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Abstract— Recent work on the analysis of natural and robotic
hands has introduced the notion of postural synergies as a
principled organization of their complexity, based on the physical
characteristics of the hand itself. Such characteristics include the
mechanical arrangements of joints and fingers, their couplings,
and the low-level control reflexes, that determine the specific way
the concept of “hand” is embodied in a human being or a robot.
While the focus of work done so far with postural synergies has
been on motion planning for grasp acquisition, in this paper we
set out to investigate the role that different embodiments have on
the choice of grasping forces, and on the ultimate quality of the
grasp. Numerical results are presented showing quantitatively the
role played by different synergies (from the most fundamental to
those of higher-order) in making a number of different grasps
possible. The effect of number and types of engaged synergies on
the distribution of optimal grasp forces is considered. Moreover,
robustness of results is investigated with respect to variation in
uncertain parameters such as contact and joint stiffness.

I. INTRODUCTION

Recent advances in neuroscience research have shown that
the description of how the human hand moves during grasping
is dominated by trajectories in a configuration space of much
smaller dimension than the kinematic count would suggest.
Such configuration space is sometimes referred to as the space
of postural synergies, or the eigengrasp space.

One of the explanations for human efficiency in selecting
appropriate grasps is that humans somehow unconsciously
simplify the large search space through learning and expe-
rience. In a developmental perspective, it can be conjectured
that learning is applied to a series of inner representations
of the hand of increasing complexity, which varies with the
experience and the degree of accuracy required. Santello et
al. [1] investigated this hypothesis by collecting a large set
of data containing grasping poses from subjects that were
asked to shape their hands in order to mime grasps for a
large set (N = 57) of familiar objects. Principal Components
Analysis (PCA) of this data revealed that the first two principal
components account for more than 80% of the variance,
suggesting that a very good characterization of the recorded
data can be obtained using a much lower-dimensional subspace
of the hand DoF space. These and similar results seem to
suggest that, out of the ca. 20 DoFs of a human hand, only
two or three combinations can be used to shape the hand for
basic grasps used in everyday life. It might also be speculated
that higher order synergies can be recruited for executing
more complex tasks, such as adaptive grasp force control, fine
manipulation or haptic exploration.

One first explanation of the observed inter-digit coordination
could be advanced in terms of mechanical constraints in the

anatomy of the hand. More refined approaches recognize the
role of peripheral and central nervous systems in establishing
sensory-motor control synergies, as discussed, e.g., in [2]
and [3]. Currently, investigations in the role and origin of
synergies are being actively pursued by neuroscientists.

What the current knowledge about the neurophysiology of
human hands already suggests at this point is that the brain
uses the hand — meant as a cognitive entity for the organ
of the sense of active touch — not as a mere collection of
articular joints and muscles, but rather as an organized and
ordered ensemble. The organization is dictated by principles
that are embedded in the hand’s embodiment - i.e. in its
physical characteristics such as the mechanical arrangements
of joints and fingers, their couplings, and the low-level control
reflexes.

These ideas can be brought to use in robotics, as they
suggest a new and principled way of simplifying the design
and analysis of hands (as opposed to many empirical, often
arbitrary design attempts), which has been the main roadblock
for research in artificial hands in the past [4].

The application of synergy concepts has been pioneered in
robotics by [5] and [6]. In [5], and later on in [7], the idea has
been exploited in the dimensionality reduction of the search
space in problems of automated grasp synthesis, and has been
applied effectively to derive pre-grasp shapes for a number of
complex robotic hands. In [6], authors designed a mechanical
hand in which more or less accurate actuators are connected to
different groups of mechanically interconnected joints, with a
priority inspired by resemblance to postural synergies observed
in human hands.

Much remains to be done to understand and exploit the
implications of the synergy approach to analysis and de-
sign of artificial hands. For instance, the role of synergies
in fine manipulation and haptic exploration are completely
unexplored at present. Very little is known even about all
grasping phases subsequent to grasp pre-shaping and contact
acquisition, most notably on grasp force distribution and the
fundamental problems of form and force closure.

In this paper, we study the effect of the number and type of
engaged synergies on the distribution of optimal grasp forces
and on the ultimate quality of the grasp.

To investigate grasp force distribution problems in basic
whole-hand grasps executed by a hand with a limited number
of (synergistic) DoFs, the analytical approach followed by the
majority of grasp force studies, which abstract their analysis
from the specific physical characteristics of the grasping
hand, is unsuitable. We therefore introduce a novel analytical



Fig. 1: Schematic of whole-limb manipulation with synergies.

framework, which draws upon previous work on underactuated
grasps. Numerical results are presented showing quantitatively
the role played by different synergies (from the most funda-
mental to those of higher-order) in making possible a number
of different grasps. As the analysis method we propose to solve
force indeterminacies in the rigid-body system introduces a
model of compliance in the system, an issue may arise of how
strongly our results depend on a fundamentally uncertain and
varying parameter such as compliance. To partially address
this problem, we show that our numerical results are quite
robust with respect to such uncertainties.

