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Accumulating research in rodents and humans indicates that exercise benefits brain function
and may prevent or delay onset of neurodegenerative conditions. In particular, exercise
modifies the structure and function of the hippocampus, a brain area important for learning
and memory. This review addresses the central and peripheral mechanisms underlying the
beneficial effects of exercise on the hippocampus. We focus on running-induced changes
in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity,
neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity
is also highlighted. We discuss recent evidence that systemic factors released from peripher-
al organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines)
during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and
memory function. A comprehensive understanding of the body–brain axis is needed to
elucidate how exercise improves hippocampal plasticity and cognition.

T
here is a global increase in physical inactivity
(Guthold et al. 2008; Dumith et al. 2011;

Hallal et al. 2012; Kohl et al. 2012). Sedentary

behavior is associated with increased risk of
cognitive decline, whereas exercise boosts brain

function (Duzel et al. 2016).Moreover,multiple

neurological and neurodegenerative diseases,
and conditions such as stroke, traumatic brain

injury, and substance addiction, which lack ef-

fective medications, are ameliorated by exercise
(Table 1). Research into the underlying cellular

mechanisms has shown that in rodents running

results in structural, neurochemical, mitochon-
drial, and vascular changes in the brain (Neeper

et al. 1996; Eadie et al. 2005; Stranahan et al.

2007; Dietrich et al. 2008; van Praag, 2008; Du-
zel et al. 2016). In this review, we will focus on

the hippocampus, a brain area that is essential

for learning andmemory and exhibits extensive
functional plasticity in response to exercise. In

the dentate gyrus (DG) of the hippocampus, the

production of new neurons is increased by vol-
untary wheel running in rodents in association

with enhanced synaptic plasticity and memory

function (van Praag et al. 1999a,b; Vivar et al.
2013; Voss et al. 2013). We will discuss local

factors in the hippocampus such as neurotro-

phins and neurotransmitters as well as distal
peripheral components (myokines, hepatokines,

and adipokines) that may mediate changes in

neural plasticity as a result of exercise (Fig. 1).

EXERCISE AND THE HIPPOCAMPUS

The hippocampus is critical for the acquisition

of newmemories (Squire 1992; Riedel et al. 1999;
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Scoville and Milner 2000) and is affected by

aging and age-related cognitive disorders, in-
cluding progressive atrophy of hippocampal

volume in humans (Hackert et al. 2002; Raji

et al. 2009; Duzel et al., 2016), a process that
may be attenuated or ameliorated by exercise

(Erickson et al. 2009, 2011, 2014). Higher fit-

ness levels are associated with larger hippocam-
pal volume, and better performance on memo-

ry tests (Erickson et al. 2009, 2011; Voss et al.

2013). Intervention studies show that aerobic
training 3 days per week for at least 3 months

to 1 year can prevent and/or reverse the age-

related decline in hippocampal volume (Erick-
son et al. 2011;Maass et al. 2015; ten Brinke et al.

2015). Interestingly, the exercise-induced in-

crease in grey matter volume seems to occur in
the hippocampus (Maass et al. 2015; Duzel et al.

2016), entorhinal (Whiteman et al. 2016), and

prefrontal cortex (Erickson et al. 2014), with no
change in the thalamus or caudate nucleus

(Erickson et al. 2011).

The hippocampus consists of three sub-
fields: area CA1, area CA3, and the DG; each

play a role in memory function. Area CA1 is

considered to encode memories (Nakazawa
et al. 2004), whereas area CA3 is thought to

mediate retrieval of complete memories from

partial information (pattern completion) (Na-
kazawa et al. 2002, 2003). The DG is deemed

important for spatial pattern separation, the

process by which similar incoming information
or stimuli is transformed into distinct nonover-

lapping experiences (Leutgeb et al. 2007;

McHugh et al. 2007; Kesner and Rolls 2015).
The DG is unique because it can generate new

neurons in the adult brain (Altman and Das

1965), which are considered to play a functional
role in spatial memory and pattern separation

(Fig. 2) (Vivar et al. 2013). Residual stem cells

located in the DG inner granule cell layer
continue to proliferate anddifferentiate inmam-

mals, including humans (Kuhn et al. 1996;

Eriksson et al. 1998; Spalding et al. 2013). The
stem/progenitor cells consist of quiescent type-1
radial glia-like cells that express glial fibrillary

acidic protein (GFAP), nestin and Sox2, and
type-2 cells expressing Sox-2 that can generate

both astrocytes as well as rapidly proliferating

neuronal progenitor cells (NPCs) that differen-

tiate into mature granule cells over several weeks
(Kronenberg et al. 2003; Kempermann et al.

2004; Bonaguidi et al. 2011; Encinas et al.

2011; Gebara et al. 2016). The proliferation,
survival, and integration of new neurons can

be up- or down-regulated by intrinsic factors,

pathological events, and activity (for review,
see Zhao et al. 2008; Hsieh and Zhao 2016).

