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Abstract

Less than a decade ago, the focus in refinement planning was
on partial order planners using lifted actions. Today, the cur-
rently most successful refinement planners are all state space
planners using ground actions—i.e. actions where all param-
eters have been substituted by objects. In this paper, we ad-
dress the role of ground actions in refinement planning, and
present empirical results indicating that their role is twofold.
First, planning with ground actions represents a bias towards
early commitment of parameter bindings. Second, ground ac-
tions help enforce joint parameter domain constraints. By im-
plementing these two techniques in a least commitment plan-
ner such as UCPOP, together with using an informed heuristic
function to guide the search for solutions, we show that we of-
ten need to generate far fewer plans than when planning with
ground action, while the number of explored plans remains
about the same. In some cases a vast reduction can also be
achieved in the number of explored plans.

Introduction
The principle of least commitment in planning is intuitively
appealing. It states that one should delay commitment of
action orderings and variable bindings until such commit-
ments become necessary in order to resolve consistency
threats. This strategy leads to a reduced branching factor
in the search space (Weld 1994). A least commitment plan-
ner must keep track of ordering and binding constraints, and
enforce consistency on these, which adds to the complexity
of the planning algorithm. The hope, however, is that the re-
duced branching factor will make up for the added complex-
ity in consistency enforcement. Successful implementations
of least commitment planners, such as SNLP (McAllester
& Rosenblitt 1991) and UCPOP (Penberthy & Weld 1992),
demonstrated the promise of this approach a decade ago,
but since then the research focus in refinement planning has
shifted to state space planners using ground (fully instanti-
ated) actions.

The abandonment of the least commitment principle can,
to a great extent, be credited to the success of Graphplan
(Blum & Furst 1995). Graphplan constructs a planning
graph, which consists of alternating levels of ground atoms
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and actions. The planning graph proves to be extremely use-
ful in guiding the search for solutions to planning problems.
Many of the currently most successful refinement planners
are state space planners using the planning graph, either ex-
plicitly (e.g. FF (Hoffmann & Nebel 2001)) or implicitly
(e.g. HSP (Haslum & Geffner 2000)), to extract domain in-
dependent heuristics that can be used in hill-climbing or A∗
search.

The idea of extracting heuristics from the problem repre-
sentation is not new. McDermott (1996) introduced greedy
regression-match graphs as a means for estimating the effort
of achieving goals. McDermott’s planning system, Unpop,
is a state space planner, but works with lifted actions (actions
that contain variables). Although the heuristic is similar to
that used in HSP, Unpop does not appear to be competitive.
Bonet & Geffner (2001) suggest that the main reason for this
is that HSP works with ground actions, and thus avoids hav-
ing to deal with variable bindings and matching operations
in the planning phase.

Nguyen & Kambhampati (2001) recently showed that
the efficiency of partial order planners can be dramatically
improved by using planning graphs to estimate the cost
of achieving goals. Their planner, REPOP, is based on
UCPOP, but uses ground actions. The choice of working
with ground actions appears almost incidental, and there is
no discussion on the possible effect this choice may have
had on the results. From their comparison with a version of
UCPOP using ground actions, it is quite clear that ground
actions alone do not help much. As suggested by Bonet &
Geffner (2001), however, the use of an informed heuristic
may not be enough either. Still, little has been said about the
role that ground actions play in refinement planning.

We attempt to shed some light on this issue. To do so, we
have implemented a partial order planner, based on UCPOP,
that can work with either ground or lifted actions. The
planner uses a version of the additive heuristic proposed by
Bonet, Loerincs, & Geffner (1997) to estimate the cost of
achieving goals, extended to work with partially instantiated
goals.

We have identified two important roles that ground ac-
tions play. First, the use of ground actions corresponds to an
early commitment of parameter bindings in the case when
lifted actions are used. Second, by using ground actions
we enforce joint constraints on the parameter domains of
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actions in a plan. Both these roles enable the planner to
identify inconsistencies at an earlier stage, thereby reducing
the need for backtracking. We show that by enforcing joint
parameter domain constraints when planning with lifted ac-
tions, and implementing a bias towards early commitment of
parameter bindings, we can find solutions exploring about
as many nodes in the search space as when using ground ac-
tions. The benefit of using lifted actions is that the branching
factor is reduced, which results in fewer generated nodes.
We show that in some cases the reduction in generated nodes
can be significant. More importantly though, we show that
in certain cases planning with lifted actions can result in a
vast reduction in the number of explored nodes as well.