II. PRELIMINARIES: QUASI-STATIC MANIPULATION

MODEL

A. Rigid Multibody Model

We model a cooperating manipulation system as a collection
of an arbitrary number of robot “fingers” (i.e., simple chains of
links connected through revolute or prismatic joints) attached
to a common base “palm”, and an object, which is in contact
with all or some of the links. With reference to Fig. 1 and
adopting the notation in Table I, let k be the number of fingers,
ni the number of degrees of freedom for the ith finger, and set

n =
∑k

i=1 ni as the total number of hand degrees of freedom
(DoFs). Moreover, let q ∈ R

n be the vector of joint angles for
the whole hand, qi ∈ R

ni that for the ith finger, and qij ∈ R

the angle of the jth limb on the ith finger.
According to standard conventions, we consider a fixed

(palm) frame P = (Op;xp, yp, zp) and, for each finger in
the hand, we attach a D.-H. frame Sij = (Oij ;xij , yij , zij)
to its jth link, a local frame Lij = (Olij ;xlij , ylij , zlij )
to the center of the limb and a normalized Gauss frame
Cij = (Cij ;xcij , ycij , zcij ) local to the surface of the fingertip,
with its z−axis aligned with the outward normal. The frame
attached to the object is E = (E;xe, ye, ze), with origin
coincident with the center of gravity G, i.e., E ≡ G.

Since only some of the fingers and/or some of the limbs
in each finger may be in contact with the object at point
cfij ∈ R

3, we define k sets of indices ν(i), (i = 1, . . . , k),
each one describing the connectivity of the ith finger with
the object. In view of further analysis, we distinguish between
corresponding points cfij and coij on the finger and on the
object, respectively. On the contrary, under the hypothesis of
small relative elastic rotations, we confuse local frames at the
contact point on the object and the limbs with the unique Cij .

Notation Definition

P palm (inertial) frame

Sij D.-H. limb frame, ith finger, jth limb

Lij local limb frame, ith finger, jth limb

Cij local contact frame, ith finger, jth limb
E object frame
n number of hand joints

q ∈ R
n actual joint angles

qr ∈ R
n reference joint angles

τ ∈ R
n joint torques
s number of postural syergies

σ ∈ R
s synergistic displacements

η ∈ R
s synergistic generalized forces
c dimension of the contact force/torque vector
f contact force/torque vector

ξf ∈ R
c twists of the contact points on the fingers

ξo ∈ R
c twists of the contact points on the object

u ∈ R
6 position and orientation of the object

ξe ∈ R
6 object twist

we ∈ R
6 object wrench

J ∈ R
c×n hand Jacobian matrix

S ∈ R
n×s synergy matrix

G ∈ R
6×c grasp matrix

TABLE I: Notation for grasp analysis with postural synergies.

In this analysis, the location of the contact points in space is
assumed to be known, by either planning or sensing.

Let fij ∈ R
cij be the components in the contact frame Cij

of force/torque that can be transmitted through the contact at
point cfij . Its dimension depends on the contact type, e.g.,
cij = 3 for Point Contact With Friction (PCWF), cij = 4 for
Soft Finger (SF), and its contribution to the actual wrench is
characterized by the wrench basis HT

ij [8].
Adopting the notation introduced in Table I, the balance

and congruence equations for the object can be respectively
written as

pwe = Gf, (1)

ξo = GT pξe, (2)

where G ∈ R
6×c is the grasp matrix.

Similarly, the balance and congruence equations for the
hand are, respectively,

τ = JT f, (3)

ξf = Jq̇, (4)

where J ∈ R
c×n is the hand Jacobian.

For the reader’s convenience, a detailed derivation of
eqs. (1)-(4) can be found in the Appendix.

B. Introducing Elasticity

Now, with reference to taxonomy in [9], in order to handle
statically-indeterminate or hyperstatic grasps, which occur
when N (G) ∩N (JT ) ̸= 0, we follow [10], and introduce a
set of virtual springs at the interface between corresponding
contact points cfij and coij on the fingers and the object. These
result in a system of linear constitutive equations linking the
components of relative displacements δξof := δξo − δξf , that
violate the constraints, to the corresponding contact force

f = f0 + δf, δf = Kδξof , (5)

where f0 is the contact force in the reference configuration
δξo = δξf = 0. According to [11], the stiffness matrix K ∈
R

c×c can be computed as

K = (Cs + JCqJ
T )−1, (6)



(a) σ1 = 0 (b) σ1 = 0.35 (c) σ1 = 0.70 (d) σ1 = 1.0

(e) σ1 = 0 (f) σ1 = 0.35 (g) σ1 = 0.70 (h) σ1 = 1.0

(i) σ1 = 0 (j) σ1 = 0.35 (k) σ1 = 0.70 (l) σ1 = 1.0

Fig. 2: Effect of the first synergy S1 on the hand posture as a function of the normalized synergy coefficient σ1 ∈ [0, 1]. Figs.
(a)-(d): reference motion of the hand. Figs. (e)-(h): motion of the hand without contact interaction. Figs. (i)-(l): motion of the
hand with contact interaction and joint elasticity.

where Cs ∈ R
c×c is the structural compliance matrix (due to,

e.g., the flexibility of limbs and fingerpads), and with Cq ∈ R
n

the diagonal matrix whose element in position (k, k) is the
compliance at the k-th joint. Joint compliance in animals is
determined by the elastic properties of muscles and tendons
and by modulation of the stretch reflex. Similar roles in robot
hands are played by transmission and actuator compliance, and
by the gain of the kth position servo. It should be noticed that
in both cases joint compliance can be varied, both intentionally
and not, although not necessarily in an independent way from
joint to joint. The matrices Cs and Cq employed for the
numerical tests reported in this paper are of the form

Cs = (1/kstru)Ic×c, Cq = (1/kss)In×n, (7)

where kstru (N/mm) is a value of structural stiffness, while
kss (Nmm/rad) is an admissible value of joint stiffness.