Running increases neurogenesis in the DG

of the hippocampus (for review, see van Praag
2008; Vivar et al. 2013; Voss et al. 2013; Patten

et al. 2015). The neurogenic response to run-

ning results in an ≏2–3-fold increase in new
neurons, depending on genetic background

(Clark et al. 2011; Gregoire et al. 2014), age

(van Praag et al. 2005; Kronenberg et al. 2006;
Kannangara et al. 2011; Marlatt et al. 2012),

running wheel type (Creer et al. 2010), labeling

method used (bromodeoxyuridine [BrdU],
retroviral vector [Vivar et al. 2016], or double-

cortin [DCX] [Kuhn et al. 2016]), and distance

run (Clark et al. 2011). Running-induced neu-
rogenesis is localized to the dorsal rather than

the ventral DG (Bolz et al. 2015; Vivar et al.

2016). The dorsal aspect of the hippocampus
is considered important for spatial navigation

(Moser et al. 1995), whereas the ventral hippo-

campus seems to be more attuned to changes
in mood (Henke 1990; Kjelstrup et al. 2002).

Consistently, running is associated with im-

proved spatial memory function (van Praag
et al. 1999b; Anderson et al. 2000; van der

Borght et al. 2007; Clark et al. 2008; Patten

et al. 2015). New neurons are also considered
to play a role in DG-mediated pattern separa-

tion (Clelland et al. 2009; Sahay et al. 2011), the

ability to differentiate similar information
(Aimone et al. 2011). Running improves fine

discrimination (Creer et al. 2010; Bolz et al.

2015) as does enhancement of adult neurogen-
esis in amousemodel with conditional ablation

of BAX-dependent programmed cell death in

neural progenitors (Sahay et al. 2011). It
has also been suggested that increasing neuro-

genesis by running may cause forgetting by

weakening preexistingmemories inmice (Akers
et al. 2014; Epp et al. 2016). A recent study in

rats, however, could not replicate these results,

On the Run for Hippocampal Plasticity
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casting doubt on this hypothesis (Kodali et al.

2016).
Although a running-induced increase in

new neuron number may underlie, in part,

the benefits for cognitive function, qualitative
changes in maturation, morphology, and con-

nectivity are likely also important. Runningmay

shorten the cell cycle of rapidly amplifying
progenitor cells (Farioli-Vecchioli et al. 2014;

see, however, Fischer et al. 2014) and accelerate

neuronalmaturation of adult-bornDGneurons
(Zhao et al. 2006; Piatti et al. 2011; Steib et al.

2014). In particular, retroviral labeling studies

(van Praag et al. 2002; Zhao et al. 2006) have

shown that running promotes spine formation
in the outer molecular layer of adult-born den-

tate granule cell dendrites (Zhao et al. 2014). In

addition, dendritic spine motility, total den-
dritic length, branch points, dendritic complex-

ity, and mitochondria density are significantly

higher in runners’ adult-born DG neurons for
up to 3 weeks post-retroviral injection (Zhao

et al. 2006; Dietrich et al. 2008; Steib et al.

2014). However, by the fourth week, dendritic
morphology and mitochondria content are in-

distinguishable from adult-born DG neurons

RunnerControl

A

B

In
p

u
ts

N
e

w
 n

e
u

ro
n

s

Figure 2. Neurogenesis in the adult mouse dentate gyrus (DG) of the hippocampus and a diagram of modifi-
cation of new neuron network by running. (A) Photomicrographs of new neurons (green) in a coronal mouse
brain section; a mouse 2 months after injection with retrovirus-expressing green fluorescent protein (GFP) in
the DG. Sectionwas stained for GFP (green) andGABAergic inhibitory interneuronmarker parvalbumin (red),
and nuclei were labeled with 40,6-diamidino-2-phenylindole (DAPI, blue). (B) Diagram illustrating how run-
ning reorganizes the network of new hippocampal neurons (Vivar et al. 2016). One month of running in male
C57Bl/6 mice enhanced DG neurogenesis (threefold). Afferent input (squares) was also increased, but less so
(twofold). The resulting change in new neuron connectivity may promote sparse encoding of information and
result in a more robust memory-processing system. The expansion of the neural network and enhanced dis-
tribution of information over new DG cells may provide more structural redundancy in which failure of one
pathway can be compensated for by another.
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in the sedentary brain (Zhao et al. 2006, 2014;

Steib et al. 2014). Similar observations were
made in a live imaging study in mice housed

in an enriched environment containing run-

ning wheels (Gonçalves et al. 2016). Accelerated
maturation in runners may vary along the tem-

poral axis, with dorsal aspect exhibiting the fast-

est maturation (Piatti et al. 2011).
Running also alters the circuitry into which

new neurons integrate (Vivar et al. 2016). Anal-

ysis of the direct afferent inputs to 1-month-old
newly born neurons using a dual-virus selective

neuroanatomical tracing approach (Vivar et al.

2012) showed that running expanded the num-
ber of afferent cells synapsing onto newborn

neurons. Running recruited presynaptic inputs

from the entorhinal cortex, mammillary nuclei,
and medial septum (Vivar et al. 2016). These

brain regions are important for relaying content

and context of experiences (Knierim et al. 2014;
Knierim 2015; Kropff et al. 2015), spatial–

temporal information processing (Vann 2010;

Dillingham et al. 2015), and initiating hippo-
campal theta rhythms (Thinschmidt et al.

