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Abstract 

In this paper, we investigate the implications for ro- 
bust sampled-data feedback design of minimum phase 
sampling zeros appearing in the transfer function of 
discrete-time plants. Such zeros may be obtained by 
zero-order hold (ZOH) sampling of continuous-time 
models having relative degree two or greater. In par- 
ticular, we address the robustness of sampled-data con- 
trol systems to multiplicative uncertainty in the model 
of the continuous-time plant. We argue that lightly 
damped controller poles, which may arise from at- 
tempting to cancel, or almost cancel, sampling zeros 
of the discretized plant are likely to introduce peaks 
into the fundamental complementary sensitivity func- 
tion near the Nyquist frequency. This in turn makes the 
satisfaction of necessary conditions for robust stability 
difficult for all but the most modest amounts of mod- 
eling uncertainty in the continuous-time plant. Some 
Hz- and H,-optimal discrete-time and sampled data 
designs may lead to (near-) cancellation, and we there- 
fore argue that their suitability is restricted. 

1 Introduction 

For single-input , single-output (SISO) systems of rela- 
tive degree p ,  the corresponding discrete-time transfer 
function arising from zero-order hold (ZOH) sampling 
has unity relative degree for all but a finite set of sam- 
pling periods. The additional p - 1 discrete-time ze- 
ros are called the sampling zeros [l], [2], and the can- 
cellation of minimum phase sampling zeros by lightly 
damped controller poles has for many years been closely 
linked to  problems with undesirable intersample ripple 
of either the regulated output or the control signal-for 
a partial list, see [3, p. 116, pp. 226-227, pp. 232-2341, 

972-9771. In recent years, however, renewed interest 
in analysis and synthesis methods which directly take 
into account intersample behaviour has lead to direct 
sampled-data control synthesis techniques in which no- 
tions of pole-zero cancellations and sampling zeros play 

[4, pp. 169-1701, [5, pp. 156-1613, [S, p. 6481, [7, pp. 

no role [81, PI, [SI, [lo]. 
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In this paper, we focus on the role of sampling ze- 
ros and their effect on the robust stability of sampled- 
data control systems, in which continuous-time plants 
are controlled by digital compensators in conjunction 
with appropriate sample and hold devices. While mod- 
ern sampled-data control synthesis techniques typically 
avoid consideration of sampling zeros, it is argued in 
this paper that these zeros can have a substantial ef- 
fect on the robust stability of sampled-data feedback 
systems, whether or not they arise explicitly during 
the synthesis procedure. 

The key tools used in this paper are the fundamen- 
tal sensitivity and complementary sensitivity functions 
(denoted Sf,, (s) and Tf,, (s)) discussed by Freudenberg 
et al. 1111 in the study of fundamental design limitations 
for sampled-data feedback control systems; see also 
[12]. While these functions are not transfer functions in 
the usual sense, they do play a key role in governing the 
tracking and disturbance rejection response of sampled- 
data systems, and are more readily calculated than the 
complete sampled-data frequency response [13]. Most 
importantly for this paper, however, is that a necessary 
condition for stability in the presence of multiplicative 
uncertainty in the continuous-time plant can be stated 
in terms of the fundamental complementary sensitivity 
function [ll, Theorem 11. 

In this paper, we show that digital controllers which 
rely on cancellation of minimum phase sampling ze- 
ros by lightly damped controller poles have poor ro- 
bustness to unmodeled high-frequency plant dynam- 
ics. This has direct implications for those formulations 
of discrete-time Hz- and H,-optimal control synthesis 
problems which lead to cancellation of all minimum- 
phase plant zeros-including those arising through 
sampling-unless otherwise constrained [14]. Further- 
more, the frequency-domain formulation removes the 
need for dealing explicitly with pole-zero cancellations, 
so that the robustness of modern sampled-data Hz- and 
H,-optimal controllers can also be addressed. For con- 
trollers designed by these direct methods which lead 
to near (as opposed to exact) cancellations between 
minimum phase plant zeros and controller poles, this 
suggests further research is required to  clarify the ro- 
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Figure 1: IJnity feedback sampled-data control system 

bustness margins of direct sampled-data controllers to 
unstructured uncertainty in the continuous-time plant 
model. The results of this paper might therefore be 
used in conjunction with known necessary and suffi- 
cient conditions for robust stability in the presence 
of linear, time-invariant perturbations, which require 
the solution of infinite dimensional structured singular 
value problems [15], [16]. 

