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Abstract 

Infectious disease modelling is an interdisciplinary ac-

tivity that has become more prevalent over the last dec-

ade as a valuable and practical tool for public health 

experts. Soft computing, with its suite of techniques and 

strategies, which effectively handles imprecise, approx-

imate, and vague scenarios, can play an important role 

in expanding the use of these models. We present a re-

view of soft computing techniques that have been used 

in infectious disease modelling as well as a prescription 

of future challenges and issues this discipline must ad-

dress to be fully accepted by the public health commu-

nity.  
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ting; epidemiology; fuzzy sets; dynamical systems; 

agent-based models; public health 

1. Introduction  

From the Black Death of 1348–1350 [1] and the Span-

ish flu of 1918–1920 [2], to the recent SARS outbreak 

of 2003 [3] and the H1N1 influenza pandemic of 2009 

[4], infectious diseases have caused significant morbidi-

ty, mortality, and socio-economic upheaval. Advanced 

modelling technologies, which incorporate the most 

current knowledge of virology, immunology, epidemi-

ology, and vaccines, have recently been developed to 

identify effective mitigation strategies, and are being 

increasingly used by public health professionals in the 

study of both epidemiology and pathogenesis. Tracing 

its historical roots from the pioneering work of Daniel 

Bernoulli on smallpox [5] to the classic compartmental 

approach developed by Kermack and McKendrick [6], 

infectious disease modelling has evolved to deal with 

data that are more heterogeneous, less coarse (based at 

a community, neighbourhood, or individual level), and 

more complex (joint spatial, temporal and behavioral 

interactions).  

Given the imprecision and vagueness of some of the 

parameters and epidemiological data used in infectious 

disease modelling, soft computing techniques and strat-

egies have been exploited to address many of these is-

sues [7][8][9][10]. These run the gamut of fuzzy differ-

ential equations to describe nonlinear dynamical sys-

tems, fuzzy versions of health risk estimators, multi-

objective optimization methods using evolutionary 

computation to tune system outputs, fuzzy numbers re-

placing real-valued scalars for disease model input pa-

rameters, and an assortment of hybridized combina-

tions. 

We have two aims for this paper: present an over-

view of some soft computing approaches that have been 

used in infectious disease modelling; and, offer a pre-

scription of the requirements for future investigations to 

advance, consolidate, and expand the role of soft com-

puting to ensure that these techniques are fully accepted 

and embraced within the public health community. Sec-

tion II presents two conventional approaches to infec-

tious disease modelling: compartmental and agent-

based. Section III provides a review of some soft com-

puting approaches and extensions to classical model-

ling. Section IV offers a prescription for future soft 

computing modelling activities followed by summary 

remarks in Section V. 

2. Infectious disease modelling 

Over the past decade, infectious disease modelling, 

simplifying abstractions that use mathematical or com-

putational language and concepts to describe the trans-

mission of an infectious disease, has played a more 

prevalent role in the decision-making processes of pub-

lic health experts.  Modelling has been used to improve 

healthcare outcomes through the evaluation of mitiga-

tion strategies, the identification of key factors that de-

termine public health policy requirements, informing 

and optimizing policy decisions, and the more effective 

application of control measures. These improvements 

have been achieved through the provision of quantita-

tive predictions, making the underlying assumptions 

clear and explicit, and increased understanding of dis-

ease mechanisms. 

 

2.1. Compartmental models  

In this section, we present an overview of compart-

mental models, which model diseases that develop sud-

denly and then disappear just as suddenly without in-

fecting the entire population, developed in 1927 by 

Kermack, a public health physician, and McKendrick, a 

biochemist. Thorough discussions of compartmental 

models and their extensions may be found in 

[11][12][13][14][15]. This type of model assumes that 

the populations are homogeneous and fall into one of 

several “compartments” (classes), for example: “sus-

ceptibles” (S), individuals susceptible to the disease but 

are not infected; “infectives” (I), infected individuals 

that are able to spread the disease, by contact, with sus-

ceptibles; and “recovered” (R), individuals that have 

recovered (see Fig. 1). As opposed to an epidemiologi-

cal or human perspective, modelling often considers R 

to include: isolation from the rest of population; im-
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munization against infection; recovery from the disease 

with immunity against reinfection; or death caused by 

the disease. 

