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Summary. Inertial and resistive effects in axisymmetric pulsar magneto-
spheres are examined as a function of the plasma density.

In the quasineutral limit the behaviour of the centrifugal-magnetic wind is
consistent with torque-free formulations of the magnetic structure, the
plasma inertia remaining small throughout the open field region. However, an
anomalous resistivity, implying non-vanishing poloidal flow, must be invoked
to prevent the two charge species from separating in the star’s gravity field,;
unless the closed field region is charge separated, then, enhanced diffusion
across field lines would be required in the vicinity of the equatorial plane.

In a steady, charge-separated magnetosphere, the effect of particle inertia
and/or radiation reaction must be included, at least near the light cylinder, in
the momentum equation and/or its divergence (i.e. the charge density), in
order to satisfy charge conservation. If the near field is dipole-like and inertial
effects are reasonably small near the star surface, the equatorial charge species
will be restricted to toroidal motion, and either (a) the polar charge species
are also so confined, or (b) the polar particles circulate back to the star. These
possibilities are discussed in the light of various integrals of the motion.

1 Introduction

The only self-consistently computed model of a puisar magnetosphere attempted so far has
been that of Kuo-Petravic, Petravic & Roberts (1974). They numerically integrated equa-
tions representing momentum conservation and continuity for each charge species, together
with Maxwell’s equations. The star, initially at rest in vacuum and surrounded by an intrinsic
magnetic dipole field aligned with the rotation axis, was gradually spun up to a final angular
speed £2; meanwhile, positively- or negatively-charged particles (but not both) were ejected
from each point on the inner boundary, depending on the sign of E-B which became non-
zero during the spin-up — thus conforming with the extraction mechanism originally
discussed by Goldreich & Julian (1969). Their finding that the field lines remained roughly
dipolar at distances greater than ¢/ from the rotation axis after the magnetosphere had
filled, with the charged particles appearing to cross them freely, contradicted theoretical
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investigations based on the assumption E+@ x B=0 (cf Goldreich & Julian 1969; or
Michel 1973b), which required the field lines to open out beyond the light cylinder. Kuo-
Petravic, Petravic & Roberts (1975) have attributed the complete breakdown of the frozen-
in assumption which they observed to the charge-separated nature of their system. However,
some doubt might be cast on their computations, because of the introduction of artificial
diffusion terms (allowing coarser meshes) and increased particle masses (offsetting the
effect of errors in the large electromagnetic terms), while it is not certain that a steady-state
flow was actually achieved, particularly in view of the small size of their system.

The efforts of Kuo-Petravic et al. do suggest that it is essential to distinguish between
charge-separated and quasineutral-plasma models of pulsar magnetospheres (cf. also
Scharlemann 1974). In this investigation, which will be carried out within the axisymmetric
framework, the roles of finite inertia and resistivity will be correlated with the degree of
charge separation. By and large, models which purport to be self-consistent fail to take
physical properties of the plasma into account (Kuo-Petravic et al., for example, ignored the
effect of radiation damping despite the enormous energies attained by their particles). In
particular, the essential requirement of no net current outflow, that is V-J =0 everywhere
in a steady state, is often glossed over since inertial and dissipative effects would otherwise
have to be incorporated. (On the other hand, Scharlemann (1974), in his treatment of
inertial effects, seems to have overlooked the question of the overall charge conservation.)
Rather than seeking a limited ‘self-consistent’ solution, we attempt to lay some groundwork
on which a realistic pulsar-magnetosphere model might be based.

2 The generalized Ohm’s law

The assumption
E+BxB=0 (1)

is justifiably the starting point for investigations of pulsar magnetospheres characterized by
non-negligible plasma densities, as, in the intense magnetic field surrounding the compact
object, charged particles should find it easier to move along rather than across the field
lines, which thus become approximate equipotentials.  represents the velocity (normalized
to ¢) of a frame of reference where the total momentum density of the plasma vanishes; the
equality here is not shown as exact since it is generally necessary to allow for at least a small
paralle]l component of electric field |Ey| < |BlIB| in order to take care of the balance of
forces along B (for example, to provide support against gravity). Note also that approxima-
tion (1) does not necessarily imply a charge density given by p. ~ — V- @8 x B/4, since the
divergence of the neglected terms might not itself be negligible (as illustrated in Section 4).
In order to determine the extent to which the approximation is valid (and whether in fact it
breaks down completely in some magnetospheric domains), it will be necessary to consider
the dynamics of the individual charge species in one form or another. The problem is compli-
cated by (primarily collisionless) interactions which on the one hand tend to prevent the
charge species from separating under large-scale dynamical influences, but on the other result
in small-scale electric fields which could have a cumulative effect — producing in particular
a sizeable ‘runaway’ population (¢f. Coppi & Ferrari 1970).

The plasma will be taken to consist of electrons of charge —e, mass m,, and ions of
charge Ze, mass m;; correspondingly, the laboratory-frame number densities will be denoted
by n;, ne. For each species, the particle velocities will be assumed isotropic in a (asterisked)
frame where the momentum density vanishes (thus viscous effects are ignored), so that mean
velocities B;, B (normalized to ¢) may be unambiguously defined, with the associated
Lorentz factors v; = (1 — IB;1>)™"2, yo= (1 — IBe|*)™2 Then, in a steady state, conserva-
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tion of momentum for ions and electrons may be written

M
V‘Ki = niZe(E +ﬂi X B) + nimiV(—-) +R; — Xeb (23.)
r
M b
V-K.=—nee(E +Bc x B) +nemV|— )+ R + Xy, (2b)
r
where

V-Ki= V-[(¢ + P) viigil + VP,
V-K.=V. [(e: +Pe) 7epepe] + VP,.

Here K;, K. are the kinetic tensor densities (Rossi & Olbert 1970) corresponding to each
charge species, €], el represent the respective comoving-frame energy densities, and P, P,
denote the individual scalar pressures. In addition to the Lorentz force, we have included in
equations (2) gravity in the non-relativistic approximation, and (symbolically) radiation
reaction R;, R, as well as terms + X,; representing the momentum exchange between the two
charge species. If both ions and electrons are assumed ‘cold’ in the sense e = nffm;c?,
€z = nimec?, Py~ P, ~ 0 (thereby avoiding the question of whether the particle velocities
are indeed isotropic in the asterisked frame), then

V-K; ~ V- (mimic*v;gigi), (3a)
VoK, = V- (1emec*efefe): (3b)
while the steady-state continuity equations may be given as

V-(nifi) =0, (42)
V- (nefe) = 0. (4b)

Equations (2) provide a direct description of the magnetospheric dynamics which would
be particularly appropriate if the two charge species manage to move more or less inde-
pendently of each other except for coupling through the macroscopic electric field. This

would be the case in a highly charge-separated magnetosphere. Then equations (2), (3)
would reduce to

