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ON THE ROLE OF QUADRATIC OSCILLATIONS
IN NONLINEAR SCHRÖDINGER EQUATIONS II.

THE L2-CRITICAL CASE

RÉMI CARLES AND SAHBI KERAANI

Abstract. We consider a nonlinear semi-classical Schrödinger equation for
which quadratic oscillations lead to focusing at one point, described by a non-
linear scattering operator. The relevance of the nonlinearity was discussed
by R. Carles, C. Fermanian–Kammerer and I. Gallagher for L2-supercritical
power-like nonlinearities and more general initial data. The present results
concern the L2-critical case, in space dimensions 1 and 2; we describe the set
of non-linearizable data, which is larger, due to the scaling. As an applica-
tion, we make precise a result by F. Merle and L. Vega concerning finite time
blow up for the critical Schrödinger equation. The proof relies on linear and
nonlinear profile decompositions.

1. Introduction

Consider the initial value problem

(1.1) iε∂tu
ε +

1
2
ε2∆uε = εnσ|uε|2σuε, uε

|t=0 = uε
0 ,

where x ∈ R
n and ε ∈ ]0, 1]. Our aim is to understand the relevance of the

nonlinearity in the limit ε → 0, according to the properties of the initial data uε
0.

In [7], the case σ > 2/n, with σ < 2/(n − 2) if n ≥ 3 and uε
0, ε∇xuε

0 bounded in
L2(Rn) uniformly for ε ∈ ]0, 1], was studied. Note that under these assumptions,
global existence in H1(Rn) for fixed ε > 0 is well known (see e.g. [8]). It was proven
that the nonlinearity has a leading order influence in the limit ε → 0 if and only if
the initial data include a quadratic oscillation of the form

f(x − xε)e−i |x−xε|2
2εtε ,

for some xε ∈ R
n and tε > 0, with lim supε→0 tε/ε ∈ ]0, +∞[ (see [7, Theorem 1.2]

for a precise statement). Two things have to be said about this property. First, it
shows that the presence of quadratic oscillations is necessary for the nonlinearity to
have a leading order influence; it was established in [6] that it is sufficient. Recall
that when the initial data contains a highly oscillatory quadratic phase, rays of
geometric optics (also known as classical trajectories) are lines that meet at one
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34 R. CARLES AND S. KERAANI

point (essentially, (t, x) = (lim tε, limxε) when these limits exist): this is focusing,
in the semi-classical régime (see [6] for details). Second, only one scale is involved
in such initial profiles, that is, ε. In the present paper, we study the L2-critical
case, σ = 2/n. We prove that quadratic oscillations are not necessary to have a
leading order nonlinear behavior, if we assume that the initial data satisfy the same
assumptions as in [7]; scales other than ε have to be taken into account, because
σ = 2/n corresponds to the critical scaling at the L2 level. To see this, consider a
solution U to the nonlinear Schrödinger equation

(1.2) i∂tU +
1
2
∆U = λ|U|4/nU ,

with λ = 1 and U|t=0 = φ. If φ ∈ Σ, where

(1.3) Σ :=
{
φ ∈ H1(Rn) ; |x|φ ∈ L2(Rn)

}
,

then the solution U of (1.2) is defined globally in time, with U ∈ C(Rt; Σ) (see e.g.
[8]). Let (t0, x0) ∈ R × R

n. It is straightforward to see that

(1.4) uε(t, x) =
1

εn/4
U

(
t − t0,

x − x0√
ε

)
solves (1.1) with σ = 2/n, and that uε(0, ·) and ε∇xuε(0, ·) are bounded in L2(Rn),
uniformly in ε ∈ ]0, 1]. This particular solution is such that the nonlinearity in (1.1)
is relevant at leading order, at any (finite) time, near x = x0. This is in contrast
with the L2-supercritical case σ > 2/n, where only profiles of the form

(1.5) uε(t, x) =
1

εn/2
U

(
t − tε

ε
,x − xε

ε

)
were relevant. The solutions (1.4) are deduced from the solutions (1.5) by scaling.
If U solves (1.2), then so does Ũ, given by

Ũ(t, x) = λn/2U
(
λ2t, λx

)
,

for any real λ: the case σ = 2/n is L2-critical. Applying this transform to solutions
(1.5) with λ =

√
ε yields solutions (1.4), with t0 = tε/ε and x0 = xε/

√
ε.

Before going further into details, we fix some notations and introduce a definition.
We consider initial value problems

(1.6) iε∂tu
ε +

1
2
ε2∆uε = λε2|uε|4/nuε, uε

|t=0 = uε
0 ,

with λ ∈ {−1, +1}, that is, we consider the L2-critical case of (1.1), with possibly
focusing nonlinearities (λ = −1). As in [7], we define the free evolution vε of uε

0,

(1.7) iε∂tv
ε +

1
2
ε2∆vε = 0, vε

|t=0 = uε
0 .

We resume some notations used in [7].

Notation. i) For a family (aε)0<ε≤1 of functions in H1(Rn), define

‖aε‖H1
ε

:= ‖aε‖L2 + ‖ε∇aε‖L2 .
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QUADRATIC OSCILLATIONS IN NLS II. THE L2-CRITICAL CASE 35

We will say that aε is bounded (resp. goes to zero) in H1
ε if

lim sup
ε→0

‖aε‖H1
ε

< ∞ (resp. = 0).

ii) If (αε)0<ε≤1 and (βε)0<ε≤1 are two families of positive numbers, we write

(1.8) αε � βε

if there exists C independent of ε ∈]0, 1] such that for any ε ∈]0, 1],

αε ≤ Cβε.

From now on, uε (resp. vε) stands for the solution to (1.6) (resp. (1.7)), with
λ = −1 or +1 indifferently, unless precisely specified.

Definition 1.1 (Linearizability). Let uε
0 ∈ L2(Rn) be bounded in L2(Rn), and let

Iε be an interval of R, possibly depending on ε.
i) The solution uε is linearizable on Iε in L2 if

lim sup
ε→0

sup
t∈Iε

‖uε(t) − vε(t)‖L2(Rn) = 0 .

ii) If in addition uε
0 ∈ H1(Rn) and uε

0 is bounded in H1
ε , we say that uε is

linearizable on Iε in H1
ε if

lim sup
ε→0

sup
t∈Iε

(
‖uε(t) − vε(t)‖L2(Rn) + ‖ε∇xuε(t) − ε∇xvε(t)‖L2(Rn)

)
= 0 .

We prove the following result. Note that we have to restrict to the case of space
dimensions 1 and 2 (see Remark 3.5 below).

Theorem 1.2. Assume n = 1 or 2. Let uε
0 be bounded in L2(Rn), and let Iε 	 0

be a time interval.
• uε is linearizable on Iε in L2 if and only if

(1.9) lim sup
ε→0

ε‖vε‖2+4/n

L2+4/n(Iε×Rn)
= 0 .

• Assume in addition that uε
0 ∈ H1 and uε

0 is bounded in H1
ε . Then uε is

linearizable on Iε in H1
ε if and only if (1.9) holds.

Note that a similar result was proven in [7], in the L2-supercritical case, with a
different linearizability condition,

(1.10) lim sup
ε→0

ε2 sup
t∈Iε

‖vε(t)‖2+4/n

L2+4/n(Rn)
= 0 .

The fact that this condition is necessary for uε to be linearizable in H1
ε is easy to

see, from the classical conservations of mass and energy, which we write in the case
σ = 2/n (in the general case, the powers 2 + 4/n are replaced by 2σ + 2):

(1.11)

Mass:
d

dt
‖uε(t)‖L2 =

d

dt
‖vε(t)‖L2 = 0,

Linear energy:
d

dt
‖ε∇xvε(t)‖L2 = 0,

Nonlinear energy:
d

dt

(
1
2
‖ε∇xuε(t)‖2

L2 +
λε2

2 + 4/n
‖uε(t)‖2+4/n

L2+4/n

)
= 0 .
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36 R. CARLES AND S. KERAANI

The proof that condition (1.10) implies linearizability in H1
ε (which is a stronger

property than linearizability in L2) involves Strichartz estimates, and seems to rely
in an unnatural way on the assumption σ > 2/n. Example (1.4) shows that this
assumption is relevant: the solution vε associated to uε in (1.4) is given by

vε(t, x) =
1

εn/4
V

(
t − t0,

x − x0√
ε

)
, where V = ei

t+t0
2 ∆U(−t0) .

For any T > 0 independent of ε, it satisfies (1.10) with Iε = [0, T ], but uε is not
linearizable on [0, T ] in L2; note that vε does not satisfy (1.9), which is reassuring.

The proof that (1.9) is necessary for linearizability in L2 relies on profile decom-
position for L2 solutions of (1.2). It was established in [22] for the case n = 2. We
prove it in the one-dimensional case in Section 3.

Definition 1.3. If (hε
j , t

ε
j , x

ε
j , ξ

ε
j )j∈N is a family of sequences in R+ \{0}×R×R

n×
R

n, then we say that (hε
j , t

ε
j , x

ε
j , ξ

ε
j )j∈N is an orthogonal family if

lim sup
ε→0

(
hε

j

hε
k

+
hε

k

hε
j

+
|tεj − tεk|
(hε

j)2
+

∣∣∣∣∣xε
j − xε

k

hε
j

+
tεjξ

ε
j − tεkξε

k

hε
j

∣∣∣∣∣
)

= ∞ , ∀j �= k.

Theorem 1.4 (Linear profiles). Let n = 1 or 2, and let Uε
0 be a bounded family in

L2(Rn).
i) Up to extracting a subsequence, there exist an orthogonal family

(hε
j , t

ε
j , x

ε
j , ξ

ε
j )j∈N

in R+ \ {0}×R×R
n ×R

n, and a family (φj)j∈N bounded in L2(Rn), such that for
every 	 ≥ 1,

ei t
2∆Uε

0 =
�∑

j=1

Hε
j(φj)(t, x) + rε

� (t, x) ,

where Hε
j(φj)(t, x) = ei t

2∆

(
eix·ξε

j e−i
tε
j
2 ∆ 1

(hε
j)n/2

φj

(
x − xε

j

hε
j

))
,

and lim sup
ε→0

‖rε
�‖L2+4/n(R×Rn) −→

�→+∞
0 .

Furthermore, for every 	 ≥ 1, we have

(1.12) ‖Uε
0‖

2
L2(R) =

�∑
j=1

‖φj‖2
L2(R) + ‖rε

�‖
2
L2(R) + o(1) as ε → 0 .

ii) If in addition the family (Uε
0)0<ε≤1 is bounded in H1(Rn), or more generally

if

(1.13) lim sup
ε→0

∫
|ξ|>R

∣∣Ûε
0(ξ)

∣∣2 dξ → 0 as R → +∞ ,

then for every j ≥ 1, hε
j ≥ 1, and (ξε

j )ε is bounded, |ξε
j | ≤ Cj.

