
On the Root Causes of Cross-Application I/O Interference in HPC Storage Systems

Orcun Yildiz∗, Matthieu Dorier†, Shadi Ibrahim∗, Rob Ross†, and Gabriel Antoniu∗

∗INRIA Rennes Bretagne-Atlantique, Rennes, France, {first.last}@inria.fr
†Argonne National Laboratory, IL 60439, USA, {mdorier, rross}@anl.gov

Abstract—As we move toward the exascale era, performance
variability in HPC systems remains a challenge. I/O inter-
ference, a major cause of this variability, is becoming more
important every day with the growing number of concurrent
applications that share larger machines. Earlier research efforts
on mitigating I/O interference focus on a single potential cause
of interference (e.g., the network). Yet the root causes of I/O
interference can be diverse. In this work, we conduct an
extensive experimental campaign to explore the various root
causes of I/O interference in HPC storage systems. We use
microbenchmarks on the Grid’5000 testbed to evaluate how
the applications’ access pattern, the network components, the
file system’s configuration, and the backend storage devices
influence I/O interference. Our studies reveal that in many
situations interference is a result of bad flow control in the
I/O path, rather than being caused by some single bottleneck
in one of its components. We further show that interference-
free behavior is not necessarily a sign of optimal performance.
To the best of our knowledge, our work provides the first
deep insight into the role of each of the potential root causes
of interference and their interplay. Our findings can help
developers and platform owners improve I/O performance and
motivate further research addressing the problem across all
components of the I/O stack.

Keywords-Exascale I/O, Parallel File Systems, Cross-
Application Contention, Interference

I. INTRODUCTION

I/O interference in high-performance computing (HPC)

is defined as the performance degradation observed by any

single application performing I/O in contention with other

applications running on the same platform. This interfer-

ence, while already present in small clusters, becomes an

increasingly important issue as we move closer to exascale,

first because larger machines are used by more applications

at the same time [1] and second because uncontrolled I/O

performance degradations in large-scale applications lead to

a larger waste of computation time and energy. Because of

the variety of access patterns exhibited by HPC applications,

however, it is difficult to predict when this interference

will occur and whether and how it will affect each of the

applications involved.

For several years researchers have been tackling cross-

application I/O interference in the HPC area. The focus has

been on causes as diverse as access locality in disks [2],

synchronization across storage servers [2], [3], or network

contention [4]–[7]. While these solutions get us undeniably

closer to solving the I/O interference problem, they all focus

on a single potential root cause of interference (e.g., the

network) and do not look at the interplay between several

potential such causes.

In this paper, we conduct an extensive experimental

campaign exploring the root causes of I/O interference in

HPC storage systems. We use microbenchmarks on the

Grid’5000 [8] testbed to evaluate how the applications’

access pattern, the network components, the file system’s

configuration, and the backend storage devices influence

interference. While some of our results follow our intuition,

others illustrate unexpected behaviors caused by the inter-

play between different points of contention. These surprising

behaviors include the fact that decreasing the network band-

width can in some cases eliminate the interference.

An important outcome of our study is that in many

situations, interference is a result of bad flow control in the

I/O path, rather than the presence of a single bottleneck

in one of its components. We hope that the insights and

lessons learned from our experiments will enable a better

understanding of I/O interference, help platform administra-

tors diagnose the cause of such issues in their system, and

motivate further research addressing the problem, not only

at a single level, but also across all components of the I/O

stack potentially involved.

The remainder of this paper is organized as follows.

Section II gives background for our work. Section III ex-

plains our methodology in investigating the root causes of

I/O interference, including a description of the benchmark,

platform, and software. Section IV presents different sets

of experiments highlighting the different causes of I/O

interference and then shows cases where it produces unex-

pectedly high performance degradation. All the experiments

are accompanied by lessons learned from the behavior of the

system in these scenarios. In Section V we present related

work. We conclude in Section VI with a summary and a

brief look at future work.

II. BACKGROUND

In the context of I/O for HPC, the main shared resource

that applications contend for is the parallel file system, which

comprises components that can all become a point of con-

tention. By considering the design of common HPC storage

systems, we identified four potential points of contention in

the data path, illustrated in Figure 1.

Figure 1. Typical parallel storage system and potential points of contention.

1) As the number of cores per node increases, the network

interface shared by all the cores in a node can become a

first point of contention [9], [10]. Failure to address this

first bottleneck at a single-application level can affect

the interference encountered with other applications

farther down the I/O path.

2) The network linking computation nodes to storage

servers (which we will call “storage network,” as

opposed to the “computation network” used across

computation nodes, and which may be different) is

usually the first point of contention between multiple,

independent applications.

3) The servers running the parallel file system constitute

a third possible cause of cross-application interference,

because of the limited bandwidth each server provides

and because of scheduling decisions being made at this

level regarding the order in which I/O requests should

be serviced [2]–[4].

4) The disks (or any other backend storage devices) con-

stitute the lowest level at which contention can occur.

While the servers serialize requests into actual disk ac-

cesses, interleaved requests from different applications

can break the locality of disk accesses and degrade

performance [11].