1995; Vertes et al. 2004). Within the hippocam-

pus, running reduced the ratio of inhibitory
interneurons and glutamatergic mossy cell in-

nervation to new neurons (Vivar et al. 2016).

However, inhibitory synaptic transmission onto
newborn neurons was not affected, and excit-

atory synaptic transmission showed only a small

decrease in amplitude but not frequency (Vivar
et al. 2016). Achieving the same excitatory and

inhibitory drive with less afferent input per

neuron may result in more efficient integration
of new neurons. Moreover, the overall ratio of

afferent cells to newborn neurons was decreased

(Vivar et al. 2016). A reduction in inputs con-
verging onto individual neuronsmay be condu-

cive to pattern separation by facilitating sparse

activation (Fig. 2).

NEUROTRANSMITTERS

The elaborate network connectivity of newly

born neurons with structures throughout the

brain is consistent with involvement of multiple
neurotransmitters in the development and in-

tegration of newly born neurons (for review, see

Suh et al. 2009). Glutamate and g-aminobutyr-

ic acid (GABA) are the primary excitatory
and inhibitory neurotransmitters, respectively,

in the brain. Both regulate the integration and

survival of newly born neurons (Ge et al. 2006;
Tashiro et al. 2006). Glutamate is also important

for exercise-induced changes in DG synaptic

plasticity. Running enhances DG long-term
potentiation (LTP), a form of synaptic plasticity

that is considered a cellular model for learning

and memory (Bliss and Collingridge 1993), in
vivo and in vitro (van Praag et al. 1999a; Farmer

et al. 2004; Vasuta et al. 2007; Bruel-Jungerman

et al. 2009; O’Callaghan et al. 2009; Liu et al.
2011), potentially by lowering the LTP induc-

tion threshold. Indeed, weak theta-patterned

stimulation that did not produce LTP in the
DG of controls, elicited long-lasting LTP in

rats housed with a running wheel (Farmer

et al. 2004). Acutely, voluntary movement and
sensory stimulation can elicit theta pattern ac-

tivity in the hippocampus (Bland 1986; Czurko

1999; Bland and Oddie 2001), specifically in the
CA1 and DG. Thus, exercise may “prime” the

network to learn by initiating oscillations that

promote plasticity (Greenstein et al. 1988; Pav-
lides et al. 1988; Christie and Abraham 1992;

Abraham et al. 2001; Orr et al. 2001). The con-

tribution of new neurons to running-induced
DG plasticity is supported by recordings from

individual newly born neurons in slices derived

from mice housed under running enrichment
conditions, which exhibited increased LTP

(Schmidt-Hieber et al. 2004). Running elevates

DG gene expression of glutamate receptor sub-
units NR2A, NR2B, and glutamate receptor 5

(Farmer et al. 2004). The NR2BN-methyl-D-as-

partate (NMDA) receptor subunit is highly ex-
pressed in new neurons (Ge et al. 2007; Kheirbek

et al. 2012) and NR2B overexpression facilitates

LTP induction (Tang et al. 1999, 2001).
Running also modulates inhibitory neuro-

transmission. Recent research shows increased

expression levels of GABA receptor subunits
and GAD67 in hippocampal subfields, includ-

ing the DG (Hill et al. 2010). In addition, exer-

cise elevated ventral DG extracellular GABA
release and vesicular GABA transporter expres-

sion. Enhanced local inhibition reduced DG
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expression of immediate early genes (Schoen-

feld et al. 2013). Increased inhibitionmay atten-
uate anxiety and improve cognition. Indeed,

reduced inhibitory tone in the DG–CA3 area

has been associated with aging-related memory
deficits (Bakker et al. 2012). Running has also

been shown to alter various other neurotrans-

mitters and neuromodulators (for a review,
see Basso and Suzuki 2017), such as mono-

amines (dopamine, serotonin, norepinephrine)

(Chaouloff 1989; Dishman 1997), endocanna-
binoids (Dietrich and McDaniel 2004; Fuss

and Gass 2010; Tantimonaco et al. 2014), and

opioids (Sforzo 1989), which can contribute
to changes in hippocampal synaptic plasticity.

The serotonergic (5-HT) system plays an im-

portant role in the exercise-induced increase
in adult neurogenesis (Klempin et al. 2013).

Recent research has identified 5-HT3 receptor

subunit signaling as an underlying mechanism.
Ablation of the 5-HT3 receptor subunit abol-

ishes running-induced neurogenesis and re-

duces antidepressant effects (Kondo et al. 2015).
Learning, measured by contextual fear condi-

tioning, was intact, consistent with a study in

which adult neurogenesis was ablated by X-ir-
radiation in runners (Clark et al. 2008).

BRAIN-DERIVED NEUROTROPHIC FACTOR

Neurotrophins play a significant role in brain

plasticity (Intlekofer and Cotman 2013). One
of the first growth factors associated with

exercise was brain-derived neurotrophic factor

(BDNF). In animal models, running increases
BDNF expression levels in the hippocampus

(Neeper et al. 1995; Kobilo et al. 2011a; Marlatt

et al. 2012; Abel and Rissman 2013), in associ-
ation with improvements in hippocampal plas-

ticity, spatial memory, and object recognition

(Vaynman et al. 2004; Griffin et al. 2009;
Cassilhas et al. 2012; Gomes da Silva et al.

