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Abstract

We give a concise review and extension of S-procedure that is an instrumental tool in control

theory and robust optimization analysis. We also discuss the approximate S-Lemma as well as

some its applications in robust optimization.
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1 Introduction

The purpose of this paper is to give a concise review of recent developments related to the S-Procedure
in a historical context as well as to offer a new extension. S-procedure is an instrumental tool in control
theory and robust optimization analysis. It is also used in linear matrix inequality (or semi-definite
programming) reformulations and analysis of quadratic programming. It was given in 1944 by Lure
and Postnikov [28] without any theoretical justification. Theoretical foundations of S-procedure were
laid in 1971 by Yakubovich and his students [37].

S-procedure deals with the nonnegativity of a quadratic function on a set described by quadratic
functions and provides a powerful tool for proving stability of nonlinear control systems. For simplicity,
if the constraints consist of a single quadratic function, we refer to it as S-Lemma. If there are at least
two quadratic inequalities in the constraint set, we use the term of S-procedure. Yakubovich [37] was
the first to prove the S-Lemma and to give a definition of S-procedure. Recently, Polyak [32] gave a
result related to S-procedure for problems involving two quadratic functions in the constraint set.

Although the S-Lemma was proved in 1971, results on the convexity problems of quadratic func-
tions were already there since 1918. From Toeplitz-Hausdorff [35, 21] theorem to more recent results,
many important contributions to the field are available. In this period, not only the S-Lemma was
improved, but also a new result was introduced, called the approximate S-Lemma. The approxi-
mate S-Lemma developed by Ben-Tal et.al. [8] establishes a bound for problems with more than one
constraints of quadratic type. Their result also implies the S-Lemma of Yakubovich.

In the present paper we offer yet another generalization of the S-Procedure referred to as the
Extended S-procedure (a term coined in this paper), that implies both the theorems of Yakubovich
and Polyak. This procedure is obtained as a corollary of Au-Yeung and Poon [2], and Barvinok’s [3]
theorems.

Although papers concerning the S-Procedure abound (as well as many that make use of it), it
appears that a summary review of the subject encompassing the latest developments still remains
unavailable to the research community. The present paper should be considered an attempt to fulfill
this need.
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The remainder of this study is organized as follows: section 2 provides a background on the S-
procedure with an extensive (although not pretending to be exhaustive) review of literature. In section
3, our exposition of approximate S-Lemma and extended S-procedure are given. Section 4 is devoted
to a critical evaluation. Section 5 gives concluding remarks. Open problems are also pointed out in
the last two sections.

Notation. We work in a finite dimensional (Euclidian) setting Rn , with the standard inner
product denoted by 〈., .〉 and associated norm denoted by ‖.‖. We use SR

n to denote (n×n) symmetric
real matrices. For A ∈ SR

n , A � 0 (A � 0) means A is positive semi-definite (positive definite). Also
we use Mn,p(R) to denote the space of real (n × p)-matrices. If A ∈ SR

n and X ∈ Mn,p(R), then
〈〈AX, X〉〉 = 〈〈A,XXT 〉〉 := TrAXXT = trace of AT (XXT ).

2 Background

S-procedure is one of the fundamental tools of control theory and robust optimization. It is related to
several mathematical fields such as numerical range, convex analysis and quadratic functions. Since
it is at the crossroads of several fields, efforts were undertaken to improve it or to understand its
structure. Therefore, it is only natural to begin with its history to appreciate its importance.

In 1918, O. Toeplitz [35] introduced the idea of the numerical range (W (A)) of a complex (n× n)
matrix A in the ”Das algebraische Analogon zu einem Satze von Fejér”. For a quadratic form z∗Az,
he proved that it has a convex boundary for z belonging to the unit sphere in the space Cn of complex
n-tuples (it is also called the numerical range of A). He also conjectured that the numerical range
itself is convex. One year later, F. Hausdorff [21] proved it. The Toeplitz-Hausdorff theorem is a
very important result due to its extensions in the numerical range, and it is applied in many fields of
mathematics. This theorem can be formulated as: let

W (A) = { z∗Az | ‖z‖ = 1 }.

Then, the set W is convex in the set C of complex numbers. This result is the first assertion on
convexity of quadratic maps.

For the real field, the first result was obtained by Dines [14] in 1941 for two real quadratic forms.
Dines proved that for two dimensional image of Rn and for any real symmetric matrices A and B,
the set

D = { (〈Ax, x〉, 〈Bx, x〉) | x ∈ Rn }

is a convex cone where 〈Ax, x〉 = xT Ax, and that under some additional assumption it is closed.
The next important result was obtained by Brickman [11]. He proved that the image of the unit

sphere for the n ≥ 3 (for any real symmetric matrices A and B),

B = { (〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1 }

is a convex compact set in R2.
These three papers are the main contributions on the numerical range, and mathematicians tried

in several ways to generalize them. Before explaining these developments, let us look at our main
subject: S-procedure.

S-procedure deals with nonnegativity of a quadratic form under quadratic inequalities. The first
result in this area is Finsler’s Theorem [19](also known as Débreu’s lemma). Calabi [12] also proved
this result independently in studying differential geometry and matrix differential equations by giving
a new and short topological proof. (A unilateral version of this theorem was proved by Yuan [38] in
1990)
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Theorem 1 The theorem of Finsler(1936),Calabi(1964)
For n ≥ 3, let A,B ∈ SR

n . Then the following are equivalent:

(i) 〈Ax, x〉 = 0 and 〈Bx, x〉 = 0 implies x = 0.

(ii) ∃µ1, µ2 ∈ R such that µ1A + µ2B � 0.

In 1971, Yakubovich [37] proved the S-Lemma which became very popular in control theory.
There exist several methods to prove it but we want to give here a proof that uses Dines’ theorem
to emphasize the link between convexity and the S-Lemma which is a separation theorem for convex
sets. (One can consult Nemirovski’s [30] book (pp. 132–135) or Sturm and Zhang’s [27] paper for
different proofs).

