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ON THE ROLE OF THE COLLECTION PRINCIPLE FOR

Σ0
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(Communicated by Julia Knight)

Abstract. We show that the principle PART from Hirschfeldt and Shore is
equivalent to the Σ0

2-Bounding principle BΣ0
2 over RCA0, answering one of

their open questions.
Furthermore, we also fill a gap in a proof of Cholak, Jockusch and Sla-

man by showing that D2
2 implies BΣ0

2 and is thus indeed equivalent to Stable

Ramsey’s Theorem for Pairs (SRT2
2). This also allows us to conclude that the

combinatorial principles IPT2
2, SPT

2
2 and SIPT2

2 defined by Dzhafarov and Hirst
all imply BΣ0

2 and thus that SPT2
2 and SIPT2

2 are both equivalent to SRT2
2 as

well.
Our proof uses the notion of a bi-tame cut, the existence of which we show

to be equivalent, over RCA0, to the failure of BΣ0
2.

1. Introduction and results

LetM be a model of RCA0. In their paper on combinatorial principles implied by
Ramsey’s Theorem for pairs (RT2

2), Hirschfeldt and Shore [7, section 4] introduced
the following combinatorial principle:

Definition 1.1. The principle PART states: Let 〈M,≺〉 be a recursive (i.e., ∆0
1-

definable in M) linear ordering with least and greatest element. Assume that for
any x ∈ M , exactly one of {y ∈ M : y ≺ x} and {y ∈ M : x ≺ y} is M-finite.
Then for any M-finite partition {ai : i ≤ k} of 〈M,≺〉, {y ∈ M : ai ≺ y ≺ ai+1}
is not M-finite for exactly one i < k. (For simplicity, we will assume here that
the endpoints of M under ≺ are a0 and ak. Note that we will always denote the
universe of the model M by M .)
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1094 C. T. CHONG, STEFFEN LEMPP, AND YUE YANG

Note that the conclusion of PART clearly implies the hypothesis, which in turn
implies that there is at most one i < k for which {y ∈ M : ai ≺ y ≺ ai+1} is not
M-finite. PART was introduced by Hirschfeldt and Shore [7] as one in a series of
principles shown to be strictly weaker than Ramsey’s Theorem for pairs. In fact,
they studied the Chain Antichain Principle (CAC), the Ascending and Descending
Sequence Principle (ADS), and their stable versions, denoted respectively as SCAC
and SADS, and proved that CAC, and hence SCAC, is strictly weaker than RT2

2 and
that SCAC implies SADS, which strictly implies PART.

A general problem that was discussed quite extensively in [7] is the strength of

the first-order theory of these principles. Hirst [8] has shown that RT2
2 implies the

Σ0
2-Bounding principle BΣ0

2, and in [7, Proposition 4.1], BΣ0
2 was proved to be

strictly weaker than SCAC. On the other hand, while PART does not follow from
Recursive Comprehension (RCA0; see [7, Corollary 4.7]), it is a consequence of BΣ0

2

over RCA0 (see [7, Proposition 4.4]). Question 6.4 of [7] asks whether SADS or
indeed PART implies, or is weaker than, BΣ0

2. In the latter case, PART would have
been the first “natural” principle of reverse mathematics strictly between RCA0

and BΣ0
2. However, we show in this paper that the former case holds, namely,

that PART and BΣ0
2 are indeed equivalent, adding further evidence to BΣ0

2 being
a very robust proof-theoretic principle:

Theorem 1.2. The principle PART is equivalent to BΣ0
2 over RCA0.

The key idea of the proof is to show that PART does not hold in any model
of RCA0 in which BΣ0

2 fails. It turns out that the failure of BΣ0
2 in a model

of RCA0 where, by definition, the Σ0
1-induction scheme IΣ0

1 holds is captured by the
existence of cuts with a property we call “bi-tameness”. The notion of a tame Σ0

2-
function was introduced by Lerman in α-recursion theory (Lerman [9], Chong [2]),
and was later adapted to models of fragments of Peano arithmetic to study the
complexity of infinite injury priority arguments in the context of reverse recursion
theory (Chong and Yang [3]).

A cut is a nonempty bounded subset of M that is closed downward and under
the successor function. A Σ0

2-cut is a cut that is Σ0
2-definable. The existence of a

Σ0
2-cut characterizes models of BΣ0

2 in which the Σ0
2 induction scheme IΣ0

2 fails.
Let I be a Σ0

2-cut bounded by k. Then I is bi-tame if both it and [0, k] \ I are
tame Σ0

2 (to be defined below). As we shall see, the existence of a bi-tame cut
characterizes precisely the models of RCA0 that do not satisfy BΣ0

2. This fact will
then be used to establish the failure of PART. Recall here that the existence of a
Σ0

2-cut characterizes the failure of IΣ
0
2 over the base theory IΣ0

1. Thus bi-tameness
separates the Σ0

2-cuts I in models satisfying only IΣ0
1 from those in models also

satisfying BΣ0
2.