Partial Order Refinement Planning
A planning problem consists of a set of initial conditions,
a set of goals to be achieved, and a set of operators. The
initial conditions and the goals contain no variables. An op-
erator is a schematic representation of an action available to
the planner, and consists of a set of preconditions that must
hold when an instance of the operator is applied, and a set
of effects. An instantiated operator that is part of a plan is
called an action. If all operator parameters are substituted
by objects when instantiating an operator, we get a ground
action. If the action has unbound parameters, it is called a
lifted action.

In partial order planning, a plan is represented by a set of
actions A, a set of causal links L indicating dependencies
among actions, a set of ordering constraints O defining a
partial order of the actions, and a set of binding constraints
B on the action parameters (B = ∅ if ground actions are
used). A causal link, ai

q−→aj , represents a commitment by
the planner that precondition q of action aj is to be fulfilled
by an effect of action ai.

A refinement planner works by adding elements to a plan
in order to remove flaws in the plan. A flaw can be either
an open condition,

q−→ ai, representing a precondition q of
an action ai that has not yet been linked to the effect of an-
other action in the plan, or an unsafe link, ai

q−→ aj , whose
condition q can be unified with the negation of an effect of
an action that could possibly be ordered between ai and aj .
The set of flaws of a plan π is the union of open conditions
and unsafe links: F(π) = OC(π) ∪ UL(π).

An open condition,
q−→ai, of a plan 〈A,L,O,B〉 can be

resolved by linking the effect p of an existing or new action
ak to q. The resulting plan has actions ak ∪ A, causal links
ak

q−→ ai ∪ L, and ordering constraints ak ≺ ai ∪ O. In
addition, unless ground actions are used, the most general
unifier (MGU) of p and q is added to the binding constraints
B. MGU of two atomic literals p and q is the smallest set of
variable substitutions needed to unify p and q.

An unsafe link, ai
q−→ aj , threatened by the effect p of

action ak can be resolved in three ways:
• Demotion: Order ak before ai.

• Promotion: Order ak after aj .

• Separation: Add variable bindings that make p and ¬q
non-unifiable.

Separation is of course not available when ground actions
are used.

A planning problem can be represented as a plan πinit

with L = B = ∅, and with two actions:

• a0 without preconditions, and effects corresponding to the
problem’s initial conditions. The action a0 is always or-
dered before all other actions in a plan.

• a∞ with preconditions corresponding to the goals of the
problem, and no effects. The action a∞ is always ordered
after all other actions in a plan.

The partial order planner proceeds by nondeterministically
choosing a flaw in πinit to work on. Given a flaw, there
are often several refinements that can be applied to repair
the flaw. One of the refinements is chosen (nondeterminis-
tically), and is then applied to the current plan to produce a
new plan π′.1 The refinement process repeats with π′ until
there are no remaining flaws in which case π′ is a solution
to the planning problem.

In contrast to total order planners, which maintain a total
order of the actions in a plan, partial order planners defer
decisions on action orderings until such orderings become
necessary in order to resolve conflicts. In addition, unless
ground actions are used, variable bindings are kept at a min-
imum by only adding the most general unifier when linking
effects to preconditions. This way, the planner adheres to the
principle of least commitment. For a thorough introduction
to least commitment planning, we refer the reader to (Weld
1994).

Heuristic Search Planning
Although described in terms of nondeterministic choice in
the previous section, any actual implementation of a partial
order planner uses some kind of search representing the non-
deterministic choice of refinements as branching points in
the search space. Our implementation uses the A∗ algorithm
(Hart, Nilsson, & Raphael 1968).

