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Abstract—Spectral-spatial processing has been increasingly
explored in remote sensing hyperspectral image classification.
While extensive studies have focused on developing methods to
improve the classification accuracy, experimental setting and
design for method evaluation have drawn little attention. In
the scope of supervised classification, we find that traditional
experimental designs for spectral processing are often improperly
used in the spectral-spatial processing context, leading to unfair
or biased performance evaluation. This is especially the case
when training and testing samples are randomly drawn from the
same image - a practice that has been commonly adopted in the
experiments. Under such setting, the dependence caused by over-
lap between the training and testing samples may be artificially
enhanced by some spatial information processing methods such as
spatial filtering and morphological operation. Such enhancement
of dependence in return amplifies the classification accuracy,
leading to an improper evaluation of spectral-spatial classification
techniques. Therefore, the widely adopted pixel-based random
sampling strategy is not always suitable to evaluate spectral-
spatial classification algorithms because it is difficult to determine
whether the improvement of classification accuracy is caused by
incorporating spatial information into classifier or by increasing
the overlap between training and testing samples. To tackle
this problem, we propose a novel controlled random sampling
strategy for spectral-spatial methods. It can greatly reduce the
overlap between training and testing samples and provides more
objective and accurate evaluation.

Index Terms—Experimental setting, random sampling,
spectral-spatial precessing, data dependence, hyperspectral image
classification, supervised learning

I. INTRODUCTION

Spectral-spatial processing have attracted increasing attentions dur-
ing the past several years. Bringing spatial information into traditional
single pixel based spectral analysis leads to better modelling of
local structures in the image and facilitates more accurate land-cover
and object classification. While a large portion of the hyperspectral
remote sensing community have focused their research on improving
classification accuracy by developing a variety of spectral-spatial
methods [1], [2], [3], [4], few attention has been paid to experimental
settings. Evaluation of hyperspectral image classification methods
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requires careful design of experiments such as appropriate benchmark
data sets, sampling strategy to generate training and testing data,
and appropriate and fair evaluation criteria [1], [5]. In the scope of
supervised classification, we find that traditional experimental designs
for spectral processing are often improperly used in the context of
spectral-spatial processing, leading to unfair or biased performance
evaluation. This is particularly the case when training and testing
samples are randomly drawn from the same image/scene which is
a common setting in the hyperspectral classification research due to
limited availability of benchmark data and high cost of ground truth
data collection.

Fig. 1 shows a typical spectral-spatial hyperspectral image clas-
sification system built on a supervised learning scheme. Training
and testing samples are drawn from an image data set following
a specific sampling strategy. After image preprocessing which may
involve spectral-spatial operations, feature extraction step fuses the
spectral and spatial information to explore the most discriminative
feature for different classes. The extracted features are used to train
a classifier that minimises the error on the training set. In the testing
step, the learned classifier is used to predict the classes of testing
samples based on the extracted features. The testing error is given
by comparing the predicted labels with the ground truth, which can
be used as a performance indicator for image preprocessing, feature
extraction and classification methods.

In the experimental setting, the sampling strategy plays an impor-
tant role in the classifier learning and evaluation. Given a dataset
including a hyperspectral image and its land-cover classes or other
ground truth data, in most cases, training and testing samples are
not given in advance. A sampling strategy has to be employed to
create the training and testing sets [6], [7], [8]. Random sampling
is a natural choice since it treats all labeled data equally and each
sample would be selected with the same probability. However, by
this method, some classes with a small number of labeled samples
may have much less selected samples than expectation. Therefore,
a more sophisticated sampling method, stratified random sampling,
is often used [7]. To guarantee each class having sufficient samples,
it firstly groups those labeled samples into subsets based on their
class labels, and then random sampling is carried out within each
subset. In term of the number of training samples in each subset,
it normally requires that proportion of each group should be the
same as in the population. Then the rest of samples are employed
as testing samples in the testing step. This method is very simple to
implement, reproducible, and of statistical significance. To the best
of our knowledge, a number of hyperspectral classification methods
adopted this option in the experimental setting [2], [9], [3], [10], [11].
In the following sections, we refer to the stratified random sampling
as random sampling.

Before proceeding to the issue of random sampling, we have to re-
affirm some basic principles for supervised learning. Under statistical
learning frame, a common assumption for inference purpose is that
random variables are independent and identically distributed (i.i.d.).
The identical condition implies that training and testing samples are
generated from the same data distribution. The independent condition
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Fig. 1. Framework of a supervised hyperspectral image classification system that uses spectral-spatial features.

requires that the occurrence of each sample do not affect the prob-
ability of other samples. i.i.d. shall hold for data in different forms,
for example, both raw spectral responses and extracted features. Most
supervised hyperspectral image classification approaches assume that
data are i.i.d.. Pixels in the same class shall have similar spectral
responses or spectral-spatial features so that a trained classifier can
be generalised to predict the labels of unseen samples. However,
the independent assumption does not always hold if the training and
testing samples are not carefully selected.

In general, arbitrary samples selected from a population by random
sampling can be seen roughly independent from each other, or at
least independent between the sets of training and testing samples.
However, for hyperspectral images, the random sampling is usually
undertaken on the same image. Consequently, those randomly se-
lected training samples spread over the image and the testing samples
will locate adjacent to them. Then the independence assumption
would become jeopardised due to the spatial correlation between
training and testing samples. This is not a problem for the traditional
pixel based spectral analysis methods in which no spatial information
is used. However, when it comes to the spectral-spatial methods,
the training and testing samples would inevitably interact with each
other, and thus the dependence caused by overlap or partial overlap
between the training and testing data could result in exaggerated
classification accuracy. To be more specific, the information from the
testing set could be used in the training step by spatial operations,
leading to a biased evaluation results. The sampling problem was
originally noticed by Friedl et al. [5], who referred to overlap as
auto-correlation. Zhen et al. [12] compared the influence of different
sampling strategies to the classification accuracy. However, none of
these work has given theoretical analysis on the problems and provide
an effective solution. Therefore, it is necessary to revisit the sampling
strategy and data dependence for supervised hyperspectral image
classification, especially those based on spectral-spatial processing.
In-depth discussion on this issue can be made from both experiment
and the computational learning theory points of view.

In this paper, we study the relationship between sampling strategies
and the spectral-spatial processing in hyperspectral image classifi-
cation, when the same image is used for training and testing. We
find that the experimental setting with random sampling makes data
dependence on the whole image be increased by some spectral-spatial
operations, and in turn increases the dependence between training and
testing samples1. To address this problem, we propose an alternative
controlled random sampling strategy to alleviate the side effect of
traditional random sampling on the same hyperspectral image. This
leads to a fairer way to evaluate the effectiveness of spectral-spatial

1For the sake of conciseness and without confusion, we use “dependence
between training and testing data” and “data dependence” interchangeably in
the rest of the paper.

methods for hyperspectral classification.
In summary, the contribution of this paper are in three aspects:

• We point out that the traditional random sampling from the
same image experimental setting is not suitable for super-
vised spectral-spatial classification algorithms. This helps to re-
examine the performance evaluation of various spectral-spatial
classification methods.

• We find that under the random sampling setting, spectral-spatial
methods can enhance the data dependence and improve the
classification accuracy. We give a theoretical explanation for
this phenomenon via computational learning theory.

• We propose a novel controlled random sampling strategy which
can greatly reduce the overlap between training and testing
samples caused by spatial processing, such that more objective
and accurate evaluation can be achieved.

The rest of this paper is organized as follows. Section II reviews
the spectral-spatial processing that have been commonly used for
hyperspectral image classification. Section III provides an in-depth
analysis on the dependency between training and testing samples.
The spatial information embedded in the spectral-spatial processing
under the experimental setting with random sampling is excavated
and examined. Section IV analyzes the overlap between neighboring
training and testing samples caused by spatial operations. Such over-
lap increases the dependence between training and testing samples,
which may lead to mistakenly using of the testing data in the
training process. Section V discusses the relationship among spectral-
spatial processing, data dependance and classification accuracy via
computational learning theory. A new sampling strategy is proposed
in Section VI which reduces the influence of overlap between training
and testing data. To prove its advantage over random sampling, a
series of experiments are developed and results are presented in
Section VII. At last, the conclusions are drawn in Section VIII.