To state the nonlinear analog to that result, we introduce the following definition:

Definition 1.5. Let Γε = (hε, tε, xε, ξε) be a sequence in R+ \ {0} × R× R
n ×R

n

such that tε/(hε)2 has a limit in [−∞, +∞] as ε goes to zero. For φ ∈ L2(Rn), we
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QUADRATIC OSCILLATIONS IN NLS II. THE L2-CRITICAL CASE 37

define the nonlinear profile U associated to (φ, Γε) as the unique maximal solution
of the nonlinear equation (1.2) satisfying∥∥∥∥U( −tε

(hε)2

)
− e

−i tε

2(hε)2
∆

φ

∥∥∥∥
L2(Rn)

−→
ε→0

0 .

Essentially, φ is a Cauchy data for U if tε/(hε)2 has a finite limit, and an asymp-
totic state (scattering data) otherwise.

Theorem 1.6 (Nonlinear profiles). Let n = 1 or 2, let Uε
0 be a bounded family in

L2(Rn) and let Uε be the solution to (1.2) with initial datum Uε
0. Let (φj , Γε

j)j∈N∗

be the family of linear profiles given by Theorem 1.4, and let (Uj)j∈N∗ be the family
given by Definition 1.5 (up to the extraction of a subsequence).

Let Iε ⊂ R be a family of open intervals containing the origin. The following
statements are equivalent:

(i) For every j ≥ 1, we have

lim sup
ε→0

‖Uj‖L2+4/n(Iε
j ×Rn) < +∞ , where Iε

j := (hε
j)

−2
(
Iε − tεj

)
.

(ii) lim sup
ε→0

‖Uε‖L2+4/n(Iε×Rn) < +∞.

Moreover, if (i) or (ii) holds, then Uε =
∑�

j=1 U
ε
j + rε

� + ρε
� , where rε

� is given by
Theorem 1.4, and

lim sup
ε→0

(
‖ρε

�‖L2+4/n(Iε×Rn) + ‖ρε
�‖L∞(Iε;L2(Rn))

)
−→

�→+∞
0 ,(1.14)

Uε
j(t, x) = eix·ξε

j−i t
2 (ξε

j )2 1
(hε

j)n/2
Uj

(
t − tεj
(hε

j)2
,x − xε

j − tξε
j

hε
j

)
.(1.15)

We give two applications to these results, besides the proof of Theorem 1.2. The
first one is the equivalent of [7, Theorem 1.2], which characterizes the obstructions
to linearizability. The second one concerns the properties of blowing up solutions,
in the same spirit as [22].

The equivalent to [7, Theorem 1.2] is the following.

Corollary 1.7. Assume n = 1 or 2, and let uε
0 be bounded in L2(Rn). Let T > 0

and assume that (1.9) is not satisfied with Iε = [0, T ]. Then up to the extraction
of a subsequence, there exist an orthogonal family (hε

j , t
ε
j , x

ε
j , ξ

ε
j )j∈N and a family

(φj)j∈N, bounded in L2(Rn), such that

(1.16)

uε
0(x) =

�∑
j=1

H̃ε
j (φj)(x) + wε

� (x) ,

where H̃ε
j (φj)(x) = eix·ξε

j /
√

εe−iε
tε
j
2 ∆

(
1

(hε
j

√
ε)n/2

φj

(
x − xε

j

hε
j

√
ε

))
,

and lim sup
ε→0

ε‖eiε t
2∆wε

�‖
2+4/n

L2+4/n(R×Rn)
−→

�→+∞
0 .

We have lim inf tεj/(hε
j)

2 �= −∞, lim inf(T − tεj)/(hε
j)

2 �= −∞ (as ε → 0), and
hε

j ≤ 1 for every j ∈ N.
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38 R. CARLES AND S. KERAANI

If tεj/(hε
j)

2 → +∞ as ε → 0, then we also have

(1.17)
H̃ε

j (φj)(x) =ei
x·ξε

j√
ε

+in π
4 e

−i
|x−xε

j |2

2εtε
j

(
hε

j

tεj
√

ε

)n/2

φ̂j

(
−

hε
j

tεj
√

ε
(x − xε

j)

)
+ o(1) in L2(Rn) as ε → 0 ,

where φ̂ stands for the Fourier transform of φ: φ̂(ξ) = (2π)−n/2
∫

e−ix·ξφ(x)dx.
If in addition uε

0 is bounded in H1
ε , then we have hε

j ≥
√

ε.

Remark. Even if uε
0 is bounded in H1

ε , we cannot say more than φj ∈ L2(Rn), while
in [7], the H1

ε assumption implied φj ∈ H1(Rn). This is due to the fact that several
scales of concentrations must be taken into account in the present case, while in
[7], only the scale ε was relevant. In that case, the profile decomposition in the
homogeneous space Ḣ1(Rn) performed in [18] could be used to deduce properties
in the inhomogeneous Sobolev space H1. In our case, we cannot compare the L2

and Ḣ1 profile decompositions.

Remark. Compare this result with [7, Theorem 1.2].
• Scales. As we already mentioned, not only must the scale ε be considered in

the obstructions to the linearizability in H1
ε , but every scale between ε and

√
ε.

Examples (1.4) and (1.5) can thus be considered as two borderline cases.
• Quadratic oscillations. The asymptotic expansion (1.17) highlights quadratic

oscillations in the initial data, which are exactly ε-oscillatory, unless tεj/(hε
j)

2 is
bounded. That case corresponds to initial focusing for uε (see for instance (1.4)).
In [7], this phenomenon was excluded by the assumption

ε2‖uε
0‖2σ+2

L2σ+2 −→
ε→0

0 ,

because the only relevant concentrating scale was ε. In the present case, every
profile such that

√
ε  hε

j ≤ 1 satisfies the above property, and concentrates with
the scale hε

j

√
ε �= ε at time t = tεj . It also concentrates with the same scale at time

t = 0 if tεj/(hε
j)

2 is bounded. So it is a matter of choice to consider whether or
not quadratic oscillations are necessary to have a leading order nonlinear behavior,
according to the way one treats initial focusing.

• Properties of tεj . The localization of the cores in time is not as precise as in
[7], where we had lim sup tεj ∈ [0, T ]. We actually have the same condition from the
properties lim inf tεj/(hε

j)
2 �= −∞ and lim inf(T − tεj)/(hε

j)
2 �= −∞, provided that

the scale hε
j goes to zero as ε → 0. When hε

j is constant, we cannot say much about
tεj ; see (1.4).

The second application of Theorem 1.4 concerns finite time blow up, which may
occur for H1-solutions of (1.2) when λ = −1 (not when λ = 1, from the conservation
of energy). For solutions U in L2 and not necessarily in H1, the conservation of
mass shows that the only obstruction to global existence in L2 is the unboundness
of ‖U‖L2+4/n([0,T ]×Rn) (see e.g. [9]).

Corollary 1.8. Assume n = 1 or 2. Let U be an L2-solution to (1.2), and assume
that U blows up at time T > 0 (not before),∫ T

0

∫
Rn

|U(t, x)|2+ 4
n dxdt = +∞ .
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QUADRATIC OSCILLATIONS IN NLS II. THE L2-CRITICAL CASE 39

Let (tk)k∈N be an increasing sequence going to T as k → +∞. Then up to a
subsequence, there exist xk

j , yk
j ∈ R

n, ρk
j , hk

j > 0, tkj ≥ 0 and a family (Uj , Ũj)j∈N

bounded in L2 such that

(1.18)

U(tk, x) =
�∑

j=1

eix·yk
j

1
(ρk

j )n/2
Uj

(
x − xk

j

ρk
j

)

+
�∑

j=1

eix·yk
j e

−i
|x−xk

j |2

2(T−tk)tk
j

1
(ρ̃k

j )n/2
Ũj

(
x − xk

j

ρ̃k
j

)
+ Wk

� (x) ,

with

lim sup
k→+∞

∥∥∥ei t
2∆Wk

�

∥∥∥
L2+4/n(R×Rn)

−→
�→+∞

0 , ρ̃k
j =

tkj
√

T − tk

hk
j

,

and the additional properties, for every j ∈ N,

lim
k→+∞

T − tk
(ρk

j )2
≥ 1 ,(1.19)

the sequence (tkj )k∈N is bounded, and lim
k→+∞

tkj
(hk

j )2
= +∞ .(1.20)

Moreover the terms in the sum (1.18) are pairly orthogonal in the limit k → +∞,
each term being orthogonal to Wk

� .

Remark. For the profiles associated to Uj , (1.19) shows that the blow up rate is
bounded from below by (T − t)−1/2 in the L2 case. In the H1 case, this property
is well known (see [10] or [8]). For the profiles Ũj , it is less clear. Assume that Ũj

is smooth; then the Ḣ1 norm of the profiles associated to Ũj is of order∥∥∥∥∥∥∥∥
e
ix·ξk

j −i
|x−xk

j |2

2(T−tk)tk
j

(ρ̃k
j )n/2

Ũj

(
x − xk

j

ρ̃k
j

)∥∥∥∥∥∥∥∥
Ḣ1

∼ |ξk
j | +

1
hk

j

√
T − tk

+
(hk

j )2

tkj

1
hk

j

√
T − tk

.

The second term is due to quadratic oscillations, and dominates the last term,
obtained by differentiating Ũj , from (1.20). Since from (1.20) hk

j → 0 as k → +∞,
this suggests that the blow up rate for the profiles associated to Ũj is also bounded
from below by (T − t)−1/2 (and is large compared to this minimal rate).

Remark. Some blowing up solutions are known explicitly [32]. They are of the form

U(t, x) = e−i |x|2
2(T−t)+

i
T−t

1
(T − t)n/2

Q

(
x

T − t

)
,

where Q denotes the unique spherically symmetric solution of (see [28], [19])

−1
2
∆Q + Q = −λ|Q|4/nQ , Q > 0 in R

n .