Theorem 2 (S-Lemma) Let A,B be symmetric n × n matrices, and assume that the quadratic in-
equality

xT Ax ≥ 0

is strictly feasible(there exists x such that xT Ax > 0). Then the quadratic inequality:

xT Bx ≥ 0

is a consequence of it, i.e.,
xT Ax ≥ 0 ⇒ xT Bx ≥ 0

if and only if there exists a nonnegative λ such that

B � λA.

Proof: The sufficiency part is immediately proved. Therefore, let us assume that xT Bx ≥ 0 is a
consequence of xT Ax ≥ 0. Let

S = {(xT Ax, xT Bx) : x ∈ Rn}

and
U = {(u1, u2), u1 ∈ R+, u2 ∈ R−−}.

S is a convex set by Dines’ theorem while U is a convex cone. Since their intersection is empty, a
separating hyperplane exists. I.e., there exists nonzero c = (c1, c2) ∈ R2, such that (c, s) ≤ 0, ∀s ∈ S

and (c, u) ≥ 0, ∀u ∈ U . For (0,−1) ∈ U we have c2 ≤ 0. For (1,−α) ∈ U where α is a small positive
number arbitrarily chosen, we obtain c1 ≥ αc2. Letting α tend to zero, we get c1 ≥ 0. Since there
exists x such that xT Ax > 0, and by the separation argument we have c1x

T Ax + c2x
T Bx ≤ 0 for all

x ∈ Rn, we can write
c1x

T Ax + c2x
T Bx ≤ 0.

Since we have c1 ≥ 0, xT Ax > 0, xT Bx ≥ 0 by hypothesis, and that c1 and c2 cannot both be zero,
the last inequality implies that c2 < 0. Therefore, we obtain: xT Bx ≥ − c1

c2
xT Ax for all x ∈ Rn,

which is equivalent to B � λA after defining λ = − c1
c2

. This completes the proof of the necessity part.
Hence, the result is proved.

The idea of this proof is used in many papers about the subject. It is also used in the first two
results in the next section. At this point, we divide our review into two sub-areas. Firstly, we try
to generalize this theorem to obtain more complicated cases. Then we look at a new area recently
developed by Ben-Tal et.al.[8] to obtain approximate version of the general result.
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2.1 Review of Research on the S-procedure

The first attack to generalize the above theorems was made by Hestenes and McShane [22] in 1940.
They generalized the theorem of Finsler (1936).

Theorem 3 The theorem of Hestenes and McShane(1940)
Assume that xT Sx > 0 for all nonzero x such that {x ∈ Rn|

⋂r
i=1(〈Tix, x〉 = 0)}. Let Ti be such

that
∑

i aiTi is indefinite for any nontrivial choice of ai ∈ R. Moreover assume that for any subspace
L ⊆ Rn \

⋂r
i=1(〈Tix, x〉 = 0) there are constants bi ∈ R such that xT (

∑
i biTi)x > 0 for all nonzero

x ∈ L. Then, there exists c ∈ Rr+1 that;

c0S + c1T1 + ... + crTr � 0

For r = 1 only the first assumption needs to be made.

There are several papers in this area by Au-Yeung [1], Dines [15, 16], John [25], Kühne [26],
Taussky [34] and others. One of the benefits of Finsler, and Hestenes and McShane’s theorems is the
appearence of positive definiteness of a linear combination of matrices a la S-Procedure. One can find
a review of related results covering the period until 1979 in a nice survey by Uhlig [36].

To generalize the S-Lemma, researchers either replace vector variables with matrix variables, or
make additional assumptions. First, we look into the first category and among these theorems, we
deal with a most popular unpublished result: the theorem of Bohnenblust [9] on the joint positive
definiteness of matrices. Although this theorem can be stated for the field of complex numbers and
the skew field of real quaternions, we only deal with the field of real numbers.

Theorem 4 The theorem of Bohnenblust
Let 1 ≤ p ≤ n− 1, m < (p+1)(p+2)

2 − δn,p+1 and A1, ..., Am ∈ SR
n . Suppose (0, ..., 0) /∈ Wp(A1, ..., Am)

where

Wp(A1, ..., Am) = {(
p∑

i=1

xT
i A1xi, ...,

p∑
i=1

xT
i Amxi) : xi ∈ Rn,

p∑
i=1

xT
i xi = 1}.

Then there exist α1, ..., αm ∈ R such that the matrix
∑m

1 αiAi is positive definite. (δn,p+1 is Kronecker
delta).

With the help of this theorem, Au-Yeung and Poon [2] showed the extension of Brickman’s and
Toeplitz-Hausdorff theorem in 1979, and Poon [33] gives the final version of this result in 1997. Here
is the Au-Yeung and Poon theorem for real cases:

Theorem 5 The theorem of Au-Yeung and Poon(1979) [Extension of Brickman(1961) using Bohnen-
blust]
Let 1 ≤ p ≤ n− 1, m < (p+1)(p+2)

2 − δn,p+1 and A1, ..., Am ∈ SR
n . Then,

{(〈〈A1X, X〉〉, 〈〈A2X, X〉〉, ..., 〈〈AmX, X〉〉)|X ∈ Mn,p(R), ‖X‖ = 1}

is a convex compact subset of Rm. (δi,j is equal to one when i = j, otherwise zero). (‖.‖ denotes the
Schur-Frobenius norm on Mn,p(R), derived from 〈〈., .〉〉).

Here 〈〈AX, X〉〉 = TrAXXT =
∑p

i=1 xT
i Axi and xi denotes the columns of X. A corollary of this

theorem is given in the paper of Hiriart-Urruty and Torki [23] in 2002:
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Theorem 6 Corollary (Hiriart-Urruty and Torki (2002)) of the theorem of Poon (1997)
Let A1, A2, ..., Am ∈ SR

n and let

p :=

{
b
√

8m+1−1
2 c if n(n+1)

2 6= m + 1
b
√

8m+1−1
2 c+ 1 if n(n+1)

2 = m + 1

}

(thus p = 1 when m = 2 and n ≥ 3, p = 2 when m=2 and n=2, etc.) Then the following are equivalent:

(i)



〈〈A1X, X〉〉 = 0
〈〈A2X, X〉〉 = 0
.

.

.

