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INTRODUCTION

Fish that mainly use body/caudal fin (BCF) undulations for

locomotion are classified into five different types depending on

the manner they swim: anguilliform, sub-carangiform,

carangiform, thunniform and ostraciform (Breder, 1926; Lindsey,

1978; Videler, 1993; Webb, 1975) [for more detail on the various

modes of swimming, see Sfakiotakis et al. (Sfakiotakis et al.,

1999)]. Anguilliform and carangiform swimmers, which are the

focus of this paper, differ from each other in both body morphology

(form) and body undulations (kinematics). Anguilliform

swimmers, such as the eel (Anguilla anguilla), typically have long

narrow bodies and the width of the body remains almost constant

from head to tail. By contrast, carangiform swimmers, such as the

mackerel (Scomber scombrus), have thicker bodies with their body

width decreasing at the peduncle where the body attaches to a V-

shaped and typically symmetrical caudal fin of relatively high

aspect ratio. The amplitude of body undulations in anguilliform

swimmers is large over the whole body length whereas for

carangiform swimmers the large amplitude body undulations are

restricted to one-half or even one-third of the posterior part of the

body and the undulation amplitude increases sharply in the caudal

area. The wavelength of the body undulation wave is usually lower

for anguilliform swimmers (~70% of body length) than for

carangiform swimmers (~ one body length) (Videler and Wardle,

1991).

Two important non-dimensional parameters that characterize

steady inline undulatory swimming are the Reynolds number (Re*)

of the flow and the Strouhal number (St*) of the undulatory body

motion, which can be defined as follows (Lauder and Tytell, 2006;

Triantafyllou et al., 2000):

Re*  UL / n, (1)

St*  fA / U. (2)

In the above equations, L (m) is the fish length, U (ms–1) is the

steady inline swimming speed, n (m2s–1) is the kinematic viscosity

of the water, A (m) is the width of the wake, which is approximated

by the maximum lateral excursion of the tail over a cycle and f

(1s–1) is the tail-beat frequency.

Previous experiments have provided a wealth of data in terms

of body kinematics and wake flow field for undulatory swimming

[for reviews, see Fish and Lauder, 2006; Triantafyllou et al.,

2000]. A single row of vortices has been observed for the

carangiform swimmers (Barrett et al., 1999; Muller et al., 1997;

Nauen and Lauder, 2001; Nauen and Lauder, 2002; Wolfgang et

al., 1999) while a double row of vortices has been observed for

anguilliform swimmers (Hultmark et al., 2007; Liu and

Wassersug, 1997; Muller et al., 2001; Tytell and Lauder, 2004).

Comparing the performance of anguilliform and carangiform

swimmers, however, poses major challenges to experimental

studies (Tytell, 2007). One such challenge is the lack of

experimental control over live fish, which thwarts the control over

the governing parameters. Another challenge stems from the

difficulties in obtaining the 3-D flow and pressure fields around

the live fish needed to accurately measure and decompose the

forces for self-propelled bodies. This is particularly hard to
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SUMMARY

We carry out fluid–structure interaction simulations of self-propelled virtual swimmers to investigate the effects of body shape

(form) and kinematics on the hydrodynamics of undulatory swimming. To separate the effects of form and kinematics, we employ

four different virtual swimmers: a carangiform swimmer (i.e. a mackerel swimming like mackerel do in nature); an anguilliform

swimmer (i.e. a lamprey swimming like lampreys do in nature); a hybrid swimmer with anguilliform kinematics but carangiform

body shape (a mackerel swimming like a lamprey); and another hybrid swimmer with carangiform kinematics but anguilliform

body shape (a lamprey swimming like a mackerel). By comparing the performance of swimmers with different kinematics but

similar body shapes we study the effects of kinematics whereas by comparing swimmers with similar kinematics but different

body shapes we study the effects of form. We show that the anguilliform kinematics not only reaches higher velocities but is also

more efficient in the viscous (Re~102) and transitional (Re~103) regimes. However, in the inertial regime (Re�) carangiform

kinematics achieves higher velocities and is also more efficient than the anguilliform kinematics. The mackerel body achieves

higher swimming speeds in all cases but is more efficient in the inertial regime only whereas the lamprey body is more efficient

in the transitional regime. We also show that form and kinematics have little overall effect on the 3-D structure of the wake (i.e.

single vs double row vortex streets), which mainly depends on the Strouhal number. Nevertheless, body shape is found to

somewhat affect the small-scale features and complexity of the vortex rings shed by the various swimmers.
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achieve because most particle image velocimetry (PIV)

measurements provide flow fields in 2-D planes (Tytell, 2007).

Therefore, the efficiency in the recent experimental studies has

been obtained using hydromechanical models such as Lighthill’s

elongated body theory (EBT) (Lighthill, 1969). Based on EBT

the thrust is produced only at the tail and the rest of the body

undulations create wasted energy (Lighthill, 1969). Therefore,

according to this theory carangiform swimmers are more efficient

than anguilliform swimmers because most of their body

undulations are restricted in the caudal fin region. This theory,

however, incorporates many simplifying assumptions and neglects

viscous forces that can produce thrust along the body of

anguilliform swimmers (Shen et al., 2003; Taneda and Tomonari,

1974). As discussed in Tytell and Lauder, conclusions based on

EBT could lead to results that are contrary to what is observed

in nature (Tytell and Lauder, 2004). For example, many eels

migrate thousands of miles (van Ginneken and van den Thillart,

2000) and many sharks swim steadily in the sub-carangiform

(between carangiform and anguilliform) mode (Gemballa et al.,

2006).

In our previous work (Borazjani and Sotiropoulos, 2009a) we

helped to reconcile a number of such inconsistencies obtained

from simpler theories by performing 3-D numerical simulations

of tethered carangiform (Borazjani and Sotiropoulos, 2008) and

anguilliform (Borazjani and Sotiropoulos, 2009a) virtual

swimmers under similar conditions (Reynolds number). We

found that: (1) the carangiform swimmer’s Froude efficiency (hf)

is maximized as the Re* approaches � while the anguilliform

swimmer’s efficiency is maximized somewhere in the transitional

regime; (2) the temporal evolution of the net force acting on the

anguilliform swimmer varies more smoothly than for the

carangiform swimmer case; (3) the swimming power required for

a self-propelled anguilliform swimmer is lower than that for the

carangiform swimmer at the same Re*; and (4) for both swimmers

the swimming power is higher than the power required to tow

the respective rigid body at the same Re* (Borazjani and

Sotiropoulos, 2009a).

Our previous work (Borazjani and Sotiropoulos, 2009a) pointed

to a number of similarities as well as to a number of differences

between the two modes of swimming. The similarities are due to

similar BCF undulatory propulsion and similar governing flow

parameters such as Re* and St*. The differences, however, could

be due to either the difference in the respective body shapes (form)

and/or the type of body undulations (kinematics). The purpose of

the present study is to systematically investigate and quantify the

effects of form and kinematics on the hydrodynamic performance

of undulatory swimming. The main difficulty for accomplishing such

an undertaking is finding a rational approach for isolating the effects

of form and kinematics for different swimmers. To isolate such

effects, in this work we construct virtual, self-propelled swimmers

of a given body shape (fixed form) and make them swim with

different kinematics. For example, to quantify the effects of

kinematics on a mackerel body we can compare the performance

of a mackerel swimming like a mackerel (with carangiform

kinematics) with that of a mackerel swimming like an eel

(anguilliform kinematics). Similarly, to isolate the effects of form

we compare the performance of a mackerel body and an eel body

both swimming with the same kinematics (carangiform or

anguilliform). More specifically, we employ the following virtual

swimmers (Fig.1): (1) a mackerel body swimming like a mackerel

(denoted as MM); (2) mackerel body swimming like a lamprey

(ML); (3) a lamprey body swimming like a lamprey (LL); and (4)

a lamprey body swimming like a mackerel (LM). It is of course not

possible in nature to make a live mackerel swim like an eel or an

eel swim like a mackerel. Thus, using virtual (Borazjani and

Sotiropoulos, 2008; Borazjani and Sotiropoulos, 2009a; Kern and

Koumoutsakos, 2006; Liu and Kawachi, 1999; Liu and Wassersug,

1997) or biorobotic (Barrett et al., 1999; Hultmark et al., 2007;

Lauder et al., 2007) swimmers are the only feasible alternatives for

such an undertaking.

To compare the performance of the four virtual swimmers,

we perform self-propelled, fluid–structure interaction (FSI)

simulations under the same conditions. All virtual swimmers are

placed in the same, initially stagnant, fluid with viscosity n and

start undulating their bodies with the desired kinematics with a

tail-beat frequency f. In the present self-propelled simulations,

there is no tether to absorb the excess force F imparted by the

flow [as was the case in Borazjani and Sotiropoulos (Borazjani

and Sotiropoulos, 2008; Borazjani and Sotiropoulos, 2009a)] and

the fish can accelerate or decelerate depending on the sign of F.

Body undulations impart a thrust-type force F on the body, which

initially accelerates (on average) the virtual swimmer to higher

velocities. The swimming speed continues to increase until the

mean force F during one tail-beat cycle becomes zero (constant

speed, inline swimming limit). Thereafter, the virtual swimmer

has reached a quasi-stationary state characterized by constant

values of the mean swimming speed U, Re* and St*. The

swimming performance of the various swimmers is quantified at

this quasi-stationary, constant-mean-speed state in terms of

various performance metrics, such as power loss, Froude

efficiency hf, velocity over power (similar to mile per gallon),

etc. The wake structure of various swimmers is also examined at

the quasi-stationary, constant-mean-speed limit. A small portion

of the results presented in this paper has recently appeared in

Borazjani and Sotiropoulos (Borazjani and Sotiropoulos, 2009b).

The rest of the paper is organized as follows. First, we briefly

describe the numerical method and present the details of the fish

model and prescribed kinematics. Second, we provide the results

of our virtual swimmers and discuss the effects of body shape and

kinematics on their performance. Finally we summarize our findings,

present the conclusions of this work and outline the areas for future

research.

I. Borazjani and F. Sotiropoulos
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Fig.1. Four different virtual swimmers. Each row has the same kinematics

whereas each column has the same body. (A)mackerel swimming like a

mackerel (MM); (B) lamprey swimming like a mackerel (LM); (C) mackerel

swimming like a lamprey (ML); (D) lamprey swimming like lamprey (LL).
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MATERIALS AND METHODS

We have adopted the following notations for the sake of clarity

throughout this manuscript: (1) boldface variables are vectors; (2)

italic variables are scalars; (3) parameters with superscript * are

non-dimensionalized using the self-propelled swimming speed U

(ms–1) at the quasi-steady, constant-speed limit; (4) parameters with

super/subscript o are non-dimensionalized using a characteristic

reference velocity Uo (ms–1) (to be defined later). There is one

exception to this last rule for the non-dimensional swimming speed,

which is defined as U*U/Uo.

