forward (AAF) is an im-

portant subclass of this family of relaying functions. In

[20], AAF was combined with DAF resulting in the de-

code-amplify-and-forward scheme. A related approach to

AAF was proposed in [21], in which the relay finds a min-

imum mean squared error estimate of its received symbol

on a symbol-by-symbol basis, and uses it to generate its

transmitted symbol.

Several recent papers consider the Gaussian relay channel

with coded modulation. In [22], the author considered the per-

formance of half-duplex DAF relaying for different practical

systems. In [23], DAF and AAF were considered for coherent

binary phase-shift keying (BPSK) and, in [21], examples with

BPSK were considered as well. In [24], the optimal uncoded

regeneration function for BPSK in the two-hop setup, for min-

imum average probability of error at the destination, was de-

rived.

As indicated by several authors (see [18]), it is not obvious if

a Gaussian relay mapping is indeed optimal. In this paper, we

show that for the case of coded modulation, there are scenarios

where non-Gaussian assignments of the auxiliary RV result in a

higher rate than the commonly applied Gaussian assignment.

D. Main Contributions

In the following, we summarize the main contributions of this

work.

• We first present an alternative characterization for the EAF

rate of [2, Th. 6] that does not have a feasibility con-

straint. This result is derived via an assignment of the aux-

iliary RV we call the TS assignment. Thus, this charac-

terization provides a positive rate for any auxiliary map-

1In [19], Y is not Gaussian but compression is performed by adding a
Gaussian RV to the received signal at the relay. Knowledge of the fading
coefficients is assumed. High SNR is assumed for both the relay and the
receiver.
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ping , as long as the channel setup permits

a positive rate. We also consider the achievable rate for

the single-relay channel when the destination receiver uses

joint decoding of both the relay information and the source

message, instead of the sequential decoding used in [2, Th.

6]. The rate expression can be obtained as a special case

of [26] by not performing partial decoding at the relay. We

then show that joint decoding does not increase the max-

imum rate of the EAF strategy, and find an assignment for

the auxiliary RV in [2, Th. 6] that obtains the joint-de-

coding rate expression from the general EAF expression.

We also present another assignment that results in a rate

that is always at least as high as the joint-decoding rate, for

the same distribution chain.

• We consider the optimization of the EAF mapping for the

Gaussian relay channel with an orthogonal relay-destina-

tion link. We focus on the coded modulation scenario with

BPSK modulation at the transmitter, and show that there

are three regions: high SNR on the source–relay link, where

DAF is the best strategy (out of DAF, Gaussian EAF, and

the three-level quantization we propose), low SNR on the

source–relay link in which the common EAF with Gaussian

assignment is best, and an intermediate region where EAF

with “hard decision (HD) per symbol” is better than both

DAF and Gaussian EAF. For this intermediate SNR region,

we study for the first time two types of HDs: deterministic

and probabilistic, and show that each one of them can be su-

perior, depending on the channel conditions. In comparison,

previous work in which EAF was applied to this scenario

used the Gaussian auxiliary mapping, and did not consider

optimization of the mapping.

• Last, we consider the cooperative broadcast scenario with

receivers holding a multistep conference. We present a gen-

eral rate region, extending the Marton rate region of [25,

Th. 2] to the case where the receivers hold a -cycle con-

ference prior to decoding the messages. The conference

is based on successive EAF steps. This improves on pre-

vious results by letting the receivers successively refine

the conference information, thus potentially allowing them

to achieve higher source-destination rates. We then spe-

cialize this result to the single common message case and

obtain explicit expressions (without auxiliary RVs) for the

two-step conference.

The rest of this paper is organized as follows. In Section II, we

discuss the TS-EAF assignment. We consider the EAF strategy

withTSandrelateit totheEAFrateexpressionwithjointdecoding

at the destination receiver. In Section III, we study the Gaussian

relay channel with coded modulation. In Section IV, we consider

the general cooperative broadcast scenario and obtain an explicit

rate expression by applying TS-EAF to the multistep conference.

Finally, Section V presents concluding remarks.

II. TIME-SHARING ESTIMATE-AND-FORWARD

A. Definitions

First, a word about notation: we denote random variables with

capital letters, e.g., and , and their realizations with lower

case letters and . A random variable takes values in a

set . We use to denote the cardinality of a finite, dis-

crete set , and to denote the probability distribution

function (pdf) of on . For brevity, we may omit the sub-

script when it is obvious from the context. We denote vec-

tors with boldface letters, e.g., and ; the th element of a

vector is denoted by and we use where to de-

note . Unless otherwise specified, we

set . We use to denote the set of

-strongly typical sequences with respect to (w.r.t.) distribution

on , as defined in [27, Ch. 5.1].2 Finally, we denote by

a Gaussian RV with mean and variance . We also

have the following definitions.

Definition 1: The discrete relay channel is defined by two

discrete input alphabets and , two discrete output alpha-

bets and , and a collection of pdfs giving the

probability distribution on for each .

The relay channel is called memoryless if the probability of the

outputs at time satisfies

where is the transmitted message.

In this paper we consider only the memoryless relay channel.

Definition 2: A code for the relay channel consists

of a source message set , a mapping func-

tion at the encoder

a set of relay functions

where the th relay function maps the first channel out-

puts at the relay into a transmitted relay symbol at time , and

, , is an arbitrary constant. Last, we have a de-

coder

Definition 3: The average probability of error for a code of

length for the relay channel is defined as

where is selected uniformly over .

Definition 4: A rate is called achievable if there exists a

sequence of codes with as .

B. Single-Relay EAF With TS

Consider the following assignment of the auxiliary random

variable of Theorem 2:

(5)

2Let N(x ja) number of times the symbol a 2 X appears in the se-
quence x 2 X . The strongly �-typical set w.r.t. probability distribution
p (x) is defined as the set of all sequences x 2 X such that N(x ja) = 0
if p (a) = 0 and N(x ja)� p (a) � �. We denote this set with

A (X).
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where “ ” can be viewed as an erasure symbol. Under this as-

signment, the feasibility condition of (4) becomes

and the rate expression (3) becomes

Clearly, maximizing the rate implies maximizing subject to

the constraint . This gives the following corollary to

Theorem 2.