The paper is organized as follows. In $2, we review 
the notion of the frequency responmse of sampled-data 
systems as presented in the work of Freudenberg, Mid- 
dleton and Braslavsky [ll], [17]. In $3 we use this 
frequency-domain based framework to investigate the 
implications of cancellation (or near-cancellation) of 
sampling zeros on the fundamental complementary sen- 
sitivity operator Tfun(s). In $4, we apply the results of 
53 to a recent example of a direct sampled-data Hz- 
optimal controller [MI. While this example is striking 
in its demonstration of how sampled-data design can 
substantial1.y improve intersample ripple in comparison 
with the associated classical controller, the correspond- 
ing fundamental complementary sensitivity function in- 
dicates very poor stability robustness to multiplicative 
plant uncertainty, a fact borne out by simulation ex- 
periments. 

2 Frequency response of sampled-data systems 

The steady-state response of a stable sampled-data 
feedback system to a sinusoidal input consists of a fun- 
damental component at  the frequency of the input, to- 
gether with all of its aliases, i.e. harmonics located at  
integer multiples of the sampling frequency [3], [19]. 

Consider the single-input, single-output sampled-data 
feedback system in Figure 1, where P(s )  and F ( s )  
are the transfer functions of the continuous-time plant 
and anti-aliasing filter, cd( z )  is the transfer function 
of the digital controller, r ( t ) ,  w( t ) ,  d ( t )  and n(t)  are 
the command, input disturbance, output disturbance 
and noise signals, u( t )  is the control input, and y ( t )  
is the system output. The sampling period is de- 
noted by T ,  the sampling frequency by ws = 27r/T, 
and the Nyquist frequency by WN = TIT. The fre- 
quency range RN = ( -WN, U N ]  is termed the baseband. 
A rational function of s (respectively, z )  is minimum 
phase if it has no zeros in the open right half-plane (re- 

A 

spectively, in the complement of the closed unit disk 
D = { z  : IzI 5 1)). Likewise, a rational function of s 
(respectively, z )  is stable if it has no poles in the closed 
right half-plane (respectively, in the complement of the 
open unit disk D = { z  : lzl < 1). 

We shall assume that the plant, prefilter and con- 
troller are each free of unstable hidden modes, that 
P(s )  is rational and proper, F ( s )  is rational, strictly 
proper, and has no closed right half-plane poles or ze- 
ros, and that c d ( Z )  is rational and proper. We re- 
strict attention to  a zero-order hold (ZOH) defined by 
u( t )  = uk,for ICT 5 t < ( I C  + 1)T, for a discrete input 
sequence { u k } g o .  The associated frequency response 
function of the ZOH is 

- A  

A 

The discrete transfer function of the series connection 
of hold, plant, prefilter and sampler is given by [20] 

and is referred to as the discretized plant. Opting for 
this somewhat unconventional notation has the distinct 
advantage of allowing the role of the anti-aliasing filter 
and the frequency response of the hold function to  re- 
main completely clear at  all times. Define the discrete 
sensitivity and complementary sensitivity functions 

(3) 

and 
T d  ( z )  ' (FPf f )d  (z)cd (z)sd ( z )  (4 )  

and the fundamental sensitivity and complementary 
sensitivity functions by 

Sfun(S) = A 1  1 - -P(s)H(s)Cd(esT)Sd(eST)F(s) (5) T 

and 

respectively. 

The functions Sf,, (s) and Tfun (s) are not transfer func- 
tions in the conventional sense, since they are not 
equal to the ratio of transformed input and outputs 
signals. Nevertheless, they do govern the baseband 
component of the steady-state response to  sinusoidal 
inputs, and therefore play a key role in the overall re- 
sponse. To discuss steady-state behaviour, we assume 
the absence of unstable pole-zero cancellations in the 
product (FPH)d(z)Cd(Z),  that all poles of & ( Z )  lie 
within D ,  and that the standard non-pathological sam- 
pling conditions are satisfied, from which exponential 
and Cz input-output stability follow [21]. 