The governing equations and boundary conditions

The equations governing the motion of an incompressible Newtonian

viscous fluid are the 3-D, unsteady, incompressible Navier–Stokes

equations. In this work, and in order to facilitate the numerical

simulation of self-propelled swimming, the governing equations are

formulated in the non-inertial frame of reference that moves with

the fish.

Non-dimensionalized by a characteristic reference velocity Uo,

and the fish length L, the governing equations in a non-inertial

reference frame, which moves with velocity uc and angular velocity

, relative to the inertial frame, read in conservative form as follows

(Borazjani, 2008):

where ReoUoL/n is the Reynolds number, t is the time and u, v

and w are defined as:

u  v + ur(t)  QTua (t),

v  uc + Ω rr,

w  Ω rr, (4)

where ua is the non-dimensional Cartesian absolute velocity vector

of the fluid in the inertial reference frame, ur is the non-dimensional

Cartesian relative velocity vector of the fluid in the non-inertial

reference frame, rr is the non-dimensional position vector relative

to the non-inertial frame, QT is the rotation matrix of the non-inertial

frame relative to the inertial frame, and p is the non-dimensional

pressure. The time derivative relative to the non-inertial frame is

defined as:

This conservative formulation has been developed and used

successfully to simulate the flow in non-inertial reference frames

(Beddhu et al., 1996; Kim and Choi, 2006). Note that, as shown by

Kim and Choi (Kim and Choi, 2006), the non-conservative

formulation is not adopted herein because it can lead to severe

instability in the numerical method. The inviscid (Euler) equations,

which are also solved in this work, are recovered from Eqn3 by

letting Reor�.

We are interested in solving the governing flow equations in a

domain containing an arbitrarily complex 3-D flexible body moving

with prescribed kinematics. Therefore, the governing equations

(Eqn3) need to be supplemented with appropriate boundary

conditions at the boundaries of the flow domain, which could be

either fluid boundaries or the solid boundary of a moving immersed

body.

   

∇ ⋅ u = 0

∂u

∂t

⎛

⎝⎜
⎞

⎠⎟
r

+ ∇ ⋅[(u − v)u + uw] = −∇p +
1

Reo

∇2
u , (3)

∂
∂t

⎛

⎝⎜
⎞

⎠⎟
r

=
∂
∂t

⎛

⎝⎜
⎞

⎠⎟
a

+ (Ωr
r

+ u
c
) ⋅∇ . (5)

In this work the non-inertial reference frame is attached to the

virtual swimmer’s center of mass. The motion of the center of mass

is obtained by solving the Newton’s Second law of motion

(momentum) equations for the fish in non-dimensional form:

where U* is the fish swimming speed non-dimensionalized by Uo,

Mredm/L3 is the reduced mass (where m is the mass of the virtual

swimmer and  is the fluid density) and CF
oF/(Uo)

2L2 is the force

coefficient (where F is the force vector exerted on the virtual

swimmer’s body by the fluid). The position of the non-inertial frame

is obtained by solving the following equation:

where xc is the position vector of center of mass non-dimensionalized

by L, i.e. the position of the origin of the non-inertial frame relative

to the inertial frame. In this work we have restricted the virtual

swimmer to swim only along the streamwise direction. We are not

considering the motion in other directions because we have removed

all of the median and pectoral fins in our virtual swimmers that the

fish use for stability during swimming.

Let the boundary of the fish body be defined by the dynamically

evolving surface (t). (t) is discretized with K material points,

which lie on it at all times and can be tracked with their global

Lagrangian position vectors rk
r (t) (k1, K) in the non-inertial frame:

rk
r (t) �(t) � t > 0. (8)

In this work the motion relative to the non-inertial frame is prescribed,

i.e. position of the markers relative to the non-inertial frame is known

at all times. Therefore, the shape of (t) can be obtained at any time

from the known relative position vectors, Eqn8 and the calculated

position of the non-inertial frame from Eqn7 as follows (for k1, K):

rk
a (t)  xc + rk

r (t), (9)

where ra
k(t) is the global position vector of material point k at time t

in the inertial frame of reference. With the shape of (t) known at

time t, boundary conditions for the Eulerian fluid velocity vector u(r,t)

must be prescribed at all points of (t). For viscous flow, the no-slip

and no-flux boundary conditions need to be satisfied as follows:

This boundary condition enforces the link between the Eulerian

description of the fluid motion and the Lagrangian description of

the moving immersed body (for details, see Gilmanov and

Sotiropoulos, 2005).

For inviscid flow only the no-flux condition is satisfied on the

body, i.e. the fluid velocity normal to the body is set equal to the

normal velocity of the body while the fluid velocity components

tangent to the body need to be prescribed by interpolation from the

interior fluid nodes. The mathematical formulation of these boundary

conditions reads as follows:

where un is the fluid velocity normal to the body, ut is the fluid velocity

vector tangential to the body and n is the normal vector to the surface.

   
u

a
(r

a

k (t),t) =
dr

a

k

dt
= U

k (t) � k = 1,K (10).

   
M red

dU
*

dt
= CF

o
, (6)

   

dx
c

dt
= U

* , (7)

   
u
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(r

a
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dr

a

k

dt
= n ⋅ U

k (t) � k = 1,K (11),

∂
∂n

u
t
(r

a

k (t),t)⎡⎣ ⎤⎦ = 0 � k = 1,K (12),
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The numerical method

The flexible fish body is handled as a sharp interface immersed in

the background Cartesian grid using the hybrid Cartesian immersed-

boundary (HCIB) method (Gilmanov and Sotiropoulos, 2005). This

method has been described in detail in Gilmanov and Sotiropoulos

(Gilmanov and Sotiropoulos, 2005) and only a very brief description

of the technique is given herein. The HCIB approach employs an

unstructured, triangular mesh to discretize and track the position of

a fish body. Boundary conditions for the velocity field at the Cartesian

grid nodes that are exterior to, but in the immediate vicinity of, the

immersed boundary, i.e. immersed boundary (IB) nodes, are

reconstructed by linear or quadratic interpolation along the local

normal to the boundary. No explicit boundary conditions are required

for the pressure field at the IB nodes due to the hybrid staggered/non-

staggered formulation of Gilmanov and Sotiropoulos (Gilmanov and

Sotiropoulos, 2005). The HCIB reconstruction method has been

shown to be second-order accurate on Cartesian grids with moving

immersed boundaries (Gilmanov and Sotiropoulos, 2005). The IB

nodes at each time step are recognized using an efficient ray-tracing

algorithm (Borazjani et al., 2008).

This method has been validated extensively by Gilmanov and

Sotiropoulos (Gilmanov and Sotiropoulos, 2005) and Borazjani and

Sotiropoulos (Borazjani and Sotiropoulos, 2008) for flows with

moving boundaries and has also been applied to simulate fish-like

swimming for tethered carangiform swimmers (Borazjani and

Sotiropoulos, 2008; Gilmanov and Sotiropoulos, 2005) and tethered

anguilliform swimmers (Borazjani and Sotiropoulos, 2009a). As in

our recent work with tethered swimmers (Borazjani and

Sotiropoulos, 2008; Borazjani and Sotiropoulos, 2009a), we solve

the governing equations using the fractional step method of Ge and

Sotiropoulos (Ge and Sotiropoulos, 2007). The Poisson equation is

solved with flexible GMRES (Saad, 2003) and multigrid as a

preconditioner using parallel libraries of PETSc (Balay et al., 2004).

For more details the reader is referred to Ge and Sotiropoulos (Ge

and Sotiropoulos, 2007) and Borazjani et al. (Borazjani et al., 2008).

FSI coupling

We use the partitioned approach to solve the coupled fluid–structure

system of equations (Borazjani et al., 2008; Piperno and Farhat,

2001). The system of Eqns3, 6 and 10 is partitioned into a fluid

and a structure domain. Each domain is treated computationally as

an isolated entity and is separately advanced in time and the

interaction effects are accounted for through boundary conditions,

i.e. the fluid equation (Eqn3) and structure equation (Eqn6) are

coupled together through the no-slip boundary condition equation

(Eqn10) and the dynamic boundary condition F on the right-hand

side of Eqn6. Based on the treatment of boundary conditions two

types of FSI coupling are possible: loose coupling (LC–FSI) or

strong coupling (SC–FSI) [the readers are referred to the work of

Borazjani (Borazjani, 2008) for the details of the different coupling

methods]. LC–FSI is explicit in time while SC–FSI is implicit in

time and is implemented by performing several sub-iterations at

each time step (Borazjani et al., 2008). As discussed in Borazjani

et al. (Borazjani et al., 2008) even SC–FSI can be unstable if the

added mass is considerable relative to the actual mass of the system.

To stabilize the SC–FSI we have used the following under-relaxation

scheme (Borazjani et al., 2008) for all simulations reported in this

work when solving Eqn6:

U*l+1  (1 – a) U*l + aU*l+1, (13)

where a is the under-relaxation coefficient, U*l+1 and U*l+1 indicate

the solution after and before under-relaxation has been applied at

the l+1 SC–FSI iteration. The under-relaxation coefficient is

obtained dynamically during each SC–FSI iteration using the Aitken

acceleration technique (Borazjani et al., 2008). The SC–FSI

algorithm with Aitken acceleration typically converges within 4–5

iterations at each time step. The FSI coupling method formulated

in the non-inertial reference frame is validated in Appendix B by

simulating vortex-induced vibrations (VIV) of an elastically

mounted cylinder in the non-inertial frame of reference.

Fish body kinematics and non-dimensional parameters

The bodies of the virtual swimmers used in this study are exactly the

same as those used in our previous tethered simulations. The

carangiform body was modeled after the actual anatomy of a mackerel

(Borazjani and Sotiropoulos, 2008) whereas the anguilliform body

was created from a lamprey computed tomography (CT) scan by

Professor Frank Fish, provided to us by Professor Lex Smits from

Princeton University (Borazjani and Sotiropoulos, 2009a). The

lamprey was chosen to represent the anguilliform swimmer in this

work because our tethered anguilliform swimmer (Borazjani and

Sotiropoulos, 2009a) was a lamprey, which simplifies the comparison

of tethered and self-propelled swimmers. Furthermore, the lamprey

kinematics is similar to other anguilliform swimmers such as the eel

(Hultmark et al., 2007). Only the caudal fin was retained for the

mackerel whereas all other fins were neglected for the lamprey due

to a lack of detailed experimental data (Borazjani and Sotiropoulos,

2008; Borazjani and Sotiropoulos, 2009a). The bodies are meshed

with triangular elements as needed by the HCIB method (Fig.2).

The kinematics for BCF locomotion is generally in the form of

a backward traveling wave with the largest wave amplitude at the

fish tail (Gray, 1933), which can be described by the following

equations for the lateral undulations of the fish body (all lengths

are non-dimensionalized with the fish length L):

h(z,t)  a(z) sin(kz – wt), (14)

where z is the axial (swimming) direction measured along the fish

axis from the tip of the fish’s head; h(z,t) is the lateral excursion of

the body at time t; a(z) is the amplitude envelope of lateral motion

as a function of z; k is the wave number of the body undulations

that corresponds to a wavelength ; and w is the angular frequency.