Corollary 1: For the general relay channel, any rate satis-

fying

(6)

for the joint distribution

, with , is

achievable.

Now, consider the following distribution chain:

(7)

We note that this extended chain can be put into the stan-

dard form by letting

. After compression of into ,

there is a second compression operation, compressing into

. The output of the second compression is used to facilitate

cooperation between the relay and the destination. Therefore,

the receiver decodes the message based on and , using

exactly the same steps as in the standard relay decoding, with

replacing . Then, the expressions of Theorem 2 become

(8)

subject to (9)

Now, applying TS to with

(10)

the expressions in (8) and (9) become

(11)

(12)

Combining this with the constraint , we obtain the

following proposition.

Proposition 1: For the general relay channel, any rate sat-

isfying

for some joint distribution

, is achievable.

This proposition generalizes on Corollary 1 by performing

a general Wyner–Ziv (WZ) compression combined with TS

(which is a specific type of WZ compression), intended to

guarantee feasibility of the first compression step. Comparing

with [2, Th. 6], we see that for the same distribution chain,

Proposition 1 always provides a positive rate (as long as the

channel permits). In Section III, we apply a similar idea to EAF

relaying in the Gaussian relay channel with coded modulation.

We note that taking the supremum over all mappings, we get

that Proposition 1 achieves the same rate as Theorem 2; see

Appendix A.

C. Joint Decoding and Time Sharing

In the original work of [2, Th. 6], the decoding procedure at

the destination receiver for decoding the message at time

consists of three steps (the notations below are identical to [2,

Th. 6]; the reader is referred to the proof of [2, Th. 6] to recall

the definitions of the sets and variables used in the following

description).

1) Decode the relay index using , the received signal

at time .

2) Decode the relay message , using , the received

signal , and the previously decoded .

3) Decode the source message using , , and

.

Evidently, when decoding the relay message at the

second step, the receiver does not make use of the statistical

dependence between , the relay sequence at time ,

and , the transmitted source codeword at time .

The way to use this dependence is to jointly decode and

after decoding and . The joint-decoding procedure

then has the following steps.

1) From , the received signal at time , the receiver

decodes by looking for a unique , the set of

indices used to enumerate the sequences, such that

. As in [2, Th. 6], the correct can

be decoded with an arbitrarily small probability of error

by taking large enough as long as

(13)

where .

2) The receiver now knows the set into which (the

relay message at time ) belongs. Additionally, from

decoding at time , the receiver knows , used to

generate . The receiver generates the set

, . As-

suming no decoding error at the previous step, the average
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size of this set (averaged over all selections of codewords

and received sequences ) is

no error at time

3) The receiver now looks for a unique such that

for some

. If such a unique exists, then it is the decoded

, otherwise the receiver declares an error.

The rate expression resulting from this decoding procedure is

given by the following proposition.

Proposition 2: For the general relay channel, any rate sat-

isfying

subject to

for some joint distribution

, is achievable.

Proof: The details of the proof can be found in [26] and

[36, Appendix A].

It can be shown using TS (see details in Appendix A) that

the joint-decoding rate can be obtained as a special case of [2,

Th. 6]. Moreover, for the same distribution chain, the rate of

Proposition 1 is always at least as high as the joint-decoding

rate of Proposition 2.

III. THE GAUSSIAN RELAY CHANNEL WITH

CODED MODULATION

In this section, we investigate the application of EAF with

TS to the Gaussian relay channel. For this channel, the common

practice is to use Gaussian codebooks and Gaussian quantiza-

tion (GQ) at the relay [8], [18], [19]. The rate in Gaussian sce-

narios where coded modulation is applied is usually analyzed by

applying DAF at the relay (see, for example, [23] and [22]). In

this section, we show that when considering coded modulation,

one should select the relay strategy according to the channel

conditions: Gaussian selection seems a good choice when the

SNR at the relay is low and DAF appears to be superior when

the relay enjoys high SNR conditions. However, for interme-

diate SNR, there is much room for optimizing the estimation

mapping at the relay. This is shown via numerical analysis with

supporting analytical arguments.

In the following, we first recall the Gaussian relay channel

with a Gaussian codebook, and then we consider the Gaussian

relay channel under BPSK modulation constraint. Because we

focus on the mapping at the relay, we consider here the Gaussian

relay channel with an orthogonal relay-destination link of finite

capacity , also considered in [11]. This scenario is depicted

in Fig. 2. In the context of the general relay channel with an

orthogonal relay-destination link ,we note two papers. The first

is the work of [37], which considered the relay channel with

an orthogonal relay-destination link and with conditionally in-

dependent and , where furthermore, is a stochastically

Fig. 2. Gaussian relay channel with a finite-capacity noiseless relay link be-
tween the relay and the destination.

degraded version of . Another work we note is [38], which

considers the orthogonal relay channel in which is a deter-

ministic function of .

In the Gaussian relay channel with an orthogonal relay-des-

tination link, is the channel output at the relay

and is the channel output at the receiver, which

decodes the message based on and the information received

from the relay through the relay-destination link. Here ,

, and , independent of . Let

denote the source message set, and let

the source have an average power constraint

The relay compresses its channel output into using the

EAF scheme. The relay then sends information through the fi-

nite-capacity noiseless link to the destination to facilitate de-

coding of at the destination. For this scenario, the expres-

sions of [2, Th. 6] specialize to

(14a)

subject to (14b)

with the Markov chain .

We also consider in this section the DAF method whose

achievable rate is given by (see [2, Th. 1])

and the upper bound of [2, Th. 3]

We note that although these expressions were originally derived

for the finite and discrete alphabet case, following the method

of Wyner in [39], they hold also for arbitrary sources, and in

particular, for the Gaussian and the Gaussian-mixture cases.