It is proven in [20] that up to the invariants of (1.2), these are the only H1 blowing
up solutions with minimal mass ‖U‖L2 = ‖Q‖L2 . This yields

U(T − ε, x) = e−i |x|2
2ε + i

ε
1

εn/2
Q
(x

ε

)
,
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40 R. CARLES AND S. KERAANI

which is equivalent, up to the extraction of a subsequence, to

e−i |x|2
2ε +iθ 1

εn/2
Q
(x

ε

)
for some θ ∈ R. This term may look like a profile Ũj , because it contains a quadratic
phase, with tεj = 1. However, the quadratic oscillation is not relevant in the profile
decomposition, because the profile is already concentrated to:

e−i |x|2
2ε +iθ 1

εn/2
Q
(x

ε

)
= eiθ 1

εn/2
Q
(x

ε

)
+ o(1) in L2 ,

and small terms in L2 are linearizable from Strichartz estimates (see (2.3) below).
Note that it is only in the régime that we consider whether quadratic oscillations
become negligible (as time is sufficiently close to the critical time): they play a
decisive role in igniting the blow up phenomenon, at least in this case (the explicit
formula for these solutions seems to rely on very rigid properties; see [5, 26, 21]).
The quadratic oscillations gather some mass of u near one point, and start the
blow up phenomenon: these oscillations, which appear after a pseudo-conformal
transform (see e.g. [25, 14, 33, 20]), turn a nondispersive solution (a solitary wave)
into a self-focusing solution. A similar explicit formula is available in the semi-
classical limit for (1.1); see [6, p. 485]. In the WKB asymptotics, the phase dictates
the geometry of the propagation, and the solution solves an ordinary differential
equation along these rays at leading order (see [6]). When WKB methods cease to
be valid (close to the blow up time), the solution seems to be so concentrated that
giving a geometric interpretation is a delicate issue.

2. Preliminary estimates

First, note that the dependence upon ε in (1.6) can be “removed” by the change
of unknown function

(2.1) uε(t, x) =
1

εn/4
Uε

(
t,

x√
ε

)
.

One checks that uε solves (1.6) on Iε if and only if Uε solves (1.2) on Iε, and

(2.2) ‖uε(t)‖L2 = ‖Uε(t)‖L2 , ε‖uε(t)‖2+4/n

L2+4/n = ‖Uε(t)‖2+4/n

L2+4/n .

In this section, we recall the classical Strichartz estimates, then we establish a
refined Strichartz inequality in the space dimension one case.

2.1. Classical Strichartz estimates. The original Strichartz estimate [29, 15],
which holds in any space dimension, states the following: there exists a constant C
such that for any φ ∈ L2(Rn),

(2.3)
∥∥∥ei t

2∆φ
∥∥∥

L2+4/n(R×Rn)
≤ C‖φ‖L2(Rn) .

In the case of inhomogeneous Schrödinger equations, we have a similar estimate,
which was first proved in [34]. Denote

γ = 2 +
4
n

,
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and γ′ its Hölder-conjugate exponent. There exists a constant C such that for any
time interval I 	 0 and any ψ ∈ Lγ′

(I × R
n),

(2.4)

∥∥∥∥∫ t

0

ei t−s
2 ∆ψ(s)ds

∥∥∥∥
Lγ(I×Rn)

≤ C‖ψ‖Lγ′ (I×Rn) ,∥∥∥∥∫ t

0

ei t−s
2 ∆ψ(s)ds

∥∥∥∥
L∞(I;L2(Rn))

≤ C‖ψ‖Lγ′ (I×Rn) .

Other estimates are available, but here we shall use only the three recalled above.

2.2. A refined Strichartz estimate. Following [3], a refined Strichartz inequality
was proved in [24] for space dimension two:

(2.5)

∥∥∥ei t
2∆u0

∥∥∥
L4(Rt×R2

x)
� ‖û0‖χp

, for p >
12
7

, where

‖f‖χp
=

⎛⎝∑
j∈Z

∑
τ∈Cj

24j

(
1

22j

∫
τ

|f |p
)4/p

⎞⎠1/4

.

Here τ denotes a square with side length 2j , and Cj denotes a corresponding grid
of the plane. This estimate was used in [4, 22]. We prove its (simpler) analog in
space dimension one.

Proposition 2.1. Let p > 1. There exists Cp such that for any f ∈ L2(R),

∥∥∥ei t
2∂2

xf
∥∥∥

L6(Rt×Rx)
≤ Cp

⎛⎝ sup
τ>0
ξ0∈R

τ
1
2−

1
p

∥∥∥f̂∥∥∥
Lp([ξ0−τ,ξ0+τ ])

⎞⎠1/3

‖f‖2/3
L2(R) .

Proof. The proof follows very closely the argument used in [16] in the context of
KdV equation.

By using the explicit formula for the fundamental solution ei t
2 ∂2

x , we get∣∣∣ei t
2∂2

xf
∣∣∣2 =

∫∫
R2

eit(η2−ξ2)+ix(ξ−η)f̂(ξ)f̂(η)dξdη .

Introduce the change of variables u = η2 − ξ2 and v = η − ξ:∣∣∣ei t
2 ∂2

xf
∣∣∣2 =

∫∫
R2

eitu−ixv f̂(ξ)f̂(η)
dudv

|ξ − η|1/2
.

We use the usual trick ‖ei t
2 ∂2

xf‖6
L6(R2) = ‖|ei t

2∂2
xf |2‖3

L3(R2). From Hausdorff–Young’s
inequality and the inverse change of variable, we infer∥∥∥ei t

2∂2
xf
∥∥∥2

L6(R2)
�
(∫∫

R2

∣∣∣f̂(ξ)
∣∣∣3/2 ∣∣∣f̂(η)

∣∣∣3/2 dξdη

|ξ − η|1/2

)2/3

.

The end of the proof is analogous to that of [16, Theorem 3]. Cauchy–Schwarz
inequality yields

∥∥∥ei t
2∂2

xf
∥∥∥3

L6(R2)
�
∥∥∥f̂∥∥∥

L2(R)

(∫
R

∣∣∣∣I1/2

(∣∣∣f̂(ξ)
∣∣∣3/2
)∣∣∣∣2 ∣∣∣f̂(ξ)

∣∣∣ dξ

)1/2

,
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where I1/2 stands for the fractional integration 1
|x|1/2 ∗. By Fefferman–Phong’s

weighted inequality [11], we get(∫
R

∣∣∣∣I1/2

(∣∣∣f̂(ξ)
∣∣∣3/2
)∣∣∣∣2 ∣∣∣f̂(ξ)

∣∣∣dξ

)1/2

≤ Cp sup
τ>0
ξ0∈R

τ
1
2−

1
p

∥∥∥f̂∥∥∥
Lp([ξ0−τ,ξ0+τ ])

‖f̂‖L2(R),

which completes the proof of the proposition. �

3. Proof of Theorem 1.4: Linear profile decomposition

In this section, we prove Theorem 1.4 in the case n = 1. The case n = 2 was
established in [22]. For the benefit of the reader, we give a complete proof in the
one-dimensional case. We follow essentially the same lines as in [1, 22, 18, 12]. The
idea relies on an exhaustion algorithm inspired from [23], and first used for such
contexts as the present one in [13].

The beginning of the proof does not rely on the assumption n = 1. We thus
write it with a general n ≥ 1, and we point out the steps which are bound to the
case n = 1 (see Remark 3.5). We resume some notation used in the Introduction.

Notation. For a sequence Γε
j = (hε

j , t
ε
j , x

ε
j , ξ

ε
j ) in R+ \ {0}×R×R

n ×R
n, we denote

(3.1) Hε
j(φj)(t, x) = ei t

2∆

(
eix·ξε

j e−i
tε
j
2 ∆ 1

(hε
j)n/2

φj

(
x − xε

j

hε
j

))
.

For a sequence Γ̃ε
j = (hε

j , x
ε
j , ξ

ε
j ) in R+ \ {0} × R × R

n × R
n, we denote

(3.2) H̃ε
j(φj)(x) = Hε

j(φj)(0, x) = eix·ξε
j e−i

tε
j
2 ∆ 1

(hε
j)n/2

φj

(
x − xε

j

hε
j

)
.

The following identity is straightforward:

(3.3)
Hε

j(φj)(t, x) = eix·ξε
j−i t

2 (ξε
j )2 1

(hε
j)n/2

Vj

(
t − tεj
(hε

j)2
,x − xε

j − tξε
j

hε
j

)
,

where Vj(t) = ei t
2∆φj .

Remark 3.1. If two sequences Γε
j = (hε

j , t
ε
j , x

ε
j , ξ

ε
j ) and Γε

k = (hε
k, tεk, xε

k, ξε
k) are not

orthogonal, then, up to a subsequence, (H̃ε
j)

−1H̃ε
k → H̃ strongly as ε → 0, where H̃ is

isometric on L2(Rn).

Let U0 = (Uε
0)0<ε≤1 be a bounded sequence in L2(Rn). We denote by V(U0) the

set of weak limits of subsequences of the form (H̃ε)−1Uε
0 for some Γε = (hε, tε, xε, ξε)

in R+ \ {0} × R × R
n × R

n:

V(U0) =
{

w − lim
k→+∞

(H̃εk)−1Uεk
0 ; εk −→

k→+∞
0, Γεk ∈ R+ \ {0} × R × R

n × R
n

}
.

We denote
η(U0) = sup

{
‖φ‖L2(Rn) ; φ ∈ V(U0)

}
.

We obviously have1

η(U0) ≤ lim sup
ε→0

‖Uε
0‖L2(Rn) .

1We have the lim sup – not the lim inf – because we consider all possible subsequences εk.
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We prove that there exist a sequence (φj)j≥1 and a family of pairwise orthogonal
sequences Γε

j = (hε
j , t

ε
j , x

ε
j , ξ

ε
j ) such that, up to extracting a subsequence,

(3.4) Uε
0 =

�∑
j=1

H̃ε
j(φj) + Vε

� , with η(V�) −→
�→+∞

0 ,

and with the almost orthogonality identity,

(3.5) ‖Uε
0‖

2
L2(Rn) =

�∑
j=1

‖φj‖2
L2(Rn) + ‖Vε

�‖
2
L2(Rn) + o(1) as ε → 0 .

Indeed, if η(U0) = 0, then we can take φj ≡ 0 for all j. Otherwise, we choose
φ1 ∈ V(U0) such that

‖φ1‖L2(Rn) ≥
1
2
η(U0) > 0 .

By definition, there exists some sequence Γε
1 = (hε

1, t
ε
1, x

ε
1, ξ

ε
1) such that, up to

extracting a subsequence, we have(
H̃ε
1

)−1
Uε
0 ⇀ φ1 .

We set Vε
1 = Uε

0 − H̃ε
1(φ1), and we get

‖Uε
0‖

2
L2(Rn) = ‖φ1‖2

L2(Rn) + ‖Vε
1‖

2
L2(Rn) + o(1) as ε → 0 .

Now, we replace Uε
0 with Vε

1, and repeat the same process. If η(V1) > 0, we get
φ2, Γε

2 and V2. Moreover, Γε
1 and Γε

2 are orthogonal. Otherwise, up to extracting
a subsequence, we use Remark 3.1: (H̃ε

2)
−1H̃ε

1 → H̃ strongly as ε → 0, where H̃ is
isometric on L2(Rn). Since

(H̃ε
2)

−1Vε
1 =

(
(H̃ε

2)
−1H̃ε

1

)
(H̃ε

1)
−1Vε

1

and (H̃ε
1)

−1Vε
1 converges weakly to zero, this implies φ2 ≡ 0, hence η(V1) = 0, which

yields a contradiction.
Iterating this argument, a diagonal process yields a family of pairwise orthogonal

sequences Γε
j , and (φj)j≥1 satisfying (3.5). Since (Uε

0)0<ε≤1 is bounded in L2(Rn),
(3.5) yields

�∑
j=1

‖φj‖2
L2(Rn) ≤ lim sup

ε→0
‖Uε

0‖2
L2(Rn) .

