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an absolute  error of 0.02 in Gaussian method).  The computation of 
se, W e ,  and H L ~  requires N = tl with tl equals 10, 24, rand 50, re- 
spectively. One  may conjecture that these  moderate  values of N 
and t, still hold  for other simple shapes  scatterers. 

It has been shown' t h a t  there exist some differences beheen  the 
exact  results and those given by Lewis' method when it is applied 
to an experimental situation. Nevertheless this method  provides 
us with interesting  informations about  the  scatterer. 
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On the  Role of Lateral  Waves in the  Radiation  from  the 
Dielectric  Wedge 

PETER BALLING 

Abstract-The field on the dielectric wedge is approximated by 
a plane-wave expansion as in [l]. Contributions from this solution 
to both the surface field and  the radiation field are examined. 
Finally, an experimental  radiation field is compared with the 
plane-wave solution and with a geometric-optical diffraction field. 

INTRODECTIOX 

The dielectric wedge (Fig. 1)  can be considered as a prototype 
for a variety of tapered antennas.  The tapering gives an additional 
design variable which especially for dielectric antennas  can improve 
pattern, impedance, and broad-band  properties [2, pp. 104-105, 

A good approximation to the wedge field can be obtained  by 
expanding the field from the source in an angular spectrum of plane 
waves which then  are reflected at the interfaces [3, pp. 22-32]. 
This solution agrees well with experimental surface fields and is 
more accurate  than  the local-mode approach which often has been 
applied to problems concerning tapered waveguides and  antennas 

108-1141. 
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SURFACE FIELD 

We consider a dielect.ric wedge excited by a magnetic unit line 
current along the y axis (see Fig. 1). The approximate planewave 
solution was given by [I, eqs. (1)-(3)]. The plane-wave solution 
is evaluated  by numerical  integration along paths of steepest 
descent. This gives a representation in terms of saddlepoint 
contributions and  lateral waves. While the former in  the high- 
frequency limit become equal to geometric-optical rays, the  latter 
are diffraction waves excit.ed by waves which hit  the dielectric-air 
interfaces at t.he critical angle [4]. 

Fig. 2 shows the components of the once reflected wedge field, 
e.g., the field which hits  the upper wedge interface after one reflec- 
t.ion at t.he lower nedge interface (see Fig. I) .  Close to the source 
both angles of incidence are less than  the critical angle and only 
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Fig. 1. Dielectric wed e excited by line current  along the y axis. 
on upper  wedge  interface. - - - - Saddle-point  contribution. - .-a- Figure  shows paths ofonce reflected  waves  which illuminate point P 

Lateral  waves. Thin lines show paths before excitation of lateral 
wavss. 
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(b) 
Rh2. (a) Once reflected surface fleld on wedge.  Wedge  angle Z$ = 20". 

8.69. - - - Saddle-point  contribution. -.-.- electric  constant c = 2.53. Normallzed half-mdth at source kdo = 

Total once  reflected  surface  fleld. (b) Radiation  patterns due to once 
Lateral  waves. - 

reflected  surface-fleld  components (a) on upper  wedge  interface. 
kr is normalized  distance to far-fleld point. - - - Geometric-optical 

difPracted at the tip. - Ray difiacted  at the  tip. -.-.-e Lateral  wave8 
Total geometric-optical  diffraction 

fleld. rrrrrm Planewave result. 

field. - - .- - ._ - . 

the  saddle  point contribution  appears. As the field point moves 
towards the  tip,  fust t,he reflection and  then  the final incidence 
becomes crit,ical. Each t.ime a new lateral wave appears. The 
emergence of a lateral wave is neutralized by a discontinuity in 
the  saddle  point contribution so that  the  total once reflect,ed field 
remains continuous. The  lateral wave LW1 is excited at the first 
incidence, propagates along the lower interface, radiates  back  into 
the dielectric, and finally hits the upper  interface where i t  appears 
as a fast wave. The  lateral wave LW2 is excited at the second 
incidence. Ray  paths of the  lateral waves are shown in  Fig. 1. 
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R~DIATION FIELD 

The field radiated from the wedge can  be  obtained  by a numerical 
surface integration of the plane-wave wedge field. The radiation 
due to the once reflected surface field on Fig. 2(a) is shown in 
Fig. 2 (b). As only the contribution  from the field along the upper 
interface is donsidered, the  pattern is asymmetrical. The figure 
also shows the corresponding geometric-optical field as well as 
corrections due to waves diffracted at   the  tip.  These  corrections 
are obtained  by means of Monteat.h’s compensation  theorem, the 
geometric-optical surface field, and  the  asymptotic forms of the 
two lateral waves LW1  and LW2 [3, pp. 50-591. A similar approach 
has earlier been applied to surface-wave antennas [SI and  the 
dielectric rod  antenna [2, pp. 201-2071. 