We conclude this paper by proving Theorem 1.4, which implies some other conse-
quences of Ramsey type combinatorial principles. To elaborate, our method allows
one to fill a gap in Cholak, Jockusch and Slaman [1]. They define the following
principle:

Definition 1.3. The principle D2
2 states: For any ∆0

2-definable subset A of M ,
there is an infinite subset B in M which is either contained in or disjoint from A.

It was claimed in [1, Lemma 7.10] that D2
2 is equivalent to Stable Ramsey’s

Theorem for Pairs (SRT2
2) over RCA0. However, the argument thatD2

2 implies SRT2
2

implicitly assumes BΣ0
2 and thus contains a gap. We close this gap in the following
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Theorem 1.4. The principle D2
2 implies BΣ0

2 and is therefore equivalent to Stable
Ramsey’s Theorem (SRT2

2) over RCA0.

Dzhafarov and Hirst [5] introduced the following “polarized” versions of Ram-
sey’s Theorem, based on similar notions in Erdős and Rado [4, §9]:

Definition 1.5. Let n, k ≥ 1 and f : [M ]n → k.

(1) A p-homogeneous set for f is a sequence 〈H1, . . . , Hn〉 of M-infinite sets
such that for some c < k, f({x1, . . . , xn}) = c for every 〈x1, . . . , xn〉 ∈
H1 × · · · ×Hn.

(2) Such a sequence 〈H1, . . . , Hn〉 of M-infinite sets is called increasing p-
homogeneous if (1) is required to hold only for increasing tuples 〈x1, . . . , xn〉.

(3) PT2
2 (or IPT2

2, respectively, for “(Increasing) Polarized Theorem”) is the
statement that every f : [M ]2 → 2 has an (increasing) p-homogeneous set.

(4) SPT2
2 (or SIPT2

2, respectively, for “Stable (Increasing) Polarized Theorem”)
is the statement that every f : [M ]2 → 2 has an (increasing) p-homogeneous
set.

(There are natural extensions to k many colors and, for (I)PT2
2, to n-tuples.)

The following was proved in [5]:

Theorem 1.6 (Dzhafarov and Hirst [5]).

(1) Over RCA0, PT
2
2 implies BΣ0

2.

(2) Over RCA0, PT
2
2 implies IPT2

2 and SPT2
2.

(3) Over RCA0, both IPT2
2 and SPT2

2 imply SIPT2
2.

(4) Over RCA0, SIPT
2
2 implies D2

2.

(5) Over RCA0 +BΣ0
2, IPT

2
2 implies SPT2

2.
(6) Over RCA0 +BΣ0

2, all of SRT
2
2, SPT

2
2 and SIPT2

2 are equivalent.

Since all these principles imply D2
2, Theorem 1.4 considerably simplifies the

picture (and answers Questions 5.1 (part 2) and 5.2 in [5]):

Theorem 1.7.

(1) Over RCA0, all of IPT
2
2, SPT

2
2 and SIPT2

2 imply BΣ0
2.

(2) SRT2
2, SPT

2
2 and SIPT2

2 are equivalent over RCA0.
(3) Over RCA0, IPT

2
2 implies SPT2

2.

The question of whether either or both of the middle two implications in

RT2
2 ⇔ PT2

2 ⇒ IPT2
2 ⇒ SPT2

2 ⇔ SRT2
2

are strict remains open.

The rest of this paper is devoted to the proofs of Theorems 1.2 and 1.4.

2. The proof of Theorem 1.2

We work in models of RCA0. Since IΣ0
1 is the most important consequence of

RCA0 that we use, we can work as if we were in first-order Peano arithmetic. (We
refer the reader to Hájek and Pudlák [6] for background on first-order arithmetic
and to Simpson [10] for background on second-order arithmetic and reverse math-
ematics.)

We will show the equivalence of PART and BΣ0
2 in two steps after introducing

the notion of bi-tame cuts.
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Definition 2.1. Suppose M is a model of IΣ0
1. We say a set I is a bi-tame cut

in M iff

(1) I is a cut, i.e., closed under successor and closed downward.
(2) There are a point k /∈ I and a Σ0

2-function g : [0, k] → M with recursive
approximation h(i, s) : [0, k]×M → M such that:
(a) The domain of g is the whole interval [0, k].
(b) The range of g is unbounded in M.
(c) (Tame Σ0

2 on I) For any i ∈ I, there is an s such that for all j < i, for
all t > s, h(j, t) = h(j, s); i.e., g settles down on all initial segments,
and so, in particular, g � [0, i) is M-finite.