Since the bound is independent of 	 ≥ 1, the series
∑

‖φj‖2
L2(Rn) is convergent, and

‖φj‖L2(Rn) → 0 as j → +∞ .

Furthermore, we have by construction

η(V�) ≤ ‖φ�−1‖L2(Rn) ,

which yields (3.4).

When the initial data satisfy (1.13), we alter the above algorithm. We impose
the lower bound on the scales and the boundedness of the cores in the Fourier side:

Ṽ(U0) =
{

w − lim
k→+∞

(H̃εk)−1Uεk
0 ; εk −→

k→+∞
0, Γεk ∈ [1, +∞[×R × R

n × R
n ,

with |ξε| � 1
}
.
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Note that the assumption hε ≥ 1 is nothing but boundedness away from zero. Up
to an ε-independent dilation of the profiles, we may always assume that a scale
bounded away from zero is bounded from below by 1.

Repeating the same algorithm as above, the property (1.13) remains at each
step. Note that the stronger assumption Uε

0 ∈ H1 is not stable: we may not have
φ1 ∈ H1. The same lines yield (3.4) and (3.5), with η replaced by η̃ with the natural
definition for η̃. In particular, Vε

� satisfies (1.13) for any 	 ≥ 1.
Theorem 1.4 stems from the following proposition:

Proposition 3.2. We assume n = 1. Let (Uε
0)0<ε≤1 be a family of L2(R) such that

‖Uε
0‖L2(R) ≤ M and

∥∥∥ei t
2∂2

xUε
0

∥∥∥
L6(Rt×Rx)

≥ m > 0 .

There exists Γε = (hε, tε, xε, ξε) such that, up to a subsequence,(
H̃ε
)−1

(Uε
0) ⇀ φ , where

∥∥∥ei t
2∂2

xφ
∥∥∥

L6(Rt×Rx)
≥ β(m) > 0 .

Moreover, if (Uε
0)0<ε≤1 satisfies (1.13), then one can choose hε ≥ 1 and |ξε| � 1.

Remark. The dependence of β upon M is not mentioned in the above statement.
Simply recall that from Strichartz inequality (2.3), m � M .

This proposition, together with (3.4), yields Theorem 1.4. Indeed, if Vε
� = rε

� (0, x)
was such that

lim sup
ε→0

∥∥∥ei t
2∂2

xVε
�

∥∥∥
L6(R2)

= lim sup
ε→0

‖rε
�‖L6(R2) �→ 0 as 	 → +∞ ,

then there would exist 	k → +∞ as k → +∞, and m > 0, such that for any k ∈ N,

lim sup
ε→0

∥∥∥ei t
2∂2

xVε
�k

∥∥∥
L6(R2)

≥ m .

From (3.5), we have

lim sup
ε→0

∥∥Vε
�k

∥∥
L2(R)

≤ lim sup
ε→0

‖Uε
0‖L2(R) =: M .

From Proposition 3.2, there exists ϕ� ∈ η(V�) with∥∥∥ei t
2∆ϕ�k

∥∥∥
L6(Rt×Rx)

≥ β(m) > 0 .

This implies η(V�k) ≥ β(m) > 0 for any k ∈ N, which contradicts (3.4).

Proof. The proof of Proposition 3.2 relies on several intermediary results. First, we
extract scales hε

j and cores on the Fourier side ξε
j and obtain a remainder arbitrarily

small thanks to the refined Strichartz estimate.

Lemma 3.3. Let (Uε
0)ε be a bounded sequence in L2(R). Then for every δ > 0, there

exist N = N(δ), a family (hε
j , θ

ε
j )1≤j≤N ∈ R+ \ {0} × R, and a family (gj)1≤j≤N

of bounded sequences in L2(R) such that, up to a subsequence,

(i) If j �= k,
hε

j

hε
k

+
hε

k

hε
j

+

∣∣∣∣∣θε
k − hε

k

hε
j

θε
j

∣∣∣∣∣−→ε→0
+∞.

(ii) For every 1 ≤ j ≤ N , there exists Fj bounded, compactly supported, such
that

(3.6)
√

hε
j

∣∣ĝε
j

(
hε

jξ + θε
j

)∣∣ ≤ Fj(ξ) .
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(iii) For every 	 ≥ 1 and x ∈ R,

(3.7) Uε
0 =

N∑
j=1

gε
j + qε , with

∥∥∥ei t
2∂2

xqε
∥∥∥

L6(R2)
≤ δ .

Moreover, we have the almost orthogonality identity:

(3.8) ‖Uε
0‖

2
L2 =

N∑
j=1

∥∥gε
j

∥∥2

L2 + ‖qε‖2
L2 + o(1) as ε → 0 .

Proof of Lemma 3.3. For γε = (hε, θε) ∈ R+ \ {0} × R, we define

Gε(f)(ξ) =
√

hεfε (hεξ + θε) .

If
∥∥∥ei t

2 ∂2
xUε

0

∥∥∥
L6(R2)

≤ δ, then nothing is to be proved. Otherwise, up to extracting

a subsequence,
∥∥∥ei t

2∂2
xUε

0

∥∥∥
L6(R2)

> δ. Apply Proposition 2.1 with p = 4/3; there

exists a family of intervals Iε = [θε − hε, θε + hε] such that∫
Iε

∣∣Ûε
0

∣∣4/3 ≥ Cδ4(hε)1/3 ,

where the constant C is uniform since (Uε
0)ε is bounded in L2. For any A > 0, we

have ∫
Iε∩{|Ûε

0|>A}

∣∣Ûε
0

∣∣4/3 ≤ A−2/3
∥∥Ûε

0

∥∥2

L2 .

Taking A = C ′/
(√

hεδ6
)

yields∫
Iε∩{|Ûε

0|≤A}

∣∣Ûε
0

∣∣4/3 � δ4(hε)1/3 .

From Hölder’s inequality, we infer∫
Iε∩{|Ûε

0|≤A}

∣∣Ûε
0

∣∣2 ≥ C ′′δ6 ,

for some uniform constant C ′′. Define vε
1 and γε

1 by

v̂ε
1 = Ûε

0�Iε∩{|Ûε
0|≤A}, γε

1 = (hε, θε) .

We have
|Gε

1(v̂
ε
1)(ξ)| ≤ C(δ)�[−1,1](ξ) ,

which is (3.6) with gε
j replaced by vε

1. Furthermore,

‖Uε
0‖

2
L2 = ‖Uε

0 − vε
1‖

2
L2 + ‖vε

1‖
2
L2 ,

since the supports are disjoint from the Fourier side.
We repeat the same argument with Uε

0 − vε
1 in place of Uε

0. At each step, the L2

norm decreases of at least (C ′′)1/2δ3, with the same constant C ′′ as for the first
step. After N(δ) steps, we obtain (vε

j)1≤j≤N(δ) and (γε
j )1≤j≤N(δ) satisfying (3.6),

such that

(3.9) Uε
0 =

N(δ)∑
j=1

vε
j + qε , with

∥∥∥ei t
2∂2

xqε
∥∥∥

L6(R2)
≤ δ ,
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and ‖Uε
0‖

2
L2 =

∑N(δ)
j=1

∥∥vε
j

∥∥2

L2 + ‖qε‖2
L2 + o(1) as ε → 0. However, the properties of

the first point of the lemma need not be satisfied. To obtain these properties, we
reorganize the decomposition. We say that γε

j and γε
k are orthogonal if

hε
j

hε
k

+
hε

k

hε
j

+

∣∣∣∣∣θε
k − hε

k

hε
j

θε
j

∣∣∣∣∣→ +∞ as ε → 0 .

Define

gε
1 =

N(δ)∑
j=1

vε
j −

∑
γε

j ⊥γε
1

vε
j .

If there exists 2 ≤ j0 ≤ N(δ) such that γε
j0

is orthogonal to γε
1 , then we define

gε
2 =

N(δ)∑
j=1

vε
j −

∑
γε

j ⊥γε
1

γε
j ⊥γε

j0

vε
j .

Repeating this argument a finite number of times, we rearrange the above sum.
The almost orthogonality relation (3.8) holds, since the supports of the functions
we consider are disjoint from the Fourier side. Finally, we must make sure that up
to an extraction, the first point of the lemma is satisfied, and that (3.6) holds.

The vε
j ’s kept in the definition of gε

1 are such that the γε
j are not orthogonal one

to another. It is sufficient to show that up to an extraction, Gε
1(v

ε
j) is bounded by

a compactly supported bounded function, for such j’s. By construction, Gε
j(v

ε
j) is

bounded by a compactly supported bounded function; we have

Gε
1(G

ε
j)

−1f(ξ) =

√
hε

1

hε
j

f

(
hε

1

hε
j

ξ + θε
1 −

hε
1

hε
j

θε
j

)
.

Since γε
j �⊥ γε

1 , up to an extraction, hε
1/hε

j → λ1j ∈ R+ \ {0}, and θε
1 − hε

1
hε

j
θε

j is
bounded as ε → 0, which yields the desired estimate for Gε

1(v
ε
j). Reasoning the

same way for the other terms proves (i) and (ii), and completes the proof of the
lemma. �

Next, we study sequences whose scale hε is fixed, equal to 1, and extract cores
in space-time.

Proposition 3.4. Let P = (P ε)0<ε≤1 be a sequence such that

(3.10)
∣∣∣P̂ ε(ξ)

∣∣∣ ≤ F (ξ) ,

where F ∈ L∞(R) is compactly supported. Then there exist a subsequence of P ε

(still denoted P ε), a family (xα, sα)α≥1 of sequences in R × R, and a sequence
(φα)α≥1 of L2 functions, such that:

(i) If α �= β, |xε
α − xε

β| + |sε
α − sε

β| → +∞ as ε → 0.
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(ii) For every A ≥ 1 and every x ∈ R, we have

P ε(x) =
A∑

α=1

e−isε
α∂2

xφα(x − xε
α) + P ε

A(x) , with

lim sup
ε→0

∥∥∥ei t
2∂2

xP ε
A

∥∥∥
L6(R2)

−→
A→∞

0 , and(3.11)

‖P ε‖2
L2 =

A∑
α=1

‖φα‖2
L2 + ‖P ε

A‖
2
L2 + o(1) as ε → 0 .(3.12)

Proof of Proposition 3.4. Let W(P) be the set of weak limits of subsequences of P
after translation in the phase space:

W(P) =
{

w − lim
k→+∞

eisεk ∂2
xP ε(· + xεk) ; εk −→

k→+∞
0, (xε, sε) ∈ R × R

}
.