E+B;xB=~0, (52)
E+B.xB=~0 (5b)
only if

Clpil < 7i|pi|2 C'Bel < 7e|ﬂe'2
wi 1B V(1B wpe IBe V(1eBe)l’

where wp; = Ze|B|/micy;, wpge = e|B|/mecye: the gyroradii must remain small compared
with the scale length over which the particle acceleration takes place. In addition, of course,
the conditions |R;|, |Xeil < niZe|B;|IB| and |R.|, |Xei| < nce|Bel|B| must be satisfied.
However, a quasineutral plasma would be characterized by rather strong coupling
between electrons and ions through the momentum exchange terms *X,; in equations (2);
and it may then be more advantageous to employ a one-fluid description in which momen-
tum balance for the plasma as a whole is supplemented by an equation describing the relative
motion of the two charge species. It will be assumed that, in a (primed) frame where the

(6a, b)
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total momentum density of the plasma vanishes, the kinetic energy density of each charge
species is small compared with its rest-mass energy density, i.e. 7 = v, = 1. Then, by trans-
forming K;, K, from the primed to the laboratory frame, it is readily shown that

V-K; = V - (nymic®yBB; + mimic*vPi B— nimic>vBP),
V-K.=V. (nemec27pae + nemecz')’pe B nemecz')’p?’)

with @ = (n;im;P; + nemePe)/(nim; + neme) (cf. Rossi & Olbert 1970; Ardavan 1976a).
Substituting in these expressions, equations (2) may be added to yield momentum conserva-
tion for the plasma as a whole

GM

r

V-(K; +K.)= V-(oc*yBPB) = p.E +1J>< B+pV( )+(Ri+Re), (7)
4

where o =nym; +neme, pe=(MiZ —ne)e, and J=(n;ZB; — nee) ec are respectively the
total mass, charge and current densities in the laboratory frame, and p, B are related through
the continuity equation

V-(0B) =0. ®)

If the ion and electron momentum equations are first multiplied by the respective charge-to-
mass ratios and then added, the result is a generalized Ohm’s law relating J to E:

V-(Eﬁ K; _° Ke) = V- (Y@ +cvIB — 0. ¥BB)

m; me

Zep

m; — Zme 1 oM
(E+BXB)—(———)6 pcE+—Jx B} +p. V|—
m;me mime c r

Ze e Ze e
(R R (4 S xe,

m; Me mi me

or, making use of equation (7),

E+px B=%V-{7 [c’épﬁﬂ+mec(BJ'+J'B]} —Zf v (%)

e ¥

m; Zme m; Zm,
- R; — Re) + 1+ Xei,
Zep m; Zep m;

©)

where
E=1—Zme/m; + mepcfep, Y =J— pccP.

The factor of y accompanying the quadratic terms (cf. Ardavan 1976a) is the only formal
difference between equations (7), (9) and the non-relativistic versions given by, e.g. Rossi &
Olbert (1970). It is again emphasized that this one-fluid description is only applicable to a
‘near-equilibrium’ plasma and precludes the runaway of one charge species with respect to
the other. Although Coulomb collisions will be rare in the low-density and/or relativistic
circumpulsar plasma, the restriction becomes less severe if the ‘anomalous’ resistivity
(Coppi & Ferrari 1970), associated with microinstabilities induced by the relative streaming
of electrons and ions, is taken into account. Accordingly, it will be appropriate to identify

m; Zme '
1+ ) Xei - 1'?anJ
Zep m;
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in equation (9). As a rough upper limit, ny, < 4m/wp, where wy, = (4me’p/mimey)? will be
taken as a characteristic plasma frequency.* Of course, radiation reaction will also serve to
impede the runaway of electrons.

In the limit of total charge separation, equations (7) and (9) reduce properly to equation
(2a) or (2b) (with kinetic tensor given by equation (3a) or (3b), and X,; = 0), and obviously
there is little point in referring to a generalized Ohm’s law if the degree of charge separation
is high.t The relation to the degree of charge separation can be illustrated by rewriting
equation (9) in the form

T
ch = CFeff (10)
Zep
where
E'=E+BxB,
mec ., GM Zm ZepNan _,
FapeV-b[éaﬁa+ e(ﬁJ+JBﬂ}—%pV(——)—(Rr— e&)+ "y
e r m; m;

Equation (10) indicates that, if resistive effects are small, setting E'=0 in momentum
conservation (7) results in an error o(|m;p./Zepl) relative to the non-electromagnetic terms
in the latter equation. The point is just that assumption (1) can be perfectly compatible with
equation (7) if the plasma is quasineutral, in the sense |m;o./Zep| < 1. The terms in Fog
involving J', which have no counterpart in the momentum equation, will only be significant
where

|B| 1 ¢

~— 11
VX Bl vIBl wp (ty

that is within current layers (such as might occur about a symmetry plane, see Section 3.3)
where the magnetic field varies on a scale comparable with the plasma skin depth.

For two relevant cases the generalized Ohm’s law may be simplified substantially. If
Zme/mi <1, |mepcfepl<1 (a mild restriction on the concentration of electrons relative to
ions), and melJ'I/qpc|(3|<1 (otherwise electrons would be in runaway or a current layer
would be implied), then equation (9) or (10) reduces to

m;

c? m; _ (GM ,
E+px B2 BVGR -2 V() +nyd
Ze Ze r

' m; 1 ' )/( mipc)]
~ J + -V xB 1- , 12
[(nan Zep ¢ Zep (12)

noting that £ ~ 1, neglecting radiation reaction since |R;| < |R.| while the contribution due to
electrons is reduced by a factor Zme/m;, and making use of momentum conservation (7)
and continuity (8). A necessary condition for assumption (1) to be valid is then that

ciBl vIBI Ze|B|
< , W=
wp  IB-V©OPR)I micy

* Kaplan & Tsytovich (1973), however, argue that the resistivity may be further enhanced through the
generation of Alfvén-wave turbulence in a strong magnetic field.

T The claim by Ardavan (1976a) that assumption (1) is valid in the relativistic regime, independently of
the degree of charge separation, seems to have resulted from making order-of-magnitude comparisons

between various groupings of terms in his equation (15), but overlooking cancellations between individual
terms.

6

(13)
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(cf. equations (6)), or alternatively, if |m;o./Zep| <1, the ‘Hall’ current arising from the
inertial drifts must satisfy |J'| < Zepc| Bl/m;. The resistive term has been retained in equation
(12) as the principal contribution to Ey. In the case of an electron—positron plasma, Z =1,
my=me, and & =mgp./ep; then in equation (10) p E' is o(|mep./ep|?) compared to the
non-electromagnetic forces acting on the plasma, and the generalized Ohm’s law may be
approximated as E + x B =n,,J".

The suggested relationship of inertial and dissipative effects to the degree of charge
separation will be taken up further. Because of the obvious advantages of applying a one-
fluid description to a quasineutral plasma, this limit will be considered separately.