(d) (Tame Σ0
2 on Ī) For any i < k not in I, there is an s such that for all j

with i < j ≤ k and all t > s, h(j, t) = h(j, s); i.e., g also settles down
on all final segments, and so, in particular, g � (i, k] is M-finite.

Remark. Throughout this paper, we use boldface definability, so, e.g., Σ0
2 is re-

ally Σ0
2(M), i.e., with parameters from M . Observe that any bi-tame cut I is ∆0

2,
as both I and [0, k] \ I are Σ0

2.

First we show that the failure of PART is equivalent to the existence of bi-tame
cuts.

The failure of PART can be stated as: There is a recursive linear ordering M =
(M,≺) together with an M-finite partition {ai : i ≤ k} (which we refer to as
landmarks) such that for any x ∈ M , exactly one of {y : y ≺ x} and {y : x ≺ y} is
M-finite, but that for all i < k, the interval {y : ai ≺ y ≺ ai+1} is M-finite.

Lemma 2.2. The existence of a linear ordering witnessing the failure of PART is
equivalent to the existence of a bi-tame cut.

A pictorial version of the proof proceeds as follows: Imagine the graph of the
function g which witnesses the bi-tameness of I as consisting of k many vertical
columns, the i-th one of which is of height g(i). Now “push the columns from both
ends” as in Domino to produce a linear ordering. The resulting horizontal picture
is more or less the linear order.

For the converse, just “un-Domino” the horizontal picture. We get the bi-
tameness from the condition that either the initial segment or the final segment
is M-finite.

Proof. (⇐) Let I be a bi-tame cut with witness Σ0
2-function g : [0, k] → M and re-

cursive approximation h(x, s) of g(x) as in Definition 2.1. We recursively enumerate
the linear order ≺ as follows.

Stage 0 (laying out the landmarks): Set ai = i for i ≤ k and ai ≺ aj iff i < j.
Stage s + 1: Suppose we have specified the order up to m ∈ M at the end of

the stage s. Then, for each i < k in increasing order, if h(i, s + 1) > h(i, s), then
set k = h(i, s+ 1)− h(i, s) and insert the next k many elements of M between the
landmarks ai and ai+1 to the right of all the elements previously inserted between
these landmarks.

We check that the linear order ≺ works: It is a recursive linear ordering because
a linear order ≺ is recursive iff it has an r.e. copy. Once the approximation h(i, s)
of g(i) has settled down on the initial segment [0, i + 1] or the final segment [i, k],
depending on whether i ∈ I or not, no elements will enter the interval {y : ai ≺ y ≺
ai+1}; hence this interval is M-finite. Finally, a one-point partition leaves either

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE ROLE OF BΣ0
2 1097

an initial segment or a final segment M-finite because of the bi-tameness, and it
cannot leave both M-finite as g is unbounded.

(⇒) Suppose ≺ is such a recursive linear order with landmarks {ai : i ≤ k}.
Fix a recursive enumeration of M. Define a recursive approximation h(i, s) = x of
g : [0, k] → M by taking x to be the maximal element enumerated into the interval
{y : ai ≺ y ≺ ai+1} up to stage s. g is unbounded since every element of M appears
in the enumeration. Define the Σ0

2-cut I by i ∈ I iff i < k and the initial segment of
the one-point partition by ai is M-finite. We check that I is bi-tame. We only need
to show that if i ∈ I, then g settles down on the initial segment [0, i], as the other
case for the final segment is symmetric. Since the interval [0, ai] = {y : y ≺ ai} is
M-finite, apply BΣ0

1 to the formula ∀y ∈ [0, ai] ∃s [y ≺ ai at stage s] to obtain a
uniform upper bound t such that no element enters the interval [0, ai] after stage t.
Thus h(i, s) = h(i, t) for all s > t. �

The second part of the proof is to link the existence of bi-tame cuts to BΣ0
2.

The essential idea is based on the proof of the equivalence of BΣ0
2 and I∆0

2 by
Slaman [11].

Lemma 2.3. Suppose M |= IΣ0
1. Then M |= BΣ0

2 iff there exists a bi-tame cut
in M.

Proof. Clearly, if M |= BΣ0
2, then there is no ∆0

2-cut and thus a fortiori no bi-tame
cut.