〈〈AmX, X〉〉 = 0


⇒ (X = 0).

(ii) There exists µ1, ..., µm ∈ R such that

m∑
i=1

µiAi � 0.

We note that the paper by Hiriart-Urruty and Torki (2002) gives a good overview of the convexity of
quadratic maps and poses several open problems.

In 1995, Barvinok [3] gave another theorem extending the Dines’s and Toeplitz-Hausdorff theorem
while working on distance geometry.

Theorem 7 The theorem of Barvinok(1995)[Extension of Dines(1941)]
Let A1, A2, ..., Am ∈ SR

n , and let p := b
√

8m+1−1
2 c. Then

{(〈〈A1X, X〉〉, 〈〈A2X, X〉〉, ..., 〈〈AmX, X〉〉)|X ∈ Mn,p(R)}

is a convex cone of Rm.

Papers of Poon and Barvinok are important for our extension results because we use them for the
extended S-procedure in section 3. Now we give the definition of both S-procedure and extended S-
procedure and turn our interest to results about S-procedure without extension but using additional
assumptions. The definition of S-procedure is given by Yakubovich [37] and his students in 1971.
Before talking about related papers on S-procedure, let us define the S-procedure and extended S-
procedure:

Definition 8 (S-procedure and Extended S-procedure)
Define

qi(X) =
p∑

j=1

xT
j Qixj + 2bT

i

p∑
j=1

xj + ci, Qi ∈ SR
n , i = 0, ...,m, j = 1, ..., p, X = (x1, ..., xp)

F := {X ∈ Mn,p(R) : qi(X) ≥ 0, i = 1, ...,m},

qi(xj) is called quadratic function and if bi and ci are zero, then it is called quadratic form. Now
consider the following conditions:

(S1) q0(X) ≥ 0 ∀X ∈ F

(S2) ∃s ∈ Rm
+ : q0(X)−

∑m
i=1 siqi(X) ≥ 0, ∀X ∈ Mn,p(R)
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Method of verifying (S1) using (S2) is called S-procedure for p = 1 and called extended S-procedure
for p > 1.

Note that always S2 ⇒ S1. Indeed,

q0(x) ≥
m∑

i=1

siqi(x) ≥ 0.

Unfortunately, the converse is in general false. If S1 ⇔ S2, the S-procedure is called lossless.
However, this condition is fulfilled only in some special cases.

The first paper reviewed on the S-Procedure with additional assumptions is the paper of Megretsky
and Treil [29] in 1993. They prove the S-procedure for the continuous time-invariant quadratic forms.

Let L2 = L2((0,∞);Rn) be the standard Hilbert space of real vector-valued square-summable
functions defined on (0,∞). A subspace L ∈ L2 is called time invariant if for any f ∈ L, and τ > 0
the function fτ ,defined by fτ (s) = 0 for s ≤ τ , fτ (s) = f(s− τ) for s > τ , belongs to L. Similarly, a
functional σ : L → R is called time invariant if σ(fτ ) = σ(f) ∀f ∈ L, τ > 0.

Theorem 9 The S-procedure losslessness theorem of Megretsky and Treil(1993)
Let L ⊂ L2 be time invariant subspace, and σj : L → R(j = 0, 1, ...,m) be continuous time-

invariant quadratic forms. Suppose that there exists f∗ ∈ L such that σ1(f∗) > 0, ..., σm(f∗) > 0.
Then the following statements are equivalent:

(i) σ0(f) ≤ 0 for all f ∈ L such that σ1(f) > 0, ..., σm(f) > 0;

(ii) There exists τj ≥ 0 such that

σ0(f) + τ1σ1(f) + ... + τmσm(f) ≤ 0

for all f ∈ L.

Although this theorem gives us the S-procedure, time-invariant quadratic forms are very domain
specific. Moreover, one can find another convexity result for commutative matrices in the paper of
Fradkov (1973) [20] (Detailed information about commutative matrices can be obtained from the book
Matrix Analysis by Horn and Johnson [24]).

Theorem 10 Theorem of Fradkov
Let m quadratic forms fi(x) = 〈Aix, x〉, x ∈ Rn, i = 1, ...,m be given. If matrices A1, ..., Am commute,
then

Fm = {(f1(x), ..., fm(x))T : x ∈ Rn} ⊂ Rm

is a closed convex cone for all m,n.

In addition to Megretsky and Treil, and Fradkov’s papers, yet further extensions of the S-procedure
exist. A result in this direction was proved recently by Luo et.al. [27] where quadratic matrix in-
equalities were used instead of linear matrix inequalities.

Theorem 11 Theorem of Luo et.al. (2003)
The data matrices (A,B,C, D, F, G, H) satisfy the robust fractional quadratic matrix inequality[

H F + GX

(F + GX)T C + XT B + BT X + XT AX

]
� 0 for all X with I −XT DX � 0
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if and only if there is t ≥ 0 such that H F G

FT C BT

GT B A

− t

 0 0 0
0 I 0
0 0 −D

 � 0.

Unfortunately, neither Megretsky and Treil, and Fradkov’s results nor extension of Luo et.al. imply
the S-procedure in general.

In 1998, Polyak [32] succeeded in proving a version of S-procedure for m = 2 by making an
additional assumption, and it is the most valuable result found recently in this field. He first proved
the following theorem to obtain the S-procedure for m = 2:

Theorem 12 Convexity result of Polyak,1998[relies on Brickman’s theorem,1961]
For n ≥ 3 the following assertions are equivalent:

(i) There exists µ ∈ R3 such that
µ1A1 + µ2A2 + µ3A3 � 0.

(ii) For fi(x) = 〈Aix, x〉, x ∈ Rn, i = 1, 2, 3, the set:

F = {(f1(x), f2(x), f3(x))T : x ∈ Rn} ⊂ R3

is an acute (contains no straight lines), closed convex cone.

This nice theorem and its beautiful proof bring us the following S-procedure for quadratic forms,
m = 2.

Theorem 13 Polyak’s theorem,1998[uses separation lemma]
Suppose n ≥ 3, fi(x) = 〈Aix, x〉, x ∈ Rn, i = 0, 1, 2, real numbers αi, i = 0, 1, 2 and there exist µ ∈ R2,
x0 ∈ Rn such that

µ1A1 + µ2A2 � 0

f1(x0) < α1, f2(x0) < α2.