III. FORMULATION OF THE GRASPING PROBLEM FOR

THE HAND EMBODIED

A. The “Softly Underactuated” Model

Consideration of synergies introduces a new vista on the
grasp problem. A direct interpretation of the results described
in [1] would imply that the joint configuration vector q could
be represented as a function of fewer elements, collected in
a synergy vector σ ∈ R

s, as q = q(σ), which effectively
constraints the hand configuration in an s−dimensional sub-
manifold of the joint configuration manifold. Synergistic hand
velocities would belong to the tangent bundle to this manifold,
and could be locally described by a linear map q̇ = S(σ)σ̇.
This situation is illustrated in Fig. 2, panels (a)-(d), where the
reference posture of the hand is reported as a function of the
synergy coefficient σ1 scaling the first synergy vector S1.

However, the sole kinematic model of the hand fails to
describe the actual grasp of an object (Fig. 2, panels (e)-

(h)). Therefore, contact forces must be brought into play if
a realistic grasp analysis is in order.

Taking a step further, and in view of dealing with the most
general case of statically-indeterminate grasps, both contact
and joint compliances have to be included in the analysis.

Therefore, in the model we propose, the synergistic hand
displacements δσ ∈ R

s do not command the joint displace-
ments δq ∈ R

n directly, as assumed in the analysis in [7]
and implemented in the design in [6]. Instead, the synergistic
displacements input δσ command the joint reference positions
qr, as described by the following linear equations (see also
Fig. 1)

δqr = S δσ, S ∈ R
n×s (1 ≤ s ≤ n), (8)

which, in turn, are related to the actual joint displacements by
the constitutive equation

δq = δqr − Cqδτ, (9)

where Cq is the joint compliance introduced in (7). It is worth
mentioning that this model, whereby motion is controlled by
a reference position and modulation of joint stiffness, has
apparent similarities with the equilibrium point hypothesis in
the motor control literature [12].

In the pre-grasp phase, forces are null δτ = 0, hence δq =
δqr and the reference and actual posture overlap perfectly (first
three columns in Fig. 2). Hence, in this approach phase, the
rigid synergy model q = q(σ) is valid. When an actual grasp
of an object occurs, however, the interference (contact) forces
and hand compliance cause the actual hand to deviate from
the reference hand (panel (l) in Fig. 2). Thus, in our hand
model, the actual hand configuration is driven by synergies,
but modifies its posture according to the object shape and
compliance. We denote this as a soft synergy model of hands.

In the following of this paper, we employ data recorded
in [1] and the definition of finger coordination patterns defined



through PCA, to obtain numerical values for the synergy
matrix S (aka “eigengrasp matrix”, [7]). More specifically,
different simplified synergy matrices S can be obtained ex-
tracting a number of columns from the orthogonal full synergy
matrix S̄ ∈ R

n×n obtaned from PCA data, and whose columns
are ordered in an increasing order with respect to the relative
contribution to the variance. Each of these extracted synergy
matrices will represent a model of a specific (underactuated)
hand.

For later use, let us further introduce the balance equation

η := ST τ = STJT f, (10)

where η ∈ R
s are the generalized synergistic forces corre-

sponding to synergistic displacements.
We now shift our attention onto the effect of introducing

motion coordination patterns for fingers on the ability of the
hand to exert internal forces actively (full derivation of the
analytical results is omitted for brevity).

B. General Solution of the Grasping Problem With Synergies

Extending the work [10], it can be shown that for a general
grasping system with elastic contacts that applies a wrench
we to the object, the general solution to the force distribution
problem is given by

f = GR
Kwe + δfhrs + δfhos , δfhrs = Esy, δfhos = Psz,

(11)

where GR
K = KGT (GKGT )−1 ∈ R

c×6 is the K-weighted
pseudoinverse of G, providing the particular solution GR

Kwe

that minimizes the potential energy 1
2δξ

T
ofKδξof , (see [13],

[14]). In eq. (11), the columns of matrix Es ∈ R
c×es form a

basis for the range space of the matrix Fs ∈ R
c×s, mapping

the δσ’s into the active internal forces δfhrs that can be
commanded by synergistic displacements

δfhrs = Fs δσ, Fs := FS, rank(Fs) = es. (12)

The matrix F ∈ R
c×n has expression

F := (I −GR
KG)KJ, rank(F ) = e, (13)

and maps independently controlled joint reference displace-
ments δqr’s into active internal forces

δfhr = F δqr. (14)

It is worth noting that if all the DoFs of the hand are
independently controlled, δqr = δσ, S = I ∈ R

n×n, and
eq. (12) reduces to eq. (14).

The expression for δfhrs in eq. (11) is a parameterized
version of the active homogeneous solution: optimal grasp
force distributions can be found by minimizing a cost function
with respect to y ∈ R

es .
The third term δfhos in eq. (11) is a fixed homogeneous so-

lution representing internal, passive (preload) contact forces:
this corresponds to contact forces that are preloaded at the
beginning of the grasp operation (in the rest of the paper
it will be assumed z = 0 ∈ R

ps ). Matrix Ps ∈ R
c×ps

represents a basis for this subspace. When all the hand joints
are independently controlled, the basis matrix is denoted by
P ∈ R

c×p, where p is the dimension of this subspace.
We summarize the above results by introducing the follow-

ing subspaces

Fh = R(A) = N (G) ⊂ R
c, (15)

Fhrs = R(Es) = N (G) ∩
(
R(KJS) +R(KGT )

)
, (16)

Fhos = R(Ps) = N (G) ∩N ((JS)T ), (17)

that yields the natural decomposition

Fhs = Fhrs ⊕Fhos , R
c = Fhs ⊕R(GR

K) (18)

In case of independent joint control (S = I ∈ R
n×n), active

and passive subspaces in eqs. (15) reduce to Fhr and Fho,
respectively, as in [10].