A. The Gaussian Relay Channel With Gaussian Codebooks

When , independent identically distributed

(i.i.d.), then the channel outputs at the relay and at the receiver

are jointly normal RVs
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The compression is achieved by adding to a zero mean inde-

pendent Gaussian RV

(15)

We refer to the assignment (15) as Gaussian-quantization esti-

mate-and-forward (GQ-EAF). Evaluating the expressions (14a)

and (14b) with assignment (15) results in (see, also, [11] and

[41])

(16a)

(16b)

The feasibility condition (14b), combined with (16b), yields

and because maximizing the rate (16a) requires minimizing ,

the resulting GQ-EAF rate expression is

Now, when using GQ at the relay, we see that TS does not

help: the minimum is required in order to maximize the rate

(16a). This minimum is achieved only when the entire capacity

of the relay-destination link is dedicated to the transmission of

the (minimally) quantized . However, when we consider the

Gaussian relay channel with coded modulation, the situation is

quite different, as we show in the remainder of this section.

B. The Gaussian Relay Channel With Coded Modulation

Consider the Gaussian relay channel where is an equiprob-

able BPSK signal of amplitude

(17)

In this case, the received symbols are no longer jointly

Gaussian, but follow a Gaussian-mixture distribution

where

(18)

Contrary to the Gaussian codebook case, where it is hard to iden-

tify a mapping that will be superior to the GQ (if in-

deed such a mapping exists), in this case, it is natural to consider

ternary mappings for . We can predict that such mappings will

perform well at high SNR on the source–relay link, when the

probability of error for symbol-by-symbol detection at the relay

is small, with a much smaller complexity than GQ. We start by

considering two types of HD mappings.

1) The first mapping is HD-EAF. The relay first makes a hard

decision about every received symbol, determining whether

it is positive or negative, and then randomly decides whether to

transmit this decision or transmit an erasure symbol instead.

The probability of transmitting an erasure is used

to adjust the conference rate such that the feasibility constraint

is satisfied. Therefore, the conditional distribution is

given by

(19a)

.
(19b)

This choice is motivated by the TS method considered in

Section II: after making an HD on the received symbol’s sign,

positive or negative, the relay applies TS to that decision so that

the rate required to transmit the resulting random variable to the

destination is less than . This facilitates transmission to the

destination through the conference link. Because the entropy of

the sign decision is , then when , we can transmit the

sign decisions directly without using an erasure. Therefore, we

expect that for values of in the range , this mapping

will not exceed the rate obtained for . The focus is,

therefore, on values of that are less than . The expressions

for this assignment are given in part A of Appendix B.

2) The second method is deterministic HD. In this approach,

we select a threshold such that the range of is partitioned

into three regions: , , and .

Then, according to the value of each received symbol, the

corresponding is deterministically selected

.

(20)

The threshold is selected such that the achievable rate is max-

imized subject to satisfying the feasibility constraint. We refer

to this method as deterministic hard decision (DHD). Therefore,

this is another type of TS in which the erasure probability is de-

termined by the fraction of the time the relay input is between

to . The expressions for evaluating the rate of the DHD

assignment are given in part B of Appendix B.

We expect the DHD method to be better than HD-EAF at

high source–relay SNR because in HD-EAF, erasure is selected

without any regard to the quality of the sign decision—both

high-quality sign decisions and low-quality sign decisions are

erased with the same probability. In contrast, in DHD, the erased

region is the region where the decisions have low quality in the

first place and all high-quality decisions are sent. However, at

low source–relay SNR and small capacity of the relay-desti-

nation link, HD-EAF may perform better than DHD because

the erased region (i.e., the region between to ) for the

DHD mapping has to be very large in order to facilitate trans-

mission of the estimate through the relay-destination link, while

HD-EAF may require less compression of the HD output. This
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Fig. 3. Information rate with BPSK for HD-EAF mapping at the relay versus
source–relay channel gain g, for different values of C .

is because the erasure symbol in DHD carries information while

in HD-EAF it does not. Therefore, DHD requires more band-

width for transmission of this information to the destination.

We note here two related papers that consider relay transmis-

sion based on symbol-by-symbol decisions. The first paper is

[21], which compares the performance obtained by soft and hard

symbol-by-symbol decisions at the relay with AAF. The second

work is [40] in which the bit error rate (BER) is compared for

DAF and AAF where the focus is on the detector structure at the

destination receiver.

We now examine the performance of each technique using

numerical evaluation. First, we examine the achievable rates

with HD-EAF. The expressions are evaluated for

and . For every pair of values considered, the

that maximizes the rate was selected. Fig. 3 depicts the

information rate versus for , together with the

upper bound and the DAF rate. As can be observed from Fig. 3,

the information rate of HD-EAF increases with until

and then remains constant (solid line with square markers). It is

also seen that for small values of , HD-EAF is better than DAF.

This region of increases with , and for the crossover

value of is approximately .

Next, examine DHD. As can be seen from Fig. 4, for small

values of , DAF exceeds the information rate of DHD for

values of greater than , but for , DHD is superior

to DAF, and in fact DAF approaches DHD from below. An-

other phenomenon obvious from the figure (examine ,

for example) is the existence of a threshold. For low values

of there is some at which the DHD rate exhibits a jump.

This can be explained by looking at Fig. 5, which depicts the

values of and versus the threshold :

the bold–solid graph of can intersect the horizontal

bold–dashed line representing at two values of at the most.

We also note that for small the value of is gen-

erally larger than for large . Now, the jump can be explained

as follows. As shown in part B.1 of Appendix B, for small

and , is bounded from below. If this bound value

Fig. 4. Information rate with BPSK for DHD mapping at the relay versus
source-relay channel gain g, for different values of C .

Fig. 5. I(Ŷ ;Y jY ) and I(X;Y; Ŷ ) versus threshold T for (left)
(g;C) = (0:4; 0:8) and (right) (g; C) = (1:4; 0:8). The bold–solid

line represents I(Ŷ ; Y jY ), the horizontal bold–dashed line represents

C = 0:8, I(X;Y; Ŷ ) is represented by the dash–dot line, and the resulting
information rate is depicted with the solid line.

is greater than , then the intersection will occur only at a large

value of , hence the low information rate. When increases,

the value of for small decreases accordingly,

until at some it intersects for a small as well as for a large

, as indicated by the arrow in the right-hand part of Fig. 5. This

allows us to obtain the rates in the region of small , which are,

in general, higher than the rates for large and this is the source

of the jump in the information rate.