The A∗ algorithm requires a search node evaluation func-
tion f(n) = g(n) + h(n), where g(n) is the cost of getting
to n from the start node, and h(n) is the estimated remain-
ing cost of reaching a goal node. In our case, a search node
is a plan, and we consider the cost of a plan to be the num-
ber of actions in it. For a plan π = 〈A,L,O,B〉, we use
g(π) = |A|. The heuristic cost h(π) of completing the plan
π (i.e. resolving all flaws in π) should be an estimate of the
number of actions we need to add to π in order to make it
complete.

Heuristic Plan Cost
The original implementations of SNLP and UCPOP used
h(π) = |F(π)| as heuristic cost function—i.e. the number
of flaws in a plan. Schubert & Gerevini (1995) consider al-
ternatives for h(π), and present empirical data showing that
just counting the open conditions (h(π) = |OC(π)|) often
gives better results. A big problem, however, with using the

1Note that the choice of which refinement step to take is a back-
tracking choice point, but not the choice of which flaw to work on
(Weld 1994).
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number of open conditions as an estimate on the number of
actions that needs to be added is that it assumes a uniform
cost for open conditions. It ignores the fact that some open
conditions can be linked to existing actions (thus requiring
no additional actions), while other open conditions can be
resolved only by adding a whole chain of actions (thus re-
quiring more than one action).

Recent work in heuristic search planning has resulted in
more informed heuristic cost functions. Heuristic costs are
often derived from a relaxed planning graph. A planning
graph consists of alternating layers of ground literals and
actions. The topmost layer consists of the ground literals in
the initial conditions of a planning problem. The next layer
consists of all ground actions that are applicable given the
initial conditions. What follows is a second layer of ground
literals, consisting of the union of literals from the previous
literal layer and the literals produced by the actions in the
preceding action layer. The layers keep alternating like this
until no more literals are added. The planning graph also
records if two actions are mutually exclusive at a specific
layer—information that is left out in the relaxed planning
graph.

Nguyen & Kambhampati (2001) use a heuristic for their
partial order planner REPOP that counts the number of ac-
tions needed to resolve the open conditions based on the
serial planning graph, without counting actions that are al-
ready in the plan. By not counting actions already in the
plan, they account for reuse, but their heuristic can easily
overestimate the possible reuse of steps since it does not take
the current ordering constraints into account. Their heuristic
cost estimator is reported to give significantly better results
than h(π) = |OC(π)| on several planning problems.

Our planner uses the additive heuristic first proposed by
Bonet, Loerincs, & Geffner (1997) in the context of planning
as real-time search. While not taking reuse of actions other
than a0 into account, the heuristic has worked very well for
us. We present here a slight modification of the heuristic, so
that it can be used to estimate the cost of negative and dis-
junctive preconditions, conditional effects, and also the cost
of achieving partially instantiated literals as well as ground
literals.

The cost of a set of goals, S, is

hadd(S) =
∑
q∈S

hadd(q).

The cost of a conjunction of literals is

hadd(
∧
i

qi) =
∑

i

hadd(qi),

and we define the cost of a disjunction of literals to be

hadd(
∨
i

qi) = min
i

hadd(qi).

Given a literal q, let GA(q) be the set of ground actions oc-
curring in the relaxed planning graph having an effect p that
unifies with q. The cost of q is

hadd(q) =

{ 0 if q holds initially
mina∈GA(q) hadd(a) if GA(q) �= ∅
∞ otherwise

A positive literal q holds initially if it is part of the initial
conditions. A negative literal ¬q holds initially if q is not
part of the initial conditions (the closed world assumption).
Finally, the cost of an action a is

hadd(a) = 1 + hadd(Prec(a)),

where Prec(a) is the set of preconditions of action a.
As heuristic cost function we use h(π) = hadd(OC(π)).

The cost of ground literals can be efficiently computed while
constructing the relaxed planning graph. We take condi-
tional effects into account in the cost computation. If the
effect q is conditioned by p in action a, we add hadd(p) to
the cost of achieving q with a. We only need to compute the
cost for ground literals once, and the matching of partially
instantiated literals to ground literals can be implemented
quite efficiently, leaving little overhead for evaluating plans
using the proposed heuristic.

Estimating Remaining Effort
Not only do we want to find plans consisting of few actions,
but we also want to do so exploring as few plans as possible.
Schubert & Gerevini (1995) suggest that the number of open
conditions can be useful as an estimate of the number of
refinement steps needed to complete a plan. We take this
idea a bit further.