Both modes of BCF propulsion studied herein, i.e. anguilliform and

carangiform, are described by the above traveling wave equation

(Eqn14) by choosing an amplitude envelope and a wavelength (or

wave number), referred to hereafter as shape parameters, that match

that mode of swimming (Tytell and Lauder, 2004; Videler and Hess,

1984). In this work, we define the fish length L as the total length

from the tip of the nose to the end of the tail of the straight virtual

swimmer. For the mackerel and lamprey bodies the fork length is

equal to 0.94L and L, respectively.

The amplitude envelope a(z) for the anguilliform kinematics was

approximated by an exponential function (Borazjani and

Sotiropoulos, 2009a; Tytell and Lauder, 2004):

a(z)  amaxe
z–1, (15)

where amax is the tail-beat amplitude.

For carangiform kinematics the amplitude envelope was

approximated by a quadratic curve of the form (Borazjani and

Sotiropoulos, 2009a):

a(z)  a0+ a1z + a2z
2. (16)

For a typical anguilliform fish the coefficient amax is set equal to

amax0.1 (Hultmark et al., 2007). The following values are used for

the coefficients a00.02, a1–0.08 and a20.16 to match the

I. Borazjani and F. Sotiropoulos
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experimental curve of Videler and Hess (Videler and Hess, 1984)

for typical carangiform kinematics. Both kinematics have the

maximum displacement at the tail amax0.1, i.e. hmax0.1L. Fig.3
shows the amplitude envelopes of anguilliform and carangiform

kinematics according to Eqns15 and 16, respectively. The wave

number in all simulations is based on the non-dimensional

wavelength /L0.642 for anguilliform (Borazjani and Sotiropoulos,

2009a; Hultmark et al., 2007) and /L0.95 for carangiform

(Borazjani and Sotiropoulos, 2008; Videler and Hess, 1984)

swimmers. Fig.4 shows the midlines of the fish calculated for one

tail-beat cycle using Eqn14 with the anguilliform and carangiform

shape parameters and the amplitude envelopes calculated by Eqns15

and 16, respectively. Fig.1 shows one instant in time of the body

shapes resulting when such undulations of the midline are imposed

on the lamprey and mackerel bodies.

The four important non-dimensional similarity parameters in

fishlike swimming are: (1) the swimming Re* defined by Eqn1; (2)

the St* defined by Eqn2 based on the maximum lateral excursion of

the tail A2amax and the tail-beat frequency f: St*2famax/U; (3) the

non-dimensional wavelength /L; and (4) the non-dimensional

amplitude envelope a(z/L)/L. Sometimes the so-called slip velocity

or slip ratio, defined as slipU/VU/(w/k), is used instead of non-

dimensional wavelength. Using either parameter is correct. However,

the slip velocity changes if the tail-beat frequency is changed, while

the wavelength and the tail-beat frequency are independent.

Setup of numerical experiments and computational details

The four virtual swimmers are released in a given fluid with a

prescribed tail-beat frequency and the swimming velocity is calculated

based on the forces on the swimmers body. The simulations are
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Fig.2. The mackerel and lamprey body of virtual swimmers are meshed with triangular elements as needed by the sharp-interface immersed boundary

method from side and top views.
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Fig.3. The amplitude envelope [a(z)] of (A) carangiform and (B) anguilliform

kinematics. z is the axial direction measured along the fish axis from the

top of the fish’s head.
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Fig.4. Midlines of the virtual swimmers with (A) crangiform and (B)

anguilliform kinematics according to Eqn14 at several time instances during

one tail-beat cycle. h is the lateral displacement of fish body and z is the

axial direction measured along the fish axis from the top of the fish’s head.
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continued until the quasi-steady state is reached, i.e. the mean

swimming speed stays constant. The swimming speed U in the quasi-

steady state depends on the tail-beat frequency. Therefore, because

Re* (Eqn1) and St* (Eqn2) depend on the swimming speed U, both

of these parameters also depend on the tail-beat frequency.

Consequently, in order to obtain a quasi-steady value for Re* in a

desired range, the tail-beat frequency should be chosen carefully. To

accomplish this we use the information from our previous simulations

with tethered swimmers (Borazjani and Sotiropoulos, 2008) as

guidance to select the tail-beat frequency. Before explaining how the

tail-beat frequency is chosen here, let us summarize again how we

performed the tethered simulations (Borazjani and Sotiropoulos, 2008;

Borazjani and Sotiropoulos, 2009a) using the notation we employ in

this paper. We fixed the Reynolds number Reo by moving the tether

at a constant speed Uo in a fluid of a given viscosity. Subsequently,

for the prescribed Reo value, we systematically varied the Strouhal

number Sto (based on Uo) by varying the tail-beat frequency until we

found the critical Stouhal number Sto* at which the mean net force

on the tether is zero, i.e. the virtual swimmer could self-propel itself

with constant velocity equal to the corresponding velocity of the tether

Uo. The self-propelled simulations can be considered as the inverse

of the tethered simulations because we now fix the tail-beat frequency

and find the resulting swimming velocity U in the self-propelled quasi-

steady state. Therefore, if we prescribe in a self-propelled swimmer

the tail-beat frequency corresponding to the value of Sto*, obtained

from the tethered simulations of the same swimmer, we should obtain

a self-propelled swimming speed U~Uo (i.e. equal to the speed of the

tether for Sto*) in the quasi-steady state, assuming of course that the

fluid is the same in the tethered and self-propelled simulations.

To obtain the same hydrodynamic environment in the self-

propelled simulations as in the tethered simulations, we non-

dimensionalize the fluid governing equation (Eqn3) by setting the

characteristic velocity Uo to be equal to the tether velocity and

selecting the fluid to have the same kinematic viscosity as in the

tethered simulations. We have chosen the Reo to exactly match the

Reynolds number in the tethered simulations, i.e. (1) a viscous

environment (Reo300); (2) a moderately viscous environment

(Reo4000); (3) and an inviscid environment (Reo�), which are

referred to as cases R1, R2 and R3, respectively, hereafter.

To match the tail-beat frequency f with the tethered simulations,

we have non-dimensionalized the body traveling wave equation

(Eqn14) with the velocity Uo and fish length L and use the non-

dimensional angular frequency w as follows:

w  2pfL / Uo  2pfo  2pSto / 2amax . (17)

The above non-dimensional angular frequency is used along with

the non-dimensional time tUo/L in Eqn14. fofL/Uo is the non-

dimensional frequency and Stof2amax/Uo is the Strouhal number

based on the tail-beat frequency f, lateral excursion of the tail 2amax

and the tether velocity Uo. Now for the desired value of Reo in a

self-propelled simulation, we find the critical (zero force on the

tether) Strouhal number Sto* from the corresponding tethered

carangiform swimmer simulation (Borazjani and Sotiropoulos,

2008) and choose a value for Sto in the self-propelled simulation to

be close to Sto*. Namely, we have chosen Sto1.1, 0.6 and 0.3 for

Reo300, 4000 and �, respectively. We then use this Sto to find the

non-dimensional angular frequency w (Eqn17) and prescribe it in

the body traveling wave equation (Eqn14).

The selection of the tethered carangiform swimmer (MM)

(Borazjani and Sotiropoulos, 2008) as the base line for computing

the non-dimensional angular frequency w is of course arbitrary but

it does not in any way limit the generality of our results. Ultimately

all swimmers in each case race each other in the same hydrodynamic

environment (fixed Reo) and beat their tail at the same angular

frequency w (fixed Sto). Naturally, however, this treatment will yield

for every swimmer a steady, swimming speed U different than Uo,

i.e. U*U/Uo�1 due to differences in kinematics, body shape and

the different numerical approaches used to simulate the tethered and

self-propelled swimmers. Because we have selected the tethered MM

swimmer as the base-line case for selecting the tail-beat frequency

we should expect that the non-dimensional swimming speeds we

obtain for the self-propelled MM swimmer are, in general, closer to

unity and this is indeed the case as discussed in the Discussion section.

The computational domain and time step for the mackerel body

are exactly the same as the tethered mackerel simulations (Borazjani

and Sotiropoulos, 2008). Similarly, for the lamprey body the domain

and time step are the same as in the tethered lamprey simulations

(Borazjani and Sotiropoulos, 2009a). The computational domain is a

cuboid with dimensions 2L�L�7L, which is discretized with 5.5

million grid nodes. The domain width 2L and height L are more than

15 times the lamprey width 0.067L and height 0.066L and 10 times

the mackerel width 0.2L and height 0.1L, respectively. As in the

tethered simulations, the fish is placed 1.5L from the inlet plane in

the axial direction and centered in the transverse and the vertical

directions. The virtual swimmers start to undulate in an initially

stagnant fluid and the boundary conditions on the domain outer

boundaries are far-field (Neumann) boundary conditions. The reduced

mass Mred in Eqn6 is set equal to 0.01 for all of virtual swimmers.

Calculation of swimming forces and efficiency

The procedure we employ to calculate the hydrodynamic forces and

efficiency has been discussed extensively in our previous

publications (Borazjani and Sotiropoulos, 2008; Borazjani and

Sotiropoulos, 2009a). Therefore, only a brief description is given

below for the sake of completeness.

In our simulations, we consider inline swimming along the x3

direction. The component of the instantaneous hydrodynamic force

in the x3 direction (which for simplicity will be denoted as F) can be

readily computed by integrating the pressure and viscous forces acting

on the body as follows (where repeated indices imply summation):

where nj is the jth component of the unit normal vector on dA and

ij is the viscous stress tensor.

Depending on whether F(t) is negative or positive, it could contribute

to either hydrodynamic drag D(t) or thrust T(t). To separate the two

contributions we adopt the force decomposition approach proposed

by Borazjani and Sotiropoulos (Borazjani and Sotiropoulos, 2008):

F (t) = − pn3dA + τ3jnj( )d A
A

∫ (18),

T (t)=Tp + Tv =  
1

2
− pn3 dA

A

∫ + pn3 dA
A

∫
⎛

⎝
⎜

⎞

⎠
⎟

1

2
τ3jnjdA

A

∫ + τ3jnj dA
A

∫
⎛

⎝
⎜

⎞

⎠
⎟

+

(19).

  

− D(t)= − Dp + Dv( ) =  
1

2
− pn3 dA

A

∫ − pn3 dA
A

∫
⎛

⎝
⎜

⎞

⎠
⎟ +

1

2
τ3jnjdA

A

∫ − τ3jnj dA
A

∫
⎛

⎝
⎜

⎞

⎠
⎟ . (20)
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In the above equations the subscripts p and v refer to force

contributions from pressure and viscous terms, respectively.

The numerical details for calculating the various surface integrals

involved in the above equations in the context of the HCIB

numerical method can be found in Borazjani (Borazjani, 2008). A

detailed validation study demonstrating the accuracy of our

numerical approach for calculating the viscous and pressure

components of the hydrodynamic force in the non-inertial reference

frame is provided in Appendix A.