Other possible sources of interference include I/O for-

warding nodes [12]–[14], RAID technology used in backend

storage devices, or the computation network. The platform

we use for our experiments does not feature forwarding

nodes or RAID technology; and while the computation and

storage networks are the same, our benchmark does not

perform communications. Thus we will not investigate these

potential sources here.

III. METHODOLOGY

Investigating the root causes of I/O interference is a chal-

lenging task given the complexity of HPC storage systems

and the large number of parameters that can contribute

to interference. In the previous section, we identified the

potential points of contention in the data path. Here we

describe our methodology for investigating these parameters

in order to draw meaningful and useful conclusions from our

experiments.

A. Role of each point of contention

One way of studying the effect of potential points of

contention consists of carefully isolating each of them and

benchmarking them separately. This is not the approach we

undertake here. This approach indeed does not capture the

interplay between causes, such as the fact that contention at

one level can either mitigate or exacerbate interference at

another level.

Our approach consists of either ruling out potential causes

of interference or modifying their parameters and observing

the resulting performance under congestion. This approach

has proved much more useful not only in understanding the

role of each point of contention but also in evaluating their

interactions. More specifically we proceed as follows for

each level.

1) The network interface can be ruled out by making a

single core on each node issue all the I/O requests of

that node.

2) While the network can be ruled out by having clients

run on the same node along with a single-server file

system, this option gives us little information about the

role of the network in a large, multiserver deployment

of the file system. We therefore evaluate the impact of

the network’s bandwidth on the interference as well.

3) The servers can be ruled out by ensuring that each

group of processes accesses a distinct set of servers.

In this scenario the two groups will interfere at the

network level but not in the servers or for the access

to the disks.

4) The disks can be ruled out by using much faster devices

such as SSDs or local memory or by asking the file sys-

tem to throw away any incoming data instead of storing

it. Another option is to turn off the synchronization of

data files in the file system, which allows the servers

to keep data cached in memory and flush them to disks

later. We use these two methods in our experiments.

B. Microbenchmark and reporting method

To investigate the influence of various parameters on the

I/O interference, we follow the methodology used in [1].

We developed a microbenchmark similar to IOR [15]. This

application starts by splitting MPI_COMM_WORLD into two

groups of processes running on two separate sets of nodes.

Each group of processes executes a series of collective

I/O operations following a specified pattern, simulating two

applications accessing the file system in contention. We

measure the time taken by each group of processes to

complete its set of I/O operations.

The experiments presented in this paper focus on

write/write interference only. They use two different access

patterns.

Contiguous In this pattern, each process issues a 64 MB

write request in a contiguous way in a shared file, at

an offset given by rank × 64MB.

Strided We represent the noncontiguous case by a one-

dimensional strided access pattern. Each process issues

256 requests of size 256 KB each.

Our experimental evaluation leverages the concept of ∆-

graphs introduced in [1]. For a given configuration of the

platform and the microbenchmark, we introduce a delay ∆

between the beginning of the I/O burst of the first group of

processes and the beginning of the I/O burst of the second

group. We then plot the time to complete an I/O phase as a

function of ∆.

We note that ∆-graphs do not represent timelines; each

point in a ∆-graph represents a single experiment.

C. Platform description

The experiments were carried out on the Grid’5000 [8]

testbed. We used the Rennes site; more specifically we

employed nodes belonging to the parasilo and paravance

clusters. The nodes in these clusters are outfitted with two

8-core Intel Xeon 2.4 GHz CPUs and 128 GB of RAM.

We leverage the 10 Gbps Ethernet network that connects all

nodes of these two clusters. Reserving these two clusters

and deploying our own file system ensured that we were the

only users of the network switch as well as the file system

at the time of the experiments.

The OrangeFS file system (a branch of PVFS2 [16])

version 2.8.3 was deployed on 12 nodes of the parasilo

cluster. We considered two types of configuration: “Sync

ON” and “Sync OFF,” which represent whether each request

is immediately flushed to the backend storage devices or

whether data can stay in kernel-provided buffers, respec-

tively.

We use 60 nodes (960 cores) to run our microbenchmark

on the paravance cluster, unless otherwise specified. These

cores will always be split into two groups of equal size (30

nodes) and follow the same type of access pattern.

IV. DISCUSSIONS OF EXPERIMENTAL RESULTS

This section presents the results of our investigation. The

first part explores the role that each of the components

presented above has in the I/O interference. The second

part explains further some of the results, in particular the

counterintuitive ones, and highlights a flow-control issue at

the core of the interplay between components.

A. Insight into the root causes of I/O interference

We discuss several possible causes for I/O interference.

Device Alone Interfering Slowdown

HDD, sync ON 13.4 sec 33.4 sec 2.49×
SSD 2.27 sec 4.46 sec 1.96×

RAM 1.32 sec 2.09 sec 1.58×

Table I. Time taken by an application running on one core to write 2 GB
locally using a contiguous pattern, alone and in the presence of another
application performing the same access to another file at the same moment.

1) Influence of the backend storage device: To investigate

the I/O interference caused by the storage backend (i.e., disk-

level interference), we ran our microbenchmark on the same

node as the file system, with the file system deployed on

this node only. This removes the network from the factors

contributing to the interference and highlights disk-level

interference. Each application consists of a single client

writing 2 GB contiguously in a file (one file for each client).

Table I shows the resulting write time and slowdown for

different storage backends: HDD, SSD, and RAM.