II. SPECTRAL-SPATIAL PROCESSING IN HYPERSPECTRAL

IMAGE CLASSIFICATION

The advantage of using hyperspectral data in land cover classifi-
cation is that spectral responses reflect the properties of components
on the ground surface [7]. Therefore, raw spectral responses can
be used directly as the discriminative features of different land
covers. At the same time, hyperspectral data also possesses the basic
characteristic of the conventional images - the spatial information
which corresponds to where a pixel locates in the image. The spatial
information can be represented in different forms, such as structural
information including the size and shape of objects, textures which
describe the granularity and patterns, and contextual information
which can express the inter-pixel dependency [3]. This assumption is
also the foundation of development of most spectral-spatial methods
for hyperspectral image classification.



3

Fig. 2. Three band false color composite and ground truth labels of five commonly used hyperspectral datasets. From left to right: Botswana, Indian Pines,
Kennedy Space Center, Pavia University, and Salinas Scene.

In general, spectral-spatial information can contribute to hyper-
spectral image classification through three ways. Firstly, in image
preprocessing, it can be used for image denoising, morphology,
and segmentation. Image denoising enables the reduction of random
noises introduced from sensor, photon effects, and calibration errors.
Several approaches have been exploited for this purpose, for example,
smoothing filters, anisotropic diffusion, multi-linear algebra, wavelet
shrinkage, and sparse coding methods [13]. In most cases, denoising
can be done by applying a local filter with designed or learned kernel
across the whole image. In mathematical morphology, operations are
performed to extract spatial structures of objects according to their
spectral responses [14], [3]. Similar information is explored in image
segmentation, which groups spatially neighboring pixels into clusters
based on their spectral distribution [15], [9].

Secondly, common usage of joint spectral-spatial information lies
in the feature extraction stage. While traditional spectral features are
extracted as responses at a single pixel level in hyperspectral images,
spectral-spatial feature extraction methods use spatial neighborhood
to calculate features. Typical examples include texture features such
as 3D discrete wavelet [10], 3D Gabor wavelet [16], 3D scattering
wavelet[17], and local binary patterns [18]. Morphological profiles,
alternatively, use closing, opening, and geodesic operators to enhance
spatial structures of objects [19], [20], [21]. Other spectral-spatial
features include spectral saliency [22], spherical harmonics [23],
and affine invariant descriptors [24]. Heterogeneous features can be
further fused using feature selection or reduction approaches [25].

Thirdly, some image classification approaches rely on spatial
relation between pixels for model building. A direct way of doing
so is calculating the similarity between a pixel and its surrounding
pixels [26]. Markov random field, for example, treats hyperspectral
image as dependent data and uses spectral information in the local
neighborhood to help pixel class prediction [27], [9], [28]. Similar
spatial structures are explored in conditional random fields [29],
hypergraph modelling [30], and multi-scale analysis [11]. The spatial
information can also be explored in constructing composite kernels in
support vector machines [31]. While supervised learning approaches,
such as K-nearest neighbors, linear discriminant analysis, Bayesian
analysis, support vector machines, etc. are widely used in these
classification tasks [32], [33], some approaches adopt semi-supervised
or active learning strategies [34], [35].

III. SPATIAL INFORMATION EMBEDDED IN RANDOM

SAMPLING

Random sampling makes the training and testing samples spread
over the image, embedding plenty of underlying spatial information.
In this section, we point out that the embedded spatial information
will mistakenly influence the classifier learning and evaluation. We
exploit this problem in a specific/extreme way, by which a hyperspec-
tral classification task can even be done without spectral information.

In many benchmark hyperspectral datasets, pixels in the same class
are not distributed randomly in the image. On the contrary, they tend
to exist in continuous regions and follow a certain spatial distribution,
especially when objects in the same materials present in the scene.
Fig. 2 shows the false color composite and ground truth maps of five
commonly used hyperspectral datasets, i.e., Botswana, Indian Pines
(Indian), Kennedy Space Center (KSC) , Pavia University (PaviaU),
and Salinas scene (Salinas) [36]. In these images, there are strong
dependencies between the spatial locations of pixels and land cover
classes. This results in the potential using of the spatial structure and
distribution of each single class. In most cases, if random sampling
is used for selecting training and testing samples in the same image,
the class label of a testing sample can be easily inferred only by its
spatial relation with the training samples. This can be exemplified
by Fig. 3, in which 5%, 10% and 25% of training data are sampled
from the Indian Pines and Pavia University datasets. When it comes
to 25% sampling rate, the spatial distribution of training samples (last
column) is similar to the shape of the ground truth map (first column)
in the spatial domain.

To show the extent that the classification accuracy is impacted by
spatial information, we performed experiments on five benchmark
datasets in Fig. 2. In the experiment, a nonlinear support vector
machine (SVM) was employed because the land cover classes are
not linearly separable in the spatial domain. The spatial coordinates
were used as the spatial feature and no spectral information was
included. The parameters of the SVM were learned via five-fold cross
validation. Three sampling rates were explored, i.e. 5%, 10%, and
25% to generate the training data from all labeled samples, while
the rest of labeled data served as the testing samples. In contrast
to the spatial feature, the traditional spectral feature based methods
were also implemented in which we followed the same setting as the
spatial method.

Each test was repeated ten times in the experiment with random
generation of training and testing samples. The overall classification
accuracies (OA), average accuracies (AA) and Kappa Coefficient
(κ) are shown in Table I for different methods. The comparison
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Fig. 3. Random sampling strategy on Indian Pines and Pavia University datasets. From left to right: the ground truth map, training set with 5% sampling
rate, training set with 10% sampling rate, training set with 25% sampling rate.

between accuracies using spectral feature with SVM (Spe) and
spatial feature with SVM (Spa1) shows some surprising results.
Classification accuracy based on pure spatial feature has significantly
outperformed the counterpart using pure spectral feature in all cases.
In terms of overall accuracy, the spatial method achieves more than
93.8% accuracy on all datasets when only 5% of training samples are
used, while the spectral method has only around 75.5%− 93.2% in
accuracy. When the sampling rate becomes 25%, the accuracy almost
reaches 100% for the spatial feature which agrees with the perceptual
intuition in Fig. 3. Essentially, these phenomena are caused by the
random sampling strategy on the same image. The results also show
that higher sampling rate leads to increase of classification accuracy
on all datasets.

In another point of view, the spatial classification can also be
exploited in the local neighbourhood. Since the training samples
spread uniformly in the image, it would be easy to find a nearest
training sample for any testing samples that belong to the same
class. An experiment was designed to test how the local infor-
mation contributes the classification. We employed the K-nearest
neighbor (KNN) classifier and set the parameter K to 1. The results
are displayed in Table I under the columns of Spa2. It can be
seen that the performance of Spa2 is comparable to the spatial
method Spa1 on all datasets, which has significantly outperformed
the spectral method on all datasets. It should be noted that in the
KNN classification, predicting the label of testing samples is only
based on the nearest training pixels in their spatial neighbourhood.
This is similar to the mechanism of some spectral-spatial methods
which also make use of the local spatial neighbourhood information
but in a different way. This experiment further proves that the training
data provide too much information on the spatial domain for the
classification task. While classification based on spatial coordinates
seems to perform better than the spectral information, it is infeasible
in real applications in which unlabeled pixels are involved. Those
unlabeled pixels are prone to be classified into its nearby class, thus
producing a thematic map dramatically different from the reality. To
exemplify this phenomenon, Fig. 4 shows the classification maps of
the Indian Pines including the unlabeled pixels with 10% sampling
rate. Although Sp1 and Sp2 achieve higher classification accuracy
than Spe, their classification maps are far away from the ground truth
map. Therefore this method is not acceptable in reality. In summary,
these two experiments show that random sampling from the same
image makes an underestimated amount of spatial information be

(a) (b)

(c)

Fig. 4. Classification maps of the Indian Pines (including the unlabeled
pixels) using only spectral or spatial features: (a) Spe, (b) Spa1 and (c) Spa2.

embedded in the training set and the testing set. It is natural to
raise the concern that they would interact with each other if spatial
processing is applied to the image.