The power loss due to lateral undulations of the fish body (Pside)

is calculated as follows:

where h is the time derivative of the lateral displacement (i2

direction), i.e. the velocity of the lateral undulations.

The mean quantities of force, thrust, drag and power are obtained

by averaging the instantaneous values over several swimming cycles.

We non-dimensionalize each mean quantity in two ways: (1) non-

dimensional quantities with superscript * are scaled with the calculated

swimming speed U, which is the typical definition for various

coefficients, such as force or thrust coefficients, found in the literature;

and (2) non-dimensional quantities with superscript o are scaled with

the characteristic velocity Uo, which is the velocity scale we used to

non-dimensionalize the governing equations. The latter scaling is

useful because using a common reference velocity for all swimmers

preserves the relative proportion of a given swimming performance

measure X (where X can be power, force, thrust, etc.) between different

swimmers in a given environment, e.g. (CX
o)j/(CX

o)iXj/Xi (where i,j1

to 4 for the MM, ML, LM and LL swimmers, respectively). We refer

to quantities with * as performance measure X coefficient (e.g. power

coefficient) and to quantities with o as non-dimensional performance

measure X (e.g. non-dimensional power). The various non-

dimensional quantities are defined as follows.

Force coefficient and non-dimensional force in the axial direction:

where  is the density of the fluid, F is the mean force, U is the

mean swimming speed and Uo is the characteristic velocity.

Thrust coefficient and the non-dimensional thrust:

where T is the mean thrust.

Power coefficient and non-dimensional power:

where P is the mean side power.

The Froude propulsive efficiency hf based on the thrust force for

constant speed inline swimming is defined as follows (see Tytell

and Lauder, 2004):

where P is the mean power loss due to lateral undulations. We also

use an efficiency measurement (called mean efficiency hereafter),

h* U*/ CP
*, (26)

which is similar to the miles per gallon (MPG) fuel efficiency for

cars as suggested by Schultz and Webb (Schultz and Webb, 2002).

CF
* =

F

ρU 2 L2
CF

o =
F

ρ(Uo ) 2 L2
, (22),

CT

o =
T

CT

o =
T

ρ(Uo ) 2 L2

, (23)
ρU 2 L2

,

CP
* =

P

ρU 3L2
CP

o =
P

ρ(Uo )3 L2
, (24),

ηf =
TU

TU + P
=

CT

o
U *

CT

o
U * + CP

o (25),

   
Pside = − pn2

ɺh dA + τ2 jnj
ɺh dA∫∫ , (21)

It is important to note that the Froude efficiency equation

(Eqn25) can only be applied under inline, constant-speed swimming

when the thrust force is balanced exactly by the drag force and the

net mean force acting on the fish body is zero (Borazjani and

Sotiropoulos, 2008; Borazjani and Sotiropoulos, 2009a). Therefore,

Eqn25 is used to compute the efficiency only when the virtual

swimmer has reached the quasi-steady state of constant-mean

velocity.

Wake visualization

We visualize the 3-D wake structure of different virtual swimmers

for various cases using an iso-surface of the q variable (Hunt et al.,

1988). The quantity q is defined as qG(||||2–||S||2), where S and Ω
denote the symmetrical and asymmetrical parts of the velocity

gradient, respectively, and ||�|| is the Euclidean matrix norm.

According to Hunt et al. (Hunt et al., 1988), regions where q>0, i.e.

regions where the rotation rate dominates the strain rate, are

occupied by vortical structures.

RESULTS

As discussed above, for a given hydrodynamic environment (fixed

Reo) all four virtual swimmers are released with the same tail-beat

frequency (fixed Sto), and the self-propelled, FSI simulations are

continued until the swimmers reach quasi-steady state. The

calculated time series of swimming speeds for the three

hydrodynamic environments (cases R1, R2 and R3) and for all four

swimmers are shown in Fig.5. It can be observed from this figure

that the swimmers with the lamprey body (LM, LL) consistently

require more cycles to reach the quasi-steady state relative to the

swimmers with the mackerel body (MM, ML). For example, in

Fig.5C the swimmers with lamprey body take about 80 cycles to

reach quasi-steady state while swimmers with mackerel body reach

there only after 35 cycles.

Fig.5A shows the calculated swimming speed for the viscous

case R1 (Reo300, Sto1.1). It can be observed that the ML

swimmer reaches the highest velocity of all swimmers. Comparing

swimmers with the same body shape, those with anguilliform

kinematics (ML and LL) always reach velocities higher than those

with carangiform kinematics (MM, LM). The swimming speed of

the ML swimmer in the steady state is about 11% faster than the

MM swimmer but about 29% and 42% faster than the LM and LL

swimmers, respectively.

Fig.5B shows the results for the moderately viscous case R2

(Reo4000, Sto0.6). As in the viscous case, the ML swimmer is

the one that reaches the highest velocity for this case as well. Similar

to the previous case, among swimmers with the same body those

with anguilliform kinematics (ML and LL) always win. It is worth

noting, however, that in this case the anguilliform kinematics win

the race by a significantly narrower margin than was the case for

the viscous case R1. Namely, in this case the ML swimmer is only

about 3% faster than the MM swimmer and about 16% and 10%

faster than the LM and LL swimmers, respectively.

Strikingly different trends are observed in Fig.5C, which shows

the results for the inviscid case R3 (Reo�, Sto0.3). It is seen that

for this case the MM swimmer reaches the highest velocity among

all swimmers. Comparing swimmers with the same body, those with

carangiform kinematics (MM, LM) now win the race against their

anguilliform counterparts (ML, LL) by a wide margin. The MM

swimmer is about 23% faster than the ML swimmer and about 38%

and 46% faster than the LM and LL swimmers, respectively. A

surprising finding in this regard is that during the initial acceleration

phase, the swimmers with anguilliform kinematics (ML, LL) are
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seen to accelerate faster than their carangiform counterparts (MM,

LM) (see Fig.5C,D). Ultimately, however, the swimmers with

carangiform kinematics overtake the swimmers with anguilliform

kinematics and win the race. More specifically, it takes the MM

swimmer three cycles to catch up with the ML swimmer (Fig.5D)

while it takes the LM swimmer about 28 cycles to catch up with

the LL swimmer (Fig.5C).

In the above discussion we focused on relative swimming speed

without considering how much power is required by each swimmer

to attain a given speed. In Fig.6 we plot the time history of

instantaneous non-dimensional power (Eqn24) for all virtual

swimmers in different cases. Recall that, by definition, the non-

dimensional power preserves the relative magnitude of the power

between the different virtual swimmers. Fig.6A shows the non-

dimensional power results for the case R1 (Reo300, Sto1.1). In

this case, the swimmers with the mackerel body (ML, MM) have

similar power time records, which exhibit higher fluctuations than

the swimmers with the lamprey body (LM, LL). Fig.6B shows the

non-dimensional power results for the case R2 (Reo4000, Sto0.6).

The relative values between different swimmers in this case are

similar to the previous case R1 but the absolute values of non-

dimensional power are one-order of magnitude lower. Fig.6C shows

the non-dimensional power the results for the inviscid case R3

(Reo�, Sto0.3). The values of non-dimensional power are again

one-order of magnitude smaller than the previous case R2. Therefore,

we can see that the non-dimensional power is decreasing as Reo

increases for all swimmers. Similar to the previous cases, R1 and

R2, we see that the swimmers with the mackerel body (MM, ML)

have higher power values than those with lamprey body (LM, LL).

Comparing swimmers with the same body we see that the ones with

carangiform kinematics (MM, LM) have higher fluctuations in

power than the ones with anguilliform kinematics (ML, LL).

An interesting observation in Fig.6C is that for the R3 case the

power becomes negative at some intervals during the swimming

cycle, which indicates that the swimmer is able to extract energy

from the flow. Note that for this inviscid case (R3) the viscous forces

do not contribute to the swimming power and only pressure forces

are involved. To explore the physical reasons for this interesting

finding, we visualize in Fig.7 the instantaneous pressure field (non-

dimensionalized by Uo
2) at the mid-plane of the swimmer at two

instances in time when the power is positive and negative,

respectively. The anterior portion of the MM swimmer body neither

moves (small h) nor contributes to the power significantly.

Therefore, most of the power is transmitted to the flow in the

posterior region, where the arrows in the figure indicate the direction

of the tail motion. It can be observed in Fig.7A that, due to the tail

motion, two pockets of high and low pressure are present on the

two sides of the tail such that the resulting pressure force is against

the tail motion. Therefore, in this case the swimmer has to expend

power to advance its tail against the pressure-induced force (positive

power). In Fig.7B, however, when the tail starts to return, the

resulting pressure force is in the same direction as the tail motion

and the swimmer could use this favorable pressure to its advantage

(negative power) to extract power from the flow. It is interesting to

note that all of the other swimmers also exhibit power minima at
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Fig.5. Non-dimensional swimming speed (U*) time history for all virtual

swimmers in case (A) R1 (Reo300, Sto1.1), (B) R2 (Reo4000, Sto 0.6),

(C) R3 [Reo� (inviscid), Sto0.3] for all simulated swimming cycles and

(D) in the first eight cycles for case R3 [Reo� (inviscid), Sto0.3] for the

virtual swimmers with mackerel body (MM, ML). In case R3 initially the

swimmers with anguilliform kinematics (ML, LL) are ahead but the

swimmers with carangiform kinematics (MM, LM) catch up after about three

cycles for MM swimmer (D) and about 28 cycles for the LM swimmer (C).

See Fig.1 for the definition of various virtual swimmers.
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the same time during the cycle but the magnitude of the power is

clearly not as small as for the MM swimmer (Fig.6C). This can be

explained by examining the body shape and kinematics of the MM

swimmer. The large surface area and large amplitude of motion in

the posterior region relative to the other swimmers allows the MM

swimmer to use the pressure pockets in the flow most effectively.

Another important observation that emerges collectively from

Figs5 and 6 is that for all three hydrodynamic environments,

swimmers with the mackerel body (MM, ML) not only consistently

reach higher velocities than swimmers with the lamprey body (LM,

LL) but use more power as well. Reaching higher velocities does

not necessarily indicate higher efficiency if more power is consumed,

and more quantitative analysis is required to further probe this

important point. To accomplish this, we report in Table1 various

mean quantities and efficiencies in the quasi-steady-state. In addition

to the computed mean value of U* and the resulting Re* and St*,

we also provide results for: (1) the power coefficient and mean power

equation (Eqn24); (2) the thrust coefficient and mean thrust equation

(Eqn23); (3) the Froude efficiency hf equation (Eqn25); (4) mean

efficiency equation (Eqn26); and (5) the root mean squared (r.m.s.)

of the swimming speed fluctuations, which are computed once the

quasi-steady, constant-mean-speed state has been reached. It can be

observed from the table that in the viscous case R1, the ML swimmer

is most efficient, has the smallest power coefficient, produces the

most amount of non-dimensional thrust and reaches the highest

speed. However, the LM swimmer uses the smallest power CP
o. In

the moderately viscous case R2, the ML swimmer produces the

highest non-dimensional thrust and reaches the highest swimming

speed but the LL swimmer is most efficient and uses less power.