3 Flux-freezing in a quasineutral-plasma magnetosphere

In this section the existence of a time-independent, quasineutral-plasma magnetosphere
is postulated, with the star acting as an appropriate source. It will be apparent that quasi-
neutrality can only be maintained if relative streaming between the two charge species
is allowed for, and reconciled with the requirement of a steady current flow through the
magnetosphere. Thus we are not claiming to develop a self-consistent model, but simply
explore some consequences of imposing quasineutrality on the system.

Two sets of coordinates will be employed, cylindrical polars (R, ¢, z) centred about the
rotation (z) axis, and spherical polars (r, 6, ¢) centred about the star (appropriate for
R <c/Q2 or R>¢/S). As V-B=0 and the system is assumed axisymmetric, the poloidal
magnetic field may be expressed as

1 &
Bp = —EBOEed, x V¥, (14)

W representing a magnetic surface (B -VW¥ = 0). Typical values of |Bpl, |By| and p/m; at the
star surface = a will be denoted by By, Bro and ng, respectively. An immediate conse-
quence of assumption (1), time-independence and axisymmetry (E = —Vyx, £y=— R dx/
0¢ = 0), is that the plasma flow must obey

(B By Q)R
ﬂ—( |Bp|2) Br—

() (15)

(Mestel 1961), where Q(¥), representing the local angular speed of rotation of the star, is
constant along a given magnetic surface; because of the rigidity of the neutron star crust,
is assumed constant everywhere. With @ of the form (15), equation (1) becomes

QR
E+—eyx B~0; (16)
c

if the divergence of the neglected inertial and resistive terms is also negligible (but ¢f. Section
4), Poisson’s equation then yields

QB, SQRJ
4 2¢. (17)

Pe=—
¢ 2mc c

Moreover, continuity (8) may be expressed as

P18yl . (nomi@z
IBpI CBO

)./V(\I'), (18)

which simply states that constant mass flux is enclosed between given magnetic surfaces.
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3.1 THE CONSERVATION OF ANGULAR MOMENTUM AND ENERGY

Equations (15), (16) and (18) can be consistent with the constraint f4 <1 only if |B,| # 0
along all magnetic surfaces that cross the light cylinder*; and since B-VW¥ =0, a steady
outflow of plasma could occur only along open (IB,| = |B;|) field lines. According to the
discussion of the preceding section, however, the flux-freezing assumption is only valid if
(a) the plasma inertia remains reasonably small (condition (13)), and (b) outside of
current layers (11) where resistive effects must be taken into account. As regards the magni-
tude of the inertial drifts, the conditions under which a plasma flow of the form (15) is
consistent with angular momentum and energy conservation can be established. Even if
B-V¥ =0, in general J.-V¥ + 0 and angular momentum is exchanged between field and
plasma. This is described by the toroidal component of momentum conservation (7), which,
making use of equations (15) and (18), setting J, = (c/4m) V x (Bsey), and ignoring radia-
tion reaction, may be cast into

a drnomicSla
B¢ = _BTO E(I)(\I,) + Sgn {pp . Bp}

)m(q,) YBo» (19)

0
where sgn{®}=sgn{@, By} for swept-back field lines. The two terms in this expression
for the toroidal magnetic field represent respectively the contribution of field-aligned
current, J, = aBy, less a correction due to the Coriolis force experienced by the plasma,
which drives a drift current J,; = [—pc®B- V(RYBy)/R |Bp|*] eg x B,. From equation (12),

€p X Bp)
By /°
which again makes it apparent that the approximations of magnetic flux-freezing

(IBpl < IBpl) and a ‘torque-free’ magnetic field (|J,;| < lpclc) are quite distinct for the
quasineutral case (|p¢| < Zep/m;).

The balance of forces along B bears critically on the whole magnetospheric structure.
Assuming that |m;p./Zep| < 1, equation (12) indicates that

E) = nandpy- (21)

Zepc ,
Jp_l. = —m_' Bpl + nanjq)

1

(20)

The scalar product of the momentum equation (7) with B (again ignoring radiation reaction)
then yields energy conservation in the form

QR GM\ peMan .,

B-V {7 [1 = (—) 3¢] ~—2—} ~—=207,:By, (22)
c c’r pc

after making use of equations (15), (16) and (18). Assuming

Man S 47/wy = (Anmimey/e®p)!'?

as an upper limit for the parallel resistivity, equations (21) and (22) suggest that acceleration
due to an electrostatic field maintained through plasma turbulence might be substantial for
relatively low plasma densities or within current layers. Otherwise centrifugal acceleration,
represented by the term in equation (22) involving B4, would dominate beyond the point
where (2R/c) ¥y ~ GM/c*. Normalizing to the Crab pulsar’s light cylinder, an upper limit
for the critical density separating the two regimes is

i 3 x 107cm—3( c )2/3( Q )2/3( |B| )4/3 (RIVX B|)2/3. (23)
m; v QRBy 19057t 108 gauss iB| ’

* Pilipp (1974) has shown that, if equation (16) holds, the body of plasma cannot be confined within the
light cylinder (although his analysis does not include the possibility of ‘gaps’ within the space-charge
region).
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by way of comparison, the number density corresponding to a charge-separated magneto-
sphere would be of order n, = Q|B|/4nce or p/m; ~ 1 x 106cm™3(2/190s™1)(|B|/10° gauss).
In Section 4 it is pointed out that if the magnetosphere is highly charge separated near the
star, charge mixing accompanied by streaming instabilities might occur beyond the centri-
fugal —gravity balance surface.

If, however, a quasineutral-plasma magnetosphere is postulated, an anomalous resistivity
must be invoked inside the centrifugal—gravity surface. The parallel electric field required to
counteract gravity, |E;|~ GMp |B;|/r*|pc|1B|, will greatly exceed the ‘runaway’ value above
which Coulomb collisions occur too infrequently to prevent electrons from separating en
masse from ions, viz. |E|~mevrevei/e ~ 4mewle/vhe, Where vre=(kT,/me)"'? is the
electron thermal speed, wpe=(4me’ne/m.)"’? the (non-relativistic) electron plasma
frequency, and vg; < wge/nev:}e the electron—ion collision frequency: thus, near the star
surface*

LTLI 104( Te )( M )(106cm)2(190s—1) (lO”gauss)
—  ~ <X .
|E| 107K/ \10%¢ r Q |B|

In fact, runaway is unlikely to occur, for plasma turbulence will be excited and the effective
collision frequency increased by a factor not orders of magnitude less than

Wpe/Vei ~ 1 X 107(nc/ne) VAT, /10"K)*/%(2/190 s71)/%(|B|/10* gauss)*/%;

the current density needed to maintain the coupling is reduced by the same factor, from the

improbable value |Jp| ~ (IEy|/IE.[) enevre. In principle a plasma as dense as ~10%n, (near
the star surface

ne ~ QBof4nce ~1x 102 ecm™ [£2/19057!][B,/10'2 gauss])

could be supported against gravity; in the absence of the anomalous resistivity, on the other
hand, the two charge species would be cleanly segregated into different regions under the
action of the macroscopic Ej. Of course, the relative streaming between the charge species
which gives rise to the anomalous resistivity must be reconciled with the overall current
distribution: the actual degree of charge separation will depend largely on the requirement
of steady current flow through the magnetosphere. For example, quasineutrality could not
be maintained along magnetic surfaces which close well within the light cylinder, unless both
charge species circulate along them back to the star (such a flow would probably be
unsteady, leading to a rapid dissipation of energy).