C. Time-Sharing Deterministic Hard Decision (TS-DHD)

It is clearly evident from the above numerical evaluation that

none of the two mappings, HD-EAF and DHD, is universally



4416 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 10, OCTOBER 2008

Fig. 6. Information rate with BPSK, for HD-EAF, DHD, and TS-DHD map-
pings at the relay versus relay channel gain g, for different values of C .

better than the other: when is small and is less than ,

then HD-EAF performs better than DHD, because the erased

region is too large, and when increases, DHD performs better

than HD-EAF because it erases only the low-quality informa-

tion. It is, therefore, natural to consider a third mapping, which

combines both aspects of binary mapping at the relay, namely,

deterministically erasing low-quality information and then ran-

domly gating (i.e., TS) the resulting discrete variable (in the re-

gion ) in order to facilitate its transmission over the

relay-destination link. This hybrid mapping is given in the fol-

lowing assignment:

(21a)

(21b)

.
(21c)

In this mapping, the region is always erased, and the

complement region is erased with probability . Of

course, now both and have to be optimized. The

expressions for TS-DHD can be found in part C of Appendix B.

Fig. 6 compares the performance of DHD, HD-EAF, and

TS-DHD. As can be seen, the hybrid method enjoys the bene-

fits of both types of mappings and is the superior method.

Next, Fig. 7 compares the performance of TS-DHD, GQ-EAF

(see part D of Appendix B), and DAF. As can be seen from the

figure, GQ is not always the optimal choice. For (the

lines with diamond-shaped markers), we can see that GQ-EAF

is the best method for ; for , TS-DHD

is the best method; and for , DAF achieves the highest

rate. For (x-shaped markers), TS-DHD is superior to both

GQ-EAF and DAF for ; and for , GQ-EAF is the

superior method for all . We conclude that for the prac-

tical Gaussian relay scenario, where the modulation constraint

is taken into account, in some situations the three-level quanti-

zation is better than GQ.

Last, Fig. 8 depicts the regions in the plane in which

each of the methods considered here is superior, in a similar

Fig. 7. Information rate with BPSK, for DAF, TS-DHD, and GQ-EAF at the
relay versus relay channel gain g, for different values of C .

Fig. 8. Best relaying strategy (out of DAF, TS-DHD, and GQ-EAF) for the
Gaussian relay channel with BPSK modulation.

manner to [11, Fig. 2].3 As can be observed from the figure,

in the noisy region of small and also in the region of very

large (high ), GQ-EAF is superior, and in the strong relay

region of medium-to-high and medium-to-high (medium

), TS-DHD is the superior method. DAF is superior for

small and high (low ). We note that the region where

DAF achieves capacity is obtained by numerically evaluating

the upper and lower bounds on the rate. In some sense, the

TS-DHD method is a hybrid method between the DAF, which

makes an HD on the entire block, and GQ-EAF, which (can be

thought of as if it) makes a soft decision every symbol (although

it actually operates with blocks of symbols), therefore it is su-

perior in the transition region between the region where DAF

is distinctly better, and the region where GQ-EAF is distinctly

superior.

3The block shapes are due to the step size of 0:025 in the values of g and C

at which the rates were evaluated.
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D. When the SNR on the Source-Destination Link

Approaches

In this subsection, we analyze the relaying strategies dis-

cussed in this section as the SNR on the source-destination link

approaches zero. Because TS-DHD is a hybrid method

combining both DHD and HD-EAF, we analyze the behavior

of the components rather than the hybrid, to gain more insight.

This analysis is particularly useful when trying to numerically

evaluate the rates, because as the source-destination link SNR

goes to zero, the computer’s numerical accuracy does not allow

to numerically evaluate the rates using the general expressions.

This situation corresponds to two-hop relaying.

First, we note that when the SNR of the direct link

approaches , we have that as well. To see this,

we write

with , and from (B.3)

where the approximation is in the sense that, for small , we

have , and for large , drives the entire

expression to zero as , for . This approximation

reflects the intuitive notion that as the variance increases to in-

finity, the two-component, symmetric Gaussian mixture resem-

bles more and more a zero-mean Gaussian RV with the same

variance. Therefore, for low SNR, the output at the destination

is very close to a zero-mean normal RV with variance , and

,4 hence

Note that the upper bound and the DAF rate in this case are both

equal to

Now, let us evaluate the rate for HD-EAF as the SNR goes to

zero. In part E of Appendix B, we show that the rate for HD-EAF

as the SNR on the source-destination link goes to zero becomes

[see (B.10)]

(22)

4For � = 20, we have that jf (y) � G (0; � )jdy < 0:001, for

� = 55, h(Y )�h(N) � 0:001, and for � = 200, h(Y )�h(N) < 0:0001.

where is the discrete entropy for the specified pdf , and

.

For GQ-EAF, we first approximate at low SNR be-

ginning with (B.9)

because the behavior of this expression versus is largely de-

termined by , and has only a negligible effect.

Again, we see that as the direct link SNR approaches , and

become independent. Now, the rate is given by

(23)

where is derived in part F of Appendix B. The feasibility

condition becomes

(24)

with

Finally, for DHD, as , we have

where follows from the independence of and as

and the fact that is a deterministic function of , com-

bined with the fact that given , and are independent. The

feasibility condition becomes

Because is not a monotone function of , we have to

optimize over to find the actual rate.

As can be seen from the expression for HD-EAF, when the

SNR on the source-destination link decreases, the capacity of

the conference link acts as a scaling factor on the rate of the

binary channel from the source to the relay. This is due to the
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Fig. 9. Information rate with DAF, DHD, HD-EAF, and GQ-EAF versus
source–relay channel gain g, for different values of C , at low SNR on the
source-destination link.