Finally, in the inviscid case R3, the MM swimmer produces the

highest non-dimensional thrust and reaches the highest speed and

is most efficient but the LL swimmer uses the least power. In all

cases the MM swimmer always exhibits velocity fluctuations with

the highest r.m.s. From this table the effects of body shape and

kinematics cannot be readily deduced. We will discuss these issues

in more detail in the Discussion section below.

Wake structure

Figs8–10 show the wake structures visualized by the q-criterion of

different swimmers for the cases R1, R2 and R3, respectively. It

can be observed from the Figs8 and 9 that a double row structure

is present in the viscous and transitional cases for all the swimmers.
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Fig.6. Non-dimensional power time history of all virtual swimmers in case

(A) R1 (Reo300, Sto1.1), (B) R2 (Reo4000, Sto0.6) and (C) R3 [Reo�

(inviscid), Sto0.3] for several simulated swimming cycles. See Fig.1 for

the definition of various virtual swimmers.

Fig.7. Pressure contours in the mid-plane of the MM swimmer in case R3

[Reo� (inviscid), Sto0.3] at time (A) t/T32.67 (CP
o3.56�10–4) and (B)

t/T32.75 (CP
o–3.73�10–4). The arrows indicate the tail motion. CP

o is non-

dimensional power.

THE฀JOURNAL฀OF฀EXPERIMENTAL฀BIOLOGY



98

However, a single row wake structure emerges in the inertial case

R3 for all swimmers (Fig.10).

Apart from large-scale characteristics of the wake (single vs

double row), the body shape can affect more subtle wake features,

such as the shape of the vortex rings. For example, in Fig.9 the

rings shed by the lamprey body (LL and LM swimmers) are more

circular and simpler in shape whereas the rings shed by the mackerel

body (MM and ML swimmers) are more complex and less

organized. Moreover, in Fig.10, where all swimmers have a single

row wake, the swimmers with the mackerel body show a remarkable

vortex-within-a-vortex structure in the vicinity of the tail, which is

not observed in the swimmer with lamprey body. Fig.11 examines

the vortex-within-a-vortex structure more closely for the MM and

ML swimmers, which shows two vortex rings: vortex ring 1 is

generated by the leading edge of the tail; while vortex ring 2 is

generated by the trailing edge of the tail. The swimmers with the

lamprey body do not show such structure probably due to the lack

of a homocercal large aspect-ratio tail. This important wake feature

of the mackerel body swimmers will be discussed further in a

subsequent section. Comparing the wake structure of the swimmers

with similar body shapes but different kinematics in Figs8–10, we

find that the kinematics appear to have a weaker effect on the small

features of the wake than the body shape. In fact, for all cases the

wake of swimmers with the same body shape but different

kinematics looks fairly similar.

DISCUSSION

Self-propelled vs tethered simulations and experiments

As mentioned earlier to achieve swimming speeds close to one,

which are desirable from a numerical standpoint, the tail-beat

frequency of each virtual swimmer at Reo is selected close to the

Sto* (Stouhal number at which net mean force on the tether is zero

for Reynolds number Reo) found from tethered simulations of the

MM swimmer (Borazjani and Sotiropoulos, 2008). Inversely, we

can pose the question whether the swimming speed that results from

the self-propelled, FSI simulations yields values for St* and Re*

that are comparable with those obtained from the tethered model.

The Re* and St* values reported in Table1, i.e. St*1.10, 0.61 and

I. Borazjani and F. Sotiropoulos

Fig.8. Wake structure visualized by the iso-surfaces of q-

criterion for case R1 (Reo300, Sto1.1) for self-propelled

virtual swimmers: (A) MM; (B) LM; (C) ML; (D) LL. See

Fig.1 for the definition of various virtual swimmers.

Fig.9. Wake structure visualized by the iso-

surfaces of q-criterion for case R2 (Reo4000,

Sto0.6) for self-propelled virtual swimmers: (A)

MM; (B) LM; (C) ML; (D) LL. See Fig.1 for the

definition of various virtual swimmers.
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0.25 for Re*299, 3910 and �, respectively, are in excellent

agreement with the values found in the tethered MM swimmer

simulations reported in our previous publication (Borazjani and

Sotiropoulos, 2008), i.e. Sto*1.08, 0.6 and 0.26 for Reo300, 4000

and �, respectively. Similarly, the values obtained from the LL

swimmer in Table1, i.e. St*1.39, 0.67 and 0.47 for Re*238,

3598.8 and �, respectively, are also in agreement with the values

from the tethered LL swimmer with amax0.1L (Borazjani and

Sotiropoulos, 2009a), i.e. Sto*1.3, 0.63 and 0.46 for Reo300, 4000

and �, respectively. It can be observed that for the LL swimmer,

the difference between St* of self-propelled and tethered simulations

is somewhat higher relative to the MM swimmer because there is

a larger difference between the Re* of self-propelled and tethered

simulations for the LL swimmer. Note that this is because of the

fact that, as already discussed above, the Sto and tail-beat frequency

were chosen based on the Sto* of the tethered MM swimmer.

In spite of the differences in kinematics and shape, most fish in

nature swim in a range of Strouhal numbers 0.25–0.35 (Triantafyllou

et al., 1993; Triantafyllou and Triantafyllou, 1995). Our virtual

swimmers with their differences in shape and kinematics get closer

to this range as Re increases (inviscid simulations). Some fish, e.g.

pacific salmon, however, have been observed to swim at high

Strouhal number at low swimming velocities (Lauder and Tytell,

2006). Our results underscore the conclusion of Borazjani and

Sotiropoulos (Borazjani and Sotiropoulos, 2008) that, for a given

body shape and kinematics, for each Re* there is unique St* at which

self-propelled swimming is possible, i.e. the pacific salmon has to

swim at high St* because this is the only St* that can make it swim

steadily at low Re* (swimming speed). According to all of the values

given in Table1, St* is a decreasing function of Re* for all

swimmers, which is also in agreement with our pervious findings

from the tethered simulations (Borazjani and Sotiropoulos, 2008;

Borazjani and Sotiropoulos, 2009a). Furthermore, comparing the

self-propelled and tethered MM and LL swimmers Re* and St*, we

observe that the self-propelled swimmers have lower Re* but higher

St* than the tethered ones. For example, the self-propelled LL

swimmer in the R2 case has Re*3599, which is lower than the

corresponding value for the tethered LL swimmer Reo4000 but

has St*0.67, which is higher than the tethered LL swimmer

Sto*0.63. These results are also in agreement with our finding that

St* is a decreasing function of Re*.

The Froude efficiency and power coefficient values reported in

Table1 for MM and LL are also consistent with the values previously

found for the tethered swimmers (Borazjani and Sotiropoulos, 2008;

Borazjani and Sotiropoulos, 2009a) and show the same trend. The

efficiency of the MM swimmer increases as Re* increases but the

Fig.10. Wake structure visualized by the iso-

surfaces of q-criterion for case R3 [Reo�

(inviscid), Sto0.3] for self-propelled virtual

swimmers: (A) MM; (B) LM; (C) ML; (D) LL. See

Fig.1 for the definition of various virtual

swimmers.

Fig.11. Wake structure visualized near the tail by the iso-surfaces of q-

criterion for case R3 [Reo� (inviscid), Sto0.3] for self-propelled virtual

swimmers (A) MM, (B) ML shows the vortex-within-a-vortex structure. See

Fig.1 for the definition of various virtual swimmers. See Fig.1 for the

definition of various virtual swimmers.
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efficiency of the LL swimmer is maximized in the transitional regime

(case R2). The non-dimensional power is decreased for all swimmers

as Re* is increased as in our tethered simulations. The MM swimmer

has higher values than the LL swimmer in the same case, as was also

the case in the tethered simulations. This is in agreement with the

observations of Tytell in that trout have larger estimated wasted power

than eels (Tytell, 2007). However, in Tytell (Tytell, 2007), the power

loss estimates for trout decreased as swimming speed increased,

similar to the trend observed here, but the estimates for eel did not

vary much at least for a few swimming speeds that were reported.

Note that Tytell cautioned about the fact of deriving firm conclusions

from relatively few experimental measurements that are not adequate

to distinguish real differences among species from random variability

among individuals in a statistically meaningful manner. As discussed

in Borazjani and Sotiropoulos (Borazjani and Sotiropoulos, 2009a),

non-dimensionalizing the power in case R3 as in Tytel (Tytell, 2007)

(i.e. using GU3S, where S is 0.18L2 for eel and 0.54L2 for trout and

assuming that the same S is good for the LL and MM swimmers,

respectively) results in a power coefficient of about 0.0026 for the

LL swimmer, which is remarkably close to 0.004 reported by Tytell

for the eel, and 0.0013 for the MM swimmer, which is comparable

with the 0.007 value reported for the trout. As discussed in Borazjani

and Sotiropoulos (Borazjani and Sotiropoulos, 2009a), the surface

area of a lamprey is much closer to that of an eel than that of a mackerel

to a trout. Nevertheless, in Tytell (Tytell, 2004a) the cost of wake

production of steadily swimming eels was found to increase with

swimming speed with power 1.7 (less than 2), i.e. the power

coefficient, which is scaled by U3, decreases as swimming speed (Re*)

increases.

Comparing the results in Table1 of the present study and table2
of Borazjani and Sotiropoulos (Borazjani and Sotiropoulos, 2009a),

we found that the power required for undulatory swimming is higher

than towing the rigid fish at the same Re*. This is in agreement

with our previous results (Borazjani and Sotiropoulos, 2008;

Borazjani and Sotiropoulos, 2009a). However, this is in contrast

with the results of Barrett et al. who found that in a narrow range

the power required for swimming was lower than that of towing

(Barrett et al., 1999). As discussed in our previous publications

(Borazjani and Sotiropoulos, 2008; Borazjani and Sotiropoulos,

2009a) the current simulations are at much lower Re relative to the

experiments of Barrett et al. (Barrett et al., 1999) and cannot provide

conclusive evidence for or against those results.

It can also be observed from Table1 that the r.m.s. of the

swimming speed fluctuations (r.m.s. of U) increases as Re*

decreases. This finding is in agreement with experimental

observations. For instance, fish larvae swimming at low Re* show

greater fluctuations in the swimming speed than the corresponding

adult fish. More specifically, the swimming speed of zebra fish

larvae at Re*�300 fluctuates between 14 and 24L–1 (Muller et al.,

2008) whereas for an adult eel swimming at Re*�10,000 the

swimming speed fluctuates within a much narrower range between

0.9 and 1.1U (Muller et al., 2001; Tytell and Lauder, 2004).

