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Abstract

Scene graphs represent semantic information

in images, which can help image captioning

system to produce more descriptive outputs

versus using only the image as context. Re-

cent captioning approaches rely on ad-hoc ap-

proaches to obtain graphs for images. How-

ever, those graphs introduce noise and it is un-

clear the effect of parser errors on captioning

accuracy. In this work, we investigate to what

extent scene graphs can help image captioning.

Our results show that a state-of-the-art scene

graph parser can boost performance almost as

much as the ground truth graphs, showing that

the bottleneck currently resides more on the

captioning models than on the performance of

the scene graph parser.

1 Introduction

The task of automatically recognizing and describ-

ing visual scenes in the real world, normally re-

ferred to as image captioning, is a long stand-

ing problem in computer vision and computational

linguistics. Previously proposed methods based on

deep neural networks have demonstrated convinc-

ing results in this task, (Xu et al., 2015; Lu et al.,

2018; Anderson et al., 2018; Lu et al., 2017; Fu

et al., 2017; Ren et al., 2017) yet they often pro-

duce dry and simplistic captions, which lack de-

scriptive depth and omit key relations between ob-

jects in the scene. Incorporating complex visual

relations knowledge between objects in the form

of scene graphs has the potential to improve cap-

tioning systems beyond current limitations.

Scene graphs, such as the ones present in the

Visual Genome dataset (Krishna et al., 2017), can

be used to incorporate external knowledge into

images. Because of the structured abstraction

and greater semantic representation capacity than

purely image features, they have the potential to

improve image captioning, as well as other down-

stream tasks that rely on visual components. This

has led to the development of many parsing algo-

rithms for scene graphs (Li et al., 2018, 2017; Xu

et al., 2017; Dai et al., 2017; Yu et al., 2017). Si-

multaneously, recent work also aimed at incorpo-

rating scene graphs into captioning systems, with

promising results (Yao et al., 2018; Xu et al.,

2019). However, these previous work still rely on

ad-hoc scene graph parsers, raising the question

of how captioning systems behave under potential

parsing errors.

In this work, we aim at answering the follow-

ing question: “to what degree scene graphs con-

tribute to the performance of image captioning

systems?”. In order to answer this question we

provide two contributions: 1) we investigate the

performance of incorporating scene graphs gener-

ated by a state-of-the-art scene graph parser (Li

et al., 2018) into a well-established image cap-

tioning framework (Anderson et al., 2018); and 2)

we provide an upper bound on the performance

by comparative experiments with ground truth

graphs. Our results show that scene graphs can

be used to boost performance of image captioning,

and scene graphs generated by state-of-art scene

graph parser, though still limited in the number of

objects and relations categories, is not far below

the ground-truth graphs, in terms of standard im-

age captioning metrics.

2 Methods

Our architecture, inspired by Anderson et al.

(2018) and shown in Figure 1, assumes an off-

the-shelf scene graph parser. To improve perfor-

mance, we also incorporate information from the

original image through a set of region features ob-

tained through an object detection model. Note we

experiment with each set of features in isolation in
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Figure 1: Overview of our architecture for image captioning.

Section 3.1. Given those inputs, our model con-

sists a scene graph encoder, an LSTM-based at-

tention module and another LSTM as the decoder.

2.1 Scene Graph Encoder

The scene graph is represented as a set of node

embeddings which are then updated into contex-

tual hidden vectors using a Graph Convolutional

Network (Kipf and Welling, 2017, GCN). In par-

ticular, we employ the GCN version proposed by

Marcheggiani and Titov (2017), who incorporate

directions and edge labels. We treat each relation

and object in the scene graph as nodes, which are

then connected with five different types of edges.1

Since we assume scene graphs are obtained by a

parser, they may contain noise in the form of faulty

or nugatory connections. To mitigate the influence

of parsing errors, we allow edge-wise gating so the

network learns to prune those connections. We re-

fer to Marcheggiani and Titov (2017) for details of

their GCN architecture.

2.2 Attention LSTM

The Attention LSTM keeps track of contextual in-

formation from the inputs and incorporates infor-

mation from the decoder. At each time step t, the

Attention LSTM takes in contextual information

by concatenating the previous hidden state of the

Decoder LSTM, the mean-pooled region-level im-

age features, the mean-pooled scene graph node

features from the GCN and the previous gener-

ated word representation: x1
t = [h2

t−1
,v, f ,Weut]

where We is the word embedding matrix for vo-

cabulary Σ and ut is the one-hot encoding of the

word at time step t. Given the hidden state of the

1We use the following types: subj indicates the edge be-
tween a subject and predicate, obj denotes the edge between
a predicate and an object, subj’ and obj’, their corresponding
reverse edges, and lastly, self, which denotes a self loop.