It is worth noting that among the free vectors y ∈ R
es ,

ŷ will denote a particular choice corresponding to an optimal
grasp force distribution with respect to a chosen cost function.

From a computational point of view, the calculation of the
desired basis matrix Es = colbasis(Fs) from eq. (12) is not
optimal, since it entails the explicit calculation of GR

K . A
more efficient algorithm can be obtained by intersection of
subspaces, observing that a consistent set of internal forces,
parameterized by x ∈ R

h, synergy displacements δσ ∈ R
s,

and object motions δξe ∈ R
6, must belong to the nullspace of

Qs ∈ R
c×(h+s+6) (whose nullity is bs), i.e.,

[
A −KJS KGT

]
︸ ︷︷ ︸

Qs

[
x
δσ
δξe

]
= 0 (19)

Defining Bs ∈ R
(h+s+6)×bs , such that R(Bs) = N (Qs), and

partitioning Bs as

Bs =
[
BT

s1
BT

s2
BT

s3

]T
, (20)

where Bs1 ∈ R
h×bs , Bs2 ∈ R

s×bs , and Bs3 ∈ R
6×bs , such

that
[
xT δσT δξTe

]T
=

[
BT

s1
BT

s2
Bs3

]T
γ, γ ∈ R

bs ,
(21)

the subspace of active internal forces can be profitably ob-
tained as

Fhrs = R(ABs1), Es := colbasis(ABs1), (22)

The synergy displacements δσ̂ that must be commanded if a

desired internal force δf̂ = Esŷ is to be applied are given by

δσ̂ = Bs2(ABs1)
+Esŷ (23)

According to eq. (8) and eq. (23), the joint reference
position is displaced by

δqr = SBs2(ABs1)
+Esŷ, (24)

and the object moves to a new equilibrium position defined
by

δξe = Bs3(ABs1)
+Esŷ (25)

Due to contact forces in the interaction with the object and
the joint compliance, the hand joints moves differently with
respect to the commanded reference, i.e., δq ̸= δqr. Their
values can be explicitly calculated as

δq =
[
I − CqJ

T
(
I −GR

KG
)
KJ

]
S δσ̂, (26)

where δσ̂ can be recovered from (23). It is worth observing
that in case of perfectly rigid joints, Cq = 0 ∈ R

n×n, and
δq = δqr. The other quantities are also modified due to the
increased global stiffness, as evident from the definition of K
in (6).

Finally, corresponding variation of the joint torques δτ can
be obtained as

δτ = JT
(
I −GR

KG
)
KJ S δσ̂, (27)

and the associated variation of the synergistic forces δη is

δη = ST δτ (28)



C. Qualitative Analysis of Hand Embodiment

With reference to eq. (12), the following relationships
between ranks hold

rank(Fs)︸ ︷︷ ︸
es

= rank(S)︸ ︷︷ ︸
s

−dim(N (F ) ∩R(S)) (29)

rank(Fs) ≤ min{rank(F ), rank(S)} (30)

rank(Fs) ≥ rank(F ) + rank(S)− n (31)

Therefore, under the condition that each synergy Si (i ∈ S1)
has a non-null projection onto R(FT ), we can assume that
es = s. In this case, consider a fully actuated grasp with
rank(F ) = e. For the same grasp, consider underactuation
and increase one by one the number of the engaged columns
of S. As the number of synergies engaged increases, say
1 ≤ s ≤ e, the dimension of the subspace Fhrs of active
internal forces also increases in the same manner. For s > e,
according to eq. (30), es = e, and the dimension of the
subspace Fhrs reaches a plateau. This means that for fully
actuated grasping systems characterized by an e-dimensional
Fhr, underactuation with a number of synergies s ∼ e does
not endanger the ability to exert the same internal forces. If
e is “small”, say e.g. s = 2 or s = 3, application of an
equally “small” number of synergies s results in a great control
simplification without side effects on the grasping ability of
the system, see results in sec. V-C.

A fundamental issue we want to investigate is the link
between basic synergies, i.e., the first components obtained via
PCA, accounting for much of the variance in geometric posture
space, and the ability of the corresponding underactuated
system to firmly grasp an object. However, the sole rank count
in eq. (29) does not allow to compare quantitatively synergies
with different shapes, i.e., different columns of S. Therefore, in
this analysis the behaviour of a system underactuated by means
of different number of synergies and, once fixed their number,
with different synergies Si, is presented. The performance
parameter is the ability to attain force-closure conditions and,
if this is the case, in obtaining lower values of a suitably
defined cost function in determining optimal grasping forces.
Then, we discuss robustness issues with respect to variations of
the grasping stiffness: the range, going from values typical of
robotic hands to those of the human hand, is elicited from [15],
and [16].

IV. FORCE-CLOSURE PROBLEM WITH SYNERGIES

At an intuitive level, the meaning of “force-closure” is that
motions of the grasped object are completely restrained against
arbitrary external disturbances, by virtue of the contact forces
that the hand is capable to exert on the object. We emphasize
here that this definition is very relevant to synergistically (un-
der)actuated hands. Indeed (as opposite to the purely geometric
nature of form-closure), force-closure involves consideration
of which contact forces can be actively applied on the object
by the specific hand under consideration. Under this regard,
it clearly makes a difference if an object is grasped by a
hand controlled by different numbers and types of synergies
(corresponding to different active internal force subspaces, as
discussed in the previous section).