We confirm that the use of hard disks leads to an impor-

tant relative performance degradation in the presence of

contention. This interference, less present when using

SSDs or local memory, may stem from the additional

disk-head movements produced by interleaved requests

to distinct data files.

Figures 2 and 3 complement our study of interference

at the level of backend storage devices, this time with real

parallel applications and file system. In both figures, two

applications of the same size (480 cores each) write 64 MB

per process, in a contiguous pattern in Figure 2 and in a

strided pattern in Figure 3.

As we expect, local memory and SSDs perform better than

hard disks. In terms of interference, however, the slowdown

is equivalent (up to 2×) regardless of the storage backend

for a contiguous pattern.

The contiguous scenario with synchronization enabled

(Figures 2(a) and 2(b)) shows an interesting result: when

using HDDs (and to some extent SSDs), the graph becomes

asymmetrical. That is, the first application entering an

I/O phase gets better performance than does the second,

although their I/O patterns are the same. Such unfair in-

terference behavior will appear again in other scenarios

throughout this section and will be further explained in

Section IV-B.

Experiments with a strided access pattern and sync en-

abled show that local memory and SSDs have a lower

interference factor compared with that of HDDs. This dif-

ferent behavior stems from the greater tolerance of local

memory and SSDs to random accesses produced not only

by interleaved requests from distinct applications but also

by the strided patterns of the applications themselves.

When the synchronization is disabled, we do not observe

any significant difference in terms of performance and

 0

 10

 20

 30

 40

 50

 60

 70

 80

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk
SSD
RAM

(a) Sync ON (write time)

 0

 0.5

 1

 1.5

 2

 2.5

-40 -30 -20 -10 0 10 20 30 40

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk
SSD
RAM

(b) Sync ON (slowdown)

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

-10 -8 -6 -4 -2 0 2 4 6 8 10

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk
SSD
RAM

Null-aio

(c) Sync OFF (write time)

 0

 0.5

 1

 1.5

 2

-10 -8 -6 -4 -2 0 2 4 6 8 10

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk
SSD
RAM

Null-aio

(d) Sync OFF (slowdown)

Figure 2. Two applications of the same size (480 cores each) write
64 MB per process using a contiguous pattern. We show how the application
behaves for the different storage characteristics: disk, SSD, and RAM. Sync
is enabled in (a) and (b) and disabled in (c) and (d). (c) and (d) also display
the null-aio method for performing I/O, which simply does no disk I/O at
all.

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

-600 -400 -200 0 200 400 600

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk

(a) HDD, Sync ON (write time)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

-600 -400 -200 0 200 400 600

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk

(b) HDD, Sync ON (slowdown)

 30

 35

 40

 45

 50

 55

 60

 65

 70

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
)

dt (s)

SSD
RAM

(c) Others, Sync ON (write time)

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

-40 -30 -20 -10 0 10 20 30 40

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

SSD
RAM

(d) Others, Sync ON (slowdown)

 30

 35

 40

 45

 50

 55

 60

 65

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

Disk
SSD
RAM

(e) Sync OFF (write time)

 0

 0.5

 1

 1.5

 2

-40 -30 -20 -10 0 10 20 30 40

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (s)

Disk
SSD
RAM

(f) Sync OFF (slowdown)

Figure 3. Two applications of the same size (480 cores each) write 64 MB
of data per process to PVFS using a strided pattern. Due to the large write
time when using hard disks and synchronization is enabled, we separated
the figures for HDDs and other devices. For brevity, only 1 application is
shown since both applications have the same size and behavior).

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

1 client per node
16 clients per node

Figure 4. Two applications of
the same size (480 cores) write
data to PVFS using a contiguous
pattern. We show the ∆−graph
when all cores participate by
writing 64 MB blocks (16 clients
per node) and when a single
client per node writes 16 blocks
of 64 MB.

interference for both access patterns. This is expected since

the amount of the generated data is small enough to stay in

the local memory when the synchronization is disabled.

Depending on the type of storage device, the access

pattern may have an influence on the I/O interference

behavior. While the peak interference factor is almost

equal for all storage devices with a contiguous pattern,

a strided pattern leads to higher interference in HDDs.

Given the regularity and symmetry of the ∆-graph with

HDD and synchronization enabled (perfectly triangular fig-

ure with an exactly 2× slowdown when both applications

start at the same time), we hypothesize that while in these

conditions the hard disks are the points of contention, other

backends are fast enough to deal with the congestion, and the

slowdown observed in these situations comes from another

component, such as the network. This could explain the

asymmetry in those cases. This hypothesis will be examined

in the following two sections.

2) Influence of the network interface: The network in-

terface in increasingly multicore nodes is already a limiting

factor to single-application I/O performance. We explored

its role in cross-application interference. Figure 4 illustrates

two scenarios: one in which all cores write 64 MB and one

in which one core per node performs an equivalent amount

of I/O (16× 64 MB).

We note that, as expected, the performance without inter-

ference is improved by using a single core per node instead

of all the cores. This result is in line with the results of our

related work focusing on dedicated I/O cores [10].

In terms of interference, having all the cores perform I/O

not only produces more interference but also leads to unfair-

ness. Indeed the interference pattern observed in Figure 4

with 16 writers per node is asymmetrical, which shows that

the first application entering an I/O burst performs better

than the one that follows it.