Then
f0(x) ≤ α0 ∀x : f1(x) ≤ α1, f2(x) ≤ α2

holds if and only if there exist τ1 ≥ 0, τ2 ≥ 0:

A0 � τ1A1 + τ2A2

α0 ≥ τ1α1 + τ2α2.

A related line of work on the optimality conditions for the minimization of quadratic functions subject
to two quadratic inequalities can also be followed by starting to trace back the subject from the very
nice, and relatively recent paper of Peng and Yuan (1997) [31]. To keep this already lenghty paper at
a manageable level, we do not review these results here.

Unfortunately, Polyak’s theorem, although very elegant, is not sufficient to deal with certain
problems of robust optimization as we shall see in the next section. Recently a new result in this
direction was proved by Ben-Tal, Nemirovski and Roos [8] referred to as the Approximate S-Lemma
which we review next.
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2.2 Review of Research on the Approximate S-Lemma

In this section, we not only deal with the approximate S-Lemma but also concentrate on its impact
on robust systems of uncertain quadratic and conic quadratic problems whereby the reader may
appreciate the importance of approximate S-Lemma.

S-Lemma has been widely used within the robust optimization paradigm of Ben-Tal and Ne-
mirovski and co-authors [6, 5, 7] and El-Ghaoui and co-authors [18, 10] to find robust counterparts
for uncertain convex optimization problems under an ellipsoidal model of the uncertain parameters.
Now we concentrate on approximate S-Lemma, so we use the same notation as the paper of Ben-Tal
et.al. [8]. Before beginning to talk about the subject, we need additional notation and definitions
about robust methodology and conic quadratic problems. For conic programming, Ben-Tal’s lecture
notes [4] are an excellent reference.

Definition 14 Let K ⊆ Rn be a closed pointed convex cone with nonempty interior. For given data
A ∈ Mn,p(R), b ∈ Rn and c ∈ Rp, optimization problem of the form

min
x∈Rp

{cT x : Ax− b ∈ K} (1)

is a conic problem (CP). When the data (A, b) belong to uncertain set U , the problem

{min
x∈Rp

{cT x : Ax− b ∈ K} : (A, b) ∈ U} (2)

is called uncertain conic problem (UCP) and the problem

min
x∈Rp

{cT x : Ax− b ∈ K : ∀(A, b) ∈ U} (3)

is called robust counterpart (RC).

A feasible/optimal solution of (RC) is called a robust feasible/optimal solution of (UCP). Surely,
the difficulty of problem is closely related to the uncertain set U which is

U = (A0, b0) + W

where (A0, b0) is a nominal data and W is a compact convex set, symmetric with respect to the
origin.(W is interpreted as the perturbation set). If the uncertain set U is too complex, we need an
approximation to bracket the optimal value of the problem in acceptable bounds. If the set X is the
set of robust feasible solutions, then we can define it as

X = {x ∈ Rp : Ax− b ∈ K ∀(A, b) ∈ (A0, b0) + W}.

Also with an additional vector u, let the set R be

R := {(x, u) : Px + Qu + r ∈ K̂}

for a vector r, some matrices P and Q, and a pointed closed convex nonempty cone K̂ with nonempty
interior.

Definition 15 R is an approximate robust counterpart of X if the projection of R onto the space of
x-variables, i.e., the set R̂ ⊆ Rp given by

R̂ := {x : Px + Qu + r ∈ K̂for some u},

is contained in X :
R̂ ⊆ X .
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To measure the approximation error between R̂ and X , one can shrink X until it fits into R̂. To
do this, we should increase the size of uncertain set U as

Uρ = {(A0, b0) + ρW}, ρ ≥ 1.

Then the new set of robust feasible solutions corresponding to Uρ is:

Xρ = {x ∈ Rp : Ax− b ∈ K ∀(A, b) ∈ Uρ}.

If ρ is sufficiently large, the new robust feasible set becomes a subset of R̂. More precisely we have:

Definition 16 The smallest ρ to obtain Xρ ⊆ R̂, i.e.

ρ∗ = infρ≥1{ρ : Xρ ⊆ R̂},

is called the level of conservativeness of the approximate robust counterpart R.

Finally we get
Xρ ⊆ R̂ ⊆ X .

After all of these definitions, now it is time to turn our interest to the uncertain quadratic constraint
(it can also be written as a conic quadratic form):

xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Uρ,

where;

Uρ =

{
(A, b, c) = (A0, b0, c0) +

L∑
l=1

yl(Al, bl, cl) : y ∈ ρV

}
,

and
V = {y ∈ RL : yT Qky ≤ 1, k = 1, ...,K},

with Qk � 0 for each k and
∑K

k=1 Qk � 0.
At this point, let us give an example to understand where the S-Lemma enters the system from

the paper of Ben-Tal and Nemirovski [6] in 1998 (Theorem 3.2 in their paper).(It is also discussed in
the paper of El Ghaoui and Lebret [17]). For the case K = 1, Q1 is identity matrix:

Theorem 17 For Al ∈ Mn,p(R), bl ∈ Rp, cl ∈ R, l = 0, ..., L a vector x ∈ Rp is a solution of

xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Usimple, (4)

where

Usimple =

{
(A, b, c) = (A0, b0, c0) +

L∑
l=1

yl(Al, bl, cl) : ‖y‖2 ≤ 1

}
,

if and only if for some nonnegative λ, the pair (x, λ) is a solution of the following linear matrix
inequality (LMI):

c0 + 2xT b0 − λ 1
2c1 + xT b1 . . . 1

2cL + xT bL (A0x)T

1
2c1 + xT b1

.

.

.
1
2cL + xT bL

λ

.

.

.

λ

(A1x)T

.

.

.

(ALx)T

(A0x) (A1x) . . . (ALx) In


� 0.
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Proof: Using uncertain set, (4) can be written as:

−xT [A0 +
L∑

l=1

ylA
l]T [A0 +

L∑
l=1

ylA
l]x + 2[b0 +

L∑
l=1

ylb
l]T x + [c0 +

L∑
l=1

ylc
l] ≥ 0 ∀(y : ‖y‖2 ≤ 1).