Accordingly, we adopt here the definition of force-closure
given in [17], which considers the case of underactuated hands:

1S is a set of indices used to select the corresponding columns in S̄ to
build S.

Definition 1 (Force-Closure): A grasp is defined Force-
Closure if and only if the following conditions are satisfied:

1. forces in arbitrary directions are resistible, i.e. rank(G) = 6
2. the hand configuration is prehensile, i.e. ∃ y such that
f(y) ∈ Int(F) 2, with f(y) = Ey

In Definition 1, F is the composite friction cone defined as
F = F11×· · ·×Fk,nk

. For brevity, we recall here only those
types of friction cone implemented in our software, used to
carry out numerical results in later sections. For a point contact
with friction (PCWF), we have fij ∈ R

3 and

Fij =
{
fij ∈ R

3| fij3 ≥ 0,
1

µij

(f2ij1 + f2ij2) ≤ f2ij3
}
, (32)

where fij3 is the normal component of the contact force at the
point of contact cij , fij1 , fij2 the components in the tangential
directions, and µij the Coulomb friction coefficient.

For a soft-finger with elliptical friction limit approxima-
tion [18], we have fij ∈ R

4 and

Fij =
{
fij ∈ R

4| fij3 ≥ 0,
1

µij

(f2ij1 + f2ij2) +
1

µijt

f2ij4 ≤ f2ij3
}
,

(33)

where µijt
is a proportionality constant between the torsion

and shear limits. It is worth noting that the above models do
not necessarily assume equal friction coefficients at all contact
points: however, for brevity, in the numerical tests reported in
sec. V-C and V-D, the friction coefficients will be assumed
constant, i.e., µij = µ and µijt

= 1.
In view of formulating and solving the problem as a second

order cone programming (SOCP) one, for which efficient
algorithms and interfaces are today a mature technology, we
recall that the satisfaction of the friction limit constraints in
eq. (32) and (33) is equivalent to the positive definiteness of
matrix P = Blockdiag(P11, . . . , Pk,nk

), P ≻ 0, where the
explicit expression for each Pij , with (i = 1, . . . , k; j ∈ ν(i)),
can be found in [18].

Then, consider the problem of finding the optimal distribu-
tion of contact forces f in the grasp of an object subject to
the external load with regard to the minimization of a suitable
cost function Ψ(y). To formalize this problem, we give the
following definition:

Definition 2 (Grasping Force Optimization): Given a grasp
characterized by GR

W , Es, and Ps, and an object wrench we ∈
R

6, find ŷ in eq. (11), such that f(ŷ) ∈ Int(F), and the cost
function Ψ(f(ŷ)) is minimized.

In numerical tests, we assume: (i) zero preload at the
beginning of the grasp (z = 0 in eq. (11)); (ii) zero net wrench
applied to the object, we = 0; (iii) an auxiliary constraint
on the minimum value for all the normal components fn of
the contact force. Under these hypotheses, the grasping force
optimization problem is set up in the following way

ŷ = argminΨ(y)

subject to f = Es y, P (f) ≻ 0, fn ≽ fmin
(34)

Optimal contact force distribution is sought by employing, in
turn, each of the following cost functions

Ψf (y) := ∥f(y)∥2, Ψτ (y) := ∥τ(y)∥2, Ψη(y) := ∥η(y)∥2,

2Int(F) denote the internal part of the composite friction cone F .



where f ∈ R
c are the contact forces, τ ∈ R

nc the joint torques
for the contacting fingers in eq. (3), and η ∈ R

s the synergistic
forces in eq. (10).

The problem is set up and solved as a semidefinite program
(SDP) by employing the CVX modeling system for convex
optimization based on MATLAB, see [19] and [20] for further
details. The solver used is SDPT3 [21], which implements an
infeasible path-following algorithm for solving general SQLP
– conic optimization problems involving semidefinite, second-
order and linear cone constraints.

V. NUMERICAL TESTS

A. Paradigmatic Hand Model

The paradigmatic hand model is schematically represented
in Fig. 3. This is the very same model for which detailed data
were collected and presented in [1]. The fact that the large
amount of high-quality data taken in [1] was kindly made
available to us is a reason for this choice, along with the
motivation that synergies can be defined for no other kinematic
structure without a dose of arbitrarity.

The model has 15 DoFs corresponding to: 4 DoFs for
the thumb: TR, TA, TM, TI (Thumb Rotation, Abduction,
Metacarpal, Interphalangeal); 3 DoFs for the index: IA, IM,
IP (Index Abduction, Metacarpal, Proximal interphalangeal); 2
DoFs for the middle: MM, MP (Middle Metacarpal, Proximal
interphalangeal); 3 DoFs for the ring: RA, RM, RP (Ring
Abduction, Metacarpal, Proximal interphalangeal); 3 DoFs
for the little: LA, LM, LP (Little Abduction, Metacarpal,
Proximal interphalangeal). It is worth noting that the middle
finger has no abduction since it is considered the “reference
finger” in the sagittal plane of the hand. Moreover, the Distal
Interphalangeal (DI) angle is not present in none of the four
fingers due to the limitation in the sensors embedded in the
measuring glove employed, see [1] and references therein.
With P = (Op;xp, yp, zp) with indicate the palm frame, and
with Sij = (Oij ;xij , yij , zij) and Cij = (Cij ;xcij , ycij , zcij )
the D.-H. and the normalized Gauss frame, respectively, for

Fig. 3: 15 DoFs kinematic model of the paradigmatic hand.