On the other hand, suppose that M |= BΣ0
2. We need to construct a bi-tame

cut. We start by proving two claims:

Claim 2.4. Suppose that M |= IΣ0
1 and M |= BΣ0

2. Then there are an element
k ∈ M and a function f : [0, k) → M such that

(a) f is injective;
(b) the domain of f is [0, k) and the range of f is unbounded; and
(c) the graph of f is Π0

1.

Proof. Let ∀t ψ(x, y, t) be a Π0
1-formula which witnesses the failure of BΠ0

1 (which is
equivalent to BΣ0

2) on some interval [0, k). We define a Π0
1-function f : [0, k) → M

by setting f(x) = 〈x, 〈y, s〉〉 iff
∀t ψ(x, y, t) ∧ ∀z < y ∃t < s¬ψ(x, z, t) ∧ ∀t < s ∃z < y ∀v < tψ(x, z, v).

Intuitively, the first coordinate x of f(x) just makes f injective. So, f essentially
maps x to the least y such that ∀t ψ(x, y, t), but this alone would give us only a
∆0

2-graph. To make the graph Π0
1, we observe furthermore that for any z < y,

∃tz ¬ψ(x, z, tz). The number s in f(x) is the least upper bound on all such tz,
which exists by BΣ0

1. It is now easy to check that f works, concluding the proof of
Claim 2.4. �

We may think of f(x) as the stage at which x is enumerated into [0, k). We now
construct a “tame” Σ0

2-function g which enumerates the interval [0, k). Here, “tame-
ness” means that g settles down on all initial segments. This tameness constitutes
the essential difference between g and f . More precisely, we have the following:

Claim 2.5. Let k and f be as in Claim 2.4. Then there are a Σ0
2-cut I and a

Σ0
2-function g : I → [0, k), together with a recursive approximation h to g, such

that
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(a) g is 1-1 from I onto [0, k);
(b) g is “tame”; i.e., for all i ∈ I, there is a stage s such that for all j < i and

all t > s, h(j, t) = h(j, s) = g(j), so, in particular, g � i is M-finite; and
(c) g is not “coded” on I×[0, k); i.e., g = X∩(I×[0, k)) for any M-finite set X.

(Informally, there is no M-finite “end-extension” of (the graph of) g.)

Proof. We start with the definition of a function F . Let θ(x, y, u) be a Σ0
0-formula

such that (x, y) ∈ f iff ∀u θ(x, y, u). For each s ∈ M , we will define F (s) as the
approximation to f at stage s; since f is a 1−1 function, F (s) can be made a 1−1
function as well (possibly with a smaller domain). F (s) is defined as follows. Set
(x, y) ∈ F (s) iff

x < k ∧ y ≤ s ∧ ∀u < s θ(x, y, u) ∧ ∀y′ < y ∃u′ < s¬θ(x, y′, u′)

∧ ¬∃x′ < x [∀u < s θ(x′, y, u) ∧ ∀y′ < y ∃u′ < s¬θ(x′, y, u′)].

Since F (s) is anM-finite set of pairs, we can list all its elements (x0, y0), . . . , (xe, ye)
(for some e = es < k, say) ordered by their second coordinates, i.e., such that
yi < yj iff i < j. We define h(i, s) = xi for all i ≤ e. Formally, we define h(i, s) = x

iff there is c < 2〈k,s〉 which is a code of an M-finite sequence 〈c0, . . . , ci〉 of length
i+ 1, say, such that

(1) for each j ≤ i, cj is a pair 〈xj , yj〉;
(2) x = xi;
(3) ∀j ≤ i ((xj , yj) ∈ F (s));
(4) ∀j < k ≤ i (yj < yk); and
(5) ∀j < i ∀z < yj+1 [yj < z → ∀x < k ((x, z) /∈ F (s))].

Let I = {i : ∃s ∀j ≤ i ∀t > s [h(j, s) = h(j, t)]} and, for each i ∈ I, let g(i) =
lims h(i, s). We first note that since F and h are ∆0

0, both I and the graph of g
are Σ0

2.
We now check that I, g and h satisfy statements (a)-(c) from the claim.
(a) We first show that g is 1− 1. Observe that if g(i) = x, then there is s such

that ∀t > s (h(i, t) = x); so, in particular, there is some y such that for all t > s,
(x, y) ∈ F (t), i.e., f(x) = y. Suppose that i1 < i2 are two elements in I, and that
g(i1) = x1 and g(i2) = x2. By definition of I, there is a stage s such that g settles
down at both i1 and i2. Thus there are y1 and y2 such that (x1, y1), (x2, y2) ∈ F (t)
for all t > s. By the choice of F (t), y1 = y2 and thus x1 = x2.