While it was already known that fewer writers per

multicore nodes (e.g., aggregators or dedicated I/O

processes) improve the I/O performance of a single

application, we have shown here that this approach also

lowers cross-application interference.

3) Influence of the network: We can hardly rule out the

network from the HPC system because it provides the link

between the computation and the storage nodes. Hence, we

 35

 40

 45

 50

 55

 60

 65

 70

 75

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

1 G Ethernet
10 G Ethernet

(a) Sync ON

 5

 6

 7

 8

 9

 10

 11

 12

-15 -10 -5 0 5 10 15

W
ri
te

 T
im

e
 (

s
)

dt (s)

1 G Ethernet
10 G Ethernet

(b) Sync OFF

Figure 5. Two applications of the same size (480 cores each) write 64 MB
per process using a contiguous pattern. Sync is enabled in (a) and disabled
in the (b). We show the ∆−graph when the network bandwidth is 10 G
(default) and adjusted to the 1 G Ethernet.

highlighted its role by decreasing the network bandwidth

from 10 G to 1 G. Figure 5 shows the results for the different

network bandwidths, with two applications writing in a

contiguous pattern. Surprisingly, we discover that having a

higher network bandwidth neither significantly improves the

applications’ I/O performance nor helps eliminate the inter-

ference. On the contrary, limiting the network bandwidth to

1 G helped eliminate the interference when synchronization

was disabled in the disks, as shown in Figure 5(b), and

helped regain a symmetrical (fair) interference behavior

when synchronization was enabled, as shown in Figure 5(a).

In Figure 5(a), the peak write time in the presence of

contention is the same whether we use a 10 G or a 1 G

network. The reason is that the performance of the I/O path

here is limited by the backend storage devices (HDDs). In

Figure 5(b), the data is not synchronized to disks right away

when reaching storage servers but stays in buffers. Hence,

the network becomes the limiting factor.

The flat ∆-graph observed with a 1 G network stems

from the fact that the network is limiting the rate at which

each application sends requests to the file system, producing

an interference-free behavior. Interesting is the fact that the

resulting write time is in some cases smaller than when using

a 10 G network, which hints that constraining the rate at

which each application can send data is a valid solution for

mitigating interference.

The fairness regained in Figure 5(a), resulting from the

interplay between the storage devices and the network, will

be further explained in Section IV-B.

Counterintuitively, a lower network bandwidth may

not cause higher interference. On the contrary, it can

prevent interference if none of the other components

are subject to contention.

4) Influence of the number of storage servers: Intuitively

and assuming the network is not a point of contention, using

more storage servers increases the aggregate throughput that

any single application can achieve. This situation is demon-

strated by the maximum throughput achieved in Figure 6(a).

In terms of interference, however, it is not clear whether

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Number of Servers

Min
Max

(a) Scaling

 0

 2

 4

 6

 8

 10

-10 -5 0 5 10

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

dt (s)

4 PVFS servers
8 PVFS servers

12 PVFS servers
24 PVFS servers

(b) ∆-graph

Figure 6. Two applications of the same size write data to the PVFS using
a contiguous pattern. Figure (a) shows the maximum throughput achieved
(when the application is alone) and the minimum (in contention) as a
function of the number of servers. Figure (b) shows the throughput for
one of the applications in a ∆-graph, that is, as a function of the delay
between applications.

Number of Servers Interference Factor

4 2.22

8 2.28

12 2.07

24 2.00

Table II. Peak interference factor observed by the application for different
numbers of storage servers.

more servers will mitigate the interference.

We therefore investigated the role of the number of servers

on the interference by deploying PVFS on 24, 12, 8, and

4 nodes with synchronization turned off. Each client writes

64 MB in a contiguous pattern for the first three deployments

and writes 32 MB with 4 PVFS servers because of its lower

capacity. Figure 6(b) shows the observed throughput for

one of the applications depending on the number of PVFS

servers used and on ∆. As expected, increasing the number

of servers improves the throughput, but it cannot eliminate

the interference. I/O interference still exists because each

server still has the same number of clients regardless of the

number of servers.

Table II summarizes the peak interference factors ob-

served for each number of servers. As we can see, the

number of servers does not influence the interference factor

much.

Increasing the number of servers does not affect the

relative performance degradation generated by cross-

application interference.

One could argue that this result would not be true for

small applications that cannot get full parallelism from the

maximum number of storage servers. Yet as we build larger

machines, the number of storage servers tends to get smaller

relative to the number of computation nodes, and we tend to

run larger applications that become quickly limited by this

small number of servers.

5) Influence of targeted storage servers: In our previous

set of experiments, both applications were writing to all

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

12 PVFS servers
6+6 PVFS servers

(a) HDD, sync ON

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

-15 -10 -5 0 5 10 15

W
ri
te

 T
im

e
 (

s
)

dt (s)

12 PVFS servers
6+6 PVFS servers

(b) RAM

Figure 7. Two applications of the same size (480 cores each) write 64 MB
per process using a contiguous pattern. We show the ∆−graph when both
applications use the same set of PVFS servers (12 PVFS servers) and when
each application targets different set of PVFS servers (6+6 PVFS servers)
for the two different storage backends.

servers available. In this section, we split the 12 PVFS

servers into two groups so that each application targets a

different group of servers. Our idea is to remove the servers

and disks from the possible points of contention, leaving

only the network as a shared component between the two

applications.