TS. In Fig. 9, we plot the information rates for DHD, HD-EAF,

GQ-EAF, and DAF (which coincides with the upper bound for

asymptotically low SNR on the source-destination link). Com-

paring the three EAF strategies, we note that DHD, which at in-

termediate SNR on the source–relay link performs well for

, has the worst performance at low SNR up to . At

, DHD becomes the best scheme out of the three. This

is due to the threshold effect discussed earlier. For and

high SNR on the source–relay channel, HD-EAF outperforms

both DHD and GQ-EAF. For low SNR on the source–relay

channel, GQ-EAF is again superior.

E. Discussion

We make the following observations.

• As noted at the beginning of this section, at low SNR on

the source–relay link, GQ-EAF outperforms TS-DHD. To

see why, consider the distribution of

where the approximation is because for large values of

, determines the behavior of the expression.

Therefore, as , approaches a zero-mean Gaussian

RV: . As discussed in [28, Ch. 13.3.2], the

rate-distortion function for quantizing a Gaussian RV is

minimized by GQ (for squared error distortion). Therefore,

it should be natural to guess that GQ will perform better at

low SNR on the source–relay link.

We also note that in [8, Sec. VII-B], EAF with a Gaussian

auxiliary RV and Gaussian codebooks was evaluated for

the general Gaussian relay channel. It was shown that at

asymptotically high relay-destination SNR, this assign-

ment of the codebooks and the auxiliary RV achieves

capacity.

• At the other extreme, as , consider the DAF

strategy: as , we have that is given by

the equation shown at the bottom of the page, where the

approximation is because as , the two Gaussian

peaks in the Gaussian-mixture distribution are so far from

one another that the effect of the overlap can be neglected.

Therefore

Hence

which is the maximal rate. Therefore, as , DAF

provides the optimal rate.

This conclusion is in accordance with [8, Sec. VII-B],

where it was shown that for the general Gaussian relay

channel, DAF achieves capacity as the source–relay SNR

goes to infinity. We note that for the general Gaussian relay

channel, capacity is achieved with Gaussian codebooks.

Here we showed that DAF maximizes the rate also for

BPSK modulation.

• We can expect that at intermediate SNR, methods that

combine elements of the “soft-decision per symbol” of

GQ-EAF and the HD on the entire codeword of DAF,

will be superior to both. As discussed earlier, TS-DHD is

such a method. Furthermore, we believe that as the SNR

decreases, increasing the cardinality of accordingly

will improve the performance.

• We note that we did not make a comparison with the AAF

scheme. The reason is that AAF generates an output vari-

able , which is a Gaussian RV. However, such an RV
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Fig. 10. BC with cooperating receivers. The encoder sends three messages, a
common messageW , a private message to Rx ,W , and a private message to

Rx ,W . Ŵ and
^̂
W are the estimates ofW at Rx and Rx , respectively.

cannot be transmitted through a finite-capacity link, there-

fore AAF is not applicable to this scenario.

IV. MULTISTEP COOPERATIVE BROADCAST APPLICATION

In this section, we consider the cooperative broadcast sce-

nario. In this scenario, one transmitter communicates with two

receivers. In its most general form, the transmitter sends three

independent messages: a common message intended for both

receivers and two private messages, one for each receiver, where

all three messages are encoded into a single-channel codeword

. Each receiver gets a noisy version of the codeword,

at and at . After reception, the receivers exchange

messages in a -cycle conference over noiseless conference

links of finite capacities and . Each conference message

is based on the channel output at each receiver and the con-

ference messages previously received from the other receiver,

in a similar manner to the conference defined by Willems in

[30] for the cooperative multiple-access channel (MAC). After

conferencing, each receiver decodes its message. This scenario

is depicted in Fig. 10. This setup was studied in [13] for the

single common message case over the independent BC (i.e.,

), and in [14], for the

general setup with a single cycle of conferencing. The moti-

vation for considering cycles of conferencing comes from

the fact that without knowledge of the other receiver’s input

(namely, with a single conferencing cycle), the conference

messages necessarily contain also “noise,” i.e., each receiver

sends some information to the other receiver that does not help

the other receiver in decoding its message (see also [14, Sec.

IV-I.3]). Therefore, by using several cycles of conferencing,

each receiver can enhance the other receiver’s knowledge about

its information, thus allowing that receiver to be more effective

in helping the first receiver. Of course, this has to be done in a

way such that the additional information rate gained for each

unit of the conference bandwidth is more than that ratio for

the previous conference steps, otherwise the additional cycles

will not improve the overall rate compared with fewer cycles

of conferencing.

A. Definitions

We use the standard definition for the discrete memoryless

general BC given in [32]. We define a cooperative coding

scheme as follows.

Definition 5: A -admissible K-cycle conference

consists of the following elements.

1) message sets from to , denoted by

, and message sets from

to , denoted by . Message set

consists of messages and message set

consists of messages.

2) mapping functions, one for each conference step from

to

and mapping functions, one for each conference step

from to

for .

The conference rates satisfy

Definition 6: A code for

the general BC with a common message and two independent

private messages consists of three sets of source messages

, , and

, a mapping function at the transmitter

a -admissible -cycle conference, and two decoders

Definition 7: The average probability of error is defined as

the average probability that at least one of the receivers does

not decode its message pair correctly

or

where we assume that each source message is selected uni-

formly and independently over its respective message set.

B. The Cooperative BC With Two Independent and

One Common Message

We first present the general result for the cooperative broad-

cast scenario with a -cycle conference. For , de-

note with , , and

. Let and be the private

rates to and , respectively, and let denote the rate of

the common information. Then, the following rate triplets are

achievable.

Theorem 3: Consider the general BC

with cooperating re-

ceivers, having noiseless conference links of finite capacities

and between them. Let the receivers hold a conference
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that consists of cycles. Then, any rate triplet

satisfying

(25a)

(25b)

(25c)

(25d)

subject to

(26a)

(26b)

for some joint distribution

(27)

is achievable.

Proof:

1) Overview of the Strategy: The coding strategy is based on

combining the broadcast code construction of [33], after incor-

porating the common message into the construction, with the

-cycle conference of [34]. The transmitter constructs a broad-

cast code to split the rate between the three message sets. This is

done independently of the relaying scheme. Each receiver gen-

erates its conference messages according to the construction of

[34]. After cycles of conferencing, each receiver decodes its

information based on its channel output and the conference mes-

sages received from the other receiver.