3.2 THE CENTRIFUGAL-MAGNETIC WIND

The gravitational and resistive contributions to energy conservation (22) will now be
ignored, and only the term representing centrifugal driving retained. This amounts to
considering the plasma flow well outside the centrifugal—gravity balance surface, invoking
plasma densities in excess of the critical value (23), and supposing current layers to be
absent. Then equation (22) simplifies tot

v ()] -1 (25)5]

* | E¢] has in fact been overestimated since a magnetic field sufficiently strong that kT < hwpg, has the
effect of reducing the Coulomb collision rate by constraining electrons to move one-dimensionally (cf.
Basko & Sunyaev 1975).

T The integrated equations (15), (18), (19) and (24) were employed by Michel (1969) in his treatment of
relativistic stellar winds, in the spherically symmetric case, and are completely analogous to the non-
relativistic versions given by Mestel (1968).
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where, to make the second step, the plasma flow is assumed non-relativistic for R < ¢/€Q. As
v=(1—8%— IBpl) "2 the poloidal and toroidal bulk velocities are related through

o ([ ()

The existence of a ‘centrifugal-magnetic wind’ is thus implied by equations (15), (18), (19)
and (24); moreover, since B-VW¥ =~ 0, an open field structure is required (if the possibility
of plasmainflow to the star is excluded). The question of how much energy the centrifugally-
driven plasma acquires is considered in this subsection.

Eliminating |B,| and By from equation (15) by means of equations (19), (24) and (25),
yields the algebraic equation

xB
Bp=x —x[2xBs — (1 +x?*) B3]'2 (T*N ¢ ), (26)
1 —X6¢
or alternatively, eliminating 84 in favour of 1,
1 x2 -1 2 1/2
Y —— T [72 - (—) - ] [T - Ny —D)] (26))
1—x 1—-x x

(the latter form being more convenient for the relativistic regime). Here x = QR/c,

- 4mpc?|Bpl  4mnomicQa H(Y)

Nx,z)= , 27a

(. 2) x?|B, 2 By  X?|By| 272)
|Bgol BpoQla |P(V)]|

Tte, 2y = 1200l _ Bro (V) (27b)
x|By| ¢  x*Bpl

where [Byg| = Bro(Qa/c)|P(¥)|/x >1Bs| represents the contribution of field-aligned
current to the toroidal magnetic field — cf. equation (19). If |B| cx¥withk <2,Nand T
would vanish in the limit x = o and v could not remain finite and non-zero, whereas with
k > 2 the field lines would close: therefore ¥ — ¥(6) and x2|Bp| must eventually become
constant along a given magnetic surface. Typically, then, N <1. Moreover, according to
equation (15), [Bg| = x|B,|/IBp! in the limit x - o, so that T2 1 so long as |Bp| S 1.

Equations (26) may be converted into quartics, the roots of which can be expressed
analytically (cf. Abramowitz & Stegun 1965). However, the salient features of the plasma
flow can be gleaned directly from the above forms. Thus, well inside the light cylinder,

By > x — x(2xBy — B3)"* T
or
Tx
so=x 1= iy el ¢

At the light cylinder equation (26") reduces to 1 = 2¥%(y — 1)!2[T — N(y — 1)], yielding the
two solutions

o [1 (N)m 1] d 1 (29)
—1=—, =} == x=1
! 272 27/ TIN
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Finally, well outside the light cylinder equation (26) takes the form

y =~ (Y* = DY*[T - N(y — D];

unless T ~ 1, there will again be low- and high-energy roots, respectively

1 1/2 1 T
’)”—‘-’l/( _Tz) , (I_F)]V x> 1. (30)

However, as may be verified by numerically tracing the roots of the corresponding quartics,
only the low-y branch extends continuously from the vicinity of the star to the far region,
with (4 increasing as ~x inside the light cylinder, reaching a value of 1/(1+27T?) at x =1,
and falling off outside as ~x77, so that y = 1/(1 —1/T*)Y? in the limit x - o. Apparently,
by minimizing T with respect to vy using the asymptotic form of equation (26"), an upper
limit can be set on v, for given N. Thus

—‘E) —0~i[77+1v( —1)]
(am T N A &

whence
l 1/2 1
7$ (1 +N2/3) = N1/3 X > (31)
and
T2 (1+N??)P2-N=~1+3%N?"? X > oo, (32)

For T<1+3N?32, v becomes complex (the low- and high-energy branches merge
asymptotically with T =1 + 3N2/3/2). (These results agree with Michel’s (1969), who argued,
in the spherically symmetric case, that current outflow should occur in such a way that
minimum torque is exerted on the star, for a given mass flux.) Evidently condition (13)
will be satisfied out to a point

(Qa)3 ZeB,
Xtim ~ |— > 1,
c m;cy§2

beyond which the plasma decouples from the magnetic field and the field lines would be
allowed to close. For x < Xy, the flux-freezing assumption has been applied consistently, at
least as regards the neglect of plasma inertia in the generalized Ohm’s law. Equations (31)
and (32) can be interpreted quite simply. The plasma continues to be accelerated so long as
the centrifugal force pcz'yﬁé,/R which it experiences does not overcome the restraining
magnetic tension

|B;1*/4nR = |B,|*/4ny’R,

in a frame instantaneously comoving with the plasma where E' =~ y(E + B x B) = 0. Applying
this condition at the light cylinder yields

B 2\1/3
)
4mpc?

which in turn implies a lower bound on |By| through equations (15), (24).*

=Yes
R=>=¢c/Q2
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3.3 THE TORQUE-FREE APPROXIMATION

From equations (19) and (24), the current drift driven by the Coriolis force can be neglected
if

_BroBo_ (33)

y-—1< 2
4mnogm;c

and in fact equations (31) and (32) indicate that y S (BB, /4mnemic?)"” so that J, ~ aBy
(BroBo/4mnomic? > 1 by assumption). Moreover, by means of the R component of momen-
tum conservation (7) (neglecting gravity and radiation reaction), the toroidal current density
may be expressed as

aBg _4'rrpc2eR-[Rf3-V('y[3)]} (2R/c)* B,

Jy~ — :z - |
(UR/c)*(cB,/41R) (QR/c)*|B,? 1 — (QR/c)? 47R

The centrifugal drift term is at most of order v¢? relative to the other terms, and can be
neglected. Thus the total current density has the form

J=~aB+p.QRey, (34)

where By = Byo = — Broa®(V)/R, o~ — (cBro/2maBy) d®/d¥ and p, is given by equation
am).