Figure 7 shows the results for two different storage

backends. As expected, using 2× fewer servers decreases

the performance of a single application.

The behavior with respect to the interference is more in-

teresting, however. We observe that making each application

target a different set of servers removes the interference.

In some cases, the interference observed under contention

for all 12 servers leads to a higher write time than does

using 6 separate servers for each application. This result

would motivate approaches that detect potential congestion

and partition the storage space across applications instead

of letting applications interfere.

Again, the unfairness observed in Figure 7(a) when both

applications target all servers is eliminated when they access

different sets of servers.

Making distinct applications target distinct sets of

servers is a valid solution to at least control if not

mitigate the level of interference.

6) Influence of the data distribution policy: Data files

are distributed across PVFS servers in a round-robin fashion

with a predefined stripe size. Changing this stripe size can

have a significant impact on the resulting performance.

Hence we wanted to check its influence on the interference

as well.

Figure 8 illustrates the interference pattern with stripe

sizes of 64 KB, 128 KB, and 256 KB for a PVFS deployment

with disk and synchronization enabled (Figure 8(a)) and

disabled (Figure 8(b)). Note that 64 KB is the default stripe

size and that each application writes 64 MB per process in

a strided pattern with 256 KB of blocks.

A stripe sizes higher than the default one leads to signifi-

cant performance improvements for both cases. However, the

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

-600 -400 -200 0 200 400 600

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB(default)
128 KB
256 KB

(a) Sync ON

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB(default)
128 KB
256 KB

(b) Sync OFF

Figure 8. Two applications of the same size (480 cores each) write 64
MB of data to the PVFS using a strided pattern, with different stripe sizes
on the server side. Synchronization is enabled in (a), and disabled in (b).

interference seems to disappear when using a larger stripe

size with synchronization turned off. We hypothesize that

this lower interference stems from the smaller number of

servers that each request is striped across. When a large

request is issued by a client, this request is split into smaller

requests sent in parallel to several servers. The operation

completes only when all these servers have treated their

part of the initial request. Hence, any slowdown experienced

by a single server as a result of contention leads to a

global slowdown for the entire operation. Provided that two

servers decide to serve requests from different applications

in a different order, both applications will suffer from a

slowdown observed in servers that have not prioritized their

request.

Here each 256 KB request is striped across 4 servers for

the default stripe size of 64 KB. This is reduced to 2 servers

with a 128 KB stripe size and to 1 with a 256 KB stripe

size. Hence, we see the performance improvement for both

cases and the removal of I/O interference for the disabled

sync case. We believe that interference still exists for the

other scenario since disk is still an active component and

contributing to the I/O interference.

We confirm that making all servers treat requests from

distinct applications in the same order, as done in [3],

is an appropriate way of mitigating I/O interference.

7) Influence of the request size: Similarly to the stripe

size in the file system, the original request size in ap-

plications has an impact on I/O performance. Figure 9

illustrates the interference patterns when each application

writes 64 MB in a strided pattern with a block sizes of

64 KB, 128 KB, 256 KB, and 512 KB. The stripe size in

PVFS is set to the default of 64 KB.

The best performance is achieved for small block sizes

when synchronization is enabled (Figure 9(a)), whereas it

is achieved with large block sizes when synchronization is

disabled (Figure 9(b)).

While the interference pattern shows a fair, proportional

sharing of resources for all block sizes when synchronization

is enabled (symmetric, triangular figure), when synchro-

 300

 400

 500

 600

 700

 800

 900

 1000

-600 -400 -200 0 200 400 600

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB
128 KB
256 KB
512 KB

(a) Sync ON

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

64 KB
128 KB
256 KB
512 KB

(b) Sync OFF

Figure 9. Two applications of the same size (480 cores each) write 64 MB
of data to the PVFS using a strided pattern with a block sizes of 64, 128,
256 and 512 KB. Synchronization is enabled in (a) and disabled in (b).
These graphs show the write time for the application (for brevity, only 1
application is shown since both applications have the same size) depending
on the block size used and on dt.

nization is disabled the interference pattern disappears for

block sizes of 64 and 128 KB. This result is in line with

our observations made in Section IV-A6 and the fact that

such request sizes have fewer servers involved in each

I/O operations. Yet while these small request sizes remove

the interference, they are far from optimal for a single

application.

The fact that no interference is observed between two

applications does not mean that optimal performance

is achieved. Our experiments show that, while some

request sizes allow cross-application interference to be

mitigated because clients interact with fewer servers for

each request, these block sizes remain far from optimal

from a single-application perspective.

Following this observation, we warn any researcher

proposing solutions to the I/O interference that these solu-

tions should be validated in configurations that are already

as good as possible, if not optimal, for a single application

alone. Indeed one can claim that a solution removes the

interference, while much higher performance could actually

be obtained from each application individually by better

optimizing their access patterns.

B. Unexpected behaviors: a flow-control issue

Some of the results of the previous section remain unex-

plained, such as the unfairness of some scenarios, with the

application that starts first getting better performance than

the one starting second.