When computing the heuristic cost of a literal, we also
record the estimated effort of achieving the literal. A literal
that is achieved through the initial conditions has estimated
effort 1 (corresponding to the work of adding a causal link
to the plan). If the cost of a literal comes from an action
a, the estimated effort for the literal is the estimated effort
for the preconditions of a plus 1 for linking to a. Finally, the
estimated effort of a set of literals is the sum of the estimated
effort of each individual literal.

The estimated effort is used as a tie-breaker between two
plans π and π′ in case f(π) = f(π′), which tends to lower
the number of plans explored before finding a solution.

Early Commitment of Parameter Bindings
We now turn to the role of ground actions in refinement plan-
ning. In this section we discuss how early commitment of
parameter bindings can be implemented as a flaw selection
strategy, and in the next section we discuss joint parameter
domain constraints.

Flaw Selection Strategies
There are two types of flaws: Unsafe causal links (threats)
and open conditions. The original versions of both SNLP
and UCPOP worked on unsafe links first, trying to elimi-
nate any threats before working on an open condition. If
there were no unsafe links, the most recently added open
condition was selected (corresponding to a LIFO order).
Peot & Smith (1993) suggest several strategies for delaying
threat-removal, the most effective strategies being to delay
all but the threats for which there is at most one possible
repair, or to delay threats that can be resolved using sepa-
ration (separable threats). Joslin & Pollack (1994) gener-
alize this strategy to include open conditions as well. Their
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“least-cost flaw repair” (LCFR) strategy chooses the flaw for
which the least number of refinements exist. Schubert &
Gerevini (1995) propose the “zero-commitment last in first
out” (ZLIFO) strategy for selecting open conditions in case
there are no non-separable threats (ZLIFO delays resolution
of all separable threats). ZLIFO assigns highest priority to
open conditions that cannot be achieved at all, or that can
only be achieved in one unique way. If no high priority open
conditions exist, ordinary LIFO order is used. The ratio-
nale behind ZLIFO is that no choice is involved in the link-
ing of a prioritized open condition, so it can be seen as a
zero-commitment refinement. Still, any refinement tends to
constrain the search space by adding variable bindings and
causal links, which helps reduce the number of generated
and explored plans.

Early Commitment through Flaw Selection
We too use a flaw selection strategy that sometimes delays
the resolution of a threat to a causal link. Before resolv-
ing any threats, we choose to link static open conditions. A
static open condition qstatic is a literal that involves a pred-
icate that occurs in the initial conditions, but not in the ef-
fects of any operator. This means that a static open con-
dition always has to be linked to an effect of a0. Because
the initial conditions contain no variables, linking qstatic to
an initial condition will cause all free variables in qstatic to
get bound to a specific object. Linking static preconditions
before working on any other flaws thus represents a bias to-
wards early commitment of parameter bindings. This resem-
bles the search strategy inherent in planners using ground
actions, but we can avoid binding all parameters of an ac-
tion in one single step and thereby achieve a reduction in
branching factor. In the absence of static preconditions and
unsafe causal links, open conditions are selected in LIFO
order. This ordering of open conditions tends to maintain
focus on completely resolving one goal in a depth-first man-
ner before trying to resolve any other goals—a strategy that
often is beneficial (cf. (Gerevini & Schubert 1996a)).2

While our flaw selection strategy may seem contrary to
the spirit of least commitment, we have found that it can help
reduce the number of explored search nodes. We believe the
main reason for this is that with more variables bound to spe-
cific objects, it becomes easier to detect potential conflicts.
Early detection of conflicts is important, because it helps the
planner avoid going deep down dead-end branches.

Joint Parameter Domain Constraints
When planning with ground actions, it is common practice
to first find all complete instantiations of the available op-
erators, discarding those having preconditions that cannot
possibly be achieved. We can, for instance, discard any in-
stantiation with static preconditions that are not fulfilled by
the initial conditions. As an example, consider the drive
operator from the logistics domain (Figure 1). When instan-
tiating this operator, we can immediately discard any instan-

2Pollack, Joslin, & Paolucci (1997) argue, however, that much
of the benefit of ZLIFO can be attributed to the delayed resolution
of separable threats.

