
Chapter 35 

On the Satisfiability and Maximum Satisfiability of Random 3-CNF Formulas 

Andrei Z. Broder* Alan M. Frieze’ 

Abstract 
We analyze the pure literal rule heuristic for computing a 
satisfying assignment to a random 3-CNF formula with n 
variables. We show that the pure literal rule by itself finds 
satisfying assignments for almost all 3-CNF formulas with 
up to 1.63n clauses, but it fails for more than 1.7n clauses. 

As an aside we show that the value of maximum satis- 
fiability for random 3-CNF formulas is tightly concentrated 
around its mean. 

1 Introduction 

Given a boolean formula (J in conjunctive normal form, 
the satisjiability problem (SAT) is to determine whether 
there is a truth assignment that satisfies w. Since SAT 

is NP-complete, one is interested in efficient heuristics 
that perform well “on average,” or with high probability. 
The choice of the probabilistic space is crucial for the 
significance of such a study. In particular, it is easy to 
decide SAT in probabilistic spaces that generate formulas 
with large clauses [16]. To circumvent this problem, 
recent studies have focused on formulas with exactly h 
literals per clause (the ~-SAT problem). Of particular 
interest is the case Ic = 3, since this is the minimal k for 
which the problem is NP-complete. 

(3) Consider the space R,,, of all m clause formulas 
over n variables with exactly 3 literals per clause. It 
is clear that if the ratio c = m/n is small then a 
random formula is almost surely satisfiable. (As a trivial 
example, if m/n = 0(,/G), then with high probability 
no variable occurs twice.) Experimental evidence [18,19] 
strongly suggests that there exists a threshold y, such 
that formulas are almost surely satisfiable for c < y and 
almost surely unsatisfiable for c > y, where y is about 
4.2 . So far however, only much weaker bounds were 
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proven and it is not known whether a sharp threshold 
really exists. Such a threshold (namely c=l) exists for 
2-CNF formulas [15,5]. 

Chao and Franc0 [3] and Chvatal and Reed [5] 
analyzed heuristics that almost surely find satisfying 

assignments for w E Rg!,, with m < n, thus proving 
that c = 1 is a lower bound for the maximum value of c 
that guarantees almost sure satisfiability in flgIn. Very 
recently, Frieze and Suen [14] have increased this lower 
bound to M 3.003. 

A simple counting argument [7] shows that if c 
exceeds a constant greater than logs,, 2 = 5.190.. . 

then a formula in R$,, is almost surely unsatisfiable. 
This bound is not optimal; a minuscule improvement 
(to about logs,, 2 - 10e7) will be presented in the final 
paper. 

Most practical algorithms for the satisfiability prob- 
lem (such as the well-known Davis-Putnam algorithm 
[S]) work iteratively. At each iteration, the algorithm 
selects a literal and assigns to it the value 1. All clauses 
containing this literal are erased from the formula, and 
the complement of the chosen literal is erased from the 
remaining clauses. Algorithms differ in the way they 
select the literal for each iteration. The following three 
rules are the most common ones: 

The unit clause rule: If a clause contains only one 
literal, that literal must have the value 1; 

The pure literal rule: If a formula contains a literal 
but does not contain its complement, this literal is 
assigned the value 1; 

V. The smallest clause rule: If there is no unit clause 
or a pure literal, give value 1 to a (random) variable 
in a smallest clause. 

Previous analyses of algorithms for random SAT 

instances avoided the pure literal rule, and considered 
only the unit clause rule, or a combination of the unit 
clause rule and the smallest clause rule. The reason is 
that if one starts with a random formula and applies 
the unit clause rule and/or the smallest clause rule, 
the distribution of literals in the remaining formula is 
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random and uniform, conditional only on the number 
and size of the remaining clauses. This property, which 
greatly simplifies the analysis, does not hold when the 
pure literal rule is applied since in the remaining formula 
there is a dependency between the occurrence of a literal 
and the occurrence of its complement. 

In this paper we present the analysis of an algorithm 
based on the pure literal rule. We show that in the 

(3) R,,, probabilistic space, the pure literal rule alone is 
sufficient to find, with high probability, a satisfying 

assignment for a random formula w E !$$, for m/n 2 
1.63. On the other hand, if m/n > 1.7, then the pure 
literal rule by itself does not suffice. The gap between 
1.63 and 1.7 is not a “real gap”. It seems that by 
increased computation we can make the gap as small as 
we like, although we do not at present have a rigorous 
proof that there is a precise threshold. 