The conclusion that the plasma inertia remains small is subject to some obvious
restrictions. Thus, in order for the asymptotic behaviour |B,| = |B;l, |Bg| = (2R/c)|B:|/B;
to be realized, the appropriate currents must be generated within the plasma. Using

equations (15) and (34) and requiring that By = 0, Maxwell’s equations become in the limit
R > o0

ancsiine E% (sin GB¢) = Jr =~ ,DCCBr, (358)
< % o c ¢B; cos 8
amr 00T pcc(ﬂrsin 0)+21rrsin 0 (35b)
where
Q o
Pe = _m 5—6' (sm HBI-) (35C)

It will be noticed that (i) a current density J ~ p.Q2Re, (o = 0) would not be consistent with
equations (35b) and (35¢), which imply p. = By, J, = B,/r; (ii) the poloidal current density

* On the basis of the integrated equations (15), (18), (19) and (24), Ardavan (1976b) asserts that the
plasma-flow necessarily becomes discontinuous just inside the light cylinder. At the point in question,
x =1/(1+ N/T)"?, equation (26") may be factorized as
(1~ T¥IBpD[T - Ny — D] =0,
which yields the three roots
T T N 172
b-7)

The root y =1+ T/N entails Bp=x and By =0, and becomes complex for x <1/(1+N/T)"?; while
v >1+T/N implies Bg > x, that is forward-bent field lines. On the other hand, the root y =1+ T/N —
(T/N)(1 = N/T*)V?*=~1+1/(2T?) belongs to the low-energy branch which passes continuously through
x=1/(1+N/T)Y* and satisfies Bp <x everywhere. Ardavan’s conclusion therefore appears to be
incorrect.
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should be asymptotically purely convective, equation (35a), in contrast to its conductive
behaviour (B;, #B,p) well inside the light cylinder, where the charge density changes sign
along the surface B, =~ 0 (see equation (17)) which cuts across the magnetic surfaces along
which current flow takes place; (iii) the toroidal current density cannot be asymptotically
purely convective since equation (35b) indicates that Jy does not change sign with p
(whereas Jy ~ p. QR for R <¢/Q2). Conclusions (ii) and (iii) are entirely consistent with the
dynamics of the plasma flow with finite inertia taken into account (Section 3.2):
asymptotically 8; = 1, implying (within the framework of the one-fluid description) that the
poloidal current density must be primarily convective; whereas the behaviour 3, o« 7 ! allows
the toroidal velocities of ions and electrons to differ substantially, although the difference
can still be small if the plasma density is sufficiently high. By definition, of course, the
required conduction currents could not be generated in a charge-separated magnetosphere.
This suggests that, in a low-density plasma, the magnetic field would not be distorted into an
open, wound structure, as required if the flux-freezing assumption is to hold beyond the
light cylinder.

A portion of the magnetosphere will of course remain closed. According to equation (25),
plasma would be transported towards the equatorial plane from both sides, where cross-
field diffusion must take place if the plasma flow is to be steady. In order thatB, - B,
the value of n,,1Jp| must be greatly enhanced (see equation (20)); this requires By to vanish
abruptly in the plane of symmetry. Likewise, plasma would have to accumulate in the
equatorial plane until J, > J,; ~ [~ pc’B-V(RYB4)/RB;] er. Put the other way round, if
finite resistivity and inertia were neglected, the z-component of momentum conservation
would reduce to

Lo

For R S¢/Q2, both 0BR/0z and 9B,/9z would have to remain finite at z =0, additional
constraints which will not generally be satisfied. The terms involving J' should therefore be
retained in the generalized Ohm’s law (9), as well as the plasma inertia term in the momen-
tum equation (7). (In the open field region likewise, a current sheet would be implied by
any reasonable choice of the boundary condition ¥(r = a, 0), as several authors have pointed
out. The dynamical significance of this equatorial layer remains unclear, since equation (36)
is nominally satisfied in the limit R —> o0 if |By| = (Q2R/c)|B,|.) It is questionable whether a
steady flow through the closed portion of the magnetosphere can be established. However,
by postulating a high degree of charge separation along these magnetic surfaces, field-aligned
streaming could be electrostatically suppressed.

4 The electrodynamics of a charge-separated magnetosphere
4.1 CONSERVATION OF CHARGE

It was emphasized in Section 3 that, in order for the two charge species to coexist in the
presence of the gravity field near the star, the anomalous resistivity must be invoked. This
apparently requires both charge species to be supplied continuously along a given field line.
However, in view of the fairly substantial ionic work function expected in the strong surface
magnetic field of a neutron star (cf. Flowers et al. 1977), it is not obvious that, even with
collective effects taken into account, a sufficient degree of coupling between the charge
species will exist at the star surface for the star to act as a plasma source. Alternatively,
inflow and outflow of the two charge species along the same field line (implying some form
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of circulation unless external particle sources are present) might be contemplated, but as a
result of the two-stream instability one charge species would almost certainly end up
dragging the other along with it. (This is not to rule out the possibility that some form of
counterstreaming, accompanied by energy dissipation, takes place locally.) Quasineutrality
might also be maintained under the special circumstances required for the creation of
electron—positron pairs (¢f. Cheng & Ruderman 1977).

Apart from the emissivity of the star surface, that is the assumed relation between the
particle outflow and the applied electric field, an essential constraint on the magnetospheric
structure and dynamics is that there should be no net current outflow. If the magnetosphere
is charge-separated, it is difficult to reconcile this constraint with the space-charge distribu-
tion (17) corresponding to the complete neglect of particle inertia (a dilemma which has
been recognized since the work of Goldreich & Julian (1969)). For example, in a magnetic
dipole field

asin®0
Y(r,0)=t ,
r

equation (17) indicates that the two charge species are separated along the conical surface
sin 8 =~ (2/3)"2; on the other hand, from equations (5) and continuity (4) it follows that

B, B QR
ps:( IpB |;’)B+ — % (37a)
p
ns|Bsp | (Qza)
~ v
1B, Smcte As(¥) (37b)

(cf. equations (15), (18)), where subscript ‘s’ will hereinafter stand for either ions or elec-
trons (s =i or e). Equations (37) imply an outflow of the ‘polar’ charge species at colatitudes
sin 0 < (2/3)%(Qa/c)"'? (see footnote), which must then be balanced by an outflow of
charges of the opposite sign at colatitudes sin 6 2 (2/3)"2 (unless external particle sources
are invoked). These ‘equatorial’ particles must then manage to cross magnetic surfaces well
inside the light cylinder, contrary to equation (37a).*