 

αβ

S I R
 

 
Fig. 1: Schematic of a typical compartmental model. 

 

Compartmental models are formulated in terms of 

flow of individuals of the population from one com-

partment to another. An average infective individual of 

the population makes contact sufficient to transmit in-

fection with βN other individuals per unit time, where N 

represents the total population size (S+I+R=N) and β is 

the contact number. Furthermore, a fraction, α, of infec-

tives leave compartment I per unit time (1/α is the mean 

infective period). Finally, there is no entry or departure 

from the population (dN/dt=0): in other words, the time 

scale of the disease transmission is much faster than the 

time scale of births and deaths. This model can be rep-

resented as a system of three ordinary differential equa-

tions: 

 

 

  

dS

dt
= −βSI ,

dI

dt
= (βS −α)I ,

dR

dt
= αI  (1) 

 

With the infectious disease model described by (1), 

we can now define the basic reproductive number, R0, 

the number of secondary infections caused by a single 

infective introduced into a wholly susceptible popula-

tion of size N 

 

 
    
R

0
≈ βN α  (2) 

 

Let us make the reasonable assumption that at the 

start of an outbreak, S(0)≈N and I(0)≈0. Now, if R0<1 

then the rate of infection is less than the rate of recovery 

(see (2)), so there is no chance of an epidemic. Howev-

er, if R0>1, then the rate of infection is greater, so an 

epidemic would ensue. 

As this model assumes that there is homogeneous 

mixing between the compartments, it is not a good de-

scription of the start of an infectious disease outbreak. 

In this case, it may be more realistic to use a network 

model [16][17] to trace the spread of infections through 

a population to better examine individual-to-individual 

contacts. A description of the fundamentals of network 

models for infectious disease transmission may be 

found in [18]. 

Infectious diseases may be modeled using additional 

compartmental structures (cf. [19]) that may include 

individuals that have been exposed to the virus but are 

not yet able to transmit infection, symptomatic versus 

asymptomatic infectives, and hospitalized individuals. 

These options and others may be represented using var-

iations of the Kermack-McKendrick model. For exam-

ple, a model that incorporates the time since becoming 

infected may be represented as 

 

 

  

dS

dt
= −βS(t)ϕ(t)

ϕ(t) =ϕ
0
(t)+ βS(t −τ )

0

t

∫ ϕ(t − τ)A(τ )dτ

 (3) 

 

where φ(t) is the total infectivity at time t of all infec-

tives within the population, φ0(t) represents the total in-

fectivity at time t of all individuals who were previously 

infected at t=0, and A(τ) is the mean infectivity of all 

individuals who were infected τ time units earlier. In 

this case, R0 is 

 

 
  
R

0
= βN A(τ )dτ

0

∞

∫  (4) 

 

While elegant, this expression’s solution is non-

trivial (cf. [20]). Finally, the Kermack-McKendrick 

model may be extended by introducing stochasticity 

whereby processes act on a set of random variables 

[21]. 

 

2.2. Agent-based models 

 An agent-based model consists of lattice-distributed 

agents (autonomous decision-making entities) that in-

teract with each other unveiling the underlying dynam-

ics of the system under investigation [22]. These mod-

els are used to analyze complex interdependencies with 

data at finer levels of granularity [23]. For instance, in 

the case of infectious diseases, agents may represent 

individuals that have specific levels of susceptibility to 

the disease in question caused by differences in factors 

such as lifestyle, prior health conditions, immune sys-

tem, and so on. The flexibility of agent-based models of 

infectious diseases permits an effective representation 

of the complementary interactions between individuals 

characterized by localized properties and populations at 

a global level. 