IV. OVERLAP BETWEEN TRAINING AND TESTING DATA

FROM THE SAME IMAGE

The spectral-spatial methods make use of the spatial information
in different forms and different ways as introduced in Section II.
When it comes to the random sampling strategy, a more severe
problem may happen in the spectral-spatial analysis, especially for
the feature extraction stage. When only spectral responses are used,
feature extraction is performed at single pixel, without exploring its
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TABLE I
OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA) AND KAPPA COEFFICIENT (κ) ON FIVE HYPERSPECTRAL DATASETS WHEN DIFFERENT

FEATURE/CLASSIFIER COMBINATIONS WERE USED: SPECTRAL FEATURE WITH SVM (SPE), SPATIAL FEATURE WITH SVM (SPA1) AND SPATIAL FEATURE

WITH KNN (SPA2) .

Dataset
OA AA κ

Spe Spa1 Spa2 Spe Spa1 Spa2 Spe Spa1 Spa2

Botswana (%5) 89.1 93.8 93.3 89.0 93.8 92.9 0.873 0.933 0.928

Botswana (%10) 91.9 98.1 97.7 92.7 97.9 97.5 0.913 0.979 0.975

Botswana (%25) 94.9 99.7 99.7 95.3 99.6 99.7 0.944 0.996 0.997

Indian (%5) 75.5 95.5 95.1 67.7 92.1 90.5 0.718 0.949 0.944

Indian (%10) 81.0 98.0 97.6 76.5 97.1 94.9 0.783 0.977 0.972

Indian (%25) 87.0 99.7 99.4 84.6 99.5 98.7 0.851 0.996 0.993

KSC (%5) 87.6 98.1 98.8 81.6 97.5 98.5 0.862 0.979 0.987

KSC (%10) 90.3 99.6 99.8 85.4 99.2 99.7 0.892 0.995 0.998

KSC (%25) 93.4 99.9 100.0 89.6 99.9 100.0 0.927 1.000 1.000

PaviaU (%5) 93.2 96.4 96.9 91.3 90.1 93.3 0.910 0.952 0.958

PaviaU (%10) 94.2 97.3 98.7 92.3 91.8 96.8 0.923 0.964 0.982

PaviaU (%25) 95.3 98.0 99.7 94.0 93.4 99.2 0.941 0.973 0.996

Salinas (%5) 93.1 99.9 99.2 96.2 99.8 98.1 0.923 0.999 0.991

Salinas (%10) 94.1 99.9 99.7 97.1 99.9 99.4 0.934 0.999 0.997

Salinas (%25) 95.3 100.0 99.9 97.8 100.0 100.0 0.948 1.000 1.000

spatial neighborhood. Therefore, random sampling strategy provides
a statistical solution for data splitting and there is no explicit overlap
between training and testing samples. However, the spectral-spatial
methods usually exploit information from neighborhood pixels. This
is normally implemented by a sliding window with a specific size,
for example, 3 × 3, 5 × 5 and so on. In each window, a kernel or
filter is used to extract discriminative information. Since the training
and testing samples are drawn from the same image, their features
are almost certain to overlap in the spatial domain due to the shared
source of information.

Fig. 5. Overlap between training and testing data on Indian Pines dataset
under 5% sampling rate.

(a) (b)

Fig. 6. The regions for feature extraction from a training sample (O) and a
testing sample (+) overlap with each other, as represented in gray color. The
proportion of overlap is 2

3
and 4

5
for (a) 3× 3 sliding window and (b) 5× 5

sliding window, respectively.

Fig. 5 shows the extent of overlap between training and testing
data on the Indian Pines dataset. In the figure, the white dots show

the locations of training samples, and the surrounding white squares
cover a 3× 3 region used for spectral-spatial feature extraction. The
testing samples, however, may just lie in the the square and has its
own surrounding regions. This brings about a shared region between
features extracted from the training and testing data such that they
interact with each other and lose the mutual independence. It is also
evident that a larger filter leads to more overlap areas. An example is
shown in Fig. 6 in which a 3×3 and 5×5 window will result in 2

3
and

4
5

of overlap for adjacent training and testing samples, respectively.
Such overlap leads to using of the testing data for training

purpose, and gives significant advantages to the spectral-spatial
feature extraction approaches. This violates the basic principle of
supervised learning that training and testing data shall not interact
with each other. Depending on how feature is extracted, benefit of
testing data may be explicit, for example when the spectral-spatial
feature is extracted by concatenating the spectral responses of pixels
in a neighborhood, or implicit, for example, by extracting texture
features based on spatial frequency analysis such as discrete wavelet
transform.

A. Experiment with a Mean Filter Based Spectral-spatial

Method

In order to estimate how the overlap impacts the accuracy of
spectral-spatial method with random sampling strategy, an experiment
was carried out on the Indian Pines dataset. In this experiment, a
linear SVM classifier was used to facilitate further comparison. The
features were constructed by applying a mean filter to calculate the
mean of the spectral responses in a neighborhood of the hyperspectral
images, which was mathematically formulated as follows:

f(x, y) =
1

MN

x+M

2
∑

i=x−M

2

y+N

2
∑

j=y−N

2

S(i, j) (1)

where M and N are the width and height of neighborhood surround-
ing (x, y). In the experiment, we set M and N both from 1 up to
27 with an interval of 2. S(i, j) represents the spectral response at
location (i, j) and f(x, y) is the feature extracted on location (x, y)
which contains both spectral and spatial information. This process can
be considered as one of the simplest approaches to extract spectral-
spatial features.

When the size of the neighborhood is 1 × 1, this reduces to
extracting spectral feature only. Larger size of window results in
more overlap. The calculated rate of testing samples covered by
the neighborhood of training samples is shown in Fig. 7. When 5%
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Fig. 7. Overlap of training and testing data on the Indian Pines with different
size filters.

Fig. 8. Classification accuracies on the Indian Pines using a simple mean
filter with different filter sizes.

training data are sampled, 30.9% testing samples are covered by the
3×3 regions used to extract training features. When random sampling
rate increases to 25%, the extent of overlap becomes 86.4%. The
rise of sampling rate leads to rapid increase of overlap. Furthermore,
when the size of filter grows, the overlap rate also increases rapidly.
Eventually, when the overlap rate reaches 100%, all testing samples
are used in the training process.

The experiment was repeated 10 times. In each time, the indices
of the training and testing pixels were randomly generated. Features
were generated using different settings of filter size and sampling
rate. Under each setting, the same training and testing samples were
used for fair comparison. The overall classification accuracies are
shown in Fig. 8. Significant increase of the classification accuracy
can be observed when spatial information is added to the spectral
information. When the size of neighborhood increases, more testing
data contribute to the training step, therefore the classification accu-
racy increases. It is also interesting to see that after the neighborhood
increases to a specific size, the accuracy stops growing and tends to
stable. This is probably because that when the neighborhood becomes
too large, unlabeled data or samples from other classes are involved
in the feature extraction, which neutralizes the benefits of overlap.

B. Non-overlap Measurement

Other than overlap, the increase of classification accuracy also
owes to the better discriminative capability of spectral-spatial fea-
tures. With larger filter size, the feature includes more spatial in-
formation. To demonstrate how the spatial neighborhood influences
the effectiveness of spectral-spatial feature, we performed another
experiment on those testing samples not overlapped with the training
data.

TABLE II
CLASSIFICATION ACCURACIES ON ALL TESTING SAMPLES AND

NON-OVERLAPPED TESTING SAMPLES.