We denote
µ(P) = sup {‖φ‖L2 ; φ ∈ W(P)} .

As in the beginning of this section, we have

µ(P) ≤ lim sup
ε→0

‖P ε‖L2 ,

and, up to extracting a subsequence, we can write

P ε(x) =
A∑

α=1

e−isε
α∂2

xφα(x − xε
α) + P ε

A(x) , µ(PA) −→
A→+∞

0 ,

with the almost orthogonality identity (3.12). To complete the proof of Proposi-
tion 3.4, we have to prove (3.11).

Notice that the orthogonality argument yields a result more precise than (3.12):
for every α ≥ 1 and every ψ ∈ F(C∞

0 (R)),∥∥∥ψ̂P̂ ε
∥∥∥2

L2
=

A∑
α=1

∥∥∥ψ̂φ̂α

∥∥∥2

L2
+
∥∥∥ψ̂P̂ ε

A

∥∥∥2

L2
+ o(1) as ε → 0 .

This fact, together with the assumption (3.10), proves that for every A ≥ 1, P̂ ε
A is

supported in supp F , and

(3.13) lim sup
ε→0

∥∥∥P̂ ε
A

∥∥∥
L∞

≤
∥∥∥F̂∥∥∥

L∞
.

Introduce a cut-off χ(t, x) = χ1(t)χ2(x), with χj ∈ S(R), such that

|χ̂1| + |χ̂2| ≤ 2, χ̂2 ≡ 1 on supp F, χ̂1

(
−ξ2

2

)
≡ 1 on supp χ̂2 .

Let ∗ denote the convolution in (t, x), and ψε
A(t, x) = ei t

2∂2
xP ε

A. The function χ∗ψε
A

solves the linear Schrödinger equation, so

F
(
χ ∗ ψε

A

∣∣
t=0

)
(ξ) = χ̂1

(
−ξ2

2

)
χ̂2(ξ)P̂ ε

A(ξ) = P̂ ε
A(ξ) ,

from the assumptions on χ1 and χ2. Therefore, χ ∗ ψε
A = ψε

A. We use a restriction
result in space dimension 1 (see e.g. [30]): for every 4 < q < 6 and every Ĝ ∈
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L∞(B(0, R)),

(3.14)

∥∥∥∥∥
∫

B(0,R)

ei t
2 |ξ|

2+ix·ξĜ(ξ)dξ

∥∥∥∥∥
Lq(R2)

≤ C(q, R)
∥∥∥Ĝ∥∥∥

L∞
.

Fix 4 < q < 6. Using (3.13) and (3.14), we have

lim sup
ε→0

‖χ ∗ ψε
A‖L6(R2) ≤ lim sup

ε→0
‖χ ∗ ψε

A‖
q/6
Lq(R2) lim sup

ε→0
‖χ ∗ ψε

A‖
1−q/6
L∞(R2)

≤ ‖F‖q/6
L∞(R) lim sup

ε→0
‖χ ∗ ψε

A‖
1−q/6
L∞(R2) .

On the other hand, the definition of W(PA) implies

lim sup
ε→0

‖χ ∗ ψε
A‖L∞(R2) ≤ sup

{∣∣∣∣∫∫ χ(−t,−x)ei t
2 ∂2

xφ dxdt

∣∣∣∣ ; φ ∈ W(PA)
}

.

Using Hölder’s inequality, then the Strichartz estimate, we obtain

lim sup
ε→0

‖χ ∗ ψε
A‖L∞(R2) ≤ ‖χ‖L6/5(R2) sup

{∥∥∥ei t
2 ∂2

xφ
∥∥∥

L6(R2)
; φ ∈ W(PA)

}
� ‖χ‖L6/5(R2) µ(PA) .

Therefore,

lim sup
ε→0

∥∥∥ei t
2 ∂2

xP ε
A

∥∥∥
L6(R2)

� µ(PA)1−
q
6 → 0 as A → +∞ ,

which completes the proof of Proposition 3.4. �

We can now finish the proof of Proposition 3.2. Back to the decomposition (3.7),
we set, for 1 ≤ j ≤ N ,

P ε
j (x) = e−ixθε

j /hε
j

√
hε

jg
ε
j

(
hε

jx
)
.

Since gε
j satisfies (3.6), the sequence (P ε

j )0<ε≤1 satisfies the assumptions of Proposi-
tion 3.4. Thus, for every 1 ≤ j ≤ N , there exists a family (φj,α)α≥1 of L2 functions,
and a family (yε

j,α, sε
j,α) ∈ R × R, such that

(3.15) P ε
j (x) =

A∑
α=1

e−isε
j,α∂2

xφj,α

(
x − yε

j,α

)
+ P ε

j,A(x) ,

together with (3.11) and (3.12). For each 1 ≤ j ≤ N , choose Aj such that for
A ≥ Aj ,

lim sup
ε→0

∥∥∥ei t
2 ∂2

xP ε
j,A

∥∥∥
L6(R2)

≤ δ

N
.

In terms of gε
j , (3.15) reads

gε
j =

A∑
α=1

H̃ε
j,α (φj,α) + wε

j,A , where

Γε
j,α =

(
hε

j , 2sε
j,α, hε

jy
ε
j,α,

θε
j

hε
j

)
, wε

j,A(x) =
e−ixξε

j√
hε

j

P ε
j,A

(
x

hε
j

)
.
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Using (3.7), it follows that

Uε
0 =

N∑
j=1

⎛⎝ Aj∑
α=1

H̃ε
j,α (φj,α) + wε

j,A

⎞⎠+ qε .

Relabeling the pairs (j, α), we get

Uε
0 =

K∑
j=1

H̃ε
j (φj) + Wε ,

where K =
∑N

j=1 Aj and Wε =
∑N

j=1 w
ε
j,Aj

+ qε. The remainder satisfies

lim sup
ε→0

∥∥∥ei t
2∂2

xWε
∥∥∥

L6(R2)
≤ 2δ .

It is clear that the Γε
j ’s are pairwise orthogonal. Combining (3.8) and (3.12), we

obtain

‖Uε
0‖

2
L2 =

N∑
j=1

⎛⎝ Aj∑
α=1

‖φj,α‖2
L2 +

∥∥wε
j,A

∥∥2

L2

⎞⎠+ ‖qε‖2
L2 + o(1) as ε → 0 .

Thus,

(3.16)
K∑

j=1

‖φj‖2
L2 ≤ lim sup

ε→0
‖Uε

0‖
2
L2 ≤ M2 .

Since
∥∥∥ei t

2 ∂2
xUε

0

∥∥∥
L6(R2)

≥ m > 0, choose δ small enough so that

1
2

∥∥∥ei t
2∂2

xUε
0

∥∥∥6

L6(R2)
≤

∥∥∥∥∥∥
K∑

j=1

Hε
j (φj)

∥∥∥∥∥∥
6

L6(R2)

≤
∥∥∥ei t

2∂2
xUε

0

∥∥∥6

L6(R2)
.

A classical argument of orthogonality (see e.g. [13]) yields, as ε → 0,∥∥∥∥∥∥
K∑

j=1

Hε
j (φj)

∥∥∥∥∥∥
6

L6(R2)

=
K∑

j=1

∥∥Hε
j (φj)

∥∥6

L6(R2)
+ o(1) =

K∑
j=1

∥∥∥ei t
2 ∂2

xφj

∥∥∥6

L6(R2)
+ o(1) .

Let j0 be such that∥∥∥ei t
2 ∂2

xφj0

∥∥∥
L6(R2)

= max
1≤j≤K

∥∥∥ei t
2∂2

xφj

∥∥∥
L6(R2)

.

Using the Strichartz estimate, we infer

m6

2
≤

K∑
j=1

∥∥∥ei t
2∂2

xφj

∥∥∥6

L6(R2)
≤
∥∥∥ei t

2∂2
xφj0

∥∥∥4

L6(R2)

K∑
j=1

∥∥∥ei t
2 ∂2

xφj

∥∥∥2

L6(R2)

�
∥∥∥ei t

2 ∂2
xφj0

∥∥∥4

L6(R2)

K∑
j=1

‖φj‖2
L2(R2) � M2

∥∥∥ei t
2∂2

xφj0

∥∥∥4

L6(R2)
,

where the last estimate follows from (3.16). Thus,∥∥∥ei t
2∂2

xφj0

∥∥∥
L6(R2)

≥ β ≈
m3/2

M
·
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The pairwise orthogonality of the Γε
j ’s yields(

H̃ε
j0

)−1
Uε
0 ⇀ φ = φj0 + W ,

where W is the weak limit of (H̃ε
j0

)−1Wε. Since∥∥∥ei t
2∂2

xW
∥∥∥

L6(R2)
≤ lim sup

ε→0

∥∥∥ei t
2 ∂2

xWε
∥∥∥

L6(R2)
≤ 2δ ,

we get ∥∥∥ei t
2∂2

xφ
∥∥∥

L6(R2)
≥ β

2
,

provided that δ > 0 is sufficiently small. This completes the proof of Proposition 3.2
in the general case.

When (Uε
0)ε satisfies (1.13), there exists R = R(δ) such that for every ε,∥∥Ûε

0�|ξ|≤R

∥∥
L2(R)

≥
∥∥Ûε

0

∥∥
L2(R)

− δ

2
.

In the proof of Lemma 3.3 (this is the step where the scales hε and cores in the
Fourier side appear), we can therefore consider Ûε

0�|ξ|≤R in place of Ûε
0. This implies

that for any j, −θε
j/hε

j (the center of the balls we extract) and 1/hε
j (the radius of

the balls we extract) are uniformly bounded. This means exactly that the sequence
(ξε

j )ε is bounded for every j, and that hε
j is bounded away from zero. As mentioned

already, up to an ε-independent dilation of the profiles φj , we deduce hε
j ≥ 1. �

Remark 3.5. Why do we suppose n = 1 or 2 only? Essentially to have a refined
Strichartz estimate, as in [24] in the case of space dimension two, and in Proposi-
tion 2.1 for the one-dimensional case. Note that the proof uses the fact that 2 + 4

n

is an even integer, to decompose the L2+ 4
n norm as a product. The restriction

estimate (3.14) holds in higher dimensions. It is proved in [2] that if the space
dimension is n ≥ 3, then such an estimate holds for some q < 2 + 4

n , which is what
we use in the above computations (it holds more generally for q > 2 + 4

n−1 ; see
[31]).

4. Proof of Theorem 1.6: Nonlinear profile decomposition

Roughly speaking, Theorem 1.6 is essentially a consequence of Theorem 1.4 and
of Strichartz inequalities, and is based on a perturbative analysis. This result has
no exact counterpart in [22]. Note that one of the key ingredients is Theorem 1.4,
and this is the only reason why we have to restrict the space dimension. Since the
approach is very similar to [1, 18, 12], we shall only sketch the proof (see [17] for
more details).