Evidently, then, the inertialess, dissipationless assumption is untenable if the charge
species are completely segregated near the star. In order to allow for finite inertia, it will be
necessary to return to the two-fluid momentum equations (2), (3), which, using continuity
(4) and ignoring radiation reaction and direct interactions between the two charge species at
this point in the development, reduce to

msc*Bs-V (v Bs)=q(E+ B V (%)
s s si¥s) — 4 Bsx B) tmy ;) (38)

where ¢ stands for the charge of either species (g = Ze or —e). Introducing the electrostatic
potential E = — VY, this equation may be rewritten

E, + B x By=0 (38)
(¢f. equation (1)), where E¢= — VY,
mgc? GMmy
Xs=xt Vs (39)
q qr

* This difficulty is not, of course, peculiar to the assumption of aligned magnetic and rotation axes: if
the dipole axis were inclined at any angle less than ~n/2 — (£2a/c)!'? the polar cap would still be
‘confined’ by charges of only one sign.
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and
mgc?
B, =B +—— Vx (7B). (40)

As V-B;=0 and the system is axisymmetric, it is possible to define an effective magnetic
surface function Vg by

B lBa2 vV
=—— By—eg X ,
T, T0Rp e s

with Bg-VWg =0 (cf. definition (14)); from equation (40) and the definitions of ¥ and v,
it is evident that

2msc2 '
Y=V + 5 RvsBso- (40°)
qBoa
Since dx,/0¢ = 0, the toroidal component of equation (38") implies Bsp = ksBsp, Where Kk is
a scalar, so that Wy in fact represents the particle stream function (unless ks = 0); the poloidal
component of this equation becomes

1 — kB
va = 5 Boa2 (B—S¢—Ris_¢) v\Ils’ (41)

whence B — KsBsg = (2R/Boa?) dxs/d¥s = Qs(¥s) R/c. Thus

- {psp 'Bsp Q's(\I/s)R
\ 1B I? ) Byt

(cf. equation (37a)), where Q,(\¥¢) ~ 2 along all streamlines that intersect the star (assuming
inertial drifts to be small near its surface). The derivation of equation (42), first given by
Mestel (unpublished), is exactly analogous to that of equation (15), but with the replace-
ments X —> X5, B > Bg. The incorporation of finite inertia has the effect that the charged
particles are tied not to the magnetic field lines, but to ‘quasified lines’ pointing in the
direction By (cf., for example, Rossi & Olbert 1970). Continuity (4) may be written

ns'pspl ( Q2d
= No(¥s 43
lBspl 27T6'2 ) ( ) ( )

e
(cf. equation (37b)). Combining equations (38"), (39), (40) and (42) (with Q(¥;) = ), the
electric field in the corotating frame may be expressed as

Bs € (42)

c

QR mgc? QR GM
E+—ey x B= Vl"ys 1= \—)Bso| —— (44)
c q c cr
(cf. equation (16)) so that, to within an additive constant,
1 Q mgc? QR GMmg 3q
X== Boa® — ¥ ———y; [1 ~(——) 6s¢] + P2 (W), (45)
2 c q c qr 2a

where go = QBa*/3c and n represents the deviation from magnetic flux-freezing due to the
particle mass. Poisson’s equation then yields for the charge density

_ QB, QRJ mgc? ) QR
Pe=™ 2mc ' c? ¥ 4nq v {75 - T) bso } (46)

(¢f. equation (17)).
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Equation (46) gives an explicit relationship between the charge distribution and particle
inertia. In principle, for example, both charge species could be emitted at the polar cap if the
acceleration of the ‘foreign’ particles (having sign opposite to that of —QB,/2nc) were such
that | V2| 2 [2g2B,/m¢c?| outside the star; and for a hypothetical ‘quasivacuum’ magneto-
sphere V27, =~ 2qQ2B,/mgc®. Such possibilities cannot be ruled out @ priori; again the actual
particle densities must be consistent with the steady-state condition V-J =0 as well as the
emissivity of the star surface. Steep gradients in the particle Lorentz factor would likewise
result in deviations from magnetic flux-freezing, the poloidal drift due to Coriolis force being
given by

msczﬁs -V (R'Ysﬁstb) Bp
- €¢ X —.

However, the cumulative effect of this drift will remain small so long as

Qa\*(lq|B QR
e (] (229 e 25
c mgeSl c

(equation (40")). Even if the net stellar charge (that is the sum of the charge carried in the
star’s highly conducting interior and the residual surface charge) were totally unshielded,
its contribution to the electrostatic potential x would only be of magnitude q,/r, and ||
in equation (45) would be at most of order unity. This it is reasonable to expect that, as an
upper limit, < (Qa/c)*(lq|Bo/msc); then equation (40") indicates that |¥g— V| S
(82R/c) By, so that particle streamlines practically coincide with magnetic field lines in the
neighbourhood of the star.* Actually, for extremely relativistic electrons, radiation reaction
might well become dynamically more significant than inertia itself, leading to larger poloidal
drifts than indicated by (47) (cf. Section 4.3). However, if the energy source is ultimately
the star’s rotation, the ratio of the net loss of energy to that of angular momentum must
equal & (cf. Cohen & Treves 1972), so that the dissipation of too much energy in the region
R < ¢/§2 could not be matched by the appropriate outflow of angular momentum.

It will be tentatively assumed that the two charge species are completely separated near
the star surface, that no exterior particle sources are present, and that |V?y| < [2¢Q2B,/
mgc?| at r = a so that the charge distribution there is at least crudely given by (17), with B
dipole-like. Then, requiring that no net current leave the star but expecting charged particles
to remain rigidly tied to field lines in the near region, it follows that the overall space-charge
distribution must adjust so as either (a) to restrict both charge species to predominantly
toroidal motion, or (b) to allow the polar particles to circulate back to the star (cf. Jackson
1976).

Whatever the behaviour of the polar charge species, the motion of the equatorial particles
in a dipole-like magnetic field must be almost purely toroidal since a steady outflow would
imply trans-B drifts comparable with the parallel component of velocity in the immediate
vicinity of the star. Moreover, as polar particles ‘intervene’ along magnetic surfaces connect-
ing most of the equatorial charge region with the star (Fig. 1), it would be difficult to
resupply equatorial particles that stream away. Accordingly, setting B¢, = O for this charge
species, equation (42) reduces to

_E)R

4

psm: (47)

Bs

*In the computed model of Kuo-Petravic er al. (1974), the free crossing of magnetic surfaces by
‘equatorial particles’ well inside the light cylinder is probably due to their increased particle masses and/for
their use of artificial diffusion terms.

®- (48)
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This does not mean that the equatorial charge region must corotate with the star, as again
they are not in direct contact except along the magnetic surfaces 2/3 < ¥ <1. In particular a
potential gap might develop between the two charge regions (cf. Holloway 1973): the
physical motivation for such a gap inside the centrifugal—gravity balance surface would be to
stop the diffusion of equatorial charges into the polar region, whence they would be driven
into the star by the electric field that supports the polar charges against gravity; in the outer
electric field that confines the equatorial charges against centrifugal forces (see Section 4.3).

Note that ¥, in equation (48) is not to be interpreted as a particle stream surface, but
simply as a surface defined by (40").