Taking τ ≤ 1,

−xT [A0τ +

L∑
l=1

ylA
l]T [A0τ +

L∑
l=1

ylA
l]x + 2τ [b0τ +

L∑
l=1

ylb
l]T x + τ [c0τ +

L∑
l=1

ylc
l] ≥ 0 ∀((τ, y) : ‖y‖2 ≤ τ2).

Clearly, If τ2 − ‖y‖2 ≥ 0 then the first inequality holds. Now the S-Lemma enters the system and
links these inequalities because both sides can be written as a single matrix. From S-Lemma, we can
write

−xT [A0τ +
L∑

l=1

ylA
l]T [A0τ +

L∑
l=1

ylA
l]x + 2τ [b0τ +

L∑
l=1

ylb
l]T x + τ [c0τ +

L∑
l=1

ylc
l]− λ(τ2 − ‖y‖2) ≥ 0

which is the same as

(τ, yT )




c0 + 2xT b0 1

2c1 + xT b1 . . 1
2cL + xT bL

1
2c1 + xT b1

.

.
1
2cL + xT bL

−


(A0x)T

(A1x)T

.

.

(ALx)T

 (A0x, A1x, .., ALx)


(

τ

y

)

+(τ, yT )


−λ

λ

.

.

λ


(

τ

y

)
≥ 0.

From Schur lemma given below, we obtain the matrix in the theorem. This completes the proof.

Lemma 18 (Schur complement lemma) Suppose A,B,C, D are respectively n× n, n× p, p× n and
p× p matrices, and D is invertible. Let

M =

[
A B

C D

]

so that M is a (n + p)× (n + p) matrix. Then the Schur complement of the block D of the matrix M

is the n× n matrix
A−BD−1C.

Let D be positive definite. Then M is positive semi-definite if and only if the Schur complement
of D in M is positive semi-definite.

Clearly, the proof completely depends on the S-Lemma. However the S-Lemma works only for a
single quadratic form. Therefore we need a somehow different theorem that also works for the cases
K > 1. Although it does not give an equivalence result as above, it gives reasonable bounds for us to
work on more complicated problems. Now it is time to state this lemma and to see how it works.

Ben-Tal et al. proved the following result; see [8] Lemma A.6, pp.554–559. (Ben-Tal et al. also
showed that the approximate S-Lemma implies the usual S-Lemma).
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Lemma 19 (Approximate S-Lemma). Let R,R0, R1, ..., Rk be symmetric n× n matrices such that

R1, ..., Rk � 0, (5)

and assume that

∃λ0, λ1, ..., λk ≥ 0 s.t.
K∑

k=0

λkRk � 0. (6)

Consider the following quadratically constrained quadratic program,

QCQ = max
yεRn

{ yT Ry : yT R0y ≤ r0, y
T Rky ≤ 1, k = 1, ...,K } (7)

and the semidefinite optimization problem

SDP = min
µ0,µ1,...,µK

{ r0µ0 +
∑K

k=1 µk :
∑K

k=0 µkRk � R,µ ≥ 0 }. (8)

Then

(i) If problem (7) is feasible, then problem (8) is bounded below and

SDP ≥ QCQ. (9)

Moreover, there exists y∗ ∈ Rn such that

yT
∗ Ry∗ = SDP, (10)

yT
∗ R0y∗ ≤ r0, (11)

yT
∗ Rky∗ ≤ ρ̃2, k = 1, ...,K, (12)

where

ρ̃ := ( 2log( 6
∑K

k=1 rank Rk ) )
1
2 , (13)

if R0 is a dyadic matrix (that can be written on the form xxT , x ∈ Rn) and

ρ̃ := ( 2log( 16n2
∑K

k=1 rank Rk ) )
1
2 (14)

otherwise.

(ii) If
r0 > 0, (15)

then (7) is feasible, problem (8) is solvable, and

0 ≤ QCQ ≤ SDP ≤ ρ̃2QCQ. (16)

After giving the approximate S-Lemma, now we are ready to work on more complicated uncertainty
sets which are e.g., the cases K > 1, from the paper of Ben-Tal et al. [8]. Let us begin by defining
the corresponding robust feasible set :

Xρ = { x : xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Uρ },

11



where

Uρ =
{

(A, b, c) = (A0, b0, c0) + ρ
∑L

l=1 yl(Al, bl, cl) : yT Qky ≤ 1, k = 1, ...,K
}

.

Note that the robust counterpart of uncertain quadratic constraint with the intersection-of-ellipsoids
(∩-ellipsoid) uncertainty Uρ is, in general NP-hard to form. In fact, not only this, but also the problem
of robust feasibility check is NP-hard. (Ben-Tal et al., pp. 539 [8]).

To combine the sets of Xρ and Uρ, we need additional notation:

a[x] = A0x, c[x] = 2xT b0 + c0, Aρ[x] = ρ(A1x, ..., ALx),

and

bρ[x] = ρ


xT b1

.

.

.

xT bL

 , dρ = 1
2ρ


c1

.

.

.

cL

 .

Then one may easily verify that x ∈ X ρ holds if and only if

yT Qky ≤ 1, k = 1, ...,K ⇒ (a[x] + Aρ[x]y)T (a[x] + Aρ[x]y) ≤ 2(bρ[x] + dρ)T y + c[x].

If y satisfies the above, −y also does. Therefore we can write:

yT Qky ≤ 1, k = 1, ...,K ⇒

yT Aρ[x]T Aρ[x]y ± 2yT (Aρ[x]T a[x]− bρ[x]− dρ) ≤ c[x]− a[x]T a[x].

If we take the t2 ≤ 1, the inequality can be rewritten as

t2 ≤ 1, yT Qky ≤ 1, k = 1, ...,K ⇒

yT Aρ[x]T Aρ[x]y + 2tyT (Aρ[x]T a[x]− bρ[x]− dρ) ≤ c[x]− a[x]T a[x].