Attention LSTM h1t , we generate cascaded atten-

tion features, first over scene graph features, and

then we concatenate the attention weighted scene

graph features with the hidden state of the Atten-

tion LSTM to attend over region-level image fea-

tures. Here, we only show the second attention

step over region-level image features as they are

identical procedures except for the input:

bi,t = w
T
b ReLU(Wfbvi +Whb[h

1

t , f̂t])

βt = softmax(bt); v̂t =

Nv∑

i=1

βi,tvi

where w
T
b ∈ R

H ,Wfb ∈ R
H×Df ,Whb ∈ R

H×H

are learnable weights. v̂t and f̂t are the attention

weighted image features and scene graph features

respectively.

2.3 Decoder LSTM

The inputs to the Decoder LSTM consist of the

previous hidden state from the Attention LSTM

layer, attention weighted scene graph node fea-

tures, and attention weighted image features. x2t =
[h1

t , f̂t, v̂t] Using the notation y1:T to refer to

a sequence of words (y1, ..., yT ) at each time

step t, the conditional distribution over possi-

ble output words is given by: p(yt|y1:t−1) =
softmax(Wph

2
t + bp) where Wp ∈ R

|Σ|×H and

bp ∈ R
|Σ| are learned weights and biases.

2.4 Training and Inference

Given a target ground truth sequence y∗
1:T and a

captioning model with parameters θ, we minimize

the standard cross entropy loss. At inference time,

we use beam search with a beam size of 5 and ap-

ply length normalization (Wu et al., 2016).
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3 Experiments

Datasets MS-COCO, (Lin et al., 2014) is the

most popular benchmark for image captioning,

which contains 82,783 training images and 40,504

validation images, with five human-annotated de-

scriptions per image. As the annotations of the

official testing set are not publicly available, we

follow the widely used Kaparthy split (Karpa-

thy and Fei-Fei, 2017), and take 113,287 images

for training, 5K for validation, and 5K for test-

ing. We convert all the descriptions in training

set to lower case and discard rare words which oc-

cur less than five times, resulting in a vocabulary

with 10,201 unique words. For the oracle experi-

ments, we take a subset of MS-COCO that inter-

sects with Visual Genome (Krishna et al., 2017) to

obtain the ground truth scene graphs. The result-

ing dataset (henceforth, MS-COCO-GT) contains

33,569 training, 2,108s validation, and 2,116 test

images respectively.

Preprocessing The scene graphs are obtained

by a state-of-the-art parser: a pre-trained

Factorizable-Net trained on MSDN split (Li et al.,

2017), which is a cleaner version of the Visual

Genome2 that consists of 150 object categories

and 50 relationship categories. Notice that the

number of object categories and relationships are

much smaller than the actual number of objects

and relationships in the Visual Genome dataset.

All the predicted objects are associated with a

set of bound box coordinates. The region-level

image features3 are obtained from Faster-RCNN

(Ren et al., 2017), which is also trained on Visual

Genome, using 1,600 object classes and 400 at-

tributes classes.

Implementation Our models are trained with

AdamMax optimizer (Kingma and Ba, 2015). We

set the initial learning rate as 0.001 with a mini-

batch size as 256. We set the maximum number of

epochs to be 100 with early stopping mechanism.4

During inference, we set the beam width to 5.

Each word in the sentence is represented as a one-

hot vector, and each word embedding is a 1,024-

2The MSDN split might contain training instances that
overlap with the Karpathy split

3These regions are different to those from the scene graph.
To help the model learn to match regions, the inputs to atten-
tion include bounding box coordinates.

4We stop training if the CIDEr score does not improve for
10 epochs, and we reduce the learning by 20 percent if the
CIDEr score does not improve for 5 epochs.

B M R C S

No edge-wise gating

I 34.1 26.5 55.5 108.0 19.9

G 22.8 20.6 46.7 66.3 13.5

I+G 34.2 26.5 55.7 108.2 20.1

With edge-wise gating

G 22.9 21.1 47.5 70.7 14.0

I+G 34.5 26.8 55.9 108.6 20.3

Table 1: Results on the full MS-COCO dataset. “I”,

“G” and “I+G” correspond to models using image fea-

tures only, scene graphs only and both, respectively.

“B”, “M”, “R”, “C” and “S” correspond to BLEU, ME-

TEOR, ROUGE, CIDEr and SPICE (higher is better).

dimensional vector. For each image, we have

K = 36 region features with bounding box coor-

dinates from Faster-RCNN. Each region-level im-

age feature is represented as a 2,048-dimensional

vector, and we concatenate the bounding box coor-

dinates to each of the region-level image features.

The dimension of the hidden layer in each LSTM

and GCN layer is set to 1,024. We use two GCN

layers in all our experiments.