Maximum satisfiability (MAX-SAT) is the optimiza- 
tion version of the satisfiability problem. Given a CNF 
formula w the goal is to determine the maximum num- 
ber of clauses in w that can be simultaneously satis- 
fied. This problem arises often in database and expert- 
systems applications. The decision version of MAX- 
SAT is NP-complete; however, MAX-SAT can be approxi- 
mated within a constant ratio. In particular if all clauses 
contain at least 3 literals, MAX-SAT can be approximated 
within a 718 factor, since one can always find a truth 
assignment that satisfies at least 7/8 of the clauses in a 
formula with at least 3 literals per clause [20]. 

We prove a concentration phenomenon for MAX- 
SAT: we show that there is a function T(m, k) such that 

if w E &&, with high probability the difference be- 
tween MAX-SAT(W) andT( m, k) is o(T(m, Ic)). For large 
m (e.g. n = o(m)) clearly T(m, k) = (1 - 20~)rn. For 
smaller values of m we prove tight concentration using a 
martingale technique, but could not determine the ac- 
tual value. This result shows that the approximation 
problem for maximum satisfiability is in a certain sense 
trivial in this probabilistic setting since the maximum 
satisfiability value is almost always very close to a fixed 
value that depends only on m and k. 

2 Definitions and Notations 

Throughout this paper formulas are represented in 
conjunctive normal form. Let V = (21, . . . . zn) be a set 
of n variables. A literal is a variable xi or its negation 
Fi. The set of all literals is denoted L. A clause is 
a disjunction of literals, a formula is a conjunction of 
clauses. 

4 Analysis of the algorithm 

We first observe that if the algorithm fails on an instance 
w then it will also fail on an instance & obtained by 
adding an extra clause to w. Hence, for a fixed n, the 
probability that the algorithm succeeds decreases as m 

Let w be a formula over the set V of variables. A increases. 
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truth assignment for w is a function t : L + (0, l}, such 
that t(g) = 1 -t(z). A truth assignment satisfies w if at 
least one literal in each clause of w is assigned the value 
1. 

Our analysis is done in the probabilistic space @ln, 
the space of all formulas over n variables with m clauses 
and exactly 3 literals per clause. To avoid irrelevant 
intricacies we view the formula as an ordered list of 
clauses, and each clause as an ordered list of literals. 

A random formula w E !$$, is generated by choosing 
each of the 3m literals in w uniformly at random from 
the 2n possible literals. 

Call a literal z (resp. 2) pure in a formula w, if it 
appears in w but z (resp. Z) does not. We also refer to 
the associated variable as being pure. 

Let @m,n,p denote the set of 3-CNF formulas in 
which there are m clauses that contain n variables out of 
which p are pure. (Note that Om,n,p is not simply Q$,$, 
conditional on p: a formula in Om,n,p must actually 

contain n variables, while a formula in R g!n might 
contain fewer.) 

We say that a property holds with high probability 
(w.h.p.) if it holds with probability 1 - o(1) as n -+ 00 
and quite surely (q.s.) if the o(1) term is O(VZ-~) for any 
constant a. (The latter terminology is borrowed from 

PW 

3 Algorithm 

The algorithm that we analyze consists of the repeated 
simultaneous elimination of all clauses containing pure 
literals. More formally the algorithm can be described 
as follows: 

ALGORITHM 3.1. 

while w contains pure literals do 
Let r = {All pure literals in w}. 
Assign 1 to all literals in r. 
Remove from w all clauses containing a literal 
from 7r. 

od 
ifw = 0 then Success else Failure. 
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4.1 Maintenance of uniformity. 

LEMMA 4.1. Suppose w is chosen uniformly from 
0 m,n,r and all clauses containing pure variables are 
deleted. Let w’ 6 Omf,n,,p, be the formula that remains. 
Then conditional on the values of m’, n’, and p’, 
the formula w’ is equally likely to be any formula in 
0 m’,n’,p’ . 

Proof. Fix w’ E O,,,r,,,,r,. We only need to show 
that the number of formulas w E Om,n,p which map 
onto w’ by the deletion process depends only on n, m, 
p, 12, m’, and p’ and not on the particular w’. 

Assume that the variables in Om,n,p are zj for j E N 
and those in 0 m~,n~,pl are xj for j E N’ z N. We can 
construct all the w that map to w’ as follows: 

l.Chooseasetrc N\N’ofsizep. LetG= 
N \ (N’ Us), thus ]G] = n - n’ - p. 