We prove the equivalence (i)⇔(ii); since the profiles Uj are given by Theorem 1.4
and Definition 1.5, and rε

� is given by Theorem 1.4, only (1.14) has to be proved.
It follows from the perturbative argument of the proof (i)⇔(ii).

(i)⇒(ii). Recall that Iε
j is defined by Iε

j := (hε
j)

−2
(
Iε − tεj

)
, and that Uε

j is given
by (1.15). We shall also denote Vε

j for the functions defined as in (1.15), with Uj

replaced by ei t
2∆φj , given by Theorem 1.4, that is, Vε

j = Hε
j(φj) (see (3.3)).
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The function ρε
� is defined by ρε

� = Uε −
∑�

j=1 U
ε
j − rε

� . Denote F (z) = λ|z|4/nz.
The (expected) remainder ρε

� solves

i∂tρ
ε
� +

1
2
∆ρε

� = fε
� , ρε

�

∣∣
t=0

=
�∑

j=1

(
Vε

j − Uε
j

) ∣∣
t=0

,

where

fε
� = F

(
ρε

� +
�∑

j=1

Uε
j + rε

�

)
−

�∑
j=1

F
(
Uε

j

)
.

We use the orthogonality of the Γε
j ’s and the assumption (i) to prove that (1.14)

holds, that is, lim sup
ε→0

(
‖ρε

�‖Lγ(Iε×Rn) + ‖ρε
�‖L∞(Iε;L2(Rn))

)
−→

�→+∞
0.

Once proved, this property implies (ii), since for some 	0 sufficiently large,

lim sup
ε→0

‖Uε‖Lγ(Iε×Rn) ≤
�0∑

j=1

lim sup
ε→0

‖Uj‖Lγ(Iε
j ×Rn) + 1 < +∞ ,

by assumption (i). For Jε = [aε, bε] ⊂ Iε, Strichartz inequalities yield

‖ρε
�‖Lγ(Jε×Rn) + ‖ρε

�‖L∞(Jε;L2(Rn)) � ‖ρε
�(a

ε)‖L2(Rn) + ‖fε
� ‖Lγ′ (Jε×Rn) .

From triangle and Hölder’s inequalities,

‖fε
� ‖Lγ′ (Jε×Rn) � ‖ρε

�‖
γ
Lγ +

∥∥∥∥∥
�∑

j=1

Uε
j + rε

�

∥∥∥∥∥
γ−1

Lγ

‖ρε
�‖Lγ(4.1)

+

∥∥∥∥∥
�∑

j=1

F (Uε
j) − F

(
�∑

j=1

Uε
j

)∥∥∥∥∥
Lγ′

+

∥∥∥∥∥F
(

�∑
j=1

Uε
j + rε

�

)
− F

(
�∑

j=1

Uε
j

)∥∥∥∥∥
Lγ′

.(4.2)

The terms in (4.2) are small by assumption (i), Hölder’s inequality and orthogo-
nality (see for instance [13], and [7] when γ is not an integer). The first term in
(4.1) is treated by a bootstrap argument. We have to take care of the second term
in (4.1). The next lemma is proved in [17]. It allows us to absorb this linear term,
thanks to a suitable partition of the interval Iε.

Lemma 4.1. For every δ > 0, there exists an ε–dependent finite partition of Iε,

Iε =
p(δ)⋃
k=1

Jε
k ,

such that for every 1 ≤ k ≤ p(δ) and every 	 ≥ 1,

lim sup
ε→0

∥∥∥∥∥
�∑

j=1

Uε
j

∥∥∥∥∥
Lγ(Jε

k×Rn)

≤ δ .

Sketch of the proof. By orthogonality, for every 	 ≥ 1,

lim sup
ε→0

∥∥∥∥∥
�∑

j=1

Uε
j

∥∥∥∥∥
γ

Lγ(Iε×Rn)

=
�∑

j=1

lim sup
ε→0

∥∥Uε
j

∥∥γ

Lγ(Iε×Rn)
.

On the other hand, the almost L2–orthogonality (1.12) and the conservation of
mass for (1.2) imply that for some 	(δ),

‖Uj‖L2(Rn) ≤ δ , ∀j ≥ 	(δ) .
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Using global existence results for small L2 data (see e.g. [8]), Uj is then defined
globally in time, and from the Strichartz estimate,

‖Uj‖Lγ(R×Rn) � ‖Uj‖L2(Rn) = ‖φj‖L2(Rn) .

Since γ > 2 for any n ≥ 1, we infer∑
j≥�(δ)

‖Uj‖γ
Lγ(R×Rn) < +∞ .

Using this and orthogonality, we infer

lim sup
ε→0

∥∥∥∥∥
�∑

j=1

Uε
j

∥∥∥∥∥
γ

Lγ(Iε×Rn)

≤
�(δ)∑
j=1

lim sup
ε→0

∥∥Uε
j

∥∥γ

Lγ(Iε×Rn)
+

δ

2
.

Thus, it suffices to construct a family of partial decompositions as in the statement
of the lemma, for every 1 ≤ j ≤ 	(δ) and such that

lim sup
ε→0

∥∥Uε
j

∥∥γ

Lγ(Jε
k×Rn)

≤ δ

2	(δ)
, ∀1 ≤ k ≤ p(δ) .

The final decomposition is obtained by intersecting all the partial ones. Consider
the case j = 1, and denote by I1 the maximal interval of existence of U1. One
checks that there exists a closed interval J1 such that

lim sup
ε→0

Iε
1 = J1 , ‖U1‖Lγ(J1×Rn) < +∞ .

We decompose J1 as J1 =
⋃p1(δ)

k=1 J1k so that

‖U1‖Lγ(J1k×Rn) <
δ

2	(δ)
, ∀1 ≤ k ≤ p1(δ) .

At this first step, the intervals Jε
1 are then obtained by scaling

Jε
k = Iε ∩

(
(hε

1)
2J1k + tε1

)
.

Repeating this argument on each Jε
k a finite number of times yields the lemma. �

Choosing δ > 0 sufficiently small, Lemma 4.1 allows us to prove that

lim sup
ε→0

(
‖ρε

�‖Lγ(Iε×Rn) + ‖ρε
�‖L∞(Iε;L2(Rn))

)
−→

�→+∞
0 ,

thanks to an absorption argument for the linear term (4.1), orthogonality in the
source term (4.2), and a bootstrap argument.

(ii)⇒(i). By assumption, there exists M > 0 such that

lim sup
ε→0

‖Uε‖Lγ(Iε×Rn) ≤
M

2
.

Assume that (i) does not hold. Reorganizing the family of profiles, we may assume
that for some 	0 ≥ 1, Uj is not global, that is, ‖Uj‖Lγ(R×Rn) = ∞ – if 1 ≤ j ≤ 	0,
and Uj is global for j > 	0. Indeed, if all the profiles are defined globally in time,
the problem is trivial. Thus, we only have to consider a finite family of profiles,
thanks to the small data global existence results mentioned above.
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Let Ij denote the maximal interval of existence of Uj , for 1 ≤ j ≤ 	0. The failure
of (i) means that there exists some intervals Ij(M) such that
−tεj
(hε

j)2
∈ Ij(M) ⊂ Ij ∩ Iε

j for ε  1 ; M ≤ ‖Uj‖Lγ(Ij(M)×Rn) < ∞ , 1 ≤ j ≤ 	0 .

Denote Iε
j (M) = (hε

j)
2Ij(M) + tεj . Then 0 ∈ Iε

j (M) ⊂ Iε for ε  1 and

(4.3) M ≤ lim sup
ε→0

∥∥Uε
j

∥∥
Lγ(Iε

j (M)×Rn)
< ∞ , 1 ≤ j ≤ 	0 .

By permutation, extraction of a subsequence and considering the backward and
inward problems separately, we may take

Iε
1(M) ⊂ Iε

2(M) ⊂ . . . ⊂ Iε
�0(M) .

We infer ∥∥Uε
j

∥∥
Lγ(Iε

1 (M)×Rn)
< ∞ , 1 ≤ j ≤ 	0 .

We have

(4.4) lim sup
ε→0

‖Uε‖Lγ(Iε
1 (M)×Rn) ≤ lim sup

ε→0
‖Uε‖Lγ(Iε×Rn) ≤

M

2
.

Since Uj is global for j > 	0, (i) is satisfied with Iε replaced by Iε
1(M), and the first

part of the proof yields (1.14). By orthogonality,

(4.5)

lim sup
ε→0

‖Uε‖γ
Lγ(Iε

1 (M)×Rn) = lim sup
�→∞

(
lim sup

ε→0

∥∥∥ �∑
j=1

Uε
j

∥∥∥γ

Lγ(Iε
1 (M)×Rn)

)

=
∞∑

j=1

lim sup
ε→0

∥∥Uε
j

∥∥γ

Lγ(Iε
1 (M)×Rn)

.

In particular, (4.4) and (4.5) yield

lim sup
ε→0

‖Uε
1‖Lγ(Iε

1 (M)×Rn) ≤
M

2
,

which contradicts (4.3). Thus (i) holds, and we saw in the first part of the proof
that it implies (1.14).

5. Proof of Theorem 1.2: Linearizability

Using the scaling (2.1), we restate Theorem 1.2. Define

Uε
0 := Uε

|t=0 and V ε := ei t
2∆Uε

0 .

Then uε and Uε are simultaneously linearizable on Iε in L2. Moreover, uε is lin-
earizable on Iε in H1

ε if and only if Uε is linearizable on Iε in H1√
ε
. We now have

to prove:

Theorem 5.1. Assume n = 1 or 2. Let Uε
0 be bounded in L2(Rn), and let Iε 	 0

be a time interval.
• Uε is linearizable on Iε in L2 if and only if

(5.1) lim sup
ε→0

‖Vε‖2+4/n

L2+4/n(Iε×Rn)
= 0 .

• Assume in addition that Uε
0 ∈ H1 and Uε

0 is bounded in H1√
ε
. Then Uε is

linearizable on Iε in H1√
ε

if and only if (5.1) holds.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 R. CARLES AND S. KERAANI

Proof. We first prove that condition (5.1) is sufficient for linearizability, thanks
to the classical Strichartz estimates. In particular, no restriction on the space
dimension is necessary at this stage. Denote Wε = Uε − Vε. It solves

(5.2) i∂tW
ε +

1
2
∆Wε = λ|Uε|4/nUε , Wε

|t=0 = 0 .

Since γ = 2 + 4/n, we have
1
γ′ =

1
γ

+
4/n

γ
.