If there exists λk ≥ 0, k = 1, ...,K, we can join these inequalities such that for all t and for all y:

K∑
k=1

λkyT Qky +

(
c[x]− a[x]T a[x]−

K∑
k=1

λk

)
t2

≥ yT Aρ[x]T Aρ[x]y + 2tyT (Aρ[x]T a[x]− bρ[x]− dρ).

Surely, our new inequality needs more conditions than the first one. Therefore if the last inequality
holds, then the previous one also holds. If we write our inequality in matrix form, we obtain

∃λ ≥ 0 s.t.

[
c[x]− a[x]T a[x]−

∑K
k=1 λk (Aρ[x]T a[x]− bρ[x]− dρ)T

(Aρ[x]T a[x]− bρ[x]− dρ)
∑K

k=1 λkQk −Aρ[x]T Aρ[x]

]
� 0.

From the Schur complement lemma, we obtain the following theorem:

Theorem 20 The set Rρ of (x, λ) satisfying λ ≥ 0 and c[x]-
∑K

k=1 λk (-bρ[x]− dρ)T a[x]T

(-bρ[x]− dρ)
∑K

k=1 λkQk -Aρ[x]T

a[x] -Aρ[x] IM

 � 0 (17)

is an approximate robust counterpart of the set Xρ of robust feasible solutions of uncertain quadratic
constraint.
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Although we obtained an approximate robust counterpart we still do not know the level of con-
servativeness of this set. Now, we will see the relationship between level of conservativeness and
approximate S-Lemma.

Theorem 21 The level of conservativeness of the approximate robust counterpart R (as given by 17)
of the set X is at most

ρ̃ := ( 2log( 6
∑K

k=1 rank Rk ) )
1
2 , (18)

Proof: We have to show that when x cannot be extended to a solution (x, λ), then there exists
ζ∗ ∈ Rn such that

ζT
∗ Qkζ∗ ≤ 1, k = 1, ...,K (19)

and
ρ̃2ζT

∗ Aρ[x]T Aρ[x]ζ∗ + 2ρ̃ζT
∗ (Aρ[x]T a[x]− bρ[x]− dρ) > c[x]− a[x]T a[x]. (20)

The proof is based on approximate S-Lemma, so we need to work with the following notation. Let

R =

[
0 (Aρ[x]T a[x]− bρ[x]− dρ)T

Aρ[x]T a[x]− bρ[x]− dρ Aρ[x]T Aρ[x]

]
,

R0 =

[
1 0T

0 0

]
, Rk =

[
0 0T

0 Qk

]
,

and r0 = 1. Note that R1, ..., RK are positive semidefinite, and

R0 +
K∑

k=1

Rk =

[
1 0T

0
∑K

k=1 Qk

]
� 0.

Therefore conditions of approximate S-Lemma are satisfied, the estimate is valid.
Case I. In the first case we will prove that the following two conditions cannot appear at the same

time for our case written at the beginning of the proof. Inequalities are:

R �
K∑

k=0

λkRk, (21)

K∑
k=0

λk ≤ c[x]− a[x]T a[x]. (22)

Note: Ben-Tal et.al. try to prove this case by claiming: assumption that x cannot be extended to
a solution of (17) implies that x cannot be extended to a solution of uncertain quadratic constraint.
However this claim is erroneous because the uncertain quadratic constraint set is larger than the set
(17). Therefore, x cannot be extended to a solution of (17), but may be extended to a solution of
uncertain quadratic constraint. Hence we change this part of the proof and we claim that these two
inequalities cause x to be a solution of (17), which contradicts our assumption.

Let us turn to the proof with the new claim. Assume that there exist λ0, ..., λk ≥ 0 such that

R ≺
K∑

k=0

λkRk,

K∑
k=0

λk ≤ c[x]− a[x]T a[x].

13



From assumption x cannot be extended to a solution of (17). On the other hand, we have

(t, yT )R

(
t

y

)
≤

K∑
k=0

λk(t, yT )Rk

(
t

y

)
∀t, y

or

(t, yT )

(
0 (Ap[x]T a[x]− bp[x]− dp)T

(Ap[x]T a[x]− bp[x]− dp) Ap[x]T Ap[x]

)(
t

y

)
≤ λ0t

2 +
K∑

k=1

λkyT Qky

or, equivalently

λ0t
2 +

K∑
k=1

λkyT Qky − 2tyT (Ap[x]T a[x]− bp[x]− dp)− yT Ap[x]T Ap[x]y ≥ 0. (23)

We know that
K∑

k=0

λk ≤ c[x]− a[x]T a[x],

λ0 +
K∑

k=1

λk ≤ c[x]− a[x]T a[x],

λ0 ≤ c[x]− a[x]T a[x]−
K∑

k=1

λk.

From (23) and taking −t instead of t, we obtain

(c[x]− a[x]T a[x]−
K∑

k=1

λk)t2 +

K∑
k=1

λkyT Qky + 2tyT (Ap[x]T a[x]− bp[x]− dp)− yT Ap[x]T Ap[x]y ≥ 0,

or,

∃λ ≥ 0, s.t. (t, yT )

(
c[x]− a[x]T a[x]−

∑K

k=1
λk (Ap[x]T a[x]− bp[x]− dp)T

(Ap[x]T a[x]− bp[x]− dp)
∑K

k=1
λkQk −Ap[x]T Ap[x]

)(
t

y

)
≥ 0, ∀t, y.

However x is extended to a solution of (17), so it contradicts with our assumption. Case I cannot
occur.

Case II. There is no λ0, ..., λK ≥ 0 that satisfies both (21) and (22). Hence from approximate
S-Lemma:

SDP > c[x]− a[x]T a[x]. (24)

There exists y∗ = (t∗, η∗) such that

yT
∗ R0y∗ = t2∗ ≤ r0 = 1,

yT
∗ Rky∗ = ηT

∗ Qkη∗ ≤ ρ̃2, k = 1, ...,K,

yT
∗ Ry∗ = ηT

∗ Aρ[x]T Aρ[x]η∗ + 2t∗η
T
∗ (Aρ[x]T a[x]− bρ[x]− dρ) = SDP

> c[x]− a[x]T a[x],

from (24). Setting η = ρ̃−1η∗, these inequalities turn into

|t∗| ≤ 1,

ηT Qkη ≤ 1, k = 1, ...,K,
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ρ̃2ηT Aρ[x]T Aρ[x]η + 2ρ̃ηT t∗(Aρ[x]T a[x]− bρ[x]− dρ) > c[x]− a[x]T a[x].