4.2 A ‘QUASISTATIC’ MAGNETOSPHERE
Setting ks = 0 in equation (41), it follows that

B 2 dx
so . - (), (49)
R Boddv,

where xs, ¥ are defined by (39), (40"). Since B, = QR/c at r =g, it appears that rigid co-
rotation must occur along all surfaces of constant W, that intersect the star, that is

QR
Bep = —
c
wherever
. 2mgc QR? _
qBoa® [1 — (QR/c)*]"?

¥ (r=a,9). (50)

The polar charge species, if likewise assumed to be confined to toroidal motion, would then
be forced to corotate out to a point just within the light cylinder, being ‘bound’ to the star
along surfaces of constant W¢.* Equation (50) sets a definite limit on the extent of the
corotating region; with W(r =g, §) ~ £ sin® 6, corotation certainly cannot continue past the
point R = [1 — (2myc?/qQ2Boa*)?/2] ¢/2. Thus there is no need a priori to demand that the
polar particles be confined within the light cylinder. In any case the supposition that these
particles can be prevented from streaming outward must be tested. (Certainly if electrons are
involved, radiation damping would lead to a breakdown of corotation well inside R ~ R, as
well as to substantial poloidal drifts.)

In the absence of any streaming, the two charge species could not coexist (Section 3) and
the magnetosphere would necessarily be completely charge separated. Then Poisson’s and
Ampere’s equations may be written

V?x = —dnqn, (51a)
2 oV 8ngnyfesR

veg - 2. T T (51b)
R 3R Boa

By elimination between equations (51) and the divergence of momentum conservation (38)
(setting Bs = Bspey), the particle density may be expressed as

2 Bs¢ o _ 1 (Bsd)

1 0
ng = [— gBya Eia—R; EQBOGZV '}—) V¥ — msC'ZE ﬁ (7s6§¢)]/[477q2(1 - 63‘1’)]’ (52a)

* One class of corotating solutions has been examined recently by Endean (1976).

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny /| uo Jasn sonsnp Jo Juswuedsq 'S'N Aq 62£2201/.S1/2/Z8 1 /8191e/seluw/wod dno olwapeose//:sdiy Wwol) papeojumod


http://adsabs.harvard.edu/abs/1978MNRAS.182..157W

FI978WNRAS. 1827 “1H57W

On axisymmetric pulsar magnetospheres 173
while W(R, z) is obtained by solving
2 0w Bso 2myc? d
1-p2,) V¥ —— —=R v(i)-v\lw— — (7.2 52b
( Bsgb) R R ﬁsd) R qBod2' 6s¢ 3R (7SBS¢).. ( )

(Note that the charge distribution is independent of gravity.)
In the corotating region, these equations reduce to

Q
hg = I:— 2q—B; — ms‘Qz'Yg(z _xz):I /[47Tq2(1 —x2)] , (533)
¢
92\ 10w 92V 2myc?
(1 —x2)§ —(1+ Xz);a +(1—x?) Py qQBsoaz 1ex¥(2 — x?), (53b)

where x =QR/c, Z=Qz/c, v¢=(1—x*)"2% According to equation (53a), ny—>0 as
Ys = (—2¢B;/msc§)!? within the corotating region. Here, apparently, while particle inertia
is still insignificant in the momentum balance itself (E + xe, x B = 0), the divergence of this
term cannot be neglected near the light cylinder but sets severe constraints on the magneto-
spheric structure. If the particle density is to remain positive definite, the field lines would
have to bend upward towards the z axis on approaching the light cylinder, with a drastic
increase in the magnetic field strength. A particular solution to equation (53b) in the
corotating region is

v 2myc? 1
P qQBoaz (1 _x2)1/2

while the homogeneous solution near the light cylinder, found by separation of variables, has
the form

Uy, =~ f(z) +g(z) In (1 — x?) x S1.

x <1,

If the corotating region extended past the light cylinder, as in Michel’s (1973a) massless
solution, then the R-dependent component of ¥, would have to be discarded as singular,
so that B, >0 as R - ¢/Q. Clearly the inclusion of finite inertia alters this conclusion:
corotation breaks down inside the light cylinder and in general g(z) # 0. However, even
though it may be possible to counterbalance the growth of the inertial term in equation
(53a) by making g(z) (considered as a boundary condition on the magnetic field) sufficiently
large, a huge magnetic pressure would then be transmitted across the light cylinder, which
could not be balanced without making unphysical assumptions about the magnetospheric
structure beyond. It is also evident from equation (53a) that unless B, becomes very small
near the light cylinder, there would be a considerable ‘heaping up’ of charge just inside the
cut-off point (a possibility which should not be excluded a priori).

The problem cannot be resolved simply by allowing the charge density to change sign,
since the inertial contribution to ng (equation (53a)) is negative for both charge species.
However, it might be possible to relax the corotation constraint (50) by introducing a gap
between the polar charge region, extending out to the point x = [1 — (—msc$2/2¢B;)*"* 1",
and another particle region lying somewhere beyond. Difficulties in realizing such a model,
without requiring detailed field lines, are discussed elsewhere (Wang & Pryce, in preparation).
Otherwise, poloidal motion must be introduced (or the implicit assumption of a steady state
abandoned).

4.3 ISSTEADY POLAR CIRCULATION POSSIBLE?

With the assumptions of Section 4.1, any outward flow of polar particles must eventually
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be reversed and return to the star, in a steady state. But the conservation of angular momen-
tum states that, if dissipative processes can be ignored, the function

V=W + (2mscz/qBOa2)R7sﬁs¢

is constant along a particle streamline; if a polar particle is then to return to the star along a
different field line from that along which it was emitted, it would have to gain a large
amount of angular momentum and energy, which would be reabsorbed by the star. In
reality much of this excess could be dissipated near or beyond the light cylinder by radiation
(and perhaps viscous) processes.* Denoting the radiation reaction force per charged particle
by £729, the rate at which it drifts across surfaces of constant ¥ is given by

2R
qBoa*’

ps Vi = (54)
Note that the guiding-centre drifts due to Coriolis force and radiation reaction are both
directed toward lower-latitude field lines (for polar particles), so long as Ryfs, increases
along the streamline and f ;?z,d < 0. Thus a polar particle initially drifts outward (towards
increasing R), but the direction of the drift would reverse where B, changes sign.

Once poloidal motion is introduced, the possibility of some charge mixing must be

considered. According to equation (46), charge mixing takes place if the surface

QB, m? QR
¥ b P () 2
2nc  4ngq c

(unless it coincides with (Q2R/c) B¢ =1) intersects a polar-particle stream surface. The
subsequent behaviour of the polar particles is then determined by the electromagnetic
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Figure 1. A charge-separated magnetosphere (inner region) with dipole magnetic field,
V(R,z) =+ aR*/(R* +2%)*"%,
The significance of the magnetic surfaces shown is discussed in the text.