1) The Incast issue: An unfair behavior results from a

component that adapts to the workload over time. Since

PVFS does not implement any particular scheduling mech-

anism at the server side, there is no reason to think one

flow of requests from an application would be prioritized

over another. The prioritization of one flow over another

cannot result from the backend storage device either, since

this storage device sees only serial accesses from a single

program: the PVFS server. Hence we suspected that such

unfair behaviors stem from the network.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

T
C

P
 W

in
d
o
w

 s
iz

e

Request No

(a) Independent run

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800

T
C

P
 W

in
d
o
w

 s
iz

e

Request No

(b) Interfering

Figure 10. TCP windows sizes of each request during the 64 MB
contiguous data write from a client to the server (a) when the application is
running independently and (b) interfering with the other application, which
also has same size (480 cores each) and started at the same time (dt=0).

To confirm this hypothesis, we reran the experiment

presented in Figure 2(a), in which two applications of 480

cores each write 64 MB per process in a contiguous manner,

in a PVFS file system consisting of 12 servers. We examined

more closely the TCP packets exchanged between a client

of either application and a PVFS server, using tcpdump.

Figure 10(a) shows the evolution of the TCP window size

for the sequence of requests issued by one client to one

server, when an application runs alone. Figure 10(b) shows

the evolution of the TCP window size when the application

is interfering with another one. As we can see, the behavior

is similar except for the fact that, under contention, the

window size drops to nearly 0, making it difficult for the

client to eventually send all its data.

The collapse of the TCP window size as a result of

contention was shown by Phanishayee et al. [17], who

termed it the “Incast problem.” When many clients access

to a server, the TCP congestion control mechanism at this

server forces the window size to drop in all its opened

sockets, leading to an important loss of performance.

Note that this phenomenon does not stem from the net-

work alone (we have seen, by splitting the set of servers into

two groups, that the network is not a point of contention).

It comes from the interplay between the network and the

disks, as well as the lack of flow control mechanism in Trove,

the component of PVFS that forwards requests from sockets

down to the storage devices. Because disks are slow, Trove

cannot keep up with the flow of incoming requests and hence

relies on the TCP congestion control mechanism to limit the

flow the requests from all clients.

The fact that the Incast problem appeared only with

HDD and synchronization enabled, but not with RAM

or SSD, proves that this type of interference results

from the interplay between several components of the

I/O path. What appears to be a network congestion

issue can actually stem from bad flow-control induced

by slow backend storage devices.

2) From Incast to unfairness: This Incast issue explains

many of the results presented in the previous section, starting

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
C

P
 W

in
d
o
w

 s
iz

e
(x

2
0
4
8
 b

y
te

s
)

P
ro

g
re

s
s
(%

)

Time(s)

App A-WindowSize
App A-progress

(a) Application A

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100

T
C

P
 W

in
d

o
w

 s
iz

e
(x

2
0

4
8

 b
y
te

s
)

P
ro

g
re

s
s
(%

)

Time(s)

App B-WindowSize
App B-progress

(b) Application B

Figure 11. TCP windows sizes and progress of the data transfer from one
client of each application and one of the servers.

with the unfairness observed in some scenarios. Figure 11

shows the behavior of two applications, one of which starts

10 seconds after the other. We plot the TCP window size and

the progress of the I/O transfer to this server as a function

of time, for one client of each application. Whereas the first

application starts seeing a slowdown of its progress at around

90 percent, the slowdown can be observed at 40 percent

for the second application; indeed, the window size hardly

manages to get back to a high value.

The appearance of unfair behavior as a result of Incast

is a good way to evaluate the conditions that cause Incast

to appear. For example, Figure 12 shows the interference

behavior when running different numbers of clients. An

interesting observation is that while the unfair behavior

benefiting the first application is clear when using 960 or

704 clients in total, the trend seems to reverse at smaller

client counts (256 to 512 clients), where the first application

is more impacted than the second one.

We hypothesize the following explanation. At large client

counts, the TCP window size of the second application

immediately collapses as a result of contention, allowing the

first application to complete seemingly without contention.

At intermediate client counts, the TCP window size is

reduced in both applications but does not collapse. Thus

the first application is impacted as well. At small process

counts, the servers are able to handle all the requests without

having to shrink the window size. The interference observed

becomes that of the backend storage devices.

As the number of clients increases, we are more likely

to observe degenerated flow-control issues as a result

of the file system not being able to handle the load.

3) Explanation of counterintuitive results from a flow-

control perspective: The interplay between components re-

sulting in a bad flow control can explain both the intuitive

and counterintuitive results obtained previously.

Using one core per node instead of all cores to perform

I/O, as done in Section IV-A2, reduces the number of

sockets involved in an application’s I/O phase and forces

a serialization of requests at the level of each node. This

constrains the rate at which each single node can write and

 0

 10

 20

 30

 40

 50

 60

 70

 80

-60 -40 -20 0 20 40 60

W
ri
te

 T
im

e
 (

s
)

dt (s)

960 clients (default)
704 clients
512 clients
352 clients
256 clients
128 clients

Figure 12. ∆-graph illustrating the appearance of the Incast problem as we
increase the number of clients. Each application writes 64 MB per process
in a contiguous pattern. PVFS is deployed on 12 servers with hard disks
as backend, synchronization enabled. The number of clients shown is the
total number of clients.

therefore prevents the Incast problem from happening.