If (t∗, η) is a solution of this system, then ζ∗ = η or ζ∗ = −η is a solution of (19)-(20). This
completes the proof.

Although the background on S-Lemma, S-procedure and approximate S-Lemma is vast, we tried
to give the main theorems we deemed important here and explain them by giving some examples. In
the next section, we give some results that strongly rely on these theorems.

3 The Extended S-procedure

We defined the Extended S-procedure (8) in the previous section. Now we prove some related results
by using the Barvinok, and Au-Yeung and Poon theorems.

3.1 Corollary for Barvinok’s Theorem (1995)

In this subsection, we deal with changing Barvinok’s result into the form of an extended S-procedure.
If we define the function f(X) whose ith component is fi(X) = (〈〈AiX, X〉〉, with i = 0, 1, ...,m − 1
and X ∈ Mn,p(R), then the theorem of Barvinok can be written as:

Theorem 22 Let A0, A1, ..., Am−1 ∈ SR
n , and let p := b

√
8m+1−1

2 c. Then

{(f0(X), f1(X), ..., fm−1(X))|X ∈ Mn,p(R)}

is a convex cone of Rm.

By using separation lemma of convex analysis, we obtain the following corollary:

Corollary 23 Let A0, A1, ..., Am−1 ∈ SR
n , and let p := b

√
8m+1−1

2 c. Assume there exists X0 ∈
Mn,p(R), such that

fi(X0) = (〈〈AiX
0, X0〉〉 > 0, i = 1, ...,m− 1. (25)

Then
f0(X) ≥ 0 ∀X : fi(X) ≥ 0, i = 1, ...,m− 1. (26)

holds if and only if there exists τi ≥ 0 for i = 1, ...,m− 1:

f0(X) ≥
m−1∑
i=1

τifi(X). (27)

Proof: We proceed exactly as in the proof of the S-Lemma (Theorem 2). Since the sufficiency
part is again easy, we concentrate on the necessity. Let

S = {(〈〈A0X, X〉〉, 〈〈A1X, X〉〉, ..., 〈〈Am−1X, X〉〉) : X ∈ Mn,p(R)}

and
U = R−− ×Rm−1

+ .

S is a convex set by Barvinok’s theorem (Theorem 7). Since the intersection of S and U is
empty, a separating hyperplane exists. I.e., there exists nonzero c = (c0, c1, ..., cm−1) ∈ Rm, such that
(c, s) ≤ 0, ∀s ∈ S and (c, u) ≥ 0, ∀u ∈ U . Using similar arguments to those in the proof of Theorem
2 we obtain c0 ≤ 0, and c1 ≥ 0, ..., cm−1 ≥ 0. From first inequality, for ∀X ∈ Mn,p(R),

c0〈〈A0X, X〉〉+ c1〈〈A1X, X〉〉+ ... + cm−1〈〈Am−1X, X〉〉 ≤ 0.
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We know that there exists X0 such that fi(X0) = (〈〈AiX
0, X0〉〉 > 0 and ci ≥ 0 for i = 1, ...,m−1,

so c0 cannot be zero by arguments similar to those used in the proof of Theorem 2. Therefore, defining
τi = − ci

c0
, we obtain:

f0(X) ≥
m−1∑
i=1

τifi(X).

The proof is complete.
Clearly, there exists a link between the S-procedure and convexity provided by the separation

lemma.

3.2 Corollary for Au-Yeung and Poon (1979) and Poon’s Theorem (1997)

The next theorem we deal with is the theorem of Au-Yeung and Poon(1979) that strongly relies on
Bohnenblust’s unpublished paper. With same definition of f(X) as in the first corollary, we can
rewrite this theorem as follows.

Theorem 24 Let the integer p be defined as

p :=

 b
√

8(m−1)+1−1

2 c if n(n+1)
2 6= m

b
√

8(m−1)+1−1

2 c+ 1 if n(n+1)
2 = m

 ,

and A0, ..., Am−1 ∈ SR
n . Then,

{(f0(X), f1(X), ..., fm−1(X))|X ∈ Mn,p(R), ‖X‖ = 1}

is a convex compact subset of Rm.

First, we establish the following corollary by using the procedure of Polyak’s proof in the paper
[32]:

Corollary 25 Let A0, A1, ..., Am ∈ SR
n , and let p be defined as in theorem of Au-Yeung and Poon.

Also fi(X) = (〈〈AiX, X〉〉, with i = 0, 1, ...,m. If there exists µ ∈ Rm+1 such that;∑m
i=0 µifi(X) > 0, i = 0, ...,m, (28)

then the set
F = {(f0(X), f1(X), ..., fm(X))|X ∈ Mn,p(R)}

is convex.

Proof: We proceed as in [32]. If f ∈ F, f = f(X) = (f0(X), f1(X), ..., fm(X)), for λ > 0, then
λf = f(

√
λX) ∈ F, thus F is a cone.

With respect to linear transformations of a space, the convexity property is invariant. Also, a
linear combination of quadratic forms is a quadratic form. Therefore there exists a linear map g = Tf

such that gm =
∑m

i=0 µifi(X) > 0 and G = {g(X) : X ∈ Mn,p(R)} is convex if and only if F is
convex.

Also by making a nonsingular linear transformation (it does not change G), we can assume that
gm = ‖X‖2 where ‖X‖2 =

∑p
i=1 ‖xi‖2 with n × 1 vectors xi. We know that from Polyak’s paper

it is nonsingular linear transformation when X is a one column matrix. Therefore we have nothing
but summation of nonsingular linear transformations which is also in this case a nonsingular linear
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transformation. (it has still the characteristic of being injective, ‖X‖2 = 0 ⇔ X = 0, and of being
surjective as its range equals R+ ∪ {0}). From the Theorem of Au-Yeung and Poon we have

H = {((g0(X), g1(X), ..., gm−1(X)))T |X ∈ Mn,p(R), ‖X‖ = 1}

is convex, but also G = {λQ, λ ≥ 0} where

Q = {(h0, h1, ..., hm−1, 1)T : h ∈ H}.