2) Code Construction at the Transmitter:

• Fix all the distributions in (27). Fix and let

. Let be a positive number whose

value is determined in the following steps. Let

. Let

denote the set of all sequences such

that and is nonempty, as

defined in [27, Corollary 5.11]. From [27, Corollary 5.11],

we have that , where as

and .

• Pick sequences from in a uniform and

independent manner according to

otherwise.

Label these sequences with

.

• For each sequence , , consider the

set , . Be-

cause the sequences are selected such

that is nonempty and because

implies ,

then also in nonempty, and by [27, Th.

5.9], , as

and .

• For each , pick sequences in

a uniform and independent manner from

according to

otherwise.

Label these sequences with

Similarly, pick sequences in a uniform

and independent manner from according to

otherwise.

Label these sequences with

and are selected such that , and

, we have that

• Partition the set into subsets ,

and let

Similarly, partition the set into subsets ,

and let

• For each triplet , consider the set

By [33, Lemma, p. 121], we have that taking large

enough we can make for any

arbitrary , as long as

(28a)

(28b)

(28c)
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Note that the individual rate constraints are required to

guarantee that the sets and are nonempty.

• For each , we pick a unique pair of

,

. The transmitter generates

the codeword according to

When transmitting the triplet , the transmitter

outputs .

3) Codebook Construction at the Receivers:

• For the first conference step from to , gener-

ates a codebook with codewords indexed by

using the th i.i.d. extension of

the distribution : .

uniformly and independently partitions the message

set into subsets indexed by

. Denote these subsets with .

• For the first conference step from to , gener-

ates a codebook with codewords indexed by

for each codeword ,

, in an i.i.d. manner, i.e., the th letter of

the codeword is selected i.i.d. according to

. uniformly and independently

partitions the message set into subsets indexed

by . Denote these sub-

sets with .

• For the th conference step from to ,

considers each combination of ,

, .

For each combination, generates a codebook

with messages indexed by

, according to the distribution

.

uniformly and independently partitions the

message set into subsets indexed by

. Denote these subsets

with .

• The codebook for the th conference step from to

is generated in a parallel manner for each combination of

, .

4) Decoding and Encoding at at the th Conference

Cycle for Transmission Block : needs first to de-

code the message sent from at the th cycle.

To that end, uses , the index received from

at the th conference step. In decoding , we as-

sume that all the previous were correctly

decoded at . We denote the sequences corresponding to

by , and sim-

ilarly, define .

• first generates the set defined by the equa-

tion shown at the bottom of the page.

• then looks for a unique such that

. If there is none or there

is more than one, an error is declared.

• From an argument similar to the derivation of [34, eq.

(3.5)], the probability of error can be made arbitrarily small

by taking large enough as long as

Here, , because the first conference message from

to (which is also the first conference message

in the -cycle conference) is generated based only on the

channel output at , , because there is no message

from to decode for this conference step.

In generating the th conference message to , it is

assumed that all the previous messages from

were decoded correctly.

• looks for a message such that

From the argument in [34, eq. (3.3)], the probability that

such a sequence exists can be made arbitrarily close to

by taking large enough as long as

• looks for the partition of into which belongs.

Denote the index of this partition with .

• transmits to through the conference link.

5) Decoding and Encoding at at the th Conference Step

for Transmission Block : Using similar arguments to

Section IV-B4, we obtain the following rate constraints.

• Decoding at can be done with an arbitrarily small

probability of error by taking large enough as long as
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• Encoding can be done with an arbitrarily small prob-

ability of error by taking large enough as long as

6) Combining All Conference Rate Bounds: First, consider

the bounds on ,

This can be satisfied only if

Hence

(29)

and, similarly

(30)

This provides the rate constraints on the conference auxiliary

variables of (26a) and (26b).

7) Decoding at : uses and

received from , to decode

as follows: looks for a unique message

such

From the point-to-point channel capacity theorem (see [33]),

this can be done with an arbitrarily small probability of error

by taking large enough as long as

(31)

Denote the decoded message . Now decodes by

looking for a unique such that

Fig. 11. BC with cooperating receivers, for the single common message case.

Ŵ and
^̂
W are the estimates ofW at Rx and Rx , respectively.

If such unique exists, then denote the decoded index with

. Now looks for the partition of into which be-

longs and sets to be the index of that partition: .

Similarly to the proof in [28, Ch 14.6.2], assuming successful

decoding of , the probability of error can be made arbitrarily

small by taking large enough as long as

which is satisfied by construction.

8) Decoding at : Repeating similar steps for decoding

at , we get that decoding can be done with an arbitrarily

small probability of error by taking large enough as long as

(32)

and assuming successful decoding of , decoding with an

arbitrarily small probability of error requires that

which again is satisfied by construction. Finally, collecting

(28a)–(28c), (31) and (32) give the achievable rate constraints

of Theorem 3, and (29) and (30) give the conference rate

constraints of the theorem.

C. The Cooperative BC With a Single Common Message

In the single common message cooperative broadcast sce-

nario, a single transmitter sends a message to two receivers en-

coded in a single channel codeword . This scenario is de-

picted in Fig. 11. After conferencing, each receiver decodes the

message. For this setup, we have the following upper bound.

Proposition 3 [31, Th. 6]: Consider the general BC

with cooperating receivers having

noiseless conference links of finite capacities and

between them. Then, for sending a common message to both

receivers, any rate must satisfy

In [31], we also derived the following achievable rate for this

scenario.

Proposition 4 [31, Th. 5]: Assume the BC setup of Proposi-

tion 3. Then, for sending a common message to both receivers,
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any rate satisfying

(33a)

(33b)

is achievable.

Note that this rate expression depends only on the parameters

of the problem and is, therefore, computable. In Proposition 4,

the achievable rate increases linearly with the cooperation ca-

pacity. The downside of this method is that it produces a rate

increase over the noncooperative rate only for conference links

capacities that exceed some minimum values.