For agent-based infectious disease models, an agent 

comprises state variables that include not only personal 

characteristics and behavioral traits but also its relation-

ship with the environment and other agents within spec-

ified time periods. Demographic data is used to create 

the agents so that the resulting in silico population fol-

lows the same distributions as the physical, real-world 

population. 

The assumptions based on global community param-

eters have a direct influence on some of the local indi-

vidual parameters. For instance, with an SIR scenario, a 

particular agent can be in only one of three states (sus-

ceptible, infectious, or recovered). Urban centre charac-

teristics such as commuting distance, demographic den-

sity, and city boundaries, may affect the spread of the 

infectious disease under investigation, as well as agent 

behaviour. These various mobility patterns can be used 

to define lattice properties of the infectious disease 

model. 
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3. Soft computing approaches 

In the case of compartmental modelling approaches 

such as SIR, differential equations are used to model 

the spread of an infectious disease within a homoge-

nous population. Investigators have made great inroads 

in the incorporation of fuzzy set concepts into differen-

tial equations through new theoretical approaches and 

numerical solutions of fuzzy differential equations 

[7][24][25][26][27][28]. 

The evolution of a classical (crisp) continuous system 

depends on a system of ordinary differential equations. 

It is typical for such a system to have some parameters 

whose values are only imprecisely known. This impre-

cision may be represented as a fuzzy number, which 

produces a system of fuzzy differential equations whose 

solution can be described by a fuzzy trajectory [10]. By 

taking a cut through the trajectory for each fixed value, 

one obtains a fuzzy number, and the uncertainty can be 

shown as the trajectory of the bases (alpha zero cut) of 

the solutions. In [29], the authors investigate the SI epi-

demiological model with a set of interactive fuzzy pa-

rameters. 

In [30], fuzziness is introduced into spatial suscepti-

ble-infected epidemic models [31] through the use of a 

coupled-map lattice thereby completely bypassing the 

use of ordinary differential equations. This approach is 

particularly useful when input parameters such as the 

initial outbreak are not precisely known. An infectious 

disease epidemic may be modeled (in a spatiotemporal 

context without reproducing susceptible and infected 

individuals) as sweeping through a set of irregular pol-

ygons: 
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where Sj
t
 and Ij

t
 are the respective fuzzy intervals of 

susceptible and infected individuals within polygon Pj 

at time step t and G describes the connectivity charac-

teristics of the epidemic spread, djk is the graph distance 

between the vertices j and k of Pj and Pk, N(Pj) is the set 

of polygons in which infected individuals can infect 

Ij
t+1

, wjk is a weighting factor, and Ij contains infor-

mation about Pj. 

As mentioned in Section II, compartmental models 

assume that the populations are homogeneous. Hetero-

geneity can be introduced by allowing the infectious 

disease to spread strictly along the links of a contact 

network [18]. In [32], evolutionary computation [33] is 

used to construct contact networks, through local ex-

pansions using a linear chromosome, that identify the 

maximum duration of the spread of a disease as well as 

the maximum number of infected individuals. Addi-

tionally, the authors specify a useful testing protocol for 

these networks. 

Five main sources of heterogeneity exist in models of 

infectious disease spread: variability in infectivity; vari-

ability in susceptibility; age breakdown; varying con-

tacts; and varying contact distribution across subpopu-

lations [34]. As populations are assumed to be homoge-

neous in standard compartmental models, the contact 

rate, β, is a scalar constant. In [35], β becomes a fuzzy 

number 

 

 

  

β(ν) =

0 ν < ν
min

ν− ν
min

ν
M
− ν

min

ν
min
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M
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M
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'
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(

'
'

 (6) 

 

where νmin is the minimum viral amount for infec-

tious disease transmission, νmax is the maximum viral 

amount for a given individual and νM is the viral 

amount that guarantees the transmission of the infec-

tious disease. The authors further generalize their ap-

proach by using a linguistic variable, V, to deal with 

smaller groups of individuals with associated fuzzy 

numbers [36]. Further explorations and refinements to 

this approach may be found in [37] and [38], which de-

scribe an epidemiological model using linguistic varia-

bles and fuzzy rules constructed using the extension 

principle [39]. 