Next we show that g is onto [0, k). For any m < k, f(m) is defined, thus f �
[0, k)× [0, f(m)) is a bounded Π0

1-set and hence coded. Therefore, its complement
[0, k) × [0, f(m)) \ f is an M-finite Σ0

1-set. Now, by BΣ0
1, there is a uniform

bound s such that for each (x, y) in this complement, ∃u < s¬θ(x, y, u). Hence for
all t > s, (x, y) /∈ F (t). Hence, if (m, f(m)) is the e-th pair in F (s), g(e) = m. This
establishes (a).

(b) follows from the definition of g and h.
(c) Observe that I is indeed a cut. Suppose that i ∈ I. Let s be the (least)

stage by which g settles down on [0, i]. At stage s, we will see the M-finite set
F (s), say, {(x0, y0), . . . , (xi, yi)}, listed with increasing y-coordinates. Since f is
unbounded, let z be the (least) number in the range of f such that z > yi. Then
g(i+1) = z. Finally, we show that g is not coded on I × [0, k). Suppose otherwise,
say, X ∩ (I × [0, k)) = g for some M-finite set X. Then

g = {(i,m) ∈ X : m < k and i is the least j such that (j,m) ∈ X},
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which is M-finite. Hence its domain I would be M-finite, a contradiction. This
concludes the proof of Claim 2.5. �

Finally, we use g and h to obtain a bi-tame cut J with its approximation l(j, s).
We start with the interval [0, kk] and initially place two markers l and r at 0

and kk, respectively. At each stage s, the construction is performed in e many
steps, where e is the least number not in the domain of h(·, s). At the end of each
step, we shrink the gap between l and r by a factor of k.

Step 0. Calculate h(0, s). Set l(0, s) = h(0, s)kk−1 and r(0, s) = l(0, s) + kk−1.
Step i. Suppose l(i−1, s) and r(i−1, s) are the current positions of the markers

and r(i − 1, s) − l(i − 1) = kk−i. Calculate h(i, s), and let l(i, s) = l(i − 1, s) +
h(i, s)kk−i−1 and r(i, s) = l(i, s) + kk−i−1.

Now let J = {x : ∃s ∃i ∀t > s ∀j < i [l(j, s) = l(j, t) ∧ x < l(i, s)]} and J̄ = {x :
∃s ∃i ∀t > s ∀j < i [r(j, s) = r(j, t) ∧ x > r(i, s)]}. Then J and J̄ are both Σ0

2, and
when h settles down on the initial segment [0, i], then both l(i, s) and r(i, s) settle
down as well. Clearly, J and J̄ are disjoint, so it remains to show that J∪J̄ = [0, kk],
i.e., that there is no “gap” left. Suppose m belongs to the gap. Then write m as
a k-ary number. We can then read out g(i) from m for all i ∈ I, contradicting the
fact that g is not coded on I × [0, k).

This concludes the proof of Lemma 2.3. �

Lemmas 2.2 and 2.3 now immediately establish Theorem 1.2 as desired.

3. The proof of Theorem 1.4

Using Theorem 1.2, it suffices to prove PART from D2
2 . So suppose that (M,≺)

is a linear order in M such that for any x ∈ M , exactly one of {y ∈ M : y ≺ x}
and {y ∈ M : x ≺ y} is M-finite. Let A be the set of all x ∈ M such that
{y ∈ M : y ≺ x} is M-finite or, equivalently, such that {y ∈ M : x ≺ y} is M-
infinite. Thus A is a ∆0

2-definable subset of M . Applying D2
2 (and by symmetry),

let B be an infinite subset of A which exists in the second-order model M. Then the
≺-downward closure C of B is a Σ0

1-definable subset of M , and by our assumption
on (M,≺), C = A. Now fix any M-finite partition {ai : i ≤ k} of 〈M,≺〉 (where a0
and ak are the least and greatest element), and assume that for each i < k, the
interval [ai, ai+1] is M-finite. By Σ0

1-induction, we then have that for each i ≤ k,
the set {a0, a1, . . . , ai} is a subset of C, and thus [a0, ai] is M-finite. But clearly
ak /∈ C, giving the desired contradiction.

As a final remark, we note that Jockusch later observed a shorter but less di-
rect proof, using Hirschfeldt and Shore’s result [7, Proposition 4.6] that SADS im-
plies BΣ0

2 and thus requiring only a proof of SADS from D2
2 as in the first half of the

previous paragraph. Once the infinite set B is obtained, one can argue immediately
that it has order-type M or M∗ and has thus established SADS.
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