326 



Denote the response of y(t) to r ( t )  by yr(t) ,  where 
r ( t )  = ejwt,t 2 0. Then, as t + co,yr( t )  + yrss(t), 

it follows that an appropriate choice of weight is [24, p. 
2671 : 

(11) 
Trnaxs where 

W(s) = 
TmaxS + 1 ' 03 

yrss(t) = Tfu,(jw)ejwt - Tk(jw)ej(w+kws)t, (7) 
b=--m 
k f 0  

Tuning rmax until condition (10) is just barely satisfied 
then gives a useful indication of the likely robustness 
(or otherwise) of a given control design. and 

A 
T k ( S )  = +P(s  + j k w s ) H ( s  +jkws)Cd(eST)Sd(eST)F(S) 

(8) 
for # 0 is the kth harmonic response function. Sim- 
ilar expressions can be derived for the steady-state re- 
ponses to sinusoidal disturbances d ( t )  and measure- 
ment noise n(t)  [Il l .  

Condition (10) indicates that controllers leading to 
large peaks in lTfun(jw)I are likely to have their nomi- 
nal stability destroyed by only modest high-frequency 
deviations of the continuous-time plant from the nom- 
inal model p(,). In the remainder of this section, we 
show how controllers which cancel, or almost cancel, 
minimum phase sampling zeros of the discretized plant 
near -1 necessarily lead to these undesirable peaks in 
lTfun(ju)I near the Nyquist frequency. 3 Implications of sampling zero cancellation 

We now consider the consequences for robust stabil- 
ity of cancellations between minimum phase sampling 
zeros appearing in the discretized plant, and poles of 
the digital controller Cd. While state-space frameworks 
sometimes obscure the role of pole-zero cancellations, 
it is nevertheless well known that cancellations of the 
form just described are a feature in several different 
classes of discrete-time Hz- and H,-optimal control 
problems [22], [23], [14]. Moreover, for direct sampled- 
data control synthesis in which no exact cancellations 
occur, the frequency-domain approach of this paper 
nonetheless provides quantitative and qualitative in- 
formation about the likely implications for robustness 
of near pole-zero cancellations. 

We assume that a controller c d  has been designed to 
ensure the nominal stability of the feedback system in 
Figure 1, and consider the effect of multiplicative un- 
certainty of the form 

P'(s )  = P(s)(l + W(s)A(s)),  (9) 

where A(s) is proper and stable, and W ( s )  is a stable 
weighting function used to represent the frequency de- 
pendence of the modeling error. It was shown in [ll] 
that a necessary condition for the closed loop system to 
remain stable for all A(s) satisfying lA(jw)l < 1 , V  w E 
R is that 

IW(jw)Tfu,(jw)I 5 1, v w  E R. (10) 

Since Tfun( jw)  is readily calculated from (6), and the 
weighting function W ( s )  reflects the designers uncer- 
tainty in the continuous-time plant model, condition 
(10) is very useful for assessing the robust stability 
properties of a given controller to unstructured plant 
uncertainty of various kinds. If the true plant has trans- 
fer function 

We start by writing 

Suppose that the discretized plant ( F P H ) d  ( z )  has a 
minimum phase zero, zo say, near -1, which is exactly 
cancelled by a pole in the controller Cd. Since the 
zero at zo no longer appears in the discrete comple- 
mentary sensitivity function, Td(Z0)  # 0, and Tfun(s) 
consequently has a pole at SO, where 

1 1 
so = -In Izo) + j -  argzo T T 

1 
T = [T + j -7r, [T small and negative, 

= [ T + j W N .  (13) 

Thus the pole in Tf,,(s) at SO ensures l T f u n ( j W N ) I  >> 1, 
with undesirable consequences for robust stability. 

Conversely, if the zero of the discretized plant 
( F P H ) d ( z )  is not cancelled by a controller pole, T d ( z )  
and ( F P H ) d ( z )  share a common zero at ZO, so no such 
pole appears in Tf,,(s) for s = ~ W N .  If, however, the 
controller c d  has a pole at z1, with z1 M zo (as is the 
situation with near pole-zero cancellations), T d ( z 0 )  = 0 
since the discretized plant zero at zo is not cancelled 
by a controller pole, Td(Z1)  = 1 and I ( F P H ) d ( z l ) l  M 0 
since z1 z zo. Thus depending on the proximity of zo 
and z1, Tfu,(jw) might still be unacceptably large over 
a range of frequencies. 