Limb a (mm) α (rad) d (mm) q (rad)

l11 0 −π/2 0 q11
l12 a12 0 0 q12
l13 a13 0 0 q13
l14 a14 0 0 q14

(a) D.-H. table for the Thumb finger.

Limb a (mm) α (rad) d (mm) q (rad)

lij 0 −π/2 0 qij
lij aij 0 0 qij
lij aij 0 0 qij

(b) D.-H. table for Index, Ring and Little
fingers. Indices take the following values: i =
2, 4, 5 and j = 1, 2, 3.

Limb a (mm) α (rad) d (mm) q (rad)

l31 a31 0 0 q31
l32 a32 0 0 q32

(c) D.-H. table for the Middle finger.

TABLE II: D.-H. tables for the 15 DoFs paradigmatic hand.

the jth limb on the ith finger. The D.-H. tables for each
finger/group of fingers are shown in Table IIa-IIc.

B. Assumptions in the Definition of Grasp Layouts

To define possible grasp configurations, we rely on data
reported in [1]. In that work, no measurement of the object
position, nor spatial location of the contact points, was reg-
istered (since the subjects were asked to shape their hands
in order to mime grasps, with no physical object present).
Therefore we made the following assumptions. Firstly, the
hand configuration relative to the imagined grasp of an object,
say a cherry, was defined as the mean joint configuration vector
recorded in the grasp of that object, among a total of five trials.
Therefore, the configuration of the hand is identified with the
name of the object grasped. Secondly, a reasonable position
of the center of gravity G for the grasped object was defined,
taking into account both the hand configuration previously
defined and a reasonable shape for that object. Then, the
candidate contact point cfij on each limb lij was found as the
nearest point on the same limb to G. Last step was to define
the final grasp by selecting the limbs in contact, according
to both the shape of the hand and the position of the object
relative to the hand the same grasp suggests. The numerical
data common to all tests are listed in Tab. III.

C. Precision grasp - The Cherry

As a first test case we consider the grasp of a cherry. The
hand configuration, the estimated position of the center of
gravity G of the object and the contact points are represented

Net Wrench we Contact type Frict. coeff. µ fmin(N)

0 PCWF 1.5 0.1

TABLE III: Nominal data common to all tests.

Fig. 4: Hand postures analyzed.



in Fig. 4 (a). The contact parameters employed are listed in
Table III and, with reference to eqs. (6) and (7), the numerical
value of the stiffness matrix K is specified by setting kstru = 1
N/mm and kss = 100 Nmm/rad. For this case, rank(G) = 6,
c = 9 and, with reference to eqs. (12), (13), and (15),
h = e = 3, p = 0. The optimal contact force distribution
is found with respect to y minimizing ψf (y) = ∥f(y)∥2.

Let us concentrate on the black curve in Fig. 5a. Interest-
ingly enough, this grasp is force-closure even when engaging
only the first synergy (S1, first column of S), for which
an optimal value of ∥f∥2 = 0.349 N, is found. When more
synergies are engaged in the grasp, the norm of the contact
force decreases as the dimension es = s of Fhrs increases,
and there is a higher dimensional space where the optimal
solution can be sought. Then, a plateau is obtained once the
dimension es reaches e, as confirmed by rank considerations
in eq. (29). Therefore, as far as controllable internal contact
forces are concerned, no improvement can be obtained in the
quality of the grasp by engaging a number of synergies s > e.

It is worth stressing that the trend in Fig. 5a is highly
dependent on which synergies are considered. Had we engaged
synergies in a backward fashion, i.e., from S15 to S1, we would
have obtained a completely different trend. Put another way,
if we plug in only one synergy at a time, the grasp is force-
closure only for synergies S1, S3 and S4, meaning that maybe
the first synergies are more fundamental to grasp objects than
those of higher-order, but not in a strictly ordered fashion.
However, we have no ambition of drawing general conclu-
sions here, since fundamental roles are played by location
of the contact points, surface normals, and types of contact
constraints, which are here only reasonably estimated.

In order to test the robustness of the above trends, the
previous analyses are repeated for different values of K
obtained varying kss and kstru, as shown in Figs. 5a-5b.

Interestingly, if we select Ψη(y) = ∥η∥2 as cost function,
we obtain the trends depicted in Fig. 6a-6b. These show that,
in terms of synergistic forces, adding more synergies than
those strictly necessary to fulfill the dimension of Fhr worsens
the cost, as the range of S (where we project the same τ ’s,
see eq. (10)) increases. In other words, if a synergy is not
actuated, synergistic forces in its direction are absorbed by the
mechanical structure directly, and are not reflected in actuation
costs.

Minimization of Ψτ (y) = ∥τ∥2 bears trends similar to those
of Fig. 5, and are here omitted for brevity.