2012). In humans, exercise-induced increases

in BDNF serum levels are associated with
changes in hippocampal volume (Erickson

et al. 2011). Conversely, reduced BDNF serum

levels are observed with age-related decline in
hippocampal volume (Erickson et al. 2010).

BDNF promotes synaptic plasticity through

downstream targets, cAMP-response element-

binding (CREB) protein, synapsin I, and synap-
tophysin, while simultaneously increasing its

own messenger RNA (mRNA) and its receptor

tyrosine kinase B (TrkB) (Vaynman et al. 2003,
2006). Blocking hippocampal BDNF in rats pre-

cludes exercise-induced cognitive enhancement

and hippocampal plasticity (Vaynman et al.
2004). In addition, ablation of the TrkB receptor

in neural progenitor cells abolishes the neuro-

genic response to running (Li et al. 2008). Anal-
ysis of the hippocampal subfields shows that

exercise increases BDNF mRNA levels in the

DG rather than in area CA1 (Farmer et al. 2004).
Exercise-induced changes in neurotrophin

levels are likely mediated by several neural cell

types. Astrocytes are closely associated with new
neuron dendrites (Vivar et al. 2012) and sup-

port their development (Sultan et al. 2015).

Astrocytes synthesize BDNF and contain TrkB
receptors (Zafra et al. 1992; Miklič et al. 2004).

Running may up-regulate hippocampal astro-

cyte number (Li et al. 2005; Saur et al. 2014),
lengthen their processes and increase cell body

size (Saur et al. 2014; Brockett et al. 2015), and

elevate TrkB expression levels (Fahimi et al.
2016). Other nonneuronal cell types may also

play a role. Macrophage migration inhibitory

factor is a cytokine that is up-regulated by exer-
cise and can induce BDNF expression (Moon

et al. 2012). Microglia number is down-regulat-

ed by running (Gebara et al. 2013). However,
ablation of hippocampal microglia impairs

exercise-induced neurogenesis (Vukovic et al.

2012), indicating that cytokines produced by
microglia may be required to maintain neuro-

genic processes (Walton et al. 2006; Ziv et al.

2006; Speisman et al. 2013).
(Epi)genetic factors also play an important

role in the function of this neurotrophin. A

single-nucleotide polymorphism of the BDNF
gene (Val/Met polymorphism) that occurs in

20% to 30% of Caucasians decreases activity-

dependent BDNF secretion (Egan et al. 2003;
Chen et al. 2004) and is associated with in-

creased susceptibility to depression and anxi-

ety-related disorders (Sen et al. 2003; Verhagen
et al. 2010), reduced memory function (Egan

et al. 2003; Soliman et al. 2010), and impaired
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neural plasticity that is resistant to antidepres-

sants (Bath et al. 2012). In addition, the effect
of exercise on hippocampal volume in human

subjects is attenuated in Met carriers as

compared with Val/Val subjects (Brown et al.
2014a). More recent evidence shows that

in adult mice with this polymorphism the

running-induced increase in BDNF and neuro-
genesis are attenuated (Ieraci et al. 2016). These

results suggest that exercise may support cogni-

tion, in part, through BDNF. The exercise-
induced increase in BDNF may also be mediat-

ed through epigenetic changes (Gomez-Pinilla

et al. 2011; Abel andRissman 2013).HistoneH3
acetylation is increased by exercise and associ-

ated with enhanced gene transcription, and can

specifically up-regulate BDNF gene expression
(Gomez-Pinilla et al. 2011; Ieraci et al. 2015).

Hippocampal histone deacetylase (HDAC), on

the other hand, can be down-regulated by
exercise (Abel and Rissman 2013), and thereby

up-regulate BDNF expression (Intlekofer and

Cotman 2013; Sleiman et al. 2016).

CEREBROVASCULAR PLASTICITY

Exercise modulates the cerebrovasculature,

which may allow for better perfusion, delivery

of oxygen, nutrients, neurotrophins, and other
factors that may promote brain function. Acute

bouts of walking and running increase cerebral

blood flow (CBF) in several regions within the
animal brain, including the hippocampus (Os-

borne 1997; Nakajima et al. 2003; Nishijima

and Soya 2006; Nishijima et al. 2012, 2016),
cortex (Delp et al. 2001; Gu et al. 2003), and

striatum (Osborne 1997), but not the olfactory

bulb (Nishijima et al. 2012) or hypothalamus
(Delp et al. 2001), suggesting region-specific

control of CBF by exercise. In the rat hippocam-

pus, CBF is increased soon after walking initia-
tion and returns to baseline levels right after-

ward (Nakajima et al. 2003). Longer bouts

resulted in prolonged CBF elevation after cessa-
tion of running (10–20 min) (Nishijima and

Soya 2006). Thus, exercise duration and inten-

sity differentially modulate CBF. Neuronal ac-
tivity may drive regional hippocampal CBF in-

creased by exercise. Infusion of tetrodotoxin

(TTX), NMDA receptor antagonist (MK-801),

and NO synthase inhibitor (L-NAME) sup-
pressed the increase in hippocampal CBF in-

duced by walking (Nishijima et al. 2012). In

humans, exercise also increases CBF (Querido
and Sheel 2007; Secher et al. 2008; Ogoh and

Ainslie 2009) and counteracts age-related de-

cline in CBF (Ainslie et al. 2008; Viboolvorakul
and Patumraj 2014) and cerebrovascular reac-

tivity (Barnes et al. 2013; Murrell et al. 2013). In

addition, gadolinium contrast imaging in hu-
mans revealed hippocampal perfusion changes

after long-term exercise in young (Pereira et al.