Filter Size 1 3 5 7 9 11

All samples (5%) 72.1 86.1 90.2 91.4 92.1 92.3

Non-overlap (5%) 72.1 82.9 83.2 79.1 71.6 68.0

All samples (10%) 77.4 90.4 94.5 95.9 96.1 96.4

Non-overlap (10%) 77.4 86.2 84.8 77.9 65.5 NaN

All samples (25%) 82.4 94.6 97.5 98.3 98.5 98.7

Non-overlap (25%) 82.4 87.9 80.6 NaN NaN NaN

Following the same setting as the previous experiment, we re-
moved the testing samples that were covered by the training set and
only test on the remaining samples. Table II shows the comparison
of classification accuracy on all testing samples and non-overlap
testing samples. The results show that when testing on non-overlap
testing samples, the accuracy is improved when the neighbourhood
information is initially introduced by the 3× 3 mean filter. However,
when a larger size of filter is used, the accuracy of non-overlap testing
samples does not increase and even decrease 2. The decrease could
be caused by the fact that the non-overlap testing samples are easily
influenced by the samples from other classes in the neighborhood. In
contrast, the classification accuracy with overlapped testing samples
has remarkable improvement when larger filter size is used.

Based on the above analysis, under the random sampling strategy,
some filter-based spectral-spatial feature extraction methods would
make the training and testing samples overlap and then interact with
each other. Subsequently, in the training process, information from
testing samples are included to train the classifier, which in return is
used to classify the testing samples in the testing step. Although
this kind of methods improves the classification results, they are
not desired because they violate the basic assumption of supervise
learning and their generalization is questionable. So far we have
only analyzed a special case of spectral-spatial methods, it would
be interesting to extend the analysis to a broader scope. Next, we try
to discuss the data dependence and its impact on classification results
by computational learning theory.

V. DATA DEPENDENCE AND CLASSIFICATION ACCURACY

Computational learning theory aims to analyze the computational
complexity, feasibility of learning, and performance bound [37]. A
widely known computational learning framework is the probably
approximately correct (PAC) learning which estimates the sample
complexity based on the required generalization error, probability of
inference and complexity of a space of functions. Another classic
theory is the Vapnik-Chervonenkis theory (VC theory). One of its
functions is to bound the generalization ability of learning processes
which is usually represented as the testing error R(h).

Before introducing the computational learning theory, some basic
learning concepts shall be firstly introduced in the scope of i.i.d. data.
In computational learning, instead of considering the classification
accuracy, a more general term, generalization error bound, is usually
derived to describe the ability of learning algorithm to predict the
unseen data. For a binary classification problem, given a hypothesis
h ∈ H where H are all hypotheses, a target hypothesis c, and
a sample set S = (x1, x2, ..., xm) following a distribution D,

the empirical error (training error) R̂(h) and the generalization
error (testing error) R(h) can be defined as:

R̂(h) =
1

m

m
∑

i=1

l(h(xi), c(xi)) (2)

R(h) = E
x∈D

l(h(x), c(x)) (3)

2In Table II, the null values are due to the absence of non-overlapped testing
samples.
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where l is the error function and E is the expectation.

Despite that the empirical error R̂(h) can be calculated once the
training data S, its label c(xi) and the hypothesis h are known, the
generalization error can not be estimated directly. In practice, simply

decreasing R̂(h) by building complex classification model may not
always minimise R(h) because it may lead to over-fitting. In order
to bound R(h), more factors have to be considered. Based on PAC
learning, the generalization bound can be calculated as:

R(h) ≤ R̂(h) +
1

m
(log|H|+ log

1

δ
) (4)

which means that given training data of size m and hypothesis com-
plexity |H|, the inequality of generalization holds with probability
no less than 1 − δ. This definition conforms to our understanding
of learning that more training data leads to better learning outcome.
Based on the inequality, the generalization bound can be tightened
by increasing the training sample size m or by decreasing the
probability 1− δ which is equivalent to confidence of the inference.
The complexity of hypothesis is determined by the learning models.

When the hypothesis sets are infinite, the above bound is un-
informative. In order to impose generalization bound for infinite
cases, the Redemacher complexity is introduced to measure the
hypothesis complexity [38]. Specifically, it measures the variety of a
set of functions by estimating the degree to which a hypothesis can
fit random noise. The Rademacher complexity based generalization
bound on i.i.d. data samples is defined as:

R(h) ≤ R̂(h) + R̂s(H) + 3

√

log 2
δ

2m
(5)

where R̂s(H) is the empirical Rademacher complexity. 1− δ is the

probability or confidence and m is the training sample size. R̂s(H)
can be estimated by growth function or VC-dimension [37].

Even though these models provide generalization bounds for differ-
ent learning algorithms, they are all based on the i.i.d. assumption. For
non-i.i.d. data, the generalization bound has not been fully studied due
to the lack of statistical model for dependent data. However, i.i.d. does
not always hold in practice. In general, the samples in a hyperspectral
image are not i.i.d., as the samples are spatially overlapping to each
other in the image. The data dependence will inevitably happen no
matter how carefully the sampling strategy is designed.

In recent years, researchers begin to develop new learning theories
on this topic. Among all kinds of non-i.i.d. data, some data types
possess the property of asymptotic independence, which is weaker
than independence but stronger than dependence, for instances, time
series signal [39]. In order to define this kind of data, mixing
condition is used to explicitly define the dependence of the future
signal on the past signal based on decay. A commonly used model
in non-i.i.d. scenario is the stationary β-mixing model [40]. Suppose
events A and B are generated from a time sequence αt∈(−∞,+∞)

with an interval k, the definition of β-mixing coefficient is

β(k) = sup
m

E
B∈αm

−∞



 sup
A∈α

+∞

m+k

|Pr(A|B)− Pr(A)|



 (6)

This equation defines the dependence coefficient as the supremum
of the difference between the conditional probability Pr(A|B) and
probability Pr(A) when choosing arbitrary moment m which sepa-
rates event A and B. The sequence α is β-mixing if β(k) → 0 when
k → +∞. It implies that the dependence coefficient β(k) decreases
with the increase of interval k.

Several learning models have already been derived on stationary
β-mixing data, such as VC-dimension bound[40], PAC learning [41]
and Rademacher complexity [42]. In this work, the Rademacher com-
plexity based generalization bound is employed since it associates the
generalization bounds with β-mixing coefficient. It uses a technique
to transferring the original dependent data to independent blocks. Let
2µ be the number of blocks and each block contains k consecutive

points, then the size of sample m = 2µk. The original bound in
Equation (5) is extended to β-mixing data as follows:

R(h) ≤ R̂(h) + R̂s(H) + 3M

√

log 2
δ−4(µ−1)β(k)

2µ
(7)

where M is the bound of a set of hypothesis H .
Compared with the i.i.d. case, this bound is not only related to

the training error R̂(h), empirical Rademacher complexity R̂s(H),
and probability δ, but also relies on the β-mixing coefficient β(k)
which implies the degree of dependence among data. Considering
the impact of β-mixing coefficient to the bound, this equation can be
further simplified as:

R(h) ≤ f(β(k)) + C (8)

where f(β(k)) is a monotonically decreasing function. As a result,
the generalization bound is tightened when the β(k) increases, i.e.
the dependence among data is enhanced.

Applying learning theory to hyperspectral image classification is
challenging due to the complex statistical characteristic of hyperspec-
tral images. To our knowledge, similar work in is very rare. In the
following experiments, we show that hyperspectral images share the
same properties of β-mixing data.

Spectral feature extracted at image pixels often have strong
dependence to their surrounding regions [4]. However, it is still
questionable whether such dependence decreases with the increasing
distance between the central pixel and its neighbouring pixels. In
addition, since a hyperspectral image is a three-dimensional data, how
the dependence is related to the spatial direction is still unknown. To
check how the dependence varies with the distance, we performed
a simple statistical analysis on the Indian Pines dataset. Here, the
dependence between two pixels X and Y is approximated by the
linear correlation coefficient of their spectral responses:

ρX,Y =
cov(X,Y )

σXσY
(9)

where cov and σ represent the covariance and standard deviation,
respectively. A random location was firstly selected on this image,
then the correlation coefficient ρ was calculated between the pixel and
its neighborhood pixels with different distances. We have calculated
the result on a 9×9 patch. As expected, it does not show clear pattern
at a single random pixel. Then we took account of pixels centered
at all locations and calculated the mean of correlation coefficients in
all patches based on the following:

c(xi, yi) =
1

M ×N

∑

x̂∈M,ŷ∈N

ρ(S(x̂, ŷ), S(xi, yi)) (10)

where (xi, yi) is the neighbourhood pixels of the central pixel (x̂, ŷ)
in the patch. For a 9 × 9 patch, xi = x̂ − 4, x̂ − 3, ..., x̂ + 4 and
yi = ŷ − 4, ŷ − 3, ..., ŷ + 4. M and N are the width and height of
the whole image. S(x, y) represents the spectral response at location
(x, y). The statistical result is shown in Fig. 9. In the center of the
patch, the intensity is one due to self-correlation. It clearly shows
that with the increasing interval, the correlation coefficient gradually
drops in all directions. This is consistent with the characteristic of
β-mixing.