Evaluation We employ standard automatic eval-

uation metrics including BLEU (Papineni et al.,

2002), METEOR (Lavie and Agarwal, 2007),

ROUGE (Lin, 2004), CIDEr (Vedantam et al.,

2015) and SPICE (Anderson et al., 2016), and we

use the coco-caption tool5 to obtain the scores.

3.1 Quantitative Results and Analysis

Table 1 shows the performances of our mod-

els against baseline models whose architecture is

based on Bottom-up Top-down Attention model

(Anderson et al., 2018). Overall, our proposed

model incorporating scene graph features achieves

better results across all evaluation metrics, com-

pared to image features only or graph features

only. The results show that our model can learn to

exploit the relational information in scene graphs

and effectively integrate those with image fea-

tures. Moreover, the results also demonstrate the

effectiveness of edge-wise gating in pruning noisy

scene graph features.

We also conduct experiments comparing

Factorizable-Net generated scene graph with

ground-truth scene graph, as shown in Table 2. As

expected, the results show that the performance is

5https://github.com/tylin/coco-caption

https://github.com/tylin/coco-caption
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GT: a cop riding a motorcycle next to a white van
Image: a police officer riding a motorcycle on a city street

Graph: a man riding on the back of a motorcycle down a street
I + G: a man riding a motorcycle down a city street in front of a white bus

GT: the baby is playing with the phone in the park
Image: a little girl is holding a cell phone

Graph: a woman sitting on a bench with a cell phone
I + G: a little girl is holding a cell phone in a field of grass in a park

Figure 2: Caption generation results on COCO dataset. All results are generated by models trained on the full ver-

sion of Karpathy split, and all graph features are processed by GCN with edge-wise gating. 1) Ground Truth(GT)

2) Image features only(Image) 3) Graph features only(Graph) 4) Ours: Image features plus graph features (I + G)

B M R C S

I 32.0 25.6 54.3 102.2 19.0

G (pred) 17.4 16.5 41.3 49.5 10.6

G (truth) 18.4 17.9 42.5 50.8 11.2

I+G (pred) 32.2 25.8 54.4 103.4 19.1

I+G (truth) 32.5 26.1 54.8 105.2 19.5

Table 2: Results on the MS-COCO-GT dataset.

“G (pred)” refers to the parsed scene graphs from

Factorizable-Net while “G (truth)” corresponds to the

ground truth graphs obtained from Visual Genome.

better with ground-truth scene graph. Notably the

SPICE score, which measures the semantic cor-

relation between generated captions and ground

truth captions, improved by 2.1%, since there

are considerably more types of objects, relations

and attributes present in the ground-truth scene

graphs. Overall, the results show the potential

of incorporating automatically generated scene

graph features for the captioning system, and we

argue with better scene graph parser trained on

more objects, relations and attributes categories,

the captioning system should provide additional

improvements.

Compared to a recent image captioning paper6

(Li and Jiang, 2019) using scene-graph features,

our results are superior, demonstrating the effec-

tiveness of our model. Moreover, compared to

a state-of-art image captioning system (Yu et al.,

2019),7 our scores are inferior, as we do not ap-

ply scheduled sampling, reinforcement learning,

6The Hierarchical Attention Model incorporating scene-
graph features reports scores: Bleu4 33.8, METEOR 26.2,
ROUGE 54.9, CIDEr 110.3, SPICE 19.8

7This transformer-based captioning system reports scores:
Bleu4 40.4, METEOR 29.4, ROUGE 59.6, CIDEr 130.0.

transformer cell or ensemble predictions, which

have all been proven to improve the scores sig-

nificantly. However, our method of incorporating

scene-graph features is orthogonal to the state-of-

art methods.

3.2 Qualitative Results and Analysis

Figure 2 shows some generated captions by differ-

ent approaches trained on the full Karpathy split

of MS-COCO dataset. We can see that all ap-

proaches can produce sensible captions describing

the image content. However, our approach of in-

corporating scene graph features and image fea-

tures can generate more descriptive captions that

more closely narrate the underlying relations in the

image. In the first example, our model correctly

predicts that the motercycle is in front of the white

van while the image-only model misses this rela-

tional detail. On the other hand, purely graph fea-

tures sometimes introduce noise. As shown in the

second example, the graph-only model mistakes

the little girl in a park as a woman on a bench,

whereas the image features in our model helps dis-

ambiguate faulty graph features.

4 Conclusion

We have presented a novel image captioning

framework that incorporates scene graph features

extracted from state-of-art scene graph parser

Factorizable-Net. Particularly, we investigate

the problem of integrating relation-aware scene

graph features encoded by Graph Convolution

with region-level image features to boost image

captioning performance. Extensive experiments

conducted on MSCOCO image captioning dataset

has shown the effectiveness of our method. In the

future, we want to experiment with building an
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end-to-end multi-task framework that jointly pre-

dicts visual relations and captions.
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