It is also possible to interpret (12) in terms of engi- 
neering rules of thumb applied to digital control design. 
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Specifically, since R U W ~  m YII -1.p m e  in w 
0.12 , , , , , , , , , 

(14) 
large peaks in Tfun( jw)  are avoided by ensuring 
that ITd ( e j U T )  I is sufficiently small at frequencies 
w where tk,e discrepancy between the frequency re- 
sponses of the continuous-time and discreted plants, 
F ( j w ) P ( j w ) H ( j w )  and (FPH)d(e jwT)  respectively, is 
large, i.e. near the Nyquist frequency. This is therefore 
consistent with the guideline of restricting the closed- 
loop bandwidth to no more than around one-fifth the 
Nyquist frequency. 

4 Example 

In this sect.ion we show how the fundamental com- 
plementary sensitivity function and the robust stabil- 
ity necessary condition (10) can be used to assess the 
robust stability of both a classical discrete-time H2- 
optimal controller and its sampled-data counterpart. 
The example we consider in this section originally ap- 
peared in [MI; see also [25] for details of the same design 
procedures ,applied to a different plant. 

The plant is open-loop unstable, with transfer function 

1 
P(s )  = 

s2 + 2s - 10' 

With a sample period T = 0.2 s, zero-order hold, and 
anti-aliasing filter F ( s )  = 1, the corresponding dis- 
cretized plant transfer function 

(16) 
O.O182(z + 0.8768) 

( F P H ) d ( z )  = (z - 0.4218)(z - 1.5893) 

clearly exhibits a sampling zero at z = -0.8768. The 
controller 

(17) 
282.95(~ - 0.3768) 

Cdt(z) = ( z  + 2.8880)(z + 0.8768) 

minimizes the H2 norm of the closed-loop transfer func- 
tion from an additive input disturbance w appearing on 
the control input to  plant output y. 

The second controller we consider is 

(18) 
179 .5 (~  - 0.3955) 

C"d(Z) = ( z  + 1.7765)(z + 0.9493)' 

which minimizes the average of responses to unit inten- 
sity impulses applied to w over the period [O,T), and 
thus captures the intersample behaviour of the closed- 
loop system more satisfactorily. This controller is de- 
signed by solving a purely discrete-time H2-optimal 
control problem for an appropriately defined auxil- 
iary discrete-time system obtained from the underly- 
ing continuous-time plant and the sampling period T 

'O:: 0 0 5  1 1 5  2 Tlms 2 5  [*I 3 3 5  4 4 5  5 

Figure 2: Response to unit step input disturbance applied 
at time t = 0 for three different controllers. 
Key: Cdt: - - -, Csd: -, cpp: 

[8], [26], and will be referred to as the sampled-data 
controller. 

Figure 2 shows the simulated response to a unit ampli- 
tude step in w applied at time t = 0 s of the controllers 
Cdt (- - -) and Csd (-). While the discrete-time H2- 
optimal controller has a steady-state gain somewhat 
smaller than the sampled-data controller, a substan- 
tial intersample ripple with period 0.4 s (corresponding 
to the Nyquist frequency W N  = 5 ~ /  rad/s) is present 
in the discrete-time design. Note that the intersam- 
ple ripple with the sampled-data controller is small, 
despite the presence of a very lightly damped pole at 
z = -0.9493 in Csd. 

Also shown as a dash-dotted line (-.-.-.) in Figure 2 is 
the step response corresponding to  the controller 

56.4101(2 - 0.4218) 
C,,(Z) = z + 0.5651 (19) 

obtained by cancelling the stable pole of the discretized 
plant (FPH)d  at  z = 0.4218, and placing two poles of 
the discrete-time transfer function from w to y at the 
origin. 

To assess the robust stability of the feedback systems 
corresponding to the three controllers Cdt, Csd and Cpp, 
we evaluate the fundamental complementary sensitiv- 
ity functions Tfun( jw)  up to  a maximum frequency of 
2wN rad/s. From Figure 3, both the discrete-time and 
sampled-data controllers lead to  peaks in lTfun(jw) I 
near w = W N  = 15.7 rad/s. In view of the neces- 
sary condition in (lo),  we should therefore expect poor 
robustness for both of these feedback systems to  un- 
certainty in the continuous-time plant model at fre- 
quencies around W N ,  where ITfun(jW)I is large. By way 
of comparison, the value of ITfun(jwN)I for the pole- 
placement controller C,, is some 20 dB lower than the 
peak for Csd, and almost 50 dB lower than the cor- 
responding value for Cdt, so that improved stability 
margins are expected compared with either controller. 
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Figure 3: Fundamental complementary sensitivity func- 
tion magnitude lTfun(jw)I for three different 
controllers. Key: Cdt: - - -, Csd: -, Cpp: - 

_ _  . . .  