Now we can safely assume that hyperspectral images are β-mixing,
and explore the relationship between the generalization bound with
data dependence. Based on Equation (8), the bound is inversely
related to β-mixing. As a consequence, the classification accuracy
can be increased by enhancing the dependence between training and
testing data. Recall that in the experiment with a mean filter based
spectral-spatial method (Fig. 8), the accuracy increases with larger
filters. It would be interesting to measure the pixel correlation to
see how the mean filter influences the data dependence. Similarly,
Equation 1 was used to calculate the mean spectral responses in a
sliding window and the sizes of the windows were set to 1×1, 3×3,
5× 5, 7× 7, 9× 9, 11× 11, respectively. Then the statistics on the
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Fig. 9. The statistics on the correlation coefficients between a central pixel
and its 9× 9 neighbourhood pixels on Indian Pines image.

Fig. 10. Pixel correlations along X dimension on Indian Pines image after
a mean filter with different sizes was applied.

correlation coefficients on a 9 × 9 patch was calculated from the
filtered images based on Equation 9 and Equation 10. Note when the
1× 1 was used, this correspond to using the original image without
filtering. The results are shown in Fig. 10 in which we only draw the
correlation coefficients along X dimension. The results with different
filters are represented by distinctive curves. The bottom curve with
1×1 filter can be seen as the projected illustration along X dimension
from Fig. 9. From this new figure, two trends can be observed.
Firstly, all curves drop continuously when the distance increases,
which means that the processed data agree with the properties of
β-mixing. Secondly, at the same distance, the larger the filter is, the
stronger the dependence between the central pixel and its adjacent
pixels becomes. Therefore, the overlap enhances the data dependence
which tightens the error bound of the final classification results.

The theories presented above have explained why mean filter
improves the classification accuracy, and they can be extended to
other spectral-spatial operations that increase the data dependence. It
should be noted that the above analysis is built on the assumption
of random sampling for performance evaluation. Under such exper-
imental setting, the improvement of classification accuracy comes
from not only incorporating spatial information into classifier but
also enhancing the dependence between training and testing data.
While enhancement of such dependence in a proper way is needed
to improve classification results, incorporating testing samples in
the training procedure shall be avoided. Otherwise, it is difficult
to determine whether the improvement of classification accuracy is
caused by the former or latter. Therefore, to restrict the overlap
rate between training and testing samples, we propose an alternative
sampling strategy for evaluation of the spectral-spatial methods.

Algorithm 1 Controlled Random Sampling Strategy

Require: Hyperspectral Image I and sampling rate s

for each class c in I do

Selects all unconnected partitions P in the class c

for each partition p in P do

Count the number of samples np in the partition

Calculate the number of training samples nt in the

partition by nt = np × s

Randomly select a seed point q in the partition

Applying the region-growing algorithm to extend q to

a region r whose size is equal to nt

end for

Combine these regions r to form training samples Rc

end for

Combine the training samples Rc and their corresponding

class labels to get the whole training set R

VI. A CONTROLLED RANDOM SAMPLING STRATEGY

Following the discussion in previous sections, since random sam-
pling from the same image is not suitable for evaluation the spectral-
spatial methods, it is necessary to develop a new sampling strategy
to separate the training and testing sets without overlap. It would
be perfect if we could perform training and testing on two different
images. Unfortunately, this is still infeasible in most cases due to the
limited availability of benchmark datasets and high cost of ground
truth data collection. Therefore, without changing much the current
experimental setting, the goal is to significantly reduce the extent of
data overlap and make the evaluation fair enough. Based on our analy-
sis, the main problem of random sampling is that it makes the training
and testing samples spatially adjacent to each other, leading to their
overlap in the subsequent spatial operations. On the other hand, as a
classical method, it has advantages such as simplicity, reproducibility,
and statistical significance. As a result, the new sampling strategy
should satisfies the following requirements. Firstly, it shall avoid
selecting samples homogeneously over the whole image so that the
overlap between training and testing set can be minimised. Secondly,
those selected training samples should also be representative in the
spectral domain, meaning that it shall adequately cover the spectral
data variation in different classes. There is a paradox between these
two properties, as the spatial distribution and the spectral distribution
are coupling with each other. The first property tends to make the
training samples clustered so that it generates less overlap between
the training and testing data. However, the second property prefers
training samples being spatially distributed as random sampling does,
and covering the spectral variation in different regions of the image.
Therefore, a good trade-off has to be achieved by the new sampling
strategy. Thirdly, because there is no prior knowledge, we do not
know which samples are more important than the others. Therefore
the new method shall possess the property of randomness.

Here we propose a controlled random sampling strategy to achieve
a compromise of the above considerations. Similar to random sam-
pling, a pre-defined proportion of samples in each class is to be
randomly selected as the training samples and the rest data serve
as the testing samples. Those training samples shall be concentrated
locally and dispersed globally. We borrow the idea of region growing
to create region-shape training samples [43]. On the ground truth
map, the seed points are randomly selected from different partitions of
classes to make the training samples disperse globally and randomly.
The partition referred here is a group of connected pixels with
the same labels. For each class, there are usually several partitions
distributed on the map, corresponding to the land cover of the same
category in different locations. Then controlled random sampling
proceeds with three steps. Firstly, it selects the unconnected partitions
for the each class and counts the samples in each partition. This
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(a) Random sampling (b) Random sampling after
Gaussian filtering

(c) Controlled random sampling (d) Controlled random sam-
pling after Gaussian filter

Fig. 11. Overlap between the training and testing data under different sampling strategies before (first column) and after (second column) a Gaussian filter
is applied.

step is to find the spatial distribution of each class and make sure
that the selected training samples in the next step cover the spectral
variance at the most extent. Secondly, for each partition, the training
samples are generated by extending region from the seed pixel.
In terms of region growing, it expands in all directions and takes
account of 8-connected neighborhood pixels. All the adjacent pixels
of seed pixels are examined and if they are within the same class,
they work as the new seed points. This process is repeated until
the amount of selected points reach a pre-defined number which is
proportional to the number of pixels in the corresponding partition.
This guarantees that the total number of training samples meet the
pre-defined proportion of the whole data population. Thirdly, after
the above steps are applied to all classes, those samples in the grown
regions with their labels are chosen as the training samples and
the rest of pixels work as the testing samples. In case when there
are more partitions than the required training samples, partitions are
again randomly sampled. A summary of this strategy is given in
Algorithm 1.

In Fig. 11, we demonstrate different degrees of overlap between
training and testing samples under random sampling and controlled
random sampling strategies, after a Gaussian filter is applied. In the
left column of the figure, the training and testing data are represented
by colored dots and white regions in each partition. Applying the
Gaussian filter creates the gray regions in the right column of the
figure, representing the overlap between the training and testing data.
It can be noticed that all the training samples are impacted by the
testing data under random sampling. On the contrary, for controlled
random sampling, only training samples at the edges of the training
regions are influenced by the testing data. This figure clearly shows
that the overlap from controlled random sampling is significantly less
than that from the traditional random sampling.

To further illustrate how the controlled random sampling works
with real datasets, examples on Indian Pines and Pavia University are
given in Fig. 12 with 5%, 10% and 25% sampling rates. Compared
with the random sampling strategy in Fig. 3, it can be observed that
the spatial structure of each class can no longer be inferred from
the training data as random sampling does. In the meantime, the
training samples are still distributed across the whole image and a
wide range of spectral variances are covered. Though this approach
can not completely eliminate overlap between the training and testing
data, the influence of testing data in the training stage can be greatly
reduced to limited pixels at the boundaries of each training region.
The experimental setting with the proposed sampling method can
help us more accurately and objectively evaluate the performance of
spectral-spatial methods.