D. Power Grasp - The Ashtray

As second test case we consider the grasp of an ashtray.
The hand configuration, the estimated position of the center of
gravity G of the object and the contact points are represented
in Fig. 4 (b). The contact parameters and the nominal stiffness
values are the same employed in the previous case. This time,
rank(G) = 6, c = 33 and, with reference to eqs. (12), (13),
and (15), h = 27, e = 15, p = 12. As intuitive, since h >
e = n, increasing the number of synergies engaged results
in a monotone decrease of the cost function, as elicited from
Fig. 7, no matter the values of the grasping stiffness K. All
curves present a rapid decrease for 1 ≤ s ≤ 3, then a lighter
decrease for 3 < s ≤ 6, after which no practical improvement
is registered. Also interesting is that synergy S1 represents
the only “direction” along which we can obtain force-closure
conditions by employing only a 1-dimensional subspace of
R

15, at least for nominal values of the parameters. No other
synergy shows this property. To give an idea, to obtain force-
closure without S1, we need a basis composed of columns S2
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(a) Trends for variation of the steady-state gain kss (Nmm/rad).
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(b) Trends for variation of the structural stiffness kstru (N/mm).

Fig. 5: The Cherry. Norm of the optimal contact force f w.r.t.
the cost function ∥f∥2, with increasing number of synergies.

through S9, that is a subspace seven-dimensional higher than
before.

From Fig. 7, it is interesting to note that a wide variation
of K can render infeasible the grasp with only S1 engaged.
However, adding just another column, e.g. S2, solves already
the problem.

Finally, if we select Ψη(y) = ∥η∥2 as cost function, we
obtain the trends depicted in Fig. 8a-8b.

VI. CONCLUSION

The force decomposition and optimization problems in
multiple whole-limb manipulation of hands with embodied
synergies require an extension of existing analytical methods,
and the consideration of compliance in the hand-object system.

We have presented two numerical case studies to charac-
terize the role of different postural synergies in the ability of
the hand to obtain force-closure grasps. The two case studies
addressed a precision grasp and a power grasp, respectively,
and are to be considered representative of a number of similar
experiments, which could not be reported for space limitations.

The main results obtained from our investigations can be
summarized as follows.

The force-closure property of grasps strongly depend on
which synergies are used to control the hand. The first few
synergies (the first one for the two case studies reported) are
sufficient to establish force-closure. If the first few synergies
are not actively controlled, force closure can only be obtained
if many more DoFs (corresponding to higher-order synergies)
are actuated.
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(a) Trends for variation of the steady-state gain kss (Nmm/rad).
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Fig. 6: The Cherry. Norm of the optimal synergistic force η =
ST τ w.r.t. the cost function ∥η∥2, with increasing number of
synergies.

A measure of the quality of the grasp (given in terms of the
norm of contact forces needed to avoid slippage) is enhanced
by increasing the number of actuated synergies, but only to a
limited extent. No improvement is observed beyond the first
three synergies in the precision grasp case, while continuous
but small improvements are obtained in the whole-hand grasp
case.

All the above results are consistently robust with respect to
different values of stiffness parameters, which may reflect the
uncertainty by which these parameters are known in human or
robotic hand models, and/or the fact that grasp stiffness may
be changed either voluntarily or not.

These results are consistent with the hypothesis that the
first few postural synergies observed in grasp pre-shaping [1]
are also crucial in grasping force optimization, when suitably
translated from the kinematic configuraton space where they
have been observed, to the force domain through the proce-
dures illustrated in this paper.

APPENDIX

With reference to Fig. 1, and by employing the definition of
the adjoint operator Ad(R,d) given in [22], the contribution of

the ith finger, jth limb to the components in P of the wrench
we ∈ R

6 exerted on the object is given by

pweij = Gijfij , Gij := AdT(cijRp, de
cij

)H
T
ij ∈ R

6×cij ,

(35)
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(a) Trends for variation of the steady-state gain kss (Nmm/rad).
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Fig. 7: The Ashtray. Norm of the optimal contact force f w.r.t.
the cost function ∥f∥2, with increasing number of synergies.

where cijRp is the rotation that aligns P onto Cij , and decij is
the vector from Cij to E. Let ϵij be defined as follows

ϵij =

{
1, if j ∈ ν(i)
0, otherwise.

(36)

Put fi = [ϵi1f
T
i1

· · · ϵinif
T
ini

]T ∈ R
ci , where ci =∑

j∈ν(i) cij , and consider the contribution of the ith finger
as

pwei = Gifi, Gi := [ϵi1Gi1 · · · ϵiniGini ] ∈ R
6×ci (37)

Stacking equation (37) for each finger, we can write the global
grasp matrix as

pwe = Gf, G := [G1 · · ·Gk] ∈ R
6×c, (38)

with c =
∑k

i=1 ci.
Similarly, let ξcoij ∈ R

cij be the local components in

the constrained directions at point coij due to a twist of
the object pξe, with components in P. By setting ξoi =
[ϵi1ξ

T
coi1

· · · ϵiniξ
T
coini

]T ∈ R
ci , for the ith finger, and ξo =

[ξTo1 · · · ξTok ]
T ∈ R

c, for the whole hand, we can write by
duality

ξo = GT pξe, GT ∈ R
c×6 (39)

We now consider the relationships for the statics and kine-
matics of the fingers. By employing the D.-H. convention, the
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Fig. 8: The Ashtray. Norm of the optimal synergistic force
η = ST τ w.r.t. the cost function ∥η∥2, with increasing number
of synergies.

local components in the constrained directions of the contact
point cfij on the ith finger, jth limb, can be written as

ξcfij = Jij q̇i, Jij := Hij Ad(cijRp, d
oij
cij

)
Joij (qi), (40)

where Joij = [ji1 · · · jij 0 · · · 0] ∈ R
6×ni , with

blocks defined as (1 ≤ l ≤ j)

jil =

{
[zTl−1 0T ]T , for prismatic lth joint;