Figure 4: (a) Continuous- and discrete-time plant 
frequency response. Key: continuous- 
time IF( jw)P( jw)H( jw) l  -, discrete-time 
TI(FPH)d(ejwT)I: - - - (b) Discrete com- 
plementary sensitivity function magnitude 
ITd(ejwTI for three different controllers. Key: 
Cdt: - - -, c s d :  -, c p p :  

Equation (14) pinpoints the reason for the large peaks 
in ITfun(jw)I for the Cdt and c s d  controllers. That is, 
while there is a substantial gap between the continuous- 
time and discrete-time plant frequency responses at 
w = WN due to the sampling zero in ( F P H ) d :  

the corresponding value of the discrete-time comple- 
mentary sensitivity function ITd ( e j w N T ) I  is compara- 
tively large for controllers Cdt and Csd, as shown in 
Figure 4. In contrast, ITd(ejwNT)I = -18 dB for the 
pole-placement controller, which does not cancel the 
plant sampling zero at z = -0.8768 (as does Cdt) nor 
almost cancel it (as does Csd). 

To give a concrete example of the poor robustness im- 
plied by the peak values of lTfun(jw)I, consider the ef- 
fect of a single neglected high-frequency pole in the 

Figure 5: Response to unit step input disturbance applied 
at time t = 0 for three different controllers, 
with plant including unmodeled pole at s = 
-100 rad/s. Key: Cdt: - - -, Csd: -, cpp: 

continuous-time plant: 

1 1 P'(s) = 0 I ~p I Trnax. 
(s2 + 2s - 10) (TPS + 1) ' 

(20) 
A little experimentation shows that the necessary con- 
dition (10) is just barely satisfied for Cdt when T~~~ = 
0.0003 s and W ( s )  is chosen as in (ll), indicating ex- 
treme sensitivity to  neglected high-frequency dynam- 
ics in the continuous-time plant. For the sampled-data 
controller Csd the necessary condition is satsified when 
T~~~ = 0.01 s, which is an improvement over Cdt, but 
still indicates poor sensitivity to neglected dynamics. 
For the pole-placement controller, the necessary condi- 
tion (10) is satisfied for weighting function (11) when 
Tmax = 0.1 s. 

Figure 5 shows the simulated response to a unit am- 
plitude step in w applied at time t = 0 s for each of 
the controllers Cdt, Csd and C,, applied to the plant 
(20), where rp = 0.01 s. For both controllers Cdt and 
Csd with large peak values of lTfun(jw) I at  the Nyquist 
frequency, the robustness is quite poor. Indeed, nei- 
ther feedback system maintains stability when the true 
plant includes a pole at s = -100 rad/s. In contrast, 
the responses of the controller C,, for plants P ( s )  and 
P'(s)  are virtually identical, and repeated simulation 
experiments with the controller C,, indicate that sta- 
bility is maintained even when the bandwidth of the 
neglected pole is somewhat less than 10 rad/s. 

5 Conclusions 

In this paper, we have investigated the role of sam- 
pling zeros on the robustness of sampled-data control 
systems to uncertainty in the underlying continuous- 
time plant model. It has been argued that very lightly 
damped controller poles (which may arise from at- 
tempting to cancel, or almost cancel, minimum phase 
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zeros of the discretized plant near -1) are likely to 
introduce peaks into the fundamental complementary 
sensitivity function near the Nyquist frequency. In 
turn, excessively large peaks in ITfun(ju)I make the sat- 
isfaction of the necessary condition (10) difficult for all 
but the most modest amounts of modeling uncertainty 
in the continuous-time plant. Expressed another way, 
controllers which cancel, or almost cancel, minimum- 
phase sampling zeros of the discretized plant close to 
-1 are likely to  violate design guidelines recommend- 
ing the closed-loop bandwidth be no more than around 
one-fifth the Nyquist frequency. 
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