(:action drive
:parameters (?truck ?s ?d ?city)
:precondition (and (truck ?truck)

(at ?truck ?s)
(in-city ?s ?city)
(in-city ?d ?city)
(not (= ?s ?d)))

:effect (and (at ?truck ?d)
(not (at ?truck ?s))))

Figure 1: Operator in the logistics domain for moving a
truck between two locations.

tiation that binds the ?truck parameter to an object that is
not a truck.

The relaxed planning graph can be used to further restrict
the set of ground actions that can ever be part of a plan, be-
cause only a ground action appearing in the planning graph
can possibly have its preconditions achieved. Again, con-
sider the drive operator from the logistics domain. This
is the only operator available for moving trucks. As can be
seen, the preconditions of the operator assert that the two lo-
cations are in the same city, which means that a truck start-
ing out at a location in Boston, for example, can never be
moved to a location in Pittsburgh. We can derive this infor-
mation from the relaxed planning graph and, in many cases,
the result can be a significant reduction in the number of fea-
sible initiations of an operator. For the logistics-a problem
used later in the evaluation section, the number of ground
actions is reduced from 11,558 when pruning is based only
on unachievable preconditions, to 210 after considering the
relaxed planning graph.

A ground action can effectively be seen as a joint domain
constraint on the parameters of the corresponding operator.
By pruning the set of ground actions as described above, we
obtain tighter parameter domain constraints. For example,
for the logistics-a problem we obtain the following possible
joint assignments to the parameters of the drive operator:

〈?truck,?s,?d,?city〉 ∈
{〈bos-truck,bos-po,bos-airport,bos〉
〈bos-truck,bos-airport,bos-po,bos〉
〈pgh-truck,pgh-po,pgh-airport,pgh〉
〈pgh-truck,pgh-airport,pgh-po,pgh〉

〈la-truck,la-po,la-airport,la〉
〈la-truck,la-airport,la-po,la〉}

We can make use of such joint parameter domain con-
straints when planning with lifted actions. Every time we
add an action to a plan, we also add the joint parameter do-
main constraints of the corresponding operator to the bind-
ing constraints of the plan. When adding other binding
constraints, we update the parameter domain constraints ac-
cordingly. For example, if we bind the ?truck parameter
of a drive action to pgh-truck, we keep only the tu-
ples of the action’s parameter domain constraints with pgh-
truck in the position for ?truck, which would leave us
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(pick ?o ?r ?g)

(pick ball1 ?r ?g)

(pick ball1 rooma left) (pick ball1 roomb left)(pick ball1 rooma right) (pick ball1 roomb right)

(pick ball1 rooma left) (pick ball1 rooma right) (pick ball1 roomb left) (pick ball1 roomb right)

(pick ball1 rooma ?g) (pick ball1 roomb ?g)

(pick ?o ?r ?g)

Figure 2: Tree representing the instantiation of the operator (pick ?o ?r ?g) needed to support the open condition
(carry ball1) in the gripper domain, when using ground actions (top) and lifted actions (bottom). Solid lines represent
instantiations, and dashed lines represent linking of static open conditions.

with the constraint

〈?truck,?s,?d,?city〉 ∈
{〈pgh-truck,pgh-po,pgh-airport,pgh〉
〈pgh-truck,pgh-airport,pgh-po,pgh〉}.

This immediately gives us a binding for the ?city param-
eter, viz. pgh. Inequality constraints can be propagated in
a similar way to further restrict the joint parameter domain
constraints. Our empirical tests show that this constraint
propagation, together with our flaw selection strategy that
biases towards early commitment of parameter bindings,
makes planning with lifted actions comparable to planning
with ground actions.

The idea of inferring parameter domains from the prob-
lem description, and making use of these domain constraints
to restrict the search space for partial order planners, was
tested by Gerevini & Schubert (1996b), who reported it to be
very useful. They do not consider joint domain constraints
for actions as we do, but rather compute separate domains
for predicate parameters. In the example above, they would
not be able to conclude that ?city should be bound to pgh
once ?truck is bound to pgh-truck. By recoding joint
domain constraints, we are able to restrict possible bindings
even more than they can. In fact, our heuristic cost function
already enforces the type of domain constraints on predicate
parameters that they use. The cost of an atomic literal is
simply ∞ if it is unachievable because of some parameter
bindings.