[(d
ofi, l−1
ofij

)T ẑl−1 zTl−1]
T , for revolute lth joint

(41)
By stacking (40) for all the limbs on the ith fin-

ger that are actually in contact, and setting ξfi =
[ϵi1ξ

T
cfi1

· · · ϵiniξ
T
cfini

]T ∈ R
ci , we obtain

ξfi = Jiq̇i, Ji :=
[
ϵi1J

T
i1 · · · ϵiniJ

T
ini

]T
∈ R

ci×ni (42)

Then, collecting the complete set velocities in twist ξf =
[ξTf1 · · · ξTfk ]

T ∈ R
c, yields

ξf = Jq̇, J := Blockdiag(J1, . . . , Jk) ∈ R
c×n (43)

Finally, again by duality arguments, the map from the hand
contact forces f to hand joint torques τ is given by

τ = JT f, J = Blockdiag(JT
1 , . . . , J

T
k ) ∈ R

n×c (44)

ACKNOWLEDGMENT

Authors wish to gratefully acknowledge Marco Santello for
the inspiring discussions and for providing experimental data
and parameters. This work is supported by the European Com-
mission under CP grant no. 248587, “THE Hand Embodied”,
within the FP7-ICT-2009-4-2-1 program “Cognitive Systems
and Robotics”.

REFERENCES

[1] M. Santello, M. Flanders, and J. F. Soechting, “Postural hand synergies
for tool use,” J. Neurosci., vol. 18, no. 23, pp. 10 105–10 115, December
1998.

[2] C. R. Mason, J. E. Gomez, and T. J. Ebner, “Hand synergies during
reach-to-grasp,” J Neurophysiol, vol. 86, no. 6, pp. 2896–2910, Decem-
ber 2001.

[3] V. Cheung, A. d’Avella, M. Tresch, and E. Bizzi, “Central and sensory
contributions to the activation and organization of muscle synergies
during natural motor behaviors,” Journal of Neuroscience, vol. 25,
no. 27, pp. 6419–6434, 2005.

[4] A. Bicchi, “Hands for dextrous manipulation and robust grasping:
a difficult road towards simplicity,” IEEE Trans. on Robotics and
Automation, vol. 16, no. 6, pp. 652–662, December 2000.

[5] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction
for hand-independent dexterous robotic grasping,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007, pp. 3270–3275. [Online]. Available: http:
//dx.doi.org/10.1109/IROS.2007.4399227

[6] C. Brown and H. Asada, “Inter-finger coordination and postural syner-
gies in robot hands via mechanical implementation of principal com-
ponent analysis,” in IEEE-RAS International Conference on Intelligent
Robots and Systems, 2007, pp. 2877–2882.

[7] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” The International Journal of Robotics Research,
vol. 28, no. 7, pp. 851–867, July 2009.

[8] R. Featherstone, Rigid Body Dynamics Algorithms, Springer, Ed.
Springer, 2008.

[9] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer Handbook of
Robotics. Springer, 2008.

[10] A. Bicchi, “On the problem of decomposing grasp and manipulation
forces in multiple whole-limb manipulation,” Robotics and Autonomous
Systems, vol. 13, no. 2, pp. 127–147, July 1994.

[11] M. Cutkosky and I. Kao, “Computing and controlling the compliance
of a robotic hand,” Robotics and Automation, IEEE Transactions on,
vol. 5, no. 2, pp. 151–165, 1989.

[12] A. G. Feldman and M. F. Levin, “The equilibrium-point hypothesis–
past, present and future,” Adv. Exp. Med. Biol., no. 629, pp. 699–726,
2009.

[13] H. Hanafusa and H. Asada, “Stable prehension by a robot hand with
elastic fingers,” in 7th ISIR, Tokyo, 1997.

[14] J. Joh and H. Lipkin, “Lagrangian wrench distribution for cooperating
robotic mechanisms,” in IEEE Conf. on Robotics and Automation, 1991.

[15] I. Kao, M. Cutkosky, and R. Johansson, “Robotic stiffness control
and calibration as applied to human grasping tasks,” Robotics and
Automation, IEEE Transactions on, vol. 13, no. 4, pp. 557–566, 1997.

[16] J. Friedman and T. Flash, “Task-dependent selection of grasp kinematics
and stiffness in human object manipulation,” Cortex, no. 43, pp. 444–
460, 2007.

[17] A. Bicchi, “On the closure properties of robotic grasping,” The Interna-
tional Journal of Robotics Research, vol. 14, no. 4, pp. 319–334, August
1995.

[18] M. Buss, H. Hashimoto, and J. B. Moore, “Dextrous hand grasping force
optimization,” IEEE Trans. on Robotics and Automation, vol. 12, no. 3,
pp. 406–418, June 1996.

[19] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming (web page and software),” http://stanford.edu/∼boyd/cvx,
2004.

[20] ——, “Graph implementations for nonsmooth convex programs,” in
Recent Advances in Learning and Control, 2008, pp. 95–110.

[21] K. C. Toh, M. Todd, and R. Tutuncu, “Sdpt3 — a matlab software
package for semidefinite programming,” Optimization Methods and
Software, vol. 1, pp. 545–581, 1999.

[22] R. M. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.

http://dx.doi.org/10.1109/IROS.2007.4399227
http://dx.doi.org/10.1109/IROS.2007.4399227
http://stanford.edu/~boyd/cvx