*In constructing models involving dissipation, it is important to keep in mind that the ratio of the net
loss of energy to that of angular momentum must equal 2, no matter what processes are involved, so long
as the energy source is the star’s rotation.
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fields which support and confine the ‘equatorial’ charge species against inertial (gravity and
centrifugal) forces. The magnetosphere can then be divided into ‘dead’ and potentially
active zones (Fig. 1), assuming a dipole-like magnetic field near the star. The magnetic
surface |W|=2/3 encloses a small region consisting solely of equatorial particles. Both
charge species are to be found along poleward magnetic surfaces 0 < |¥| < 2/3, although the
equatorial charge region is there ‘detached’ from the star surface. Consider the magnetic
surface | W |~ (2/3)7'%(Q%a*/GM)'? = W, which intersects the charge interface sin 6 ~ (2/3)!/2
at r ~ (GM/Q? sin )%, where centrifugal and gravity forces just balance. Any polar particles
which stray into the equatorial charge region within the range ¥ < |¥|<2/3 would be
decelerated by an E; which supports the equatorial particles against gravity; thus the entire
range W, S |W|<1 effectively constitutes a dead zone. On the other hand, equatorial
particles along the magnetic surfaces 0 < |¥| < W, experience a centrifugal force which must
be balanced by an E; directed so as to accelerate incoming polar charges toward the light
cylinder. This suggests that a significant amount of energy might be dissipated through
microinstabilities, with electrons streaming through a confined background of protons or
heavy ions so that

mic’Bly  BRr

2R . . ~
mec“B [pe V(ve Be)l ZR (1 _Bi2¢)1/2’

(35)

where B¢ has the form (48). As mentioned previously, however, such charge mixing could
in principle be prevented by interposing a potential gap between the two charge regions.

Near the star the charge interface occurs where B, =~ 0. But toward the light cylinder the
last two terms on the right-hand side of equation (46) could become significant and B, could
change sign within the polar charge region; this might happen, for example, where
(2R/c) Bsp > 1. If the polar particles continued to acquire angular momentum, their guiding-
centre drifts would then be directed back toward the star. The likelihood that on the one
hand the region beyond the light cylinder will be depleted of the equatorial charge species
(due to obstruction of the lines of communication with the star), while on the other hand
polar charges that have dissipated much of their energy might accumulate there, is consistent
with such a picture.

From another point of view, the conservation of energy in the absence of dissipative
processes (obtained from the scalar product of momentum conservation (38") with Bs) states
that

Xs = X + mgc?vs/q — GMmg/qr

is constant along a particle streamline Wy=W + 2myc®RvBss/qBoa*. Using the definition
X = (§2Boa?/c)(¥ +n) and neglecting the initial particle energy, it follows that

e [ 00 G )l /- ) 0

along a particle streamline — cf. equation (24). Initially (2R/c) Bsp increases along a stream-
line — this is the centrifugal-magnetic driving discussion in relation to quasineutral winds. If
this quantity approaches or becomes greater than unity (somewhere beyond the light
cylinder), as may happen if the poloidal currents are limited so that g, (cf. equation (37a)
or (42)) and the slingshot effect are maximized, E; must then point in a direction to oppose
outward flow, according to equation (56).

Finally, it should be emphasized that, in order for a steady circulation to be set up, the
particle inertia or radiation-reaction force must be large enough for free crossing of magnetic
surfaces to take place near and beyond the light cylinder. Otherwise the ‘centrifugal barrier’
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would halt any attempt by polar particles to return to the star: since the field lines are swept
backward, B¢ > 1 for a hypothetical particle returning through the light cylinder but obeying
the inertialess approximation (37a).

5 Conclusions

In a quasineutral plasma large currents can be generated through small relative motions of
ions and electrons — thus the magnetic field can be strongly distorted while the plasma
energy density remains small compared with that of the magnetic field (in the laboratory
frame), except possibly in localized regions. Such conduction currents are needed to
maintain an open field zone; then the properties of the ‘imbedded’ centrifugal-magnetic wind
can be described readily by means of the various field-line integrals, and a modest upper
limit can be set on the plasma Lorentz factors. In order to provide such a relatively dense
plasma, an anomalous resistivity must be invoked near the star to prevent the charge species
from separating under gravity. However, in a steady state, any streaming along closed field
lines would require enhanced diffusion to take place about the equatorial plane; whereas if
the closed-field region were charge separated, the particle motion could be purely toroidal
(although the equatorial charge species need not exactly corotate with the star) and this
potential difficulty would be removed. If the star can act as a plasma source, then, the
picture is that of an open, ‘torque-free’ field region beyond the light cylinder through which
escapes a dense plasma, and a zone of field lines closing within the light cylinder, where the
plasma is less mixed.

In a magnetosphere characterized by total charge separation near the star surface, the
inertialess approximation cannot be used without encountering some version of the

‘Goldreich—Julian paradox’. Inertial and (or) radiation-reaction terms must be included in
either the momentum equation, its divergence (yielding the charge density), or both. It is
more appropriate to divide the magnetosphere into ‘polar’ and ‘equatorial’ charge zones
(rather than ‘open’ and ‘closed’) since there is no need to assume the existence of an open
field region if the charged particles are no longer tied to field lines. If the charge distribution
near the star surface is not too different from the inertialess form (17), the equatorial charge
species must be restricted to almost purely toroidal motion in the dipole-like field within
the light cylinder. Then either (a) the polar charge species are also confined to toroidal
motion, or (b) the polar particles circulate back to the star. Alternative (a) implies corotation
out to a point which is always within the light cylinder, but a difficulty is encountered in
the rapid growth of the inertial contribution to the charge density, which can be resolved
only if it is possible to introduce a gap near the light cylinder between the polar charge
region and a non-corotating particle region lying somewhere beyond. Alternative (b) requires
acceleration of the polar particles to very high energies and a complete breakdown of the
frozen-in assumption, so that both particle inertia and radiation reaction must be included in
momentum conservation.

Based on these conclusions, further investigation along the following lines would appear
to be worthwhile:

(i) The conditions under which both charge species can be extracted simultaneously
from a given point on the star surface should be established. In this regard, the role of the
anomalous resistivity in coupling together the two charge species must be taken into
account. There is also a possibility that sufficient electron—positron pairs might be produced
near the star — through processes discussed by Cheng & Ruderman (1977) — (or possibly
closer to the light cylinder for rapid rotators) to generate the type of quasineutral-plasma,
torque-free wind discussed in Section 3.
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(ii) If it is concluded that the star or magnetosphere can act as a source of quasineutral
plasma, then the behaviour of the plasma and current flow about the equatorial plane,
particularly in the vicinity of the light cylinder, should be examined, since most of the
energy dissipation may be associated with this region.

(iii) If only one charge species can be supplied from a given point on the star surface, and
no exterior particle sources are present, the problem of how the star conserves charge must
be resolved. This involves a consideration of alternatives (a) and (b) above.
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