2007) and older adults (Maass et al. 2015).
Prolonged exercise training improves cere-

brovascular plasticity in rodents (Lange-As-

schenfeldt and Kojda 2008; Tarumi and Zhang
2014; Barnes 2015), likely by increasing angio-

genesis in several brain regions, including the

hippocampus (van Praag et al. 2005; Clark
et al. 2009; van der Borght et al. 2009), striatum

(Clark et al. 2009), cerebellum (Black et al. 1990;

Lopez-Lopez et al. 2004), and cortex (Swain
et al. 2003; Viboolvorakul and Patumraj 2014).

The increase in angiogenesis is preserved in

aged animals (Ding et al. 2006). Vascular
endothelial growth factor (VEGF) may mediate

exercise-induced vascular plasticity, adult neu-

rogenesis, and communication between periph-
eral tissues and brain (Carmeliet 2003; Fabel

et al. 2003; Cotman et al. 2007; Udo et al.

2008). VEGF is involved in blood vessel forma-
tion (Prior et al. 2003; Gavin et al. 2004; Kraus

et al. 2004) and can attenuate the aged-related

decline in neurogenesis (Licht et al. 2016). The
importance of VEGF for neurogenesis was first

shown in songbirds. A seasonal increase in

neurogenesis in the higher vocal center of
male canaries involves a testosterone-linked

VEGF to BDNF signaling pathway (Louissaint

et al. 2002). In rodents, overexpression of VEGF
enhanced blood vessel proliferation in the hip-

pocampus in association with an increase in

hippocampal neurogenesis (Cao et al. 2004;
Licht et al. 2011). VEGF may be required for

exercise-induced hippocampal neurogenesis.

Using a systemic pharmacological inhibitor of
VEGF, Fabel et al. (2003) showed that VEGF is

necessary for voluntary running-enhanced hip-
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pocampal neurogenesis, supporting the link

between physical activity, angiogenesis, and
neurogenesis (Trejo et al. 2001; Voss et al. 2013).

PERIPHERAL ORGANS AND BRAIN
FUNCTION

Parabiosis studies between young and aged an-

imals have provided evidence that factors in

blood can regulate vascular remodeling, CBF,
and adult neurogenesis (Villeda et al. 2011; Kat-

simpardi et al. 2014). Peripheral organs such as

skeletal muscle, adipose tissue, and liver secrete
various molecules and vesicles into circulation

to promote systemic homeostasis during exer-

cise (Hansen et al. 2011; Pedersen and Febbraio
2012). Indeed, glucose and lipid metabolic ad-

aptations to exercise are widely studied in these

peripheral tissues. However, the effects of exer-
cise-induced system metabolic changes on be-

havior and cognition as well as the underlying

cellular mechanisms have largely remained
unexplored. Below, we describe recent research

that has begun to reveal metabolic energy me-

tabolism pathways that may elicit and coordi-
nate the adaptive responses to exercise in the

brain.

Muscle

Skeletal muscle releasesmyokines (Pedersen and

Febbraio 2008; Hawley et al. 2014) that may be
linked to neural plasticity. This putative link is

supported by clinical and basic research. For

instance, children with Duchenne muscular
dystrophy have cognitive deficits (Scheinfeld

1950; Black 1973; Florek and Karolak 1977;

Bushby 1992; Lenk et al. 1993; Hinton et al.
2000). In addition, mdx (X-linked muscular

dystrophy) mice have impaired memory func-

tion (Vaillend et al. 1995; Anderson et al. 2002).
An important “master regulator” of muscle

physiology is AMP-activated protein kinase

(AMPK) (Hardie 2011). Activation of AMPK
with an agonist, AICAR, decreased fat mass,

increased oxygen consumption, and increased

running endurance in sedentary mice by repro-
gramming muscle fibers to a type I phenotype

in a PPARd-dependent manner (Narkar et al.

2008; Guerrieri et al. 2017). To determine

whether the effects on endurance extended to
brain function, we treated mice with AICAR

and spatial memory was tested (Kobilo et al.

2011b, 2014). The observed enhancement of
memory function by AICAR was precluded by

muscle-specific AMPK a2-subunit deficiency

(Kobilo et al. 2014), supporting a link between
muscle and cognition. Based on these findings,

we set out to find the underlying mechanisms

by treating L6 muscle cells with AICAR in
culture and analyzing the conditioned media.

Proteomic analysis led to identification of a

novel myokine, cathepsin B (Ctsb), as a media-
tor of exercise-induced hippocampal plasticity

(Moon et al. 2016).