VII. EXPERIMENTS

To prove the usability and advantage of the proposed controlled
random sampling against random sampling, we have developed a
series of experiments to test these two strategies when they are used
to evaluate spectral-spatial operations in different stages of image
classification. In the preprocessing step, we adopted a mean filter and

a Gaussian filter as examples of smoothing and denoising operations.
Then, we performed experiments with raw spectral feature to examine
the effectiveness of the proposed sampling method when evaluating
the spectral responses without spatial processing. Furthermore, two
spectral-spatial feature extraction methods, i.e. 3D discrete wavelet
and morphological profiles, were compared using two sampling
methods. Finally, we compared the performance of two sampling
strategies at varying sampling rates and discussed the limitation of the
proposed method. In order to make the experiments more convincing,
we adopted two widely used supervised classifiers, support vector
machine (SVM) and random forest (RF) [44] to validate our results.
The SVM was implemented using the LIBSVM package [45], and
the RF was implemented using the well-known Weka 3 data mining
toolbox [46]. We present results on five benchmark datasets, i.e.,
Botswana, Indian Pines (Indian), Kennedy Space Center (KSC), Pavia
University (PaviaU), and Salinas scene (Salinas).

A. Evaluation of Spectral-spatial Preprocessing Method

The spectral-spatial preprocessing step contributes to classification
by improving the quality of hyperspectral images, reducing random
noises, and enhancing specific features. By varying the parameters
of mean filter and Gaussian filter, their influence to the classifica-
tion accuracy under two sampling strategies can be analyzed. We
undertook experiments on both Indian Pines and Pavia University
datasets with SVM and RF, respectively. The results with mean filter
are shown in Fig. 13. When traditional random sampling is used, the
accuracy on the Indian Pines dataset increases with larger filter size
when SVM and RF are adopted (Fig. 13(a) and (b)). For the Pavia
University dataset (Fig. 13(c) and (d)), the accuracies also increase
with larger filter size but decrease when the size reaches a specific
value, which is slightly different from the results on the Indian Pines
image. The reason may be that Pavia University has higher spatial
resolution and interacts with filters in more complex way than the low
spatial resolution Indian Pines data. The results confirm that using
a mean filter with relative large size can increase the classification
accuracy, up to 92.4% on Indian Pines and 98.0% on Pavia University.
Essentially, it is mainly because larger filter leads to more overlap
between the training and testing data. In contrast, when adopting
the controlled random sampling strategy, the classification accuracy
firstly improves marginally, but then dramatically drops with larger
size filters. This is consistent with our expectation in evaluating the
influence of spectral-spatial operations rather than the data depen-
dence. Therefore, the proposed sampling method successfully avoids
the problem of random sampling.

We then performed an experiment with Gaussian filter under the
same setting to compare two sampling strategies. Among different
denoising and smoothing approaches, Gaussian filter is a basic but
effective tool to reduce the random noise in hyperspectral images. It
works as a low-pass filter whose standard deviation controls the shape
of filter and sets the threshold to remove the corresponding high fre-
quency signal. The larger the stand deviation is, the lower frequency
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Fig. 12. Controlled random sampling strategy on the Indian Pines and Pavia University datasets. From left to right: the ground truth map, training set with
5%, 10%, and 25% sampling rates, respectively.

the signal can be preserved and the image be more smoothed. We
applied a Gaussian filter on each band of hyperspectral images with
a range of standard deviations. The size of filters varies with the
standard deviation so that the smoothing effect decays to nearly zero
at the boundaries of filtering masks. Then the smoothed image was
fed into the classifier. This experiment was repeated 10 times and
the mean of overall accuracy was used as the evaluation criterion.
The standard deviation ranged from 2−1 to 23 with an interval of
0.5 on the exponential term. We plot the classification accuracy as a
function of the standard deviation in Fig. 14 for random sampling
and controlled sampling method, respectively. From Fig. 14 (a)-
(d), we can see that the accuracy continuously increases until a
specific point when Gaussian filter with larger standard deviation
is used with random sampling strategy. This is consistent with the
observation on the mean filter. We can assume that the Gaussian
filter influences the data dependence to varying extents under different
standard deviations, such that the classification accuracy is impacted
by the filter parameter. This is also consistent with our earlier analysis
that when data dependence is increased, the classification error bound
will be tightened. However, this is not desired when evaluating a
preprocessing method for image classification as we would like to
know what is the actual contribution from the operation itself.

Compared with the random sampling, the controlled random
sampling presents a different trend between the accuracy and standard
deviation. The accuracy firstly improves marginally and then becomes
stable or drops. This indicates that applying an appropriate Gaussian
operator can reduce high-frequency signals in the data, and at the
same time, local region is smoothed so that the differences between
pixels in each region is reduced. These reduce the diversity of samples
in each class to some extent, thus contributing to the final image
classification. However, higher standard deviation of Gaussian may
over-smooth the local samples, making the local samples highly
similar. As a result, the classifier loses its generality to testing samples
spatially far away from training samples. Under the new sampling
strategy, Gaussian filter is able to improve the classification but not
very significantly and the training and testing data dependence caused
by overlap is no longer the dominant factor to the classification.
Overall, these two experiments prove that the proposed sampling
strategy is able to neutralize the improper benefit gained from
enhancement of dependence between training and testing data.

B. Raw Spectral Feature

We then performed an experiment to compare two sampling strate-
gies when raw spectral features were used on the benchmark datasets.
The objective of this experiment is to examine the effectiveness
and objectiveness of the proposed sampling method compared with
random sampling. As mentioned in Section I, there is no issue with
the experimental setting with random sampling when evaluating a
pixel based spectral feature. But we still do not know whether the
proposed sampling method is qualified in such a task.

In the experiment, only the raw spectral features were used without
any spatial processing. Other settings were same as the previous
experiment such as the classifiers, repetition of experimental runs, etc.
The overall accuracy and standard deviation under random sampling
and the controlled random sampling strategies(*) are reported in Ta-
bles III and IV for SVM and RF, respectively. Following observations
can be made from the results. Firstly, higher sampling rate leads to
increase of classification accuracy on all datasets. This is the same and
expected for both sampling methods. Secondly, the standard deviation
of the accuracy from the proposed sampling strategy is much higher
than that of the random courter part. This is due to the distinction
of training data generated from the random seeds each time. Lastly,
there is a reduction on the classification accuracy when the proposed
sampling strategy is used. This is due to the fact that variations on the
same class data in different regions are less sufficiently captured as
some of them may not be included in the training samples when the
proposed sampling strategy is used. The difference of accuracies is
more evident on Indian Pines, Pavia University and Salinas datasets
as these scenes include large blocks of regions in the same class,
which leads to more benefits from spectral variation covered by
random sampling strategy. For further illustrating this phenomenon,
the classification maps on the Indian Pines and Pavia University under
two sampling strategies are shown in Fig. 15. Compared with random
sampling, those testing samples far away from the training regions
are easily misclassified under controlled random sampling.

Despite the differences, this does not affect a fair evaluation of
different algorithms with the proposed sampling strategy. In this
experiment, assuming that the goal is to evaluate SVM and RF, it
can be concluded from the results that SVM is a preferred classifier
since it generates higher classification accuracy. Therefore, although
the new sampling strategy has made the hyperspectral classification a
more challenging problem and forces more rigorous evaluation to the
feature extraction and classification approaches, it is still qualified in
evaluating the algorithms in hyperspectral image classification.
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(a) Indian Pines & SVM (b) Indian Pines & RF (c) PaviaU & SVM (d) PaviaU & RF

(e) Indian Pines & SVM (f) Indian Pines & RF (g) PaviaU & SVM (h) PaviaU & RF

Fig. 13. Classification accuracies vary with the size of mean filter on the Indian Pines and Pavia University (PaviaU) datasets under random sampling (first
row) and controlled random sampling (second row) strategies.