Applying Strichartz estimate (2.4) to (5.2), along with Hölder’s inequality, we have,
for t ∈ Iε,

‖Wε‖Lγ([0,t]×Rn) � ‖|Uε|4/nUε‖Lγ′ ([0,t]×Rn) � ‖Uε‖1+ 4
n

Lγ([0,t]×Rn)

� ‖Vε‖1+ 4
n

Lγ(Iε×Rn) + ‖Wε‖1+ 4
n

Lγ([0,t]×Rn) .

Using assumption (5.1), we apply a bootstrap argument: for ε sufficiently small,

‖Wε‖Lγ(Iε×Rn) � ‖Vε‖1+ 4
n

Lγ(Iε×Rn) .

We infer that for ε sufficiently small,

(5.3) ‖Uε‖Lγ(Iε×Rn) � ‖Vε‖Lγ(Iε×Rn) + ‖Vε‖1+ 4
n

Lγ(Iε×Rn) ,

and (5.1) holds with Vε replaced by Uε. Applying the second part of Strichartz
estimate (2.4) yields

‖Wε‖L∞(Iε;L2(Rn)) � ‖|Uε|4/nUε‖Lγ′ (Iε×Rn) � ‖Uε‖1+ 4
n

Lγ(Iε×Rn) −→ε→0
0 ,

which is linearizability on Iε in L2.
Now assume that Uε

0 ∈ H1(Rn) is bounded in H1√
ε
. Differentiating (5.2) with

respect to the space variable, we have

‖
√

ε∇xW
ε‖Lγ(Iε×Rn) � ‖|Uε|4/n

√
ε∇xU

ε‖Lγ′ (Iε×Rn)

� ‖Uε‖4/n
Lγ(Iε×Rn)‖

√
ε∇xU

ε‖Lγ(Iε×Rn)

� ‖Uε‖4/n
Lγ(Iε×Rn)

(
‖
√

ε∇xV
ε‖Lγ(Iε×Rn) + ‖

√
ε∇xW

ε‖Lγ(Iε×Rn)

)
.

From (5.3) and (5.1), the term in
√

ε∇xWε on the right-hand side can be absorbed
by the left-hand side for ε sufficiently small. The uniform boundedness of

√
ε∇xVε

in Lγ(R×R
n), which stems from the boundedness of its data in L2 and Strichartz

estimate (2.3), shows that

‖
√

ε∇xW
ε‖Lγ(Iε×Rn) −→

ε→0
0 .

Applying inhomogeneous Strichartz estimate (2.4) yields

‖
√

ε∇xW
ε‖L∞(Iε;L2(Rn)) � ‖Uε‖4/n

Lγ(Iε×Rn)‖
√

ε∇xU
ε‖Lγ(Iε×Rn) −→

ε→0
0 ,

which proves that Uε is linearizable on Iε in H1√
ε
.

We complete the proof of Theorem 5.1 by showing that condition (5.1) is neces-
sary for linearizability in L2 (hence for linearizability in H1√

ε
). The proof relies on

the profile decompositions stated in Theorems 1.4 and 1.6. We consider two cases.
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First case. The family (Uε)0<ε≤1 is uniformly bounded in Lγ(Iε × R
n). In this

case, we can use Theorems 1.4 and 1.6 to deduce the following lemma.

Lemma 5.2. Assume n = 1 or 2. Let Uε
0 be bounded in L2(Rn), let Iε = [0, T ε[

be a (possibly unbounded) time interval, and assume that Uε is bounded in Lγ(Iε ×
R

n). Then up to the extraction of a subsequence, there exist an orthogonal family
(hε

j , t
ε
j , x

ε
j , ξ

ε
j )j∈N in R+\{0}×R×R

n×R
n and a family (φj)j∈N bounded in L2(Rn),

such that if Vj = ei t
2∆φj and Uj is given by Definition 1.5, we have

(5.4) lim sup
ε→0

‖Uε − Vε‖γ
Lγ(Iε×Rn) =

∞∑
j=1

lim sup
ε→0

‖Uj − Vj‖γ
Lγ(Iε

j ×Rn) ,

where Iε
j = (hε

j)
−2(Iε − tεj). In addition, for every fixed ε > 0, none of the terms

in the series is zero.

Proof of Lemma 5.2. From Theorems 1.4 and 1.6, there exist an orthogonal family
(hε

j , t
ε
j , x

ε
j , ξ

ε
j )j∈N in R+\{0}×R×R

n×R
n and a family (φj)j∈N bounded in L2(Rn),

such that if Vj = ei t
2∆φj and Uj is given by Definition 1.5 (up to the extraction of

a subsequence), we have, for any 	 ∈ N,

(5.5) Uε(t, x) − Vε(t, x) =
�∑

j=1

Hε
j

(
Uj

∣∣
t=0

− Vj

∣∣
t=0

)
(t, x) + ρε

�(t, x) ,

with lim supε→0 ‖ρε
�‖Lγ(Iε×Rn) → 0 as 	 → +∞. The scales hε

j , cores (tεj , x
ε
j , ξ

ε
j )

and initial profiles φj are the same for Uε and Vε, since they are given by the
profile decomposition for the initial data Uε

|t=0 = Vε
|t=0 = Uε

0. Since the family
(hε

j , t
ε
j , x

ε
j , ξ

ε
j )j∈N is orthogonal, we have, for any 	,

lim sup
ε→0

‖Uε − Vε‖γ
Lγ(Iε×Rn) =

�∑
j=1

lim sup
ε→0

‖Uj − Vj‖γ
Lγ(Iε

j ×Rn)

+ lim sup
ε→0

‖ρε
�‖

γ
Lγ(Iε×Rn).

Letting 	 → +∞ yields (5.4). Now assume that for a fixed ε > 0, one of the
terms in the series (5.4) is zero. This means that two solutions of the nonlinear
Schrödinger equation (1.2) and of the Schrödinger equation respectively coincide
on the nontrivial time interval Iε

j0
. Uniqueness for these two equations shows that

necessarily Uj0 = Vj0 ≡ 0, in which case the family (Uj , Vj)j can be relabeled to
avoid null terms. �

Definition 5.3. Let δε > 0 and aε ∈ R. We say that the interval ]aε, aε + δε[ is
asymptotically trivial in either of the following cases:

• aε → +∞ as ε → 0, or
• aε + δε → −∞ as ε → 0, or
• δε → 0 as ε → 0.

Lemma 5.4. Under the assumptions of Lemma 5.2, if ‖Uε − Vε‖Lγ(Iε×Rn) → 0 as
ε → 0, then ‖Vε‖Lγ(Iε×Rn) → 0 as ε → 0.
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Proof of Lemma 5.4. From Lemma 5.2, if ‖Uε − Vε‖Lγ(Iε×Rn) → 0, then every in-
terval Iε

j is asymptotically trivial. The profile decomposition for Vε yields

Vε(t, x) =
�∑

j=1

Hε
j (Vj) (t, x) + rε

� (t, x) ,

with lim supε→0 ‖rε
�‖Lγ(Iε×Rn) → 0 as 	 → +∞. Fix 	 ∈ N. We infer from the

orthogonality of (hε
j , t

ε
j , x

ε
j , ξ

ε
j )j∈N that

lim sup
ε→0

‖Vε‖γ
Lγ(Iε×Rn) =

�∑
j=1

lim sup
ε→0

‖Vj‖γ
Lγ(Iε

j ×Rn) + lim sup
ε→0

‖rε
�‖

γ
Lγ(Iε×Rn) .

Since all the intervals Iε
j are asymptotically trivial, every term in the sum is zero,

and we have
lim sup

ε→0
‖Vε‖Lγ(Iε×Rn) = lim sup

ε→0
‖rε

�‖Lγ(Iε×Rn) .

Since the left-hand side is independent of 	, we conclude that both terms are zero,
which completes the proof of Lemma 5.4. �

We can now complete the proof of Theorem 5.1 in the case where the family
(Uε)0<ε≤1 is uniformly bounded in Lγ(Iε × R

n). Assume that Uε is linearizable on
Iε in L2. From Lemma 5.4, it is enough to prove that

‖Uε − Vε‖Lγ(Iε×Rn) −→
ε→0

0 .

If it were not so, then from Lemma 5.2, there would exist j0 such that the interval
Iε
j0

is not asymptotically trivial. Up to the extraction of a subsequence, we can
assume that there exist a < b independent of ε and ε0 such that for 0 < ε ≤ ε0,

]a, b[⊂ Iε
j0 =

[
−

tεj0
(hε

j0
)2

,
T ε − tεj0
(hε

j0
)2

[
.

Let 	 > j0. Apply the operator (Hε
j0

)−1 to (5.5), and take the weak limit in
D′(]a, b[×R

n). By orthogonality,

(5.6) w−lim(Hε
j0)

−1(Uε − Vε) = (Uj0 − Vj0)1]a,b[(t) + w−lim(Hε
j0)

−1ρε
� .

Denote w� := w−lim(Hε
j0

)−1ρε
� . We have

‖w�‖Lγ(]a,b[×Rn) ≤ lim inf
ε→0

‖(Hε
j0)

−1ρε
�‖Lγ(]a,b[×Rn) ≤ lim inf

ε→0
‖ρε

�‖Lγ(Iε×Rn) −→
�→+∞

0 .

In (5.6), w� is the only term possibly depending on 	, therefore it is zero, and
w−lim(Hε

j0
)−1(Uε −Vε) �= 0. Since Hε

j0
is unitary on L2(Rn), we have, for 0 < ε ≤ ε0,∥∥(Hε

j0)
−1(Uε − Vε)

∥∥
L∞(]a,b[;L2(Rn))

≤ ‖Uε − Vε‖L∞(Iε;L2(Rn)) .

The right-hand side goes to zero as ε → 0 since Uε is assumed to be linearizable
on Iε in L2. Therefore the left hand side goes to zero. This is impossible, since
the weak limit is not zero. This contradiction shows that we can apply Lemma 5.4,
and complete the proof of Theorem 5.1 in the case where the family (Uε)0<ε≤1 is
uniformly bounded in Lγ(Iε × R

n).
Second case. There exists a subsequence of (Uε)0<ε≤1, still denoted Uε, such that

‖Uε‖Lγ(Iε×Rn) −→ε→0
+∞ .
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Then there exists τ ε ∈ Iε such that for every ε ∈]0, 1],

(5.7) ‖Uε‖Lγ([0,τε[×Rn) = 1 .

We can mimic the proof of the first case on the time interval [0, τ ε[. Lemma 5.4
shows that ‖Uε‖Lγ([0,τε[×Rn) → 0 as ε → 0, which contradicts (5.7). Therefore the
second case never occurs, and the proof of Theorem 5.1 is complete. �

Remark. The above proof of linearizability relies on the profile decompositions
(linear and nonlinear). Note that in [7], the proof of linearizability used only the
conservations of mass and energy, and Strichartz inequalities. Only after the lin-
earizability criterion had been proved was a (linear) profile decomposition used.