Ctsb is a lysosomal thiol proteinase that has
been implicated in a variety of physiological and

pathological processes, including proteolytic

maturation of proinsulin (Docherty et al. 1984;
Steiner et al. 1984) and proalbumin (Judah and

Quinn 1978; Quinn and Judah 1978; Matsuda

et al. 1986), as well as cancer progression (Ko-
blinski et al. 2002). The role of Ctsb in the brain

has been mainly studied under disease condi-

tions, with contradictory results. In a nonhu-
man primatemodel of transient ischemia, treat-

ment with a Ctsb inhibitor prevented neuronal

cell death (Yoshida et al. 2002). In Alzheimer’s
disease (AD) mouse model studies, some

researchers report that Ctsb increased patholog-

ical processes (Hook et al. 2008) or was neuro-
protective with antiamyloidogenic functions

(Mueller-Steiner et al. 2006; Wang et al. 2012;

Embury et al. 2016). In our recent study, Ctsb
was increased in plasma by exercise acrossmam-

malian species, including mice, monkeys, and

humans (Moon et al. 2016). In adult hippocam-
pal progenitor cell cultures, Ctsb application

enhanced the expression of neurotrophin

BDNF and DCX, a marker for neuronal differ-
entiation. In Ctsb knockout mice, impaired

spatial memory function and dentate granule

cell physiology was observed. In addition, the
neurogenic and cognitive response to exercise

was blunted in the Ctsb-deficient mice as com-

pared with their littermates. It is noteworthy
that Ctsb deficiency did not affect general loco-

motor activity or mood-related behaviors such
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as sucrose preference and elevated T-maze. A

role for Ctsb in cognition was also found in
humans. The exercise-induced change in fitness

was positively associated with performance on a

complex-figure recall task that is considered to
be hippocampus dependent (Vargha-Khadem

et al. 1997; Maass et al. 2015). It will be of in-

terest to determine in future studies whether
there is a positive association between Ctsb lev-

els and pattern separation performance.

Support for the idea that muscle energy
metabolism affects brain function also comes

from recent studies in mice that overexpress

peroxisome proliferator-activated receptor g

coactivator (PGC-1a) in muscle (Wrann et al.

2013; Agudelo et al. 2014). Exercise activates

this transcriptional coactivator (Pilegaard et al.
2003; Finck and Kelly 2006), and in muscle-spe-

cific PGC-1a-KO mouse, activity and maximal

exercise capacity are reduced (Geng et al. 2010).
Overexpression of PGC-1a in muscle increased

production of fibronectin type III domain con-

taining 5 (FNDC5), which is cleaved and is
secreted as irisin, a myokine that is involved

in oxygen consumption, transition of white

fat into brown fat, and thermogenesis (Boström
et al. 2012). FNDC5 is primarily expressed in

the brain (Teufel et al. 2002), including the

hippocampus. FNDC5 deficiency impairs neu-
ronal development (Hashemi et al. 2013). Thir-

ty days of voluntary exercise increased FNDC5

mRNA in the quadriceps and hippocampus,
but not the whole brain. Increased FNDC5

expression in cortical neuron cultures enhanced

BDNF levels. In addition, peripheral up-regula-
tion of FNDC5 increased hippocampal BDNF

gene expression (Wrann et al. 2013). Exercise

also elevates irisin in human plasma (Jedry-
chowski et al. 2015). A link to cognitive func-

tion remains to be determined. In another

study, overexpression of PGC-1a in mouse
muscle regulated the kynurenine pathway and

thereby protected these mice from stress-in-

duced reduction of synaptic plasticity proteins
in the brain, as well as from exhibiting depres-

sion-like behaviors (Agudelo et al. 2014).

Interleukin (IL)-6 is a cytokine with various
physiological roles (Erta et al. 2012). IL-6 plas-

ma level is significantly increased during exer-

cise, partially from contracting skeletal muscles

(Pedersen et al. 2001; Rasmussen et al. 2011).
Exercise-induced IL-6 from skeletal muscle can

increase glycogenolysis in the liver to maintain

blood glucose levels during exercise (Keller et al.
2001; Pedersen et al. 2001). IL-6 also plays a

major role in energy homeostasis in the central

nervous system (CNS). Studies with IL-6-
deficient mice indicate that IL-6 can regulate

appetite, energy expenditure, and is related to

the development of obesity (Wallenius et al.
2002). IL-6 peripheral administration can be

absorbed into the cerebrospinal fluid (CSF)

(Banks et al. 1994). In addition, IL-6 is in-
creased in the adult mouse brain after exercise

(Nybo et al. 2002; Rasmussen et al. 2011). IL-6

levels are reportedly elevated in mood-related
disorders, such as depression (Bob et al.