Empirical Results
In this section, we demonstrate the effectiveness of the
two proposed techniques—linking static preconditions be-
fore resolving threats and enforcing joint parameter domain
constraints—both in isolation and combined. Our experi-
ments indicate that these two techniques represent the power
of ground actions to a great extent, and when used together

they yield similar results as when planning with ground ac-
tions.

When instantiating all ground actions, we eliminate those
that have static preconditions not present in the initial condi-
tions. It is sufficient to make this check in the preprocessing
stage, so we will never have to link any static open condi-
tions when using ground actions. When planning with lifted
actions, we use the static open conditions to represent the
choice of binding parameters to specific objects. This can
lead to a reduced branching factor, as illustrated by the “in-
stantiation trees” in Figure 2 for an example from the grip-
per domain. The operator (pick ?b ?r ?g) has static
preconditions (ball ?b), (room ?r), and (gripper
?g), and is used to achieve the goal (carry ball1).
We assume that there are two rooms (rooma and roomb)
and two grippers (left and right) in the world model.
With ground actions, we end up generating four instantia-
tions in one refinement step (upper part of Figure 2), while
with lifted actions we instantiate one parameter per refine-
ment step resulting in a tree structure with lower branching
factor at each level (lower part of Figure 2). If the search is
focused (e.g. if we choose to work on the plan where ?r is
bound to rooma and it turns out to be a good choice), we
will not have to generate the entire tree in the latter case,
while in the former case we have no choice but to generate
all instantiations at once.

Because static preconditions are used to implement a bias
towards early parameter bindings when using lifted actions,
they cannot be eliminated as is the case when planning with
ground actions. This will inevitably result in additional re-
finement steps for which there will be no counterpart when
using ground actions. To account for this fact in the empiri-
cal evaluation, we subtract one from both the number of gen-
erated and explored plans every time a static open condition
is processed for which there is at least one refinement. The
rationale behind this counting scheme is as follows: When
choosing to add a ground action to resolve an open condi-
tion, we generate in one refinement step a new plan for each
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Problem heuristic static domains all ground
gripper-8 3,729 / 3,572 566 / 441 576 / 441 566 / 441 1,089 / 441
gripper-10 26,089 / 25,852 965 / 784 986 / 784 965 / 784 1,958 / 784
gripper-12 * 1,529 / 1,280 1,565 / 1,280 1,529 / 1,280 3,224 / 1,280
gripper-20 * 6,204 / 5,514 6,348 / 5,514 6,204 / 5,514 14,386 / 5,514
rocket-ext-a 57,278 / 47,435 34,498 / 29,150 57,273 / 47,435 34,493 / 29,150 27,983 / 20,147
rocket-ext-b * 36,468 / 30,438 * 36,468 / 30,438 26,461 / 18,670
logistics-a * 7,004 / 4,745 1,107 / 827 498 / 338 559 / 345
logistics-b * 12,446 / 8,138 8,226 / 6,363 633 / 446 734 / 415
logistics-c * 12,705 / 8,321 12,164 / 9,978 718 / 497 701 / 397
logistics-d * >31,000† * 2,524 / 1,639 3,167 / 1,494

Table 1: Shows the effect of different techniques on the number of generated/explored plans. The hadd heuristic is used in all
cases. The baseline (“heuristic”) uses the standard flaw ordering and no domain constraints; “static” links static open conditions
before resolving threats; “domains” enforces joint parameter domain constraints; “all” uses both these techniques; and “ground”
uses ground actions. A star (*) means that more than 100,000 nodes were generated, and a dagger (†) means that the planner
ran out of memory on a machine with 256Mb of RAM after generating at least the indicated number of nodes.

usable ground action. When working with lifted actions, we
instead add only one action, and later commit to one, or a
few, parameter bindings at a time for each static precon-
ditions we link. This corresponds to not counting internal
nodes in the “instantiation tree” of an action.