Relaxing the homogeneity constraint of the com-

partmental model still further, social network analysis 

[40] can be used to model specific parameters of dis-

ease spread between subpopulations represented with-

out a graph structure. Subpopulations (nodes) that are 

geodesically near each other have greater mutual influ-

ence than distant ones. Fuzzy graphs can be used to ex-

pand the functionality of these social networks; howev-

er, they suffer from a combinatorial explosion as the 

number of vertices increases, thereby making it difficult 

to glean results in a timely fashion. In [41], this issue is 

addressed by the use of a novel fuzzy binary operation 

that consolidates information across different fuzzy 

subgraphs. 

In [42], soft computing techniques are applied to the 

treatment of viral infections using drugs that stimulate 

the human immune response. The authors extend the 

standard formulation of the behaviour of immune sys-

tems in order to model the pathological consequences 

of an infection and the side effects of drug treatments. 

This is accomplished by using a fuzzy set based per-

formance index, which represents imprecise subjective 

quantities such as patient well-being, that is determined 

using a sophisticated multi-criteria optimization tech-

nique [43]. 

A nonlinear infection dynamics model is represented 

in [44] as a set of Mamdani fuzzy controllers [45] that 

are designed using a genetic-fuzzy system approach. 

This approach produces fuzzy rules such as “If Vi-

ral_Load is Medium and T_Cells_Count is Low then 

PI_Efficacy is High and RTI_Efficacy is High” where 

PI (protease inhibitor) is a drug that blocks the chemical 

mechanisms behind a virus’ DNA reproduction and RTI 

(reverse transcriptase inhibitor) is a drug that reduces 

the infection rate of CD4+ T cells (a specific type of 

immune cell). The utility of this approach lies within its 

interpretability and control considerations, as it was 

possible to suggest a specific drug regimen for treating 
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an early-detected infection. An analogous approach 

may be found in [9] that describes a fuzzy rule-based 

system that extends the classical macroscopic model for 

HIV and also provides a set of intuitively appealing 

fuzzy rules that preserves the biological nature and 

meaning of the transference rate of the HIV virus into 

an acquired immune deficiency syndrome. The fuzzy 

expectancy of a symptomatic population is epidemio-

logically realistic. 

With the expanding use of GIS technologies in infec-

tious disease modelling, soft computing approaches are 

being used to augment conventional analysis tech-

niques; for example, [46] uses a fuzzy expert system 

with GIS data to make health risk predictions relating to 

cholera outbreaks. There are also epidemiological stud-

ies that have replaced indicator variable in statistical 

regression models with corresponding fuzzy member-

ship functions [47]. Evolutionary computation is used 

in [48] to identify the source of infectious disease out-

breaks. 

4. Prescription 

Recent public health workshops [4][49], which brought 

together public health experts, policy makers, and infec-

tious disease modellers, were held to identify the 

strengths and weakness of disease models and suggest 

ways to improve their predictive ability to influence 

public health policy effectiveness. Public health plan-

ning requires involvement of communities across disci-

plines with a firm commitment to the notion that re-

search must ultimately influence policy. Uncertain 

model inputs that are extremely influential in determin-

ing the best course of action should be prioritized for 

future research investigations. Knowledge translation 

activities are indispensable to overcome the challenges 

of community health in an interdisciplinary environ-

ment by forging strong links between theory, policy and 

practice [50]. 

Given the recent experiences with disease outbreaks, 

public health experts need rapid and robust decision-

making as is potentially achievable through modelling 

approaches. Two challenges to the complete acceptance 

of these technologies are the timely deployment of 

models during an infectious disease outbreak and diffi-

culty dealing with scenarios and parameters based on 

“real-world” data. We have seen that soft computing 

approaches can help deal with the latter challenge but 

they must do so not at the expense of the former. The 

methods we have reviewed in the previous section have 

solid theoretical underpinnings or good experimental 

evidence of their utility. However, to move from “theo-

ry” to “practice”, soft computing based modelling of 

infectious diseases must satisfy three criteria: reliability, 

computational efficiency, and adaptability to practical 

considerations and changes to fundamental knowledge. 