2010), which are generally improved by exercise

(Cooney et al. 2013). The role of IL-6 in neuro-
genesis is still controversial. Chronic astrocytic

production of IL-6 reduces hippocampal neu-

rogenesis in the subgranular zone (SGZ) of the
DG in adult mice (Vallières et al. 2002). On the

other hand, IL-6 increased differentiation in

human fetal NPCs in the SGZ (Sarder et al.
1996). In addition, proliferation of neuronal

cells is reduced and hippocampus–dependent

learning is impaired in IL-6-deficient mice
(Baier et al. 2009; Bowen et al. 2011). Thus,

the role of IL-6 in mediating exercise-induced

neurogenesis and improvement of brain func-
tion is still elusive. Further studies are needed to

determine whether IL-6 is a critical factor in the

improvement of cognitive function during ex-
ercise. Altogether, these studies suggest thatmy-

okines such as Ctsb, irisin, and IL-6 may mod-

ulate brain function during exercise. Because
these myokines have various roles in different

physiological and pathological conditions, care

must be taken when extrapolating their role to
brain function.

Adipose Tissue

Adipose tissue–derived cytokines, called adipo-

kines, are also affected by exercise (Golbidi and
Laher 2014). Adiponectin is involved in regula-

tion of energy metabolism, immune systems,
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and brain functions, similar to exercise (Peder-

sen and Hoffman-Goetz 2000; Vu et al. 2007).
Adiponectin increases fatty acid oxidation and

glucose uptake in skeletal muscle (Yamauchi

et al. 2014). In addition, it increases anti-
inflammatory cytokines such as IL-10 in the

macrophage (Moschen et al. 2012) and has

beneficial effects on cardiovascular function
(Han et al. 2007; Wang et al. 2009). In addition,

adiponectin can enhance adult hippocampal

neurogenesis in mice and in cell culture models
(Zhang et al. 2011, 2016). Accordingly, Yau et al.

(2014) suggest that adiponectin can cross the

blood–brain barrier and that increased adipo-
nectin levels may modulate hippocampal neu-

rogenesis and ameliorate mood. Running-

induced neurogenesis and antidepression-like
behavior was not detected in adiponectin

knockout mice (Yau et al. 2014). Overall, the

discovery of adipokines, such as adiponectin,
has led to important research showing that there

is direct cross talk between adipose and brain

tissues. Prospective studies should consider the
potential secondary effects of adipokines on

brain function, such as regulation of inflamma-

tion and reactive oxygen species (ROS) produc-
tion during exercise.

Liver

Like adipose tissue and skeletal muscle, the

liver releases proteins, termed hepatokines, for
glucose and lipid homeostasis (Stefan and

Häring 2013). Different kinds of hepatokines

are known to be involved in organ cross talk
during exercise (Hansen et al. 2011; von Hol-

stein-Rathlou et al. 2016). Insulin-like growth

factor 1 (IGF-1) consists of 70 amino acids and
is mainly in the liver as an endocrine hormone,

and has amolecular structure similar to insulin.

Circulating IGF-1 binds to IGF-1 receptors and
insulin/IGF-1 heteroreceptors, which activate

the AKT signaling pathway enhancing insulin

action (Moses et al. 1996). IGF-1 is a critical
hormone in carbohydrate metabolic reactions,

and administration of IGF-1 lowers glucose

levels in humans (Guler et al. 1987). IGF-1
crosses the blood–brain barrier (Pardridge

1993; Pan and Kastin 2000) and mediates neu-

roplasticity and neuroprotection. Indeed, IGF-1

gene mutations cause microcephaly, sensori-
neural deafness, as well as mental retardation

(Woods et al. 1996). Activation of the IGF-1

signaling cascade can regulate amyloid precur-
sor protein (APP) metabolism through increas-

ing levels of insulin-degrading enzyme, a thiol

metalloendopeptidase able to degrade amyloid
b (Wang et al. 2015).

During physical exercise, IGF-1 levels in

skeletal muscle are rapidly up-regulated (Berg
and Bang 2004). Increased levels of circulating

IGF-1 also result in elevated IGF-1 levels in the

brain (Carro et al. 2000). Intracerebroventricu-
lar injection of IGF-1 enhances cognitive func-

tion in old rats (Markowska et al. 1998). Periph-

eral administration of IGF-1 can increase the
number of newborn neurons in the DG of rat

hippocampi (Aberg et al. 2000). Blockade of

circulating IGF-1 using antiserum inhibits the
exercise-induced increase in adult hippocampal

neurogenesis, indicating that circulating IGF-1

may be a critical factor for exercise-induced
changes in the adult rat brain (Carro et al.

2000; Trejo et al. 2001). Despite these encour-

aging findings, it may be premature to state that
IGF-1 is the systemic link between physical ac-

tivity and brain function. In a meta-analysis of

115 research studies,.50% of studies found no
difference in total circulating IGF-1 as a result of

exercise (Orenstein and Friedenreich 2004). In

addition, depletion of IGF-1 apparently has a
protective role (Cohen et al. 2009; Gontier et al.

2015) in mouse models of Alzheimer’s disease.