Using a low-bandwidth network, as done in Sec-

tion IV-A3 with a 1 G network instead of a 10 G, also

mitigates the Incast problem by constraining the rate at

which each client can send requests. By forcing a reduction

of bandwidth at the source, the rate of requests becomes

sustainable to the backend storage devices and thus the TCP

window size does not collapse.

Splitting the servers into two groups completely pre-

vents the interference from happening (Figure 7(a)) because

a server has to interact with 2× fewer clients, therefore

maintaining flow control on 2× fewer links.

V. RELATED WORK

As we move toward the exascale era, performance

variability in HPC systems remains a challenge. Cross-

application I/O interference is one of the major causes of

this performance variability. A large body of studies have

sought to eliminate cross-application I/O interference by

focusing on possible sources of this interference. For exam-

ple, Zhou et al. [18] present an I/O-aware batch scheduler

that addresses the interference problem at the level of batch

scheduling. The batch scheduler schedules and coordinates

the I/O requests on the fly by considering the system state

and I/O activities. Gainaru et al. [19] show the performance

degradation due to I/O congestion and propose a new sched-

uler that tries to eliminate this congestion by coordinating

the I/O requests depending on the application past behaviors

and system characteristics. Boito et al. [11] propose AGIOS,

an I/O scheduling library for parallel file systems. AGIOS

incorporates the applications’ access pattern information into

the scheduler based on the traces generated by the scheduler

itself and uses this information to coordinate the I/O requests

in order to prevent congestion to the file system. As we

observed, however, although scheduling-level solutions can

help control the level of interference, it does not always lead

to improved performance at the same time.

Some works focus on finding solutions at the disk level,

the lowest level that I/O interference can occur in the I/O

stack. Zhang and Jiang [20] point out that frequent disk

head seeks, because of the access interference on each I/O

node, can seriously hurt the performance of a system. They

propose a data replication scheme, InterferenceRemoval, to

eliminate I/O interference. InterferenceRemoval tries to limit

the number of the I/O requests served by each I/O node.

Although this solution is in parallel with the Incast problem

we presented in our work, we observe that it is not present

for only a single source (e.g., disk) of interference.

Some research efforts consider network contention as the

major contributor to the I/O interference. Bhatele et al. [21]

investigated the performance variability in Cray machines

and found out that the interference of multiple jobs that

share the same network links is the primary factor for high

performance variability. Jokanovic et al. [22] introduce the

concept of quiet neighborhoods, a job allocation technique

based on the job sizes. This technique helps control the

fragmentation in the HPC systems and reduces the number

of jobs sharing the network, with the aim of minimizing the

interference.

Some works study the interference problem with a special

emphasis on a single factor. Kuo et al. [23] investigated

the influence of the file access pattern on the degree of

interference observed. They found out that chunk size can

determine the degree of interference and that the interference

effect induced by various access patterns in the HPC system

can slow the applications by a factor of 5. Our work is

different in the targeted objective, since we try to identify

all possible sources of interference under various scenarios,

as well as their interplay.

Although indeed important, the aforementioned studies

–by focusing only on a single potential source– do not

necessarily provide a complete solution for the interference

problem. In contrast, we consider the possible sources of

interference together and conduct an extensive experimental

study. Thus, our work can provide useful insights into

the I/O interference phenomenon. Furthermore, it can help

researchers tackle the interference problem across all com-

ponents of the I/O system.

VI. CONCLUSION AND FUTURE WORK

Cross-application interference in HPC systems is an im-

portant problem that can affect the efficiency of an entire

machine. This problem will be even more important with

exascale machines that will allow more applications to run

concurrently. In this work, we investigated the potential

root causes of I/O interference. Our findings demonstrate

that interference results from the interplay between several

components in the I/O stack. For instance, we observe

that the impact of the request size on interference varies

depending on the configuration of components in the I/O

path. Our findings also illustrate many counter-intuitive

results besides the intuitive ones. For example, we show

that using a low-bandwidth network in some scenarios can

eliminate the interference problem, which stems from the

interplay between the different points of contention. Hence,

we believe that researchers must understand the tradeoffs

between several components in the I/O stack and must

address the interference problem in its entirety, rather than

focusing on any single component.

Several avenues remain open for future work. One is to

expand our experimental study by looking at other plat-

forms than Grid’5000, other file systems (e.g., Lustre), other

workload types (e.g., read-only) and other types of network

(e.g., InfiniBand). As the ultimate goal, by leveraging the

knowledge gained in our work, we plan to design event-

driven simulators that can accurately model the components

subject to interference.

ACKNOWLEDGMENT

We thank Rob Latham and Phil Carns from Argonne National

Laboratory for their valuable technical insights into PVFS, and Gail

Pieper for her comments on our paper. This work was done in the

framework of a collaboration between the KerData joint Inria -

ENS Rennes - Insa Rennes team and Argonne National Laboratory

within the Joint Laboratory for Extreme-Scale Computing, and the

Data@Exascale associate team. The experiments presented in this

paper were carried out using the Grid5000 testbed, supported by

a scientific interest group hosted by Inria and including CNRS,

RENATER, and several universities as well as other organizations

(see http://www.grid5000.fr/). This material is based upon work

supported by the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research, under contract

number DE-AC02-06CH11357.