Specializing the three independent messages result to the

single common message case, we obtain the following achiev-

able rate with a -cycle conference for the general BC with a

single common message.

Corollary 2: Consider the general BC with cooperating re-

ceivers, having noiseless conference links of finite capacities

and between them. Let the receivers hold a conference

that consists of cycles. Then, any rate satisfying

(34)

is achievable.

Here is defined as follows:

(35)

with

(36a)

(36b)

subject to

(37a)

(37b)

for the joint distribution

is defined in a parallel manner to , with performing

the first conference step, and the appropriate change in the prob-

ability chain.

The proof of Corollary 2 is provided in Appendix C.

We note that [13, Th. 2] presents a similar result for this

scenario, under the constraint that the memoryless BC can be

decomposed as , and

considering the sum rate of the conference. Here we show that

the same achievable rate expressions hold for the general mem-

oryless BC.

D. A Single-Cycle Conference With TS-EAF

Consider the case where only a single cycle of conferencing

between the receivers is allowed. Specializing Corollary 2 to a

single-cycle case, we obtain

(38a)

(38b)

(38c)

and the TS-EAF assignment is

.

Applying the TS-EAF assignment to (38c) and (38b), we obtain

Maximizing requires maximizing . Therefore,

setting , we obtain

. Combining with , we have that

the rate when decodes first is given by

and by a symmetric argument, we can obtain . We conclude

that the rate for the single-cycle conference with TS-EAF is

given by

We note that this rate is always higher than the point-to-point

rate and is also higher than the joint-decoding rate of Proposi-

tion 4 (whenever cooperation can provide a rate increase). How-

ever, as in Proposition 4, at least one receiver has to satisfy
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Fig. 12. Achievable rate R versus conference capacity C , for Proposition 3
(dashed–dotted), Proposition 4 (dashed), and Corollary 2 (solid), for the sym-
metric BC.

the Slepian–Wolf condition for the full cooperation rate to be

achieved.

We demonstrate the results of Proposition 4 and Corollary 2

through a symmetric BC example: consider the symmetric BC

where and

for any and . Let . For

this scenario, we have that , in Corollary 2 and also

in Proposition 4. The resulting rate

is depicted in Fig. 12 for a fixed probability . We can see

that for this case, TS exceeds joint decoding for all values of .

Both methods meet the upper bound at . We note

that this a corrected version of the figure in [35] (the figure in

[35] is incorrect due to an error in the derivation).

We also note that using TS-EAF with more than two steps

does not improve upon this result. For the three-step conference,

for example, we achieve the following rate.

Corollary 3: For the general BC of Corollary 2, any rate

satisfying

(39a)

(39b)

is achievable, where indicates that the first step is per-

formed by , the second step by and so on, and

can be obtained from by switching “ ” and “ ,” and sim-

ilarly, can be obtained from .

Examining the rate expression for , we see that the

maximum is achieved for , namely, does not send

any information in the first step and keeps all the conference

bandwidth for the last step. The reason is that using

TS-EAF, every unit of cooperation capacity translates into

additional rate of , up to maximum of

(assume ). However,

using DAF, every unit of conference capacity translates directly

into a unit increase in the achievable rate. Therefore, DAF is

more efficient than the TS-EAF step. Furthermore, in TS-EAF,

using several cycles of conferencing does not allow to suc-

cessively refine the conference information, because at every

conference step, say of capacity , the TS-EAF effectively

delivers output symbols from one receiver to the

other. Once these symbols have been delivered, they do not

participate in the following “successive refinements” as the

conditional distribution becomes atomic. Therefore, there is

no gain in performing several TS-EAF steps compared with

a single TS-EAF step. Note that this may not hold when the

mapping is not TS-EAF.

V. CONCLUSION

In this paper, we considered the EAF technique using

TS on the auxiliary RVs. We first presented an alternative

characterization of the classic EAF rate without a feasibility

constraint. We also showed that incorporating joint decoding

at the destination into the EAF scheme results in a special

case of the classic EAF of [2, Th. 6]. Next, we showed that

for the Gaussian relay channel with coded modulation, the

rate achievable with the Gaussian auxiliary RV assignment can

be exceeded by a TS-EAF implementing a “per-symbol HD,”

under certain channel conditions. Finally, we considered a third

application of TS-EAF to the cooperative broadcast scenario

with a multicycle conference. We first derived an achievable

rate for the general channel, and then we specialized it to the

single-cycle conference for which we obtained an explicit

achievable rate. This rate is superior to the explicit expression

that can be obtained with joint decoding.

As for the future work, we focus on the Gaussian relay

channel with coded modulation. The objective is to gain

analytic insight into the EAF rates by finding analytic approxi-

mations to the integrals used in the evaluation. This is necessary

in order to compare the HD-EAF and DHD methods and find

analytically the regions in which each of the two is superior.

Analytic approximations are also necessary to characterize the

relationship between the SNR on the source–relay link and the

minimal cardinality of that achieves the maximum TS-DHD

rate.

APPENDIX A

PROOF OF THE EQUIVALENCE OF JOINT DECODING AND

THE CLASSIC EAF FOR SECTION II-C

Let us now compare the rates obtained with joint decoding

(Proposition 2) with the rates obtained with the sequential de-

coding of [2, Th. 6]: to that end, we consider the joint-decoding

result of Proposition 2 with the extended probability chain of (7)
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where represents the information relayed to the destination.

Expanding the expressions of Proposition 2 using the assign-

ment (10), similarly to Proposition 1, we obtain the expressions

(A.1)

subject to

(A.2)

We now make the following observations.

1) Setting , we obtain Proposition 2. Additionally, if

, then both Proposition 2 and

[2, Th. 6] give identical expressions.