(a) Indian Pines & SVM (b) Indian Pines & RF (c) PaviaU & SVM (d) PaviaU & RF

(e) Indian Pines & SVM (f) Indian Pines & RF (g) PaviaU & SVM (h) PaviaU & RF

Fig. 14. Classification accuracies vary with the standard deviation of Gaussian filter on the Indian Pines and Pavia University datasets under random
sampling (first row) and controlled random sampling (second row) strategies.

C. Spectral-spatial Features

Now we turn our attention to test the proposed sampling strategy
with two typical spectral-spatial feature extraction methods, i.e., 3D
discrete wavelet transform (3D-DWT) and morphological profile. 3D-
DWT is a typical example of filter-based methods. The morphological
profile is a widely adopted spatial feature extraction method, includ-
ing a number of variations for hyperspectral image classification.

1) 3D discrete wavelet transform: The discrete wavelet trans-
form is derived from the wavelet transform which is a mathematical
tool for signal analysis. Unlike Fourier transform, the advantage
of wavelet transform is that the transformed signal provides time-
frequency representation for the non-stationary signal, meaning that

we can not only know whether a frequency component exists but also
when it happens in a signal. The definition of continuous wavelet
transform is shown as following:

Ψψx (τ, s) =

∫

x(t) · ψτ,s(t)dt (11)

where ψτ,s is the basis functions (wavelet) with s and τ that control
the scale and translation, respectively. When it comes to discrete
samples, DWT is implemented by a series of filters in the frequency
domain. Since hyperspectral images consist of three dimensions, 3D-
DWT exploits the correlation along the wavelength axis, as well as
along the spatial axes, so that both spatial and spectral structures
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(a) Training map (b) Classification map (c) Training map (d) Classification map

(e) Training map (f) Classification map (g) Training map (h) Classification map

Fig. 15. Training/classification maps on the Indian Pines and Pavia University datasets under random sampling (first row) and controlled random
sampling (second row) strategies, when raw spectral features are used.

of hyperspectral images can be more adequately mapped into the
extracted features.

In the implementation, we followed the multiple scale setting as
described in [10], however, without the feature selection step. Firstly,
the hyperspectral image was processed by a cascade of high pass
filters and low pass filters. In each level, the data was decomposed
into high frequency part and low frequency part. After three levels
of decomposition, the original data was separated into 15 sub-cubes
C1, C2, ..., C15 based on the bandwidth, such that each of the sub-
cubes contained different scales of information. To further capture the
spatial distribution of hyperspectral images, a mean filter was applied
on the sub-cubes:

Ĉn(x, y, .) =
1

9

x+1
∑

i=x−1

y+1
∑

j=y−1

C(x, y, .) (12)

In order to keep the sub-cube and the original data cube at the
same size, the filtered signals were not down-sampled as what the
traditional DWT does. Then these sub-cubes were concatenated into
the wavelet features. The multidimensional function was carried
out along two spatial dimensions x and y, as well as the spectral
dimension λ, respectively. The final concatenation worked as the
feature for the whole data cube and can be represented as:

f(x, y) = (Ĉx1 , Ĉ
x
2 , ..., Ĉ

x
15, Ĉ

y
1 , Ĉ

y
2 , ..., Ĉ

y
15, Ĉ

λ
1 , Ĉ

λ
2 , ..., Ĉ

λ
15)

(13)
where f(x, y) is the 3D-DWT feature at location (x,y).

The experimental results under random sampling strategy and
controlled random sampling strategy(*) are shown in Table III and
Table IV for SVM and RF, respectively. As expected, controlled
random sampling strategy leads to lower accuracy compared with
random sampling strategy on all datasets. Interesting observation can
be obtained by comparing these results with the results on the raw
spectral feature in Tables III and IV. On one hand, 3D-DWT performs
better than raw spectral feature under both sampling methods. This
indicates that the proposed method confirms that 3D-DWT is able
to extract more discriminative information than raw spectral feature.
On the other hand, under experimental setting with random sampling,
3D-DWT significantly improves the accuracy on all datasets over
raw spectral feature. However, when testing it with the proposed
controlled sampling strategy, the improvement can not reach the same

level of significance, especially on Indian Pines, Pavia University,
and Salinas datasets. It means that 3D-DWT does not perform that
significantly better than the raw spectral features as expected, when
eliminating the advantage of introducing information from the testing
data into the training stage.

2) Morphological profile: To further analyze this issue, we
undertook experiments on the mathematical morphology feature.
Morphological operations employ the structuring elements in the
image, making it possible to enhance or alleviate structures based
on the specific requirements from users. The basic operators include
erosion and dilation which expands and shrinks the structures, re-
spectively. Combining them results in the opening (erosion-dilation)
and closing (dilation-erosion) operations. These two processes can
remove specific structures and noises without destroying the original
primary structures in the image. The results of processing are
called morphological profiles. Morphological profile based feature
extraction method is able to explore the structures of objects based
on the contrast and size of objects in the images, therefore, it has
been widely studied for hyperspectral image classification [19], [21].

We followed a basic implementation of extended morphological
profiles (EMP). The details of this method and its variation can be
found in a survey paper from Fauvel et al [3]. The spatial feature
was extracted as follows

Ω(n)(I) =
[

o
(n)(I), ..., o(1)(I), I, c(1)(I), ..., c(n)(I)

]

(14)

where o(n)(I) and c(n)(I) were the opening and closing operations
with a disk-shape structural element of size n, respectively. As
different sizes of structuring elements were used, the morphological

profile Ω(n)(I) was capable of integrating multi-scale information.
Before the feature extraction, a principle component analysis (PCA)
step was applied to hyperspectral images to reduce the dimension of
the data. Then the morphological profiles were obtained on each of
the m primary components:

Ω̂(n)
m (I) =

[

Ω
(n)
1 (I),Ω

(n)
2 (I), ...,Ω(n)

m (I)
]

(15)

In the last step, the morphological profiles were stacked with the
spectral response to form the spectral-spatial feature.

The classification results with two sampling strategies are shown in
Table III and Table IV. Similar to the results on 3D-DWT, although
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the morphological profile feature has achieved better performance
than the raw spectral method when tested with random sampling
strategy, the improvement is not as significant when controlled
random sampling is used. This is mainly because that spectral-spatial
method does not take much advantage of the overlapped information
between training and testing samples under the proposed method.

Directly comparing two completely different spectral-spatial meth-
ods may not make much sense since different features are more
suitable to extract features on specific datasets or sensitive to specific
classifiers. Here we analyze the results from another point of view,
which may explain the advantage of the proposed sampling over
random sampling. In Table III, 3D-DWT achieves higher accuracy
than EMP on both Indian Pines and Pavia University datasets when
random sampling is adopted. When adopting the new sampling
strategy, 3D-DWT still performs slightly better than EMP on the
Indian Pines, but EMP performs significantly better than 3D-DWT
on the Pavia University. This is consistent with the fact that the
morphology method is capable of extracting more spatial structures
than 3D-DWT on the dataset with high spatial resolution [19].
Under the proposed sampling method, the properties of the spectral-
spatial method can be more accurately reflected and evaluated in the
experiments. This is impossible under random sampling because the
classification result is strongly misled by the overlap between training
and testing samples. Overall, the proposed sampling strategy reveals
more real discriminative ability of the spectral-spatial methods, which
is the purpose of the evaluation.

D. Relationship between Traditional Random Sampling and

the Proposed Method

In previous experiments, we have used at least 5% of labeled data
as training samples. In recent years, some researchers have used very
few labeled samples to construct the training set. In such case, the
potential overlap between training set and testing set would not be
significant. To show how the number of training samples influence
two sampling strategies, especially when a small number of training
samples were used, we developed an experiment to measure the
performance of random sampling and controlled sampling when 1%
to 25% of labeled samples were used as the training samples. In
the experiment, if the number of samples in the training set was
less than 1 for some small classes, we set the size of training
set to 1. Regarding the feature extraction, we employed the raw
spectral response and a mean filter with size of 5 × 5 for the
spectral-spatial method, respectively. Other settings were the same
as previous experiments, such as classifier, repeating times, and so
on. To measure the differences and similarities between two sampling
methods, we have calculated both overall classification accuracy and
the percentage of overlap3, and explore the relevance of overlap and
classification results under different sampling rates.