REFERENCES

[1] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim,
“CALCioM: Mitigating I/O interference in HPC systems
through cross-application coordination,” in Proceedings of
the IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’14), Phoenix, AZ, USA, May 2014.
[Online]. Available: http://hal.inria.fr/hal-00916091

[2] X. Zhang, K. Davis, and S. Jiang, “IOrchestrator: Improving
the Performance of Multi-Node I/O Systems via Inter-
Server Coordination,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/SC.2010.30

[3] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang,
“Server-Side I/O Coordination for Parallel File Systems,”
in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
ser. SC ’11. New York, NY, USA: ACM, 2011, pp.
17:1–17:11. [Online]. Available: http://doi.acm.org/10.1145/
2063384.2063407

[4] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and
A. Dilger, “A Novel Network Request Scheduler for a
Large Scale Storage System,” Computer Science - Research
and Development, vol. 23, pp. 143–148, 2009. [Online].
Available: http://dx.doi.org/10.1007/s00450-009-0073-9

[5] A. Lebre, G. Huard, Y. Denneulin, and P. Sowa, “I/O Schedul-
ing Service for Multi-Application Clusters,” in in Proceedings
of IEEE Cluster 2006, 2006.

[6] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and
T. Talpey, “CA-NFS: A Congestion-Aware Network File
System,” in Proceedings of the 7th conference on File and
storage technologies, ser. FAST ’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 99–110. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1525908.1525916

[7] Y. Tanimura, R. Filgueira, I. Kojima, and M. Atkinson,
“Poster: Reservation-Based I/O Performance Guarantee for
MPI-IO Applications Using Shared Storage Systems,” in High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, 2012, pp. 1384–1384.

[8] INRIA, “Grid’5000: http://www.grid5000.fr.”

[9] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kor-
denbrock, K. Schwan, and M. Wolf, “Managing Variability
in the IO Performance of Petascale Storage Systems,” in
Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. Washington, DC, USA: IEEE Com-
puter Society, 2010, pp. 1–12.

[10] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,
“Damaris: How to Efficiently Leverage Multicore Parallelism
to Achieve Scalable, Jitter-Free I/O,” in Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, Sept.
2012, pp. 155–163.

[11] F. Zanon Boito, R. Kassick, P. O. A. Navaux, and Y. Den-
neulin, “AGIOS: Application-Guided I/O Scheduling for Par-
allel File Systems,” in Parallel and Distributed Systems
(ICPADS), 2013 International Conference on. IEEE, 2013,
pp. 43–50.

[12] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,
R. Ross, L. Ward, and P. Sadayappan, “Scalable I/O Forward-
ing Framework for High-Performance Computing Systems,”
in Cluster Computing and Workshops, 2009. CLUSTER ’09.
IEEE International Conference on, Sept. 2009, pp. 1–10.

[13] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov,
M. Papka, R. Ross, and K. Yoshii, “Accelerating I/O For-
warding in IBM Blue Gene/P Systems,” in 2010 International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Nov. 2010, pp. 1–10.

[14] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones,
A. Knüpfer, K. Iskra, R. Ross, W. E. Nagel, and
S. Poole, “Enabling Event Tracing at Leadership-Class Scale
Through I/O Forwarding Middleware,” in Proceedings of the
21st international symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’12. New York,
NY, USA: ACM, 2012, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/2287076.2287085

[15] H. Shan and J. Shalf, “Using IOR to Analyze the I/O Perfor-
mance for HPC Platforms,” in Cray User Group Conference
2007, Seattle, WA, USA, 2007.

[16] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur,
“PVFS: a Parallel File System for Linux Clusters,” in Pro-
ceedings of the 4th annual Linux Showcase & Conference -
Volume 4. Berkeley, CA, USA: USENIX Association, 2000.

[17] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan, “Measurement
and Analysis of TCP Throughput Collapse in Cluster-Based
Storage Systems,” in FAST, vol. 8, 2008, pp. 1–14.

[18] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang,
and Z. Lan, “I/O-Aware Batch Scheduling for Petascale
Computing Systems,” in IEEE International Conference on
Cluster Computing, 2015.

[19] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and
M. Snir, “Scheduling the I/O of HPC Applications Under

Congestion,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2015, pp. 1013–1022.

[20] X. Zhang and S. Jiang, “InterferenceRemoval: Removing
Interference of Disk Access for MPI Programs through Data
Replication,” in Proceedings of the 24th ACM International
Conference on Supercomputing. ACM, 2010, pp. 223–232.

[21] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There
Goes the Neighborhood: Performance Degradation due to
Nearby Jobs,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis. ACM, 2013, p. 41.

[22] A. Jokanovic, J. Sancho, G. Rodriguez, A. Lucero,
C. Minkenberg, and J. Labarta, “Quiet neighborhoods: Key to
protect job performance predictability,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
May 2015, pp. 449–459.

[23] C.-S. Kuo, A. Shah, A. Nomura, S. Matsuoka, and F. Wolf,
“How File Access Patterns Influence Interference among
Cluster Applications,” in IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2014, pp. 185–193.