2) When and

(A.3)

then for the same mapping , we see that Propo-

sition 2 provides rate but [2, Th. 6] does not. The rate ex-

pression under these conditions is

(A.4)

3) Now, fix the probability chain

and examine the expres-

sions (A.1) and (A.2) when (A.3) holds. When ,

then (A.3) guarantees that condition (A.2) is still

satisfied. If is close enough to such that we also have

, the rate from (A.1), i.e.,

is now greater than (A.4). In this case, we can keep de-

creasing until

(A.5)

at which point the rate becomes

(A.6)

This rate can be obtained from [2, Th. 6] by applying the

extended probability chain of (7), as long as

.

We, therefore, conclude that all the rates that joint decoding al-

lows can also be obtained or exceeded by the original EAF with

an appropriate TS.5

5This argument is due to Shlomo Shamai and Gerhard Kramer.

Note that equality in (A.5) implies

hence is the maximum that makes the mapping

feasible for [2, Th. 6]. Plugging into (A.6),

we obtain the rate expression of Proposition 1.

Finally, consider again the region where joint decoding is

useful (A.3)

If , then using TS on with

(A.7)

in (11) and (12) yields

as long as , or equivalently

(A.8)

Plugging assignment (A.7) into (A.8), we obtain

as long as , which is the region where

joint decoding is supposed to be useful. Hence, the joint-de-

coding rate of Proposition 2 can be obtained by TS on the [2,

Th. 6] expression. Therefore, joint decoding does not improve

on the rate of [2, Th. 6]. In fact, the rate of Proposition 1 is al-

ways at least as large as that of Proposition 2.
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APPENDIX B

EXPRESSIONS FOR SECTION III

A. Hard-Decision Estimate-and-Forward

We evaluate , with given by (19a) and

(19b) using

1) Evaluating : note that both and are discrete

RVs, therefore can be evaluated using the discrete

entropies. The conditional distribution of given is

given by

(B.1)

where

can be obtained from

by switching and in (B.1).

2) Evaluating : write first

and we note that

Using the chain rule, we write

can be obtained by combining (17) and (B.1), which

results in

(B.2)

and we note that , because erasure

is equivalent to no prior information. Finally, we note that

by definition

(B.3)

where

Next, we have

(B.4)

(B.5)

(B.6)

Using

we obtain

Next, we need to evaluate

.

1) . Here

2) By the definition of conditional entropy, we have
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where , and for , for

example, we have

Finally, we need to derive the distributions

and . Begin with

and due to the symmetry, .

We also have

B. Evaluation of the Rate With DHD

We evaluate the achievable rate using

. The distribution of is given by

and by symmetry, and

. Therefore, we need the conditional

distribution

This allows us to evaluate . For

evaluating , note that

and we need only to evaluate . By definition

and note that . Finally,

can be obtained using (B.7a)–(B.7c) shown at the bottom of the

following page. Evaluating , we have

where is due to the deterministic mapping from to ,

and can be evaluated using (B.3).

1) DHD When : As , we have that

and converges in distribution to a Bernoulli RV with

probability . Therefore

where . Now, letting , we

have that , and therefore
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We conclude that as , then ,

and therefore, the becomes

Using the continuity of , we conclude that for small

values of , as decreases, then is bounded from

below. This implies that for small and small , feasibility is

obtained only for large , which in turn implies low rate.

C. Evaluating the Information Rate With TS-DHD

1) Evaluating : We first write

Evaluating requires the mar-

ginal of . Using the mapping defined in (21), we find the mar-

ginal distribution of

where

Also, due to the symmetry, we have that

, and therefore, we need only to find the

conditional , which is shown in (B.8) at the

bottom of the page, and we note that

.

Next, we need to evaluate

. We first note that

Last, we have

We note that and that and

are calculated exactly as in part B of Appendix B

for the DHD case.

2) Evaluating : Begin by writing

where we used the fact that given , is independent of .

All the terms in the above expressions have been calculated in

the previous section, except

D. Gaussian-Quantization Estimate-and-Forward

Here the relay uses the assignment of (15)

(B.7a)

(B.7b)

(B.7c)

(B.8)
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We first evaluate

1) For , see (B.9) shown at the bottom of the page.

2) We also have

Last, we need to evaluate

where

E. Approximation of HD-EAF for

Now, let us evaluate the rate for HD-EAF as the SNR goes to

zero. From (14a)

and

Using (B.4)–(B.6), we have

when and is selected such that

. The approximation in is because for

small , and , and for large

, both and behave as

.

Hence

and using and

, we obtain

Therefore, at low SNR, and become independent. Then,

and the information rate

(B.9)
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becomes [see (B.1) and (B.2)]

where is the discrete entropy for the specified pdf , and

. Now, consider the feasibility

condition

where in we used the fact that and are independent as

, and that given , is independent of . Therefore,

for low SNR, we set and the rate be-

comes

(B.10)

F. Derivation for (23)

APPENDIX C

PROOF OF COROLLARY 2

In the following, we highlight only the modifications from the

general broadcast result due to the application of DAF at the last

conference step from to , and the fact that we transmit

a single message.

1) Codebook Generation and Encoding at the Trans-

mitter: The transmitter generates codewords in

an i.i.d. manner according to ,

. For transmission of the message

at time , the transmitter outputs .

2) Codebook Generation at the : The confer-

ence steps from to are carried out exactly as in

Section IV-B4. The first steps from to are

carried out as in Section IV-B5. The th conference step from

to is different from that of Theorem 3, as after the th

step from to , may decode the message because

received all the conference messages from . Then,

uses DAF for its th conference transmission to .

Therefore, simply partitions into subsets in a

uniform and independent manner.

3) Encoding and Decoding at the th Conference Step

From to :

• Before the th conference step, decodes its message

using his channel output and all the conference mes-

sages received from . This can be done with an arbi-

trarily small probability of error as long as (36b) is satis-

fied.

• Having decoded its message, uses the DAF strategy to

select the th conference message to . The conference

capacity allocated to this step is .

• Having received the th conference message from ,

can now decode its message using the information

received at the first steps, and combining it with

the information from the last step using the DAF decoding

rule. This gives rise to (36a).

4) Combining All the Conference Rate Bounds: The bounds

on , , can be obtained as in Section IV-B6

and similarly

where is the total capacity allocated to the first

conference steps from to . This provides the rate con-

straints on the conference auxiliary variables.
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