Table 1 shows the results of our test runs on problems
from three different domains. All tests were run with h(π) =
hadd(OC(π)) as the heuristic cost function. We wanted to
test the effectiveness of the proposed techniques both sep-
arately and combined. The baseline (labeled “heuristic” in
the table) uses lifted actions without giving priority to static
open conditions, and without enforcing joint parameter do-
main constraints. As can be seen in the table, this config-
uration solved the least number of problems, and was by
far the worst on the problems it did solve.3 Linking static
open conditions before working on any other flaws (“static”)
improves the results significantly compared to the baseline.
Only the logistics-d problem remained unsolved.

The enforcing of joint parameter domain constraints (“do-
mains”) gives the best result in the the logistics domain,
where using the relaxed planning graph helps reduce the
number of instantiated actions tremendously. For the grip-
per and rocket domains, the relaxed planning graph does not
cause any additional pruning of the joint parameter domains,
in which case just linking static preconditions first is more
effective.

When combining the two techniques (“all”), the perfor-
mance for all domains is comparable to when using ground
actions. In the gripper domain, the number of explored
nodes is exactly the same, while the number of generated
nodes is only half of what it is when using ground actions.

The results in the logistics domain, when combining the
two techniques, are comparable to the results from using
ground actions. For most problems the number of explored
nodes is slightly larger in the lifted case, but the number of
generated nodes is slightly smaller.

3We also tried using h(π) = |OC(π)| as heuristic cost func-
tion, but then we were not able to solve any of the problems before
generating 100,000 nodes.

The performance of the planner in the rocket domain
when using lifted actions does not quite match up to the
performance in the ground case. In both the logistics do-
main and the rocket domain, the main disadvantage of using
lifted actions is that the heuristic cost function often underes-
timates the cost of achieving an open condition. The reason
for this is that each open condition is matched to a ground
literal without considering interactions between open condi-
tions of the same action. For example, the logistics domain
has an action (unload ?o ?v ?l) with preconditions
(in ?o ?v) and (at ?v ?l). The heuristic function
estimates the cost of these two open conditions indepen-
dently, which can lead to different matchings for the param-
eter ?v. When planning with ground actions, all open con-
ditions are fully instantiated so the matching to ground lit-
erals are unique. It would be possible to modify the heuris-
tic function so that it matches sets of open conditions si-
multaneously, making sure that the same parameter is not
matched with two different objects. There would be a higher
overhead in the heuristic evaluation of a plan, but the result
should be a much closer match in the number of explored
nodes.

When it comes to running time, using ground actions
was faster in all cases. Even in the gripper domain, where
the performance measured in number of generated/explored
nodes point in favor of lifted actions, the running time when
using ground actions was 38-45% of what it was when using
lifted actions. This can be attributed to the overhead asso-
ciated with looking up and updating variable bindings, and
to the matching of open conditions to ground literals in the
heuristic function. We have not put much effort into optimiz-
ing these parts of the code, however, and we firmly believe
that the running time can be improved significantly by us-
ing more sophisticated data structures for recoding variable
bindings.

Still, in some cases the reduction in number of gener-
ated nodes is so significant that the running time when using
lifted actions actually becomes lower than it is when using
ground actions. Figure 3 shows an example of such a case
where the domain is the four operator blocks world, and the
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Figure 3: Shows the number of generated plans using ground
actions and lifted actions (all) for blocks world problems of
different size. The dashed curve is the number of explored
plans, which is the same in both cases.

problem is to stack n blocks in one tower, with all the blocks
initially on the table.4 The number of generated nodes grows
dramatically as a function of n in the ground case, while
the number of generated nodes when using lifted actions re-
mains within a factor two of the number of explored nodes
(which is the same in both cases). The planner runs out of
memory for problems with more than 19 blocks when using
ground actions, while it comfortably solves problems with
up to 30 blocks when using lifted actions. In terms of run-
ning time, the advantage grows for lifted actions with in-
creasing numbers of blocks. The planner is up to a factor
1.7 faster when using lifted actions, compared with using
ground actions.