Hence, G is convex. Therefore F is convex.
The previous result leads to the following corollary.

Corollary 26 Let A0, A1, ..., Am ∈ SR
n , and let

p :=

{
b
√

8m+1−1
2 c if n(n+1)

2 6= m + 1
b
√

8m+1−1
2 c+ 1 if n(n+1)

2 = m + 1

}
.

Assume there exists X0 ∈ Mn,p(R), such that

fi(X0) = (〈〈AiX
0, X0〉〉 > 0, i = 1, ...,m. (29)

and that
m∑

i=1

µifi(X) > 0. (30)

Then
f0(X) ≥ 0 ∀X : fi(X) ≥ 0, i = 1, ...,m. (31)

holds if and only if there exists τi ≥ 0 for i = 1, ...,m:

f0(X) ≥
m∑

i=1

τifi(X). (32)

Proof: The proof is identical to that in the corollary of Barvinok’s theorem given above.
These corollaries are extended versions of Yakubovich and Polyak’s S-procedures. However none

of them gives a better solution for the case p = 1. In other words, we still fall back to the classical
results when X is a one column matrix.

4 Further Research on Approximate S-Lemma

In this section, we summarize briefly our efforts to improve bounds of the approximate S-Lemma. For
the dyadic case which is of interest for robust optimization, we obtained only a partial result.

In [8] Ben-Tal et.al. give the following conjecture to improve the dyadic case which is the main
ingredient for proving approximation results in robust quadratically constrained programs and conic
quadratic programs.
Conjecture: Let x = {x1, ..., xn} and ξ = {ξ1, ..., ξn} ∈ Rn. If ‖x‖2 = 1 and the coordinates ξi of ξ

are independently identically distributed random variables with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (33)

then one has
Pr(|ξT x| ≤ 1) ≥ 1/2. (34)

This conjecture improves the bound to 1
2 from 1

3 . We worked on this conjecture by using n-
dimensional geometry. However, we only proved the following relaxed version of it [13]:
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Lemma 27 Let x = {x1, ..., xn} and ξ = {ξ1, ..., ξn} ∈ Rn. If ‖x‖2 = 1 and ‖ξ‖22 = n then one has

Pr(|ξT x| ≤ 1) ≥ 1/2. (35)

This lemma is a relaxed version of the above conjecture, because the vectors ξ are equally dis-
tributed on the surface of hyper-sphere of ‖ξ‖22 = n. The conjecture states that for any x, at least
half of the vectors satisfies the inequality. However, we proved that for any x, half of the surface of
the hyper-sphere satisfies the inequality. We also proved the opposite side of it. In other words, for
any ξ, half of the surface of the hyper-sphere of x, which is ‖x‖2 = 1, satisfies the inequality. Since
the proof is long and quite involved we omit it here.

5 Discussion

In this section, we give a critical evaluation of our results on extended S-Lemma and approximate
S-Lemma.

For extended S-Lemma, we developed two corollaries from theorems of Barvinok and Poon. Al-
though they resemble each other, we can get a better result from corollary of Poon if we have positive
linear combination of given matrices.

For the corollary of Barvinok’s theorem, the relationship between p and m is p := b
√

8m+1−1
2 c. On

the other hand, in the corollary of Poon’s result, we have:

p :=

 b
√

8(m−1)+1−1

2 c if n(n+1)
2 6= m

b
√

8(m−1)+1−1

2 c+ 1 if n(n+1)
2 = m

 ,

However, one needs additional assumption in the second case. In fact this assumption is equivalent
to assuming positive definiteness of a linear combination of matrices. One can reach this result by
observing 〈〈AX, X〉〉 =

∑p
i=1 xT Ax for X ∈ Mn,p, x ∈ Rn. To obtain this positive definiteness, the

corollary of Poon’s theorem is given by Hiriart-Urruty and Torki that we explained in the background
section. Also Polyak gives an analysis for m = 2 case. For generalization of this result, Uhlig’s survey
is a useful paper.

Although we extended the S-Lemma, it does not improve the S-Lemma of Yakubovich or Polyak for
the cases X ∈ Mn,1. (Note that the corollary of Poon’s result gives m = 3 for p = 1. It corresponds
to quadratic function over two quadratic constraints in the S-procedure). Therefore, we have still
problems for m > 2.

The improvement in the approximate S-Lemma defied our efforts and remains a difficult open
problem.

6 Concluding Remarks

In this study, we dealt with S-procedure and some of its variants that remain fundamental tools of
different fields such as control theory and robust optimization. In general, S-procedure corresponds to
verifying that the minimum of a non-convex function over a non-convex set is positive. This problem
belongs in general to the class of NP-complete problems. Hence, to prove new theorems either in
S-procedure by extending or giving extra assumptions or in approximate S-Lemma by narrowing the
bounds will be valuable assets for the optimization and control communities.

For general case, we dealt with corollaries of the theorems of Barvinok and Poon to understand their
meaning for S-procedure. This also highlighted the relationship between convex and quadratic worlds.
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In the corollary of Barvinok, we obtain the extended version of Yakubovich’s theorem. However it does
not give any improvement for classical vector case. On the other hand, we obtain a better result in the
corollary of Poon’s theorem, if we make an assumption of positive definiteness of a linear combination
of matrices. This corollary also gives the same result as Polyak’s theorem for classical vector case.

In the case of S-procedure, the best result due to Polyak is about m = 2 case. Polyak shows
counterexamples in his paper that the assumptions he gives are not enough for the m > 2 case.
Therefore we need additional assumptions to prove new results on m > 2 case. The problem in this
area is to obtain the minimal assumptions satisfying the case m > 2. This problem is still open.

Then, we turned our interest into the approximate S-Lemma where our efforts failed to improve
the result in the dyadic case, which is the case of interest for robust optimization. This also remains
a major open problem.
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