6. Obstructions to linearizability

6.1. Profile decomposition. In this subsection, we show how to deduce Corol-
lary 1.7 from Theorem 1.4.

Resuming the scaling (2.1), (1.16) is exactly the result given by the first part of
Theorem 1.4 on the time interval [0, T ] when considering the trace t = 0. We use
the first part of Theorem 1.4 because Theorem 1.2 reduces our problem to the study
of a solution to the linear Schrödinger equation. Note that even if we considered
a defocusing nonlinearity (λ = +1), with uε

0 bounded in H1
ε , we could not claim

that Uε is uniformly bounded in Lγ([0, T ] × R
n). This is because we do not know

that H1 solutions to (1.2) with λ = +1 decay like solutions to the free equations
as time goes to infinity (this is known in Σ); this issue is related to the asymptotic
completeness of wave operators in H1.

Working with the functions Uε and Vε, (1.16) writes

(6.1)
Uε
0(x) =

�∑
j=1

H̃ε
j(φj)(x) + Wε

�(x) ,

with lim sup
ε→0

∥∥∥ei t
2∆Wε

�

∥∥∥2+4/n

L2+4/n(R×Rn)
−→

�→+∞
0 .

From (3.3),∥∥∥ei t
2∆H̃ε

j(φj)
∥∥∥

Lγ([0,T ]×Rn)
= ‖Vj‖Lγ(Iε

j ×Rn) , with Iε
j =

[
−tεj
(hε

j)2
,T − tεj
(hε

j)2

]
.

If Iε
j is asymptotically trivial, then H̃ε

j(φj) can be incorporated into the remainder
term Wε

� , a case which can be excluded, up to relabeling our family of sequences.
This means that we can assume

−tεj
(hε

j)2
�→ +∞ ,

T − tεj
(hε

j)2
�→ −∞ , and

T

(hε
j)2

�→ 0 .

The first two points imply the properties on tεj stated in Corollary 1.7. We infer
from the last point that hε

j is bounded, by 1 up to the extraction of a subsequence
and an ε-independent dilation of the profiles φj .

Now suppose that uε
0 ∈ H1 and is bounded in H1

ε . Then for every j, ξε
j =

O(ε−1/2) as ε → 0. To see this, introduce the scaling

(6.2) ψε(t, x) = εn/2uε(εt, εx) .
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The function ψε solves (1.2), and the family (ψε(0, x))0<ε≤1 is bounded in H1. The
plane oscillations in the decomposition for ψε are, from (6.2), eix·ξε

j

√
ε. From the

second point of Theorem 1.4, we infer that ξε
j

√
ε = O(1). We also deduce the lower

bound hε
j ≥

√
ε.

Finally, (1.17) is obtained from (1.16) via the classical formula (see e.g. [27])

(6.3) ei t
2∆φ = ein π

4 ei x2
2t

1
|t|n/2

φ̂
(x

t

)
+ o(1) in L2(Rn), as t → −∞ .

6.2. Nonlinear superposition. We now assume λ = +1. The decomposition
(1.16) is necessary for the nonlinear term in (1.6) to have a leading order influence
on finite term intervals. The aim of this section is to provide an argument suggesting
that it is sufficient. As mentioned before, the gap between belief and proof is related
to the asymptotic completeness of wave operators in H1.

Suppose the initial data uε
0 has the form (1.16) for a fixed 	 and a linearizable

remainder: there exists T > 0 such that

(6.4)

uε
0(x) =

�∑
j=1

H̃ε
j (φj)(x) + wε(x) ,

where H̃ε
j (φj)(x) = eix·ξε

j /
√

εe−iε
tε
j
2 ∆

(
1

(hε
j

√
ε)n/2

φj

(
x − xε

j

hε
j

√
ε

))
and lim sup

ε→0
ε‖eiε t

2∆wε‖2+4/n

L2+4/n([0,T ]×Rn)
= 0 .

If we assume that φj ∈ Σ for every j ∈ {1, . . . , 	}, then we can take advantage of
the global well-posedness and the existence of a complete scattering theory for (1.2)
in Σ when λ = +1. Moreover, we may assume that tεj/(hε

j)
2 converges as ε → 0 for

every j. Let vε
j be the solution of the initial value problem

(6.5) iε∂tv
ε
j +

1
2
ε2∆vε

j = ε2|vε
j |4/nvε

j , vε
j|t=0 = H̃ε

j (φj) .

For every j, the following asymptotics holds in L∞(R; L2) as ε goes to zero:

vε
j (t, x) = ei

x·ξε
j√

ε
−i t

2 (ξε
j )2 1

(hε
j

√
ε)n/2

Vj

(
t − tεj
(hε

j)2
,x − xε

j − tξε
j

hε
j

√
ε

)
+ o(1),

where Vj is given by

i∂tVj +
1
2
∆Vj = |Vj |4/nVj , e−i t

2∆Vj(t)
∣∣
t=− lim tε

j/(hε
j)2

= φj .

Note that the above problem may be an initial value problem or a scattering problem
according to the value of lim tεj/(hε

j)
2. We see that vε

j has a genuine nonlinear
behavior on [0, T ] if lim tεj/(hε

j)
2 �= −∞ and lim(T − tεj)/(hε

j)
2 �= −∞ (compare

with Corollary 1.7).
Following the lines of [1] and [7], the next result can be shown, thanks to the

linearizability criterion given by Theorem 1.2. We leave out the proof here, for it
bears no new idea.

Theorem 6.1. Assume n = 1 or 2, λ = +1, and let uε
0 be given by (6.4) with

φj ∈ Σ and an orthogonal family (hε
j , t

ε
j , x

ε
j , ξ

ε
j )j∈N such that

√
ε ≤ hε

j ≤ 1. Then
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the following asymptotics hold in L∞([0, T ]; L2) as ε goes to zero,

uε =
�∑

j=1

vε
j + eiε t

2∆wε + o(1) ,

where each vε
j solves (6.5).

7. Blowing up solutions

Assume n = 1 or 2. Let U be an L2-solution to (1.2) which blows up2 at time
T > 0 (not before),

(7.1)
∫ T

0

∫
Rn

|U(t, x)|2+ 4
n dxdt = +∞ .

Let (tk)k∈N be a sequence going to T as k → +∞, with tk < T for every k. Denote
εk = T − tk, and define

uε(t, x) = U(εt + T − ε, x) ,

where the notation ε stands for εk. Then uε solves (1.6). The function U blows up
at time T if and only if uε is not linearizable on [0, 1] (in L2), from Theorem 1.2
and its proof. The function vε is given by

vε(t, x) = eiε t
2∆uε

0(x) = eiε t
2∆U(T − ε, x) .

Define

Vε(t, x) = vε

(
t − T

ε
+ 1, x

)
.

Since uε is not linearizable on [0, 1], we have lim inf
ε→0

ε‖vε‖γ
Lγ([0,1]×Rn) > 0. From

Corollary 1.7, up to the extraction of a subsequence,

uε
0(x) =

�∑
j=1

H̃ε
j (φj)(x) + wε

� (x) ,

where H̃ε
j (φj)(x) = eix·ξε

j /
√

εe−iε
tε
j
2 ∆

(
1

(hε
j

√
ε)n/2

φj

(
x − xε

j

hε
j

√
ε

))
and lim sup

ε→0
ε‖eiε t

2∆wε
�‖

2+4/n

L2+4/n(R×Rn)
−→

�→+∞
0 .

Recall that from (3.3),

H̃ε
j (φj)(x) = eix·ξε

j /
√

ε 1
(hε

j

√
ε)n/2

Vj

(
−tεj
(hε

j)2
,x − xε

j

hε
j

√
ε

)
, where Vj(t) = ei t

2∆φj .

Moreover, we can assume

−tεj
(hε

j)2
�→ +∞ ,

1 − tεj
(hε

j)2
�→ −∞ , and

1
(hε

j)2
�→ 0 ,

2The general consensus is that even in the L2 framework, this can occur only in the attractive
case λ < 0.
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for otherwise, the corresponding profile may be incorporated into the remainder
wε

� . This implies that for every j, (hε
j)j∈N and (tεj)j∈N are bounded sequences. Up

to extracting a subsequence, we distinguish two cases:

tεj
(hε

j)2
→ λ ∈ R as ε → 0 , or

tεj
(hε

j)2
→ +∞ .

In the first case, we set yk
j = ξε

j /
√

ε, xk
j = xε

j , ρk
j = hε

j

√
ε = hε

j

√
T − tk ≤

√
T − tk

and Uj = Vj(−λ). In the second case, we infer from (6.3) that in L2,

H̃ε
j (φj)(x) ∼

ε→0
ein π

4 +ix·ξε
j /

√
εe

−i
|x−xε

j |2

2εtε
j

(
hε

j

tεj
√

ε

)n/2

φ̂j

(
hε

j

tεj
√

ε
(x − xε

j)

)
.

We set yk
j = ξε

j /
√

ε, xk
j = xε

j , and Ũj = einπ/4φ̂j , and the proof of Corollary 1.8 is
complete, up to relabeling the family of sequences and possibly taking some Uj or
some Ũj equal to zero.

Remark. When only one profile is present, quadratic oscillations are not relevant
near the blow up time. Assume

uε
0(x) = H̃ε(φ)(x) + wε(x) ,

where H̃ε(φ)(x) = eix·ξε/
√

εe−iε tε

2 ∆

(
1

(hε
√

ε)n/2
φ

(
x − xε

hε
√

ε

))
and lim sup

ε→0
ε‖eiε t

2∆wε‖2+4/n

L2+4/n(R×Rn)
−→

�→+∞
0 .

Since there is blow up at time T ,

(7.2) lim inf
ε→0

ε‖vε‖γ
Lγ([0,1]×Rn) > 0 .

On the other hand, we also have

(7.3) lim inf
ε→0

‖Vε‖γ
Lγ([0,T−ε]×Rn) = lim inf

ε→0
ε‖vε‖γ

Lγ([1−T/ε,0]×Rn) > 0 .

If this limit was zero, then vε would be linearizable in L2 on [1 − T/ε, 0], and

lim inf
ε→0

ε‖uε‖γ
Lγ([1−T/ε,0]×Rn) = 0 = lim inf

ε→0
‖U‖γ

Lγ([0,T−ε]×Rn) ,

which contradicts (7.1). Recall

H̃ε(φ)(x) = eix·ξε/
√

ε 1
(hε

√
ε)n/2

V

(
−tε

(hε
j)2

,x − xε

hε
√

ε

)
, where V(t) = ei t

2∆φ .

From (7.2), we have −tε/(hε
j)

2 �→ +∞, and from (7.3), −tε/(hε
j)

2 �→ −∞. There-
fore, up to an extraction, −tε/(hε

j)
2 → λ ∈ R, and we are left with a profile only,

and no quadratic oscillation.
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