Further, they must operate with traditional uncertainty 

and sensitivity analysis methods: Monte Carlo analysis, 

amplitude sensitivity, random and stratified Latin hy-

percube sampling [51], regression and correlation anal-

ysis, and analysis of stochastic versus subjective uncer-

tainty. An important consideration will be the incorpo-

ration of joint spatial and temporal characteristics [29]. 

Another key area of research will be dealing with im-

precise data acquired from disparate database reposito-

ries at varying levels of information granularity that 

may be tackled with the latest soft computing ap-

proaches in collaborative clustering and granular com-

puting [52][53]. 

While compartmental models are useful, with more 

diverse requirements, finer specificity, and increased 

expectations by public health experts, agent-based 

models will play a greater role in infectious disease 

modelling. However, with flexibility comes complexity; 

hence, the software implementation of an agent-based 

model demands more stringent software design re-

quirements than conventional (and simpler) models of 

the spread and control of infectious diseases, especially 

with respect to outcome reproducibility, error detection 

and system management. Outcome reproducibility is a 

challenge because emergent properties are not analyti-

cally tractable, which is further exacerbated by subtle 

and difficult to detect errors in algorithm logic and 

software design. 

Past software engineering experience [54] and recent 

literature [55][56][57][58] suggest several guidelines to 

which agent-based model development should adhere: 

spiral development methodology; version control; care-

ful code reviews; validation; system profiling; and sys-

tem determinism. In contrast to compartmental models, 

which are in general easier to communicate and ana-

lyze, agent-based model descriptions are frequently in-

complete and therefore less accessible to the reader. In 

an attempt to tackle this issue, a group of modellers 

proposed a standard and detailed protocol for describing 

agent-based models [59]. Achieving these objectives 

will make agent-based models a much more reliable 

scientific tool for investigations. “Real world” systems, 

whether or not soft computing based must take this mat-

ter under careful consideration. 

5. Summary 

Realistic infectious disease modelling must incorporate 

parameters aggregated from disparate database sources; 

however, these data may be incomplete, imprecise, in-

sufficiently specific, or collated at varying levels of in-

formation granularity. Even with extensions, the classi-

cal compartmental model fails to adequately capture the 

nuances of an infectious disease outbreak such as dif-

ferences in infection probability, age-specific vulnera-

bility, highly heterogeneous spatial properties, and var-

ying contact rates among subpopulations. Further, sen-

sitivity analysis of the model’s many parameters must 

be accomplished in a reliable and timely fashion to en-

sure that outcome predictions are evaluated and incor-

porated into public health decision-making. Finally, 

public health experts tend to think about mitigation 

strategies for infectious disease outbreaks in a “rule 

based” manner. With these points in mind, soft compu-

ting can readily continue to expand into the practical 

domain of infectious disease modelling (especially 

through extensions and enhancements to agent-based 
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modelling strategies) and become fully incorporated 

into the public health discourse. 

Concerning sound model representations, investiga-

tors of infectious disease spread must keep in mind a 

broad set of issues: the behaviours and population dy-

namics that should emerge from the model’s representa-

tion of important processes versus those being imposed 

on the model as empirical relations; the adaptive pro-

cesses to be modeled given the temporal and spatial 

scales that are to be used; the fitness measures to be 

used; the necessary user interfaces to make the model 

outcomes observable and testable; and the development 

strategies behind the model’s design and implementa-

tion to ensure that outcome results are reproducible and 

valid. 

The single greatest deficiency with infectious disease 

modelling is that models are often developed with only 

the modellers in mind and not the public health experts 

(this particularly comes across with issues relating to 

ease of use). It is imperative that soft computing based 

approaches to infectious disease modelling not suffer 

from this deficiency. 
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