The geometric-optical field in Fig. 2(b) decreases abruptly for 
p > 49’ because the reflection at the lower interface then becomes 
partial.  The  fust correction is due to diffraction at the tip of the 
ray which is reflected at   the lower wedge interface  immediately 
before it hits the tip. As the  tip is situated in the region with  total 
reflection, the once reflected ray is a slow wave and  the diffraction 
pattern  very broad.  When the  tip is situated in the region with 
partial reflection, this contribution gives a smooth transition across 
the lightrshadow  boundary. The  lateral wave LW2 is excited a t  
the h a 1  incidence and  travels along the upper  interface with a 
velocity close to  that of light before the diffraction at the tip. The 
resultant  pattern is relatively sharp  and  important towards end&. 
The  lateral wave  LW1 is excited at the incidence on the lower 
interface and yields a fast illumination of the upper  interface. The 
corresponding diffraction pattern is very narrow and  only significant 
close to rp = 49” where the reflection of the geometric-opt.ica1 ray is 
critical. This contribution gives a smooth transition of the field. 
The total geomet.ric-optical diffraction field agrees remarkably 
well with  the plane-wave result. This agreement  disappears, how- 
ever, when the wedge tip is close to the  point of critical incidence 
of a ray. Then  it is not possible to approximate the field in the 
vicinit.y of the  tip wit.h the geometric-optical field and  the asymptotic 
forms of the  lateral waves. 

In  a measured  radiation field, it  is not possible, as in the plane- 
wave solut.ion, to distinguish contributions from direct waves, once 
reflected waves, twice reflected waves, etc. Fig. 3 compares an 
experimental radiat.ion pat.tern with  the  total plane-wave radiation 
pattern  and  total geometric-optical diffraction field. In  the experi- 
ment, a three wavelengths wide wedge was excited by a t,wo wave- 
lengths wide H-plane  sectoral horn embedded in  the dielectric. 
(A cut perpendicular to 6he wedge apex hm been inserted  in Fig. 
3.) The horn was approximated by a uniformly illuminated 2a-high 
aperture. Hence, the plane-wave solution  was modified with the 
spectrum of this aperture [3, pp. 61441. Similarly, the geometric- 
opt.ica1 diffraction field was modified by  the far-field pattern of 
the uniformly illuminated aperture.  The plane-wave result and  the 
experimental  result are  matched at endiire and agree well with each 
other.  The geometric-optical diffraction field exceeds the plane-wave 
field n d h  1.2 dB at endfire but contains the main  features of the 
radiation field. The discrepancies are  due to waves which hit the 
tip region critically. These  contributions to the surface field cannot 
be approximated by simple  asymptotic expressions. 

“hen  the wedge angle 2# and t.he susceptibility X = E - 1 as in 
this case are small, we can neglect most waves which have undergone 
one partial reflection and all waves which have undergone more than 
one part.ial reflection. Therefore, t.he n times reflected cont.ribution 
to the geometric-optical diffraction field in Fig. 3 does not contain 
n + 1 lateral waves (one excited a t  each incidence) but only two, 
namely those excited a t  the last, two incidences. 

In  conclusion, the  lateral waves can give import,ant  contributions 
not only to the surface field but also to the radiation field, in par- 
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Fig. 3. Radiation patterns from dielectric wedge excited by small 

half-width of wedge at source kdo = 1.53. Normalized half-width of 
horn. Wedge angle 2$ = 10”. Dielectric constant E = 2.53. Normalized 
aperture ka = 0.78. - - - - - Experimental radiation pattern. - 
Plane-wave radiat,ion pattern. - Geometric-optical dimaction 
fleld. 
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Group Velocity Diagrams for a Ferrite Medium 

S. R. SESHADRI 

Abstract-A procedure  for obtaining the group velocity diagrams 
for a magnetized femte  medium is given. Some  results of group 
velocity diagrams are presented for the purpose of illustrating 
their general features. 

The group  velocity in a magnetized ferrite medium, in  addition 
to being a funct,ion of frequency, is dependent on the direction with 
respect to the magnetostatic field. In  many problems of wave 
propagation in fe r r ik ,  me have found i t  helpful to use group velocity 
surfaces which  are such that  the length of the radius  vector termi- 
nat.ing on any  point on this surface gives the  magnitude of the 
group velocity in t.he direction of the radius vector. Since t,here is 
cylindrical symmetry  about  the magnetostatic field, only the group 
velocity diagram given by  the cross section of the group velocity 
surface by a plane  containing the direction of the magnetostatic 
field need be considered. In this communication, r e  outline the 
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