While a reduction in the number of generated nodes is im-
portant, a reduction in the number of explored nodes is likely
to give even greater performance improvements. One would
expect that there are domains where planning with lifted ac-
tions could lead to a significant reduction in the number of
explored nodes. So far, we have mostly been interested in
showing how we can search the same number of plans when
using lifted actions as when using ground actions. Because
we are linking static open conditions first, we cannot expect
to search many fewer plans when using lifted action. It also
means that we need to keep the static open conditions while
we are planning, although the enforcement of joint parame-
ter domain constrains actually makes them superfluous.

The grid world domain (McDermott 1999) is a good can-
didate domain for which planning with lifted actions could
be beneficial. The domain represents a robot that is able
to move between adjacent positions in a grid. A problem
will typically require the robot to move between two po-

4In the encoding of the blocks world domain that we use there
are no static preconditions, so the node count has not been adjusted.

Figure 4: A grid world, with a robot in the lower left corner
and a diamond-shaped key in the center. The problem is to
have the robot move the key to the top right corner of the
grid, and then return to the lower left corner.

sitions that are not adjacent, in which case the robot has
to move over some intermediate positions. When planning
with ground actions, the planner will have to commit to
which intermediate positions to use at the point when an ac-
tion is added to a plan, but if we use lifted actions we can
defer such a decision. This can have a tremendous impact
on performance. Of course, if we link static open conditions
first, we will commit to a particular intermediate position at
an early stage anyway, and the potential benefit is lost. If we
instead use a low-commitment flaw selection strategy such
as LCFR, in combination with enforcement of joint parame-
ter domain constraints, then we can eliminate static precon-
ditions. For the grid world problem illustrated in Figure 4,
this strategy is superior. While none of the other strategies
presented so far are able to solve this problem before gener-
ating more than 100,000 plans (and exploring over 60,000),
LCFR with domain constraints solves the problem gener-
ating only 3,704 plans and exploring 3,084. We also tried
using LCFR with ground actions, but the result was just as
bad as when using the standard flaw selection strategy.

Discussion
This paper has shown that the power of ground actions in re-
finement planning can be attributed mainly to two factors—
early commitment of parameter bindings and enforcement
of joint parameter domain constraints. We have imple-
mented similar strategies in a planner using lifted actions,
and showed that the performance becomes comparable to
that of a planner using ground actions. Ground actions still
work better in some domains, but this can be explained by
the fact that our heuristic function evaluates open conditions
of an action separately without making sure that the same
parameter is matched to the same object in different open
conditions.

By giving priority to static open conditions over other
flaws, we implement a bias towards early commitment of
parameter bindings. While somewhat in conflict with the
least commitment principle, we have shown that this flaw se-
lection strategy can improve performance significantly. One
reason for this is that the more parameters that are bound to
objects, the more accurate our heuristic function becomes.
In addition, with tighter constraints on the parameters, it
becomes easier to detect inconsistencies. We have experi-
mented with more low-commitment flaw selection strategies
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that delay linking of static open conditions, but a big prob-
lem that we have observed with these strategies is that in-
consistencies tend to pass undetected for a long time, which
can cause large irrelevant parts of the search space to be ex-
plored. Inequality constraints (arising through separation)
are particularly hard to deal with. We may have the con-
straints ?g1 �= ?g2, ?g1 �= ?g3, and ?g2 �= ?g3 in
addition to some domain constraints for the parameters, and
the only way to detect that no consistent assignment exists
for them may be to solve the corresponding constraint sat-
isfaction problem. With parameters bound to objects, it be-
comes trivial to determine whether an equality or inequality
constraint holds. It also disables separation in many cases,
which can be a contributing factor to the improved perfor-
mance.

We have shown, however, that a low-commitment flaw se-
lection strategy such as LCFR, used in combination with en-
forcement of joint parameter domain constraints, sometimes
can lead to a vast reduction in the number of explored nodes
when planning with lifted actions. While the main contribu-
tion of this paper has been to indicate where the power of us-
ing ground actions in refinement planning lies, we have also
presented results suggesting that there are situations when
planning with lifted actions is beneficial.

For future research, we would like to further investigate
the impact that the flaw selection strategy has on the perfor-
mance of partial order planners. We have developed several
novel flaw selection strategies, for example one that ranks
open conditions based on heuristic cost, and the initial re-
sults are promising.
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