The results are drawn in Fig.16 where the first and second rows
represent the results with the raw spectral response and after applying
a 5× 5 mean filter, respectively. In Fig 16 (a), it is expected that no
overlap between training and testing data exists for both two sampling
methods when the pure spectral feature is exploited. Therefore, the
classification results should not be biased. Fig 16 (b) shows that with
more training data available, the classification accuracy gradually
grows. The rising rates under two sampling strategies show similar
trends and there is no apparent difference in tendency. However, if
considering the results with the 5×5 filter (spectral-spatial feature) in
the second row, the overlap and accuracy grow very differently under
two sampling approaches. Firstly, when the sampling rate is quite low
(1%), the overlap between training samples and testing sampling for
both methods are similar, which indicates that the proposed method
is close to random sampling in degree of overlap and cannot fully
remove the overlap. With the sampling rate increasing, the overlap of

3The percentage of overlap is defined as the percentage of the testing
samples covered by the training features against all the testing samples, as
described in Section IV.

(a) Overlap (b) Accuracy

(c) Overlap (d) Accuracy

Fig. 16. Overlap of training and testing data and classification accuracy
on the Indian Pines dataset under random sampling and controlled random
sampling strategies, when different percentage of labeled data were used as
the training samples. The first row shows results of raw spectral responses
and the second row shows the results of a 5× 5 mean filter.

random sampling dramatically grows to 1 (100%) before the sampling
rate reaches 25%. In contrast, the overlap of controlled sampling
increases very slowly, only reaching to 0.2 with the sampling rate
of 25%. This figure demonstrates again that the proposed method
can greatly reduce the overlap compared to the traditional random
sampling, especially when the scale of training set becomes large.
In Fig 16 (d), it can be observed that the classification accuracy
under random sampling increases much faster than that of controlled
sampling when the sampling rates rises, which is quite similar to
the trend on overlap in Fig. 16 (c). It reveals that under random
sampling, the classification result is much more biased due to the
overlap when the number of training samples increases. In contrast,
the classification results is not much affected under the proposed
method when comparing Fig. 16 (d) with (b).

From this experiment, we have following conclusions. Firstly,
when the training set is very small, there is not much overlap between
training and testing set when spectral-spatial operations are involved.
No matter the training set is generated by the traditional random
sampling or the proposed method, there will only be a few testing
samples involved in the training stage. Therefore, the evaluation is not
much biased. Secondly, with the scale of the training set growing, the
overlap between training and testing samples dramatically increases
under the random sampling strategy whereas the proposed one can
suppress such increase. Then the proposed method would be much
less biased than the traditional one. Conversely, when the size of the
training set decreases, the proposed method becomes closer to the
traditional sampling strategy in degree of overlap and objectiveness.
In particular, when only one sample is used for each class, two
sampling methods are equivalent to each other.

VIII. CONCLUSION

This paper presented a comprehensive study on the influence of
the widely adopted sampling strategy for performance evaluation of
the spectral-spatial methods in hyperspectral image classification. We
point out that random sampling has some problems because it has
ignored the overlap and spatial dependency between training and
testing samples when they are selected from the same image. Based
on the non-i.i.d. characteristic of hyperspectral image data, we proved
that the improvement of classification accuracy by some spectral-
spatial methods are partly due to the enhancement of dependence
between training and testing data, compared with sole spectral
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information based methods. This phenomenon is more obvious when
a large amount of training data are used. An alternative controlled
random sampling strategy is proposed to tackle these problems. It has
been proved that the proposed method generates less overlap between
training and testing samples for spectral-spatial methods compared
with the random sampling. This advantage is even more obvious
when the scale of training set is large. Therefore, this new strategy
provides a proper way to evaluate the effectiveness of spectral-spatial
operations and the corresponding classifiers.

Finally, it should be noted that the aim of this paper is not to
criticize the spectral-spatial methods themselves or the exploration
of spatial information. The concern is only on the widely adopted
evaluation approach, or more strictly speaking, on the experimental
setting. Under the experimental setting with random sampling, the
performance evaluation may be not equally fair and unbiased for all
spectral-spatial methods. This is especially the case for the practice
that training and testing are performed on the same image. This
problem is ultimately due to the lack of labeled hyperspectral data
that are available for method evaluation. Therefore, a more urgent task
for the research community is to build more benchmark datasets to
facilitate future spectral-spatial hyperspectral image analysis research.
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TABLE III
CLASSIFICATION ACCURACIES (OVERALL ACCURACY AND STANDARD DEVIATION) USING RAW SPECTRAL FEATURE, 3D DISCRETE WAVELET

TRANSFORM (3D-DWT) AND EXTENDED MORPHOLOGICAL PROFILE (EMP) WITH RANDOM SAMPLING AND CONTROLLED RANDOM SAMPLING(*),
WHEN LINEAR SVM IS ADOPTED.

Dataset
Raw Spectral Feature 3D-DWT EMP

%5 %10 %25 %5 %10 %25 %5 %10 %25

Botswana 88.6
(1.4)

92.2
(1.1)

95.0
(0.6)

96.2
(0.7)

97.7
(0.5)

99.4
(0.3)

95.5
(2.0)

98.3
(0.6)

99.5
(0.2)

Botswana* 87.4
(1.4)

90.7
(0.5)

93.0
(0.4)

95.1
(1.4)

95.9
(1.3)

96.6
(0.8)

95.4
(1.2)

96.6
(0.7)

97.6
(0.5)

Indian 72.5
(0.7)

77.1
(0.8)

82.4
(0.4)

88.1
(0.8)

93.7
(0.7)

97.9
(0.3)

83.0
(1.1)

88.2
(0.7)

92.4
(0.4)

Indian* 63.8
(2.2)

68.2
(1.7)

75.0
(1.6)

65.2
(3.0)

69.9
(3.0)

79.1
(1.7)

64.8
(2.8)

69.2
(2.7)

77.2
(2.8)

KSC 76.1
(0.9)

80.4
(0.9)

86.3
(0.7)

87.7
(1.8)

91.8
(0.6)

96.4
(0.5)

76.9
(1.0)

83.3
(0.8)

89.1
(0.5)

KSC* 73.8
(2.1)

78.5
(1.1)

83.8
(0.7)

81.6
(2.2)

83.7
(2.6)

87.9
(1.1)

72.3
(3.6)

78.3
(2.7)

84.5
(1.5)

PaviaU 89.9
(0.2)

90.7
(0.3)

91.3
(0.2)

97.8
(0.1)

98.6
(0.1)

99.3
(0.1)

97.0
(0.2)

97.6
(0.1)

98.1
(0.1)

PaviaU* 80.9
(3.9)

82.7
(4.0)

84.5
(4.3)

84.8
(3.2)

86.4
(3.4)

89.2
(3.6)

87.4
(3.1)

89.5
(1.7)

91.7
(1.9)

Salinas 92.4
(0.1)

92.8
(0.1)

93.1
(0.1)

96.4
(0.1)

97.3
(0.1)

98.3
(0.1)

94.5
(0.3)

95.0
(0.2)

95.3
(0.1)

Salinas* 81.8
(2.7)

81.6
(3.8)

83.0
(3.3)

80.9
(3.0)

82.2
(3.6)

83.4
(3.4)

83.5
(1.4)

85.0
(2.4)

84.8
(2.4)

TABLE IV
CLASSIFICATION ACCURACIES (OVERALL ACCURACY AND STANDARD DEVIATION) USING RAW SPECTRAL FEATURE, 3D DISCRETE WAVELET

TRANSFORM (3D-DWT) AND EXTENDED MORPHOLOGICAL PROFILE (EMP) WITH RANDOM SAMPLING AND CONTROLLED RANDOM SAMPLING(*),
WHEN RF IS ADOPTED.

Dataset
Raw Spectral Feature 3D-DWT EMP

%5 %10 %25 %5 %10 %25 %5 %10 %25
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