The formation of ketones has recently been
shown to play an important role in the effects

of exercise on the brain. Acetyl-CoA induced by

b-oxidation enters the citric acid cycle with ox-
aloacetate in the mitochondria (Newman and

Verdin 2014). However, oxaloacetate is mainly

involved in the gluconeogenic system in the liver
during chronic exercise by hydrogenating into

malate (Shimazu et al. 2013; Newman and Ver-

din 2014). The remaining acetyl-CoA is redi-
rected into formation of ketone bodies, such

as acetoacetate and b-hydroxybutyrate (BHA)

(Laffel 1999). These ketone bodies are released
from liver and used in other tissues as an energy

source during cellular starvation (Feldman and
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Nelson 2004). BHA protects against oxidative

stress by inhibiting class I HDACs, which regu-
late gene expression and chromatin structure

involved in glucose metabolism and diabetes

(Gregoretti et al. 2004). BHA has neuroprotec-
tive effects in various neurodegenerative dis-

eases affecting the dopaminergic system (Tieu

et al. 2003; Lim et al. 2011) and increases BDNF
levels in cortical cells (Marosi et al. 2016). Re-

cently, Sleiman and colleagues found that exer-

cise-inducedBHAcan increase BDNFexpression
through HDAC2/HDAC3 inhibition and his-

tone H3 acetylation in the hippocampus. They

further showed that BHA can increase neuro-
transmitter release via TrkB receptors. Although

their study did not include behavioral analyses

after BHA administration, their findings suggest
that peripheral BHA can link exercise and brain

function through BDNF (Sleiman et al. 2016).

Thus, in various physiological and pathological
conditions, hepatokine levels are altered. These

hepatokines have multiple roles and are particu-

larly important for energy homeostasis. Further
research will be needed to elucidate the interac-

tions between hepatokines and exercise, and to

understand their role in brain function.

CONCLUSION

Regular exercise has profound benefits for

body and brain health. Emerging data suggests

that the underlyingmechanisms involve various
physiological adaptations, including neural,

immunological, vascular, and metabolic sys-

tems. However, caution should be used when
extrapolating factors modulated by exercise to

potential therapeutic interventions. For in-

stance, IGF-1, when delivered systemically, has
a potent proliferative action that promotes can-

cer (Arnaldez and Helman 2012) and decreases

life span in animal models (Junnila et al. 2013).
Thus, exercise may be most beneficial as a pre-

cision delivery tool that can distribute and up-

or down-regulate important substrates with im-
peccable temporal and spatial resolution. Evi-

dently, exercise stimulates neuronal activation

in brain regions important for learning and
memory, while engaging cross talk between pe-

ripheral organs (skeletal muscle, adipose tissue,

liver) to supply critical substrates for brain

health. The mechanisms by which different
modes of exercise may affect brain function re-

main to be elucidated. To achieve this, specified

intensity and time lines of exercise training par-
adigms as well as systematic analyses of brain

function and adaptations will be needed.
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ison of aerobic exercise, clomipramine, and placebo in
the treatment of panic disorder. Am J Psychiatry 155:

603–609.

Brown RA, Abrantes AM, Read JP, Marcus BH, Jakicic J,
Strong DR, Oakley JR, Ramsey SE, Kahler CW, Stuart
G, et al. 2009. Aerobic exercise for alcohol recovery: Ra-
tionale, program description, and preliminary findings.
Behav Modif 33: 220–249.

Brown BM, Bourgeat P, Peiffer JJ, Burnham S, Laws SM,
Rainey-Smith SR, Bartrés-Faz D, Villemagne VL, Taddei
K, Rembach A, et al. 2014a. Influence of BDNFVal66Met
on the relationship between physical activity and brain
volume. Neurology 83: 1345–1352.

Brown RA, Abrantes AM, Minami H, Read JP, Marcus BH,
Jakicic JM, Strong DR, Dubreuil ME, Gordon AA, Ram-
sey SE, et al. 2014b. A preliminary, randomized trial of
aerobic exercise for alcohol dependence. J Subst Abuse
Treat 47: 1–9.

Bruel-Jungerman E, Veyrac A, Dufour F, Horwood J, La-
roche S, Davis S. 2009. Inhibition of PI3K-Akt signaling
blocks exercise-mediated enhancement of adult neuro-
genesis and synaptic plasticity in the dentate gyrus. PLoS
ONE 4: e7901.

Bushby K. 1992. Recent advances in understanding muscu-
lar dystrophy. Arch Dis Child 67: 1310–1312.

Busse M, Quinn L, Debono K, Jones K, Collett J, Playle R,
Kelly M, Simpson S, Backx K, Wasley D, et al. 2013. A
randomized feasibility study of a 12-week community-
based exercise program for people with Huntington’s
disease. J Neurol Phys Ther 37: 149–158.

Canning CG, Sherrington C, Lord SR, Close JCT, Heritier S,
Heller GZ, Howard K, Allen NE, Latt MD, Murray SM,
et al. 2015. Exercise for falls prevention in Parkinson
disease: A randomized controlled trial. Neurology 84:

304–312.

Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During
MJ. 2004. VEGF links hippocampal activity with neuro-
genesis, learning and memory. Nat Genet 36: 827–835.

Carmeli E, Barak S, Morad M, Kodesh E. 2009. Physical
exercises can reduce anxiety and improve quality of life
among adults with intellectual disability. Int Sport J 10:
77–85.

Carmeliet P. 2003. Blood vessels and nerves: Common sig-
nals, pathways and diseases. Nat Rev Genet 4: 710–720.
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