Self-propelled simulations vs experiments and wake structure

A single row wake structure has been observed in experiments for

carangiform swimmers (Muller et al., 1997; Nauen and Lauder,

2002; Wolfgang et al., 1999) while a double row structure has been

observed for anguilliform swimmers (Hultmark et al., 2007; Muller

et al., 2001; Tytell and Lauder, 2004). Comparing the wake of the

carangiform swimmers with the MM swimmer in case R3 (Reo�,

Sto0.3), which best corresponds to carangiform swimming in

nature, we observe the same single row structure. The single row

structure of the MM swimmer from the self-propelled simulations

is similar to the single row structure of the tethered swimmer as

well (Borazjani and Sotiropoulos, 2008), which is in agreement with

the wake of a mackerel (Nauen and Lauder, 2002) [see Buchholz

and Smits (Buchholz and Smits, 2006) for the description of the

skeleton of this wake structure]. However, the wake of the LL

swimmer in case R2 (Reo4000, Sto0.6), which best corresponds

to anguilliform swimming in nature, we observe a double row

structure. This is also similar to the wake of the tethered LL swimmer

from our previous work (Borazjani and Sotiropoulos, 2009a), the

3-D self-propelled simulations of Kern and Koumoutsakos (Kern

and Koumoutsakos, 2006) and the wake observed for anguilliform

swimmers in nature (Hultmark et al., 2007; Muller et al., 2001; Tytell

and Lauder, 2004) [see Buchholz and Smits (Buchholz and Smits,

2008) for the description of the skeleton of this wake structure].

The ML swimmer (mackerel body and anguilliform kinematics)

is somewhat similar to sharks because most sharks have fusiform

body shapes and swim in the sub-carangiform mode [except the

members of family of Lamnidae that swim in thunniform mode

(Gemballa et al., 2006)]. Wilga and Lauder observed a ring-

within-a-ring vortex structure shed from the tail of a dogfish shark

(Wilga and Lauder, 2004). They hypothesized this complex
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Table1. Various mean quantities during the steady state for different swimmer

Case R1 Reo300, Sto1.1, fo5.5 Case R2 Reo4000, Sto0.6, fo3 Case R3 Reo� (inviscid), Sto0.3, fo1.5

Mackerel body Lamprey body Mackerel body Lamprey body Mackerel body Lamprey body

MM ML LM LL MM ML LM LL MM ML LM LL

U* 0.997 1.11 0.64 0.79 0.98 1.01 0.84 0.90 1.20 0.92 0.74 0.64

Re* 299.0 333.0 191.6 238.0 3910 4036.8 3362.4 3598.8 Inviscid Inviscid Inviscid Inviscid

St* 1.10 0.99 1.72 1.39 0.61 0.59 0.71 0.67 0.25 0.33 0.41 0.47

CP
o 0.131 0.131 0.061 0.069 0.0121 0.0105 0.0046 0.0040 6.05�10–4 2.85�10–4 9.92�10–5 5.93�10–5

CP*CP
o/(U*)3 0.132 0.096 0.235 0.139 0.0130 0.010 0.0077 0.0055 0.000346 0.000369 0.000249 0.000237

CT
o 0.03 0.036 0.014 0.018 0.0035 0.0037 0.00196 0.0021 4.11�10–4 1.90�10–4 3.24�10–5 2.15�10–5

CT*  CT
o/(U*)2 0.03 0.029 0.034 0.029 0.0037 0.0036 0.0028 0.0026 2.83�10–4 2.25�10–4 5.99�10–4 5.21�10–4

h*U*/CP
o 7.526 11.59 2.72 5.71 75.2 98.7 108.9 162.6 3479.1 2484.3 2953.2 2879.1

hf 18.6 23.4 12.7 17.4 22.1 26.3 26.4 32.1 45.0 37.9 19.4 18.9

r.m.s. U* 0.0143 0.0130 0.0049 0.0022 0.0068 0.0044 0.0017 0.00063 0.0038 0.0022 0.00064 0.00043

Reo, non-dimensional viscosity or Reynolds number based on the characteristic velocity; Sto, Strouhal number based on the characteristic velocity; fo, non-

dimensional tail beat frequency; U*, mean non-dimensional swimming speed; Re*, Reynolds number based on mean swimming speed; St*, Strouhal number

based on mean swimming speed; CP
o, mean non-dimensional power; CP*, mean power coefficient; CT

o, mean non-dimensional thrust; CT*, mean thrust

coefficient; h*, mean efficiency (velocity over power); hf, Froude efficiency; r.m.s., root mean squared.
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vortical structure was due to the inclined axis of rotation of the

shark’s tail relative to the horizontal axis of locomotion, and

argued that the underlying vorticity generation mechanism in this

case is similar to that at work when a vortex ring is created by a

flow pulse through an inclined exit orifice. In the present study

we have observed the same vortex-within-a-vortex structure for

both MM and ML swimmers (Fig.11) and its formation appears

to be clearly associated with the homocercal large-aspect ratio

tail: the leading edge creates the outer vortex loop while the

trailing edge creates the inner vortex loop. The effect of

heterocercal shape of the tail and non-symmetrical motion of the

tail, i.e. similar to the tail motion of the shark (Wilga and Lauder,

2002; Wilga and Lauder, 2004), on the near-wake vorticity

dynamics has yet to be understood.

Another unanswered question is the relative importance of form

(shape) and kinematics on the wake structure. For example, Tytell

and Lauder discuss the importance of body shape on the wake

structure stating that: ‘even if a mackerel, for example, swam

using the same kinematics as an eel, its wake would probably

differ from an eel’s due to the differences in body shape’ (Tytell

and Lauder, 2004). In the experiments with the pitching and

heaving hydrofoil (Koochesfahani, 1989; Triantafyllou et al.,

1991) and in our previous work with virtual swimmers (Borazjani

and Sotiropoulos, 2008; Borazjani and Sotiropoulos, 2009a), the

St* has been found to be the primary parameter in determining

the wake structure. For both tethered anguilliform and carangiform

swimmers we found at a given Re* a single row of vortices at

low St* while a double row of vortices was found at high St*

(Borazjani and Sotiropoulos, 2008; Borazjani and Sotiropoulos,

2009a). The Re* was found to affect the St* at which the wake

transitioned from single to double row structure. Note that in the

tethered simulations the Re* and St* were independent parameters

but in self-propelled simulations the Re* and St* depend on each

other. As discussed previously, for a fixed body shape and

kinematics, for each Re* there is unique St* at which self-

propulsion is possible and this St* is a decreasing function of

Re*. Therefore, here we cannot study the effects of Re* and St*

independently, as we did with the tethered model, but we can

study the effects of body shape and kinematics independently.

The results in Figs8–10 clearly show that the conclusions we

derived from our earlier simulations with the tethered MM and LL

swimmers regarding the dominant role of the St* still hold for the

various swimmers we considered in this work. Namely, regardless

of body shape and kinematics, a double row structure is present in

the viscous and transitional cases (R1 and R2), for which the St*

is relatively high (~1.1 and 0.6, respectively), while a single row

wake structure emerges in the inertial case R3 for which the St* is

low (~0.3). Moreover, we also observe that when the hydrodynamic

environment is fixed, i.e. when the calculated Re* and St* values

are similar for all swimmers: all four swimmers have the same wake

structure (single or double row). Consequently, we can conclude

that the large-scale features of the wake structure (single vs double

row) do not depend on body shape or kinematics but primarily

depend on flow parameters Re* and St* (which in this work depend

on each other and can be used interchangeably). This is, indeed, in

agreement with a wide range of wake visualization results from a

variety of applications that have produced similar wake structures

despite the differences in the geometry. For example, high-aspect-

ratio fins (Koochesfahani, 1989; Triantafyllou et al., 1991), low-

aspect-ratio square fins (Buchholz and Smits, 2006; Buchholz and

Smits, 2008), a vibrating sphere (Govardhan and Williamson,

2005) and spherical flapping foils (Dong et al., 2006). Our previous

conclusion based on tethered simulations (Borazjani and

Sotiropoulos, 2008; Borazjani and Sotiropoulos, 2009a) that the St*

is the primary parameter determining the single vs double row wake

structure is still in agreement with the current results, because in

our self-propelled simulations the single row is observed in the case

with low St* while the double row wake emerges in cases with higher

St*. As mentioned in the Results section, the body shape affects the

small features of the wake, such as smoothness and complexity of

the loops, while the kinematics does not appear to have much effect

on such subtle wake features.

We should also comment on the wake of different swimmers in

the viscous case R1 (Re*~300). In this case the wake is laminar and

does not break up into small-scale structures but rather becomes

weak and dissipates quickly as can be observed in Fig.10. This is

in agreement with the experimental results of Muller et al. who

observed that the wake of zebra fish larvae tends to die off quickly

due to low Re* effects (Muller et al., 2008). Finally, in agreement

with our previous tethered simulations (Borazjani and Sotiropoulos,

2008; Borazjani and Sotiropoulos, 2009a), we also see that as Re*

increases (from case R1, R2 and R3) the boundary-layer thickness

decreases and a thinner layer of the plotted q iso-surface is visible

on the fish surface in Figs8–10. This finding is in agreement with

a similar observation by Muller et al. (Muller et al., 2008).

Effects of swimming kinematics

To study the effects of kinematics we compare the swimmers with

the same body but with different kinematics, i.e. MM is compared

with ML and LL is compared with LM. From Table1 it can be

observed that the swimmers with carangiform kinematics (MM and

LM) achieve in the inviscid case R3 swimming speeds 23% and

13% higher than swimmers with anguilliform kinematics and the

same body shape (ML and LL), respectively. However, in the

viscous and transitional regimes cases R1 and R2, the swimmers

with anguilliform kinematics consistently achieve higher velocities

relative to those with carangiform kinematics, e.g. ML and LL

swimmers achieve 10% and 20% higher swimming speed in case

R1 and 3% and 7% in case R2 than the MM and LM swimmers,

respectively. In fact, even for the case R3 the swimmers with

anguilliform kinematics (ML and LL) initially are ahead of the

swimmers with carangiform kinematics (MM and ML) but the

swimmers with carangiform kinematics ultimately catch up and

reach higher velocity in the quasi-steady state. This is explained by

the fact that the carangiform kinematics produces thrust via a lift-

based mechanism similar to the pitching and heaving foils while

anguilliform kinematics produces thrust via an undulatory pump

mechanism (Blake, 2004; Muller et al., 2001; Webb, 1975), i.e. each

part of the body generates thrust by accelerating the adjacent fluid

by the body undulations [see also the related discussion and figs8
and 9 of Borazjani and Sotiropoulos (Borazjani and Sotiropoulos,

2009a)]. If there is no flow, the lift-based mechanism (carangiform

kinematics) cannot produce thrust and, as discussed in Borazjani

and Sotiropoulos (Borazjani and Sotiropoulos, 2009a), its

performance naturally improves as swimming speed increases.

However, the undulatory pump mechanism (anguilliform

kinematics) can produce more thrust at low swimming speeds

because there is larger difference between the swimming speed U

and the body wave speed V, which enables the body to push the

fluid backwards more effectively. Therefore, the anguilliform

kinematics initially outperforms the carangiform kinematics when

the swimming speed is low but as the speed increases the

carangiform kinematics works more effectively and takes over.

Furthermore, these results are consistent with the observations on
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linear acceleration of eels, in which the eels with higher acceleration

showed larger amplitude of motion throughout their body, i.e. they

swam with more pronounced anguilliform-type kinematics at higher

accelerations (Tytell, 2004b). This suggests that the different

swimmers might change their kinematics initially during the start

of swimming to achieve better performance, a trend that has also

been documented in a number of experiments (Blake and Domenici,

2000; Weihs, 1973; Weihs, 1974).

From the power consumption standpoint, we can see from the

Table1 that the swimmers with anguilliform kinematics tend to use

less power CP
o in the transitional (case R2) and inertial (case R3)

regimes. More specifically, in case R3 the swimmers LL and ML

need only half the power while in case R2 they need about 13%

less power than the LM and MM swimmers, respectively. In the

R1 case, the MM and ML swimmer use practically the same amount

of power while the LL swimmer use about 10% more power than

the LM swimmer. Concerning thrust production, we observed from

the results for CT
o in table 1 the same trend as the swimming speed.

Namely, in the viscous (case R1) and transitional (R2) regimes the

anguilliform kinematics produces more thrust while in the inertial

regime (case R3) carangiform kinematics produces more thrust.

More specifically, in case R1 the ML swimmer produces 17% more

thrust than the MM swimmer while the LL swimmer produces 22%

more thrust than the LM swimmer. In the R2 case, the difference

is smaller than case R1 with the ML swimmer producing only 5%

more thrust than the MM swimmer while the LL swimmer produces

only 7% more than the LM swimmer. In the R3 case, the ML

swimmer produces almost half of the thrust of the MM swimmer

and the LL swimmer produces about 34% less thrust than the LM

swimmer.

Taking into account the efficiency values of Table1, we find that:

(1) the MM and LM swimmers are 16% and 2% more efficient than

the ML and LL swimmers, respectively, in the inertial regime (case

R3); and (2) the ML and LL swimmers are 20% and 27% more

efficient in the viscous (case R1) and 16% and 18% more efficient

in the transitional (case R2) regime than MM and LM swimmers,

respectively. Using the mean efficiency (h*) as a performance

metric, we find the same trends as using the Froude efficiency (hf).

Therefore, it can be concluded that the anguilliform kinematics not

only reaches higher velocities but is also more efficient in the viscous

(case R1) and transitional (case R2) regimes. However, in the inertial

(case R3) regime the carangiform kinematics both reaches higher

velocities and is more efficient than anguilliform kinematics. This

is in agreement with our heuristic argument in our previous

publication (Borazjani and Sotiropoulos, 2009a) where we showed

that the efficiency of the anguilliform kinematics, which works with

the undulating pump mechanism, decreases in the inviscid

environment while the efficiency of carangiform kinematics, which

works similar to a pitching and heaving airfoil, increases in the

inertial regime.

Finally, it is worth noting that based on the r.m.s. of the

swimming speed it can be observed that the anguilliform kinematics

are characterized by lower r.m.s. relative to the carangiform

kinematics for all bodies and in all cases. In our previous work we

showed that the anguilliform swimmers produce thrust more

smoothly than the carangiform swimmers (Borazjani and

Sotiropoulos, 2009a), which in fact is in agreement with

experimental observations. Observations of swimming eels

(anguilliform) have revealed about 10% (Muller et al., 2001) or 4%

(Tytell and Lauder, 2004) velocity fluctuations about the mean

velocity U while swimming mullets (carangiform) have been found

to exhibit velocity fluctuations more than 20% of the mean (Muller

et al., 1997; Nauen and Lauder, 2002). Therefore, according to our

results the smaller velocity fluctuations and the smoother force

variation of anguilliform swimmers are at least partly due to the

kinematics. The effect of kinematics on velocity and force

fluctuations can be explained by the fact that the lift-based

mechanism (carangiform kinematics) inherently generates much

larger pressure variations than the undulatory pump mechanism

(anguilliform kinematics). In the next section we will discuss the

effect of form (body shape) on the velocity fluctuations as well.

Body shape effects

To elucidate the effects of body shape on the hydrodynamics of

undulatory swimming, we compare the swimmers with the same

kinematics but with different bodies, e.g. MM is compared with

LM and LL is compared with ML. From Table1 it can be observed

that in all three hydrodynamic environments (cases R1, R2 and R3)

the MM swimmer reaches a higher velocity than the LM swimmer.

Similarly, in all cases the ML swimmer reaches a higher velocity

than the LL swimmer. Therefore, in all cases the mackerel body

achieves higher swimming speeds than the lamprey body. These

swimmers, however, use more power and produce more thrust than

the swimmers with the lamprey body as evident from the mean non-

dimensional power and thrust values in Table1. For example, the

MM swimmer uses about 2.5 and 6 times more power than the LM

swimmer in cases R2 and R3, respectively. The higher power

consumption and thrust production in swimmers with the mackerel

body could be explained by the fact that the mackerel body has a

higher aspect ratio. That is, among virtual swimmers having the

same length as the mackerel body has larger side area than the

lamprey body, i.e. analogous to considering two flat plates flapping

in exactly the same way: the plate with higher side area will require

more power and produce more thrust.

Comparing swimming efficiency, the MM and ML swimmers

have higher efficiency than the LM and LL swimmers, respectively,

in the viscous (case R1) and inertial regimes (case R3) while the

reverse is true in the transitional regime (case R2). Therefore, the

mackerel body is more efficient in the viscous and inertial regimes

while the lamprey body is more efficient in the transitional regime.

We argue that this trend could be partly due to the combined effects

of St* and aspect ratio at least in the Re* of order 104 range.

Experiments with high (infinite) and low aspect ratio oscillating foils

(at Re* of order 104 and higher) have shown that for the former

efficiency is maximized at around St*0.25 (Anderson et al., 1998;

Triantafyllou et al., 1993) while for the later the maximum efficiency

occurs at higher St* (Buchholz and Smits, 2008). The mackerel body

is best represented by a high aspect ratio foil and in the inertial

regime propels itself at St* close to that at which high-aspect ratio

foils maximize efficiency. The lamprey body however is analogous

to a low aspect ratio foil and should be more efficient at higher St*,

which occur in the transitional regime. These experiments, however,

does not explain the higher efficiency of the mackerel body in the

viscous regime and further research is needed. A possible

explanation might be the Re* effect in the viscous regime because

the Re* difference between the swimmers with the mackerel body

and the lamprey body in this regime is larger than any other regime.

In fact, in the viscous regime the Re* of the MM and ML swimmers

are 57% and 40% higher than the LM and LL swimmers,

respectively, compared with 16% and 12% in the transitional regime.

The large difference between the Re* of the swimmers with the

mackerel body and the lamprey body in case R1 might prevent us

from reaching a conclusion with respect to the effect of body shape

in the viscous regime as the higher efficiency of the swimmers with
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the mackerel body might be due to the higher Re* and not

necessarily the body shape effect.

Regarding the r.m.s. of the swimming speed fluctuations, it can

be observed that the mackerel body always has higher r.m.s. relative

to the lamprey body for all kinematics and in all cases. The larger

aspect ratio and side area of the mackerel body results in larger

force on the body with larger fluctuations. Consequently, the body

shape is also an important parameter in the observed in nature lower

velocity fluctuations and smoother force record of anguilliform

swimmers. As discussed in the previous section, the anguilliform

kinematics also lowers the velocity fluctuations. However, the r.m.s.

values in Table1 show that the effect of body shape is much stronger

than the kinematics as the swimmers with the mackerel body and

anguilliform kinematics (ML) always have higher r.m.s. than the

swimmers with the lamprey body and carangiform kinematics (LM),

e.g. in the R1 case the r.m.s. U* for ML swimmer is 0.013 while

for the LM swimmer is 0.0049.

CONCLUSION

In this work we constructed self-propelled virtual swimmers and

used them to explore for the first time hypothetical scenarios that

are extremely challenging to be explored experimentally. One such

scenario raised previously by Tytell and Lauder (Tytell and Lauder,

2004), when discussing the importance of body shape on the

hydrodynamics and comparing anguilliform and carangiform

swimmers, was ‘what if’ a mackerel swam like an eel. With our

approach we carried out a systematic investigation of the

hydrodynamics of a mackerel swimming like an eel and vice versa

and conclusively clarified previous hypotheses regarding the effects

of body shape and kinematics on the relative performance of

anguilliform and carangiform swimming. Our findings make a strong

case in support of the notion that hydrodynamic considerations might

have played an important role in the evolution of different fish

species and their modes of swimming.

It is important to mention that in this work we did not study

the effects of dorsal/pectoral fins as they were removed from our

virtual swimmers. Furthermore, we did not consider the dorso-

ventral asymmetry of tail motion of real carangiform swimmers

(Gibb et al., 1999). In addition, in our study the body wave passes

through the tail as well, i.e. there is no phase angle difference

between the body and tail wave. Yet, it is already known that the

phase angle between the body and tail waves can affect the

performance of fish-like swimming (Zhu et al., 2002). We have

also not studied the effect of body amplitude on swimming

whereas it has been observed that eels increase their body wave

amplitude as the Re* is increased (Tytell, 2004a). Similarly, the

chub mackerel increases its tail amplitude with swimming speed

but the kawakawa tuna does not change its tail amplitude (Donley

and Dickson, 2000). Finally, we have only considered straight,

inline swimming in a uniform ambient flow environment and thus

neglected any effects ambient vortical structures and/or turbulence

might have in swimming performance, which previous work has

shown to be important (Beal et al., 2006; Liao et al., 2003). In

their work the reduced mass of all virtual swimmers were equal

while the reduced mass of different swimmers in nature can play

a role in velocity fluctuations during steady swimming. This issue,

however, was not explored in the present study so that we can

focus with certainty on the effects of body shape and kinematics.

In conclusion, in spite of several novel insights into the

hydrodynamics of undulatory swimming we have contributed in

this and our previous papers many important issues remain to be

explored. It is our hope that the computational algorithms we have

developed and our overall approach to the problem will provide

the biological community with the tools required to tackle these

problems in the future.

APPENDIX

Additional materials and methods

Our numerical method in the non-inertial reference frame has been

fully validated in Borazjani (Borazjani, 2008). In this section we

report results from Borazjani (Borazjani, 2008) to demonstrate the

ability of our numerical method to accurately predict the forces

acting on an immersed body in the non-inertial reference frame and

perform accurate FSI simulations.

(A) Validation of the method for calculating hydrodynamic

forces: forced inline oscillations of a cylinder in a fluid

initially at rest

To validate the ability of the method to predict the hydrodynamic

force and its pressure and viscous contributions in the non-inertial

reference frame, we consider the case of a circular cylinder starting

to oscillate in the horizontal direction in a fluid initially at rest. This

case is exactly the same as the one used in Borazjani and Sotiropoulos

(Borazjani and Sotiropoulos, 2008) to validate the version of our

method in the inertial reference frame, i.e. the background fluid mesh

was fixed in space and the cylinder oscillated over the fixed mesh.

The simulation in the present study is performed in the non-inertial

reference frame, i.e. the background fluid mesh is attached to the center

of the cylinder and the flow equation (Eqn3) is solved in the non-

inertial frame that oscillates with the cylinder.

The results from both inertial and non-inertial reference frames

are reported and validated against the benchmark experimental and

computational results of Dutsch et al. (Dutsch et al., 1998). The

forced motion of the cylinder is described by a harmonic oscillation:

xc(t)  –Amsin (2pfct), (A1)

where xc is the location of the center of the cylinder, fc is the oscillation

frequency and Am is the oscillation amplitude. The flow induced by

such oscillations is governed by two non-dimensional parameters: (1)

the Reynolds number ReUmD/n based on the maximum oscillation

velocity Um, cylinder diameter D, and the fluid kinematics viscosity

n; and (2) the Kuelegan–Carpenter number KCUm/fcD. According

to EqnA1, the KC number is equal to 2pAm/D. The computations are

performed at Re100 and KC5 for which both experimental and

numerical results have been reported by Dutsch et al. (Dutsch et al.,

1998). The domain, as in our previous paper (Borazjani and

Sotiropoulos, 2008), is discretized with a mesh consisting of 721�481

nodes in the inline (oscillatory) and transverse directions, respectively.

300�100 nodes are distributed uniformly in a 3D�D box, which

contains the cylinder during the oscillations. The domain outer

boundaries are placed 50D from the initial position of the cylinder,

and Neumann boundary condition (�ui/�nj0, where ui is the ith

component of the velocity and nj is the normal to the outer boundary

surface) has been used.

Fig.A1 compares the computed hydrodynamic forces in the

inertial frame (in red) and the non-inertial frame (in blue) with the

computational results of Dutsch et al. (Dutsch et al., 1998) (in black).

The solid, dotted and the dashed lines represent the total horizontal

hydrodynamic force, and its pressure and viscous components,

respectively. It is clear that the calculated forces in both reference

frames are in excellent agreement with the results of Dutsch et al.

(Dutsch et al., 1998).

Fig.A2 compares the horizontal velocity profiles at x1–0.6D

calculated in the inertial (solid lines) and non-inertial (dashed lines)
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reference frame with the measurements of Dutsch et al. (Dutsch et

al., 1998) (square symbols) for three different phase angles (f2pfct).

Similar to the force comparisons, the velocity profiles are in

excellent agreement with the measurements.

Finally, Fig.A3 shows the calculated instantaneous vorticity field

at four different phase angles in the non-inertial reference frame,

which are dominated by two counter-rotating vortices. The computed

results in the non-inertial frame is identical to the computational

results of Dutsch et al. (Dutsch et al., 1998) and Borazjani and

Sotiropoulos (Borazjani and Sotiropoulos, 2008), which are not

shown herein but are reported in the same format in their papers.

(B) Validation of the FSI approach: VIV of an elastically

mounted cylinder

The flow past a single, elastically mounted two-dimensional cylinder

has served as the generic VIV model problem and has been widely

studied both numerically and experimentally. A 2-D circular cylinder

with mass m is elastically mounted (with a spring of stiffness k and

damping factor c) in a uniform flow of velocity U, and is free to

vibrate in the direction perpendicular to the flow direction. The

cylinder diameter is D. The Reynolds number of the flow is defined

as ReUD/n. The dynamic equation governing the motion of the

cylinder in non-dimensional form reads as follows:

where xi are the components of the cylinder center of mass position

vector non-dimensionalized by the diameter D, Cxi2Fi/U2D is the

force coefficient (Fi is ith component of force vector F), and other

non-dimensional parameters are defined as follows:

the damping coefficient:

the reduced velocity:

the reduced mass:

Mred  m / D2. (B4)

∂2 xi

∂t2
+

4πξ
U red

∂xi

∂t
+

4π 2

U red

2 xi =
1

2 M red

Cx
i

(B1),

  

ξ =
c

ccr

=
c

2 mk

(B2),

U red =
U

fn D
fn =

1

2π
k

m
(B3),,
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Fig.A1. The total hydrodynamic force (solid lines), and its pressure

(dotted lines) and viscous (dashed lines) components computed in the

non-inertial reference frame (in blue) are compared with the

computations in the inertial reference frame (in red) and Dutsch et al.

(Dutsch et al., 1998) (in black). Flow conditions: Re100, KC5. Taken

from Borazjani (Borazjani, 2008). KC is the Kuelegan–Carpenter

number.
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Fig.A2. Horizontal velocity profiles at x1–0.6D at three different phase

angles (2pfct): (A) 180deg.; (B) 210deg.; (C) 330deg. Non-

inertial frame results (dashed lines) compared with inertial frame results

(solid lines) and measurements of Dutsch et al. (Dutsch et al., 1998)

(square symbols). Flow conditions: Re100, KC5. Taken from Borazjani

(Borazjani, 2008). KC is the Kuelegan–Carpenter number.
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These are the three important non-dimensional parameters that along

with Re* govern the behavior of the system.

It is well known that when the natural frequency of the cylinder

falls within the so-called ‘lock-in’ region, large amplitude vibrations

are excited (Blevins, 1990). Within this region, the vortex shedding

frequency changes to match the frequency of the structure’s motion,

resulting in the observed large vibration amplitudes. The

synchronization frequency is not necessarily the natural frequency

of the structure and has often been observed to exceed it significantly

(Govardhan and Williamson, 2005; Sarpkaya, 2004).

The FSI solver in the non-inertial frame is validated by

investigating the ‘lock-in’ phenomenon for a case for which

benchmark numerical results are available in the literature. One set

of simulations was performed in the inertial reference frame, i.e.

the background fluid mesh is fixed in space and the cylinder

oscillates over the fixed mesh (Borazjani, 2008; Borazjani et al.,

2008). Another set of simulations are performed in the non-inertial

reference frame i.e. the background fluid mesh is attached to the

center of the cylinder and the flow equation (Eqn3) is solved in the

non-inertial frame that oscillates with the cylinder (Borazjani, 2008).

The computational domain is a rectangular box with dimensions

32D�16D. The cylinder is initially located on the horizontal axis

of symmetry of this box 8D from the inlet. The computational

domain is discretized with 281�241 grid nodes, which are clustered

toward the four sides of a square box centered on the cylinder. This

square box is discretized with a uniform 50�50 mesh, which

corresponds to a near-cylinder grid spacing of h0.02D. A time

step of t0.02 is used.

To investigate the ‘lock-in’ phenomenon, the Re* and reduced

mass of the system are fixed (Re150 and Mred2) and the natural

frequency of the system is systematically varied. This is

accomplished by varying the reduced velocity Ured with increments

of 1 within the range of 3≤Ured≤8. The resulting variation of the

maximum displacement of the cylinder with Ured conditions is

plotted in Fig.B1. As seen in the figure, large amplitude vibration

(exceeding 10% of the cylinder diameter) is observed within

4≤Ured≤7 while outside this region the cylinder vibration amplitude

is drastically reduced. Based on these results the lock-in region for

this system is 4≤Ured≤7 with maximum vibration amplitude of about

0.5D attained for Ured4. To quantitatively validate our method, we

also include in this figure the recent results of Ahn and Callinderis

(Ahn and Kallinderis, 2006) who employed an unstructured, finite-

element ALE approach. As seen in the figure the three results are

in excellent agreement with each other.
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Ahn and Kallinderis, 2006 Re=150

Fig.B1. The maximum cylinder displacement as a function of reduced

speed (Ured). Flow conditions: Re150, reduced mass (Mred)2. Taken from

Borazjani (Borazjani, 2008).

Fig.A3. Contours of vorticity obtained from the non-inertial frame simulation at four different phase angles (2pfct): (A) 0deg.; (B) 96deg.; (C)

192deg.; (D) 288deg. Dashed lines indicate negative values. Adapted from Borazjani (Borazjani, 2008).
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LIST OF SYMBOLS AND ABBREVIATIONS
amax tail-beat amplitude

a(z) amplitude envelope

A width of the wake

Am oscillation amplitude

BCF body/caudal fin

c damping factor

ccr critical damping factor

CF* mean force coefficient

CF
o mean non-dimensional force in the axial direction

CP* mean power coefficient

CP
o mean non-dimensional power

CT* mean thrust coefficient

CT
o mean non-dimensional thrust

CT computed tomography

D cylinder diameter

D(t) drag

EBT elongated body theory

f tail-beat frequency

fc oscillation frequency

fn natural frequency

fo non-dimensional tail-beat frequency

F force

F force vector exerted on the virtual swimmer’s body by the fluid

FSI fluid–structure interaction

h lateral displacement of fish body

h lateral velocity of fish body

hmax maximum displacement of the tail

h(z,t) lateral excursion of the body at time t and location z

HCIB hybrid Cartesian immersed-boundary

IB immersed boundary

k wave number

KC Kuelegan–Carpenter number

L total body length

LC–FSI loose coupling fluid–structure interaction

LL lamprey swimming like a lamprey

LM lamprey swimming like mackerel

m mass of the virtual swimmer

ML mackerel swimming like a lamprey

MM mackerel swimming like a mackerel

MPG miles per gallon

Mred reduced mass

n normal vector the surface

nj jth component of the normal vector

p non-dimensional pressure

PIV particle image velocimetry

Pside power losss due to lateral undulations of the fish body

QT rotation matrix of the non-inertial frame relative to the inertial

frame

ra non-dimensional position in the inertial frame

rr non-dimensional position relative to the non-inertial frame

r.m.s. root mean squared

Re* mean Reynolds number based on swimming speed U*

Reo non-dimensional viscosity or Reynolds number based on

characteristic velocity Uo

S symmetrical parts of the velocity gradient

SC–FSI strong coupling fluid–structure interaction

St* mean Strouhal number based on swimming speed U*

Sto Strouhal number based on the characteristic velocity Uo

t time

T mean thrust

T period of a tail-beat cycle

ua non-dimensional Cartesian absolute velocity vector of the fluid

in the inertial reference frame

uc velocity of the non-inertial frame or the center of mass

um maximum oscillation velocity

un fluid velocity normal to the body

ur non-dimensional Cartesian relative velocity vector of the fluid

in the non-inertial reference frame

ut fluid velocity vector tangential to the body

U mean swimming speed

U* mean non-dimensional swimming speed

Uo characteristic (tether) velocity

Ured reduced velocity

VIV vortex-induced vibration

xc position vector of center of mass non-dimensionalized by L

xc location of the center of the cylinder

z axial direction measured along the fish axis from the tip of the

fish’s head

a under-relaxation coefficient

(t) a dynamically evolving surface

h* mean efficiency (velocity over power)

hf Froude efficiency

 wavelength

n kinematic viscosity

 fluid density

ij viscous stress tensor

w angular frequency

x damping coefficient

Ω angular velocity
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