2. Assign a label xj or zj for each j E K. Call these 
the n-literals. 

3. Make up m - m’ clauses using the variables xj for 
j E N such that 

Each clause contains at least one r-literal; 

Each r-literal occurs at least once; 

For each j E G, both xj and 5j appear at least 
once; 

If xj is pure in w’ (there are exactly p’ such 
literals) then its complementary literal must 
appear at least once. 

4. Insert the new clauses somewhere among the old. 

Finally observe that the number of sets of clauses 
satisfying l-4 above depends only on n, m, p, n’, m’, 
and p’. 0 

LEMMA 4.2. Suppose that w is chosen uniformly 

from flg!n. Let n’ be the number of variables that 
actually appear in w and let ,p’ be the number of pure 
variables in w. Then conditional on the values of n’ and 
p’, the formula w’ is equally likely to be any formula in 
0 m,n’,p’ . 

Proof. Obvious. q 

We conclude that during the entire execution of the 
algorithm, conditional on the current values of m, n, and 
p, the formula w is uniformly distributed over Om,n,p. 

BRODERET AL. 

4.2 The results of one iteration. 

We will first state a local central limit theorem which 
will be used a number of times in the paper. It is a 
special case of Theorem 4.5.2 of Durrett [9]. 

THEOREM 4.1. Let Z1, 22,. . . , Zn be non-negative 
i.i.d. integer valued random. variables with E(Zl) = p, 
Var(Zl) = u2 E (O,W), and Pr(Z1 = k) > 0 for all 
non-negative integers k. Let Sn = Z1 + Zz + . + Zn. 

Let a = a(n) be a positive integer, and define z by 
;rei, - np)/(afi). Further let pn(x) = Pr(S, = u). 

Inl%(x) - 4(x)1 - 0, asn+m, 

where 4(x) = (2r)-1/2e-“2/2 is the density of the 
standard normal distribution. 

Let X = 3m/(2n -p). Then X is the average 
number of occurrences of a literal in w E Om,n,p. Define 

i by X = i/(1 - e-‘). (This is well defined since the 

RHS increases from -1 to 00 with j > 0.) 

The distribution Z given by 

Pr(Z = k) = 
jke-i ik 

(1 - emi)k! = (ei - l)k!’ 
k L 1, 

is called a truncated Poisson distribution. Note that 
E(Z) = A. 

Let now x’ = (Xl, X2,. . . , X,V) denote the number 
of occurrences of the N = 2n - p literals of the 
formula w chosen uniformly at random from Om,n,p. 

Let?=(Yr,Yz,.. . , YN) denote N independent random 
variables with distribution Z. As before, let M = 3m. 

LEMMA 4.3. 

(a) The variables X1, X2,. . . , XN are jointly dis- 
tributed as Yl, Y2,. . . , YN conditional on xlCjCN Yj = -- 
M. 

(b) Pr(Cl<jcN rj = M) = fi(l/fi). -- 

Proof. Let 

A={GINI”I c xj = M and tlj, xj 2 1 
> 

. 
l<j<N -- 

Fix <E A. Then 

c M! xl!xz! . . . ZN! ’ 
&EA 
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and 

Pr(? = .!j+j Cl<j<NYj = M) -- 

Proof. Define the random variable & = YI + Y2 + 

. ..+Y., where Yt,Ys,.. ., Yp are as in Lemma 4.3. Then 
part (b) of this lemma implies that 

(4 1) pr(‘Dp - xp’ L 4 

. 
= O(n’/2) Pr(lBp - Xp( 2 n”). 

(Fix ZI, condition on Dp = w, and apply the Lemma to 
Xl,...,Xp.> 

and (a) follows. To prove (b), apply Theorem 4.1 with Now let ?i = min {Yi, In n} and let b, = Yr + Y2 + 
Zj=Yjforj=l,...,Nandz=O. 0 ...+ Yr. Then 

For the remainder of the paper, we fix an arbitrary (4.2) Pr(3i : g # yi) 

constant 6, such that l/2 < 6 < 1. < exp(-(1 - o(l))lnnlnlnn). 

THEOREM 4.2. Suppose thatw is chosen uniformly Note that, this implies E(fi,,)= Xp+ O(n-'O), say. 

front %,n,p and all clauses containing pure variables 
are deleted. Assume that m,p 2 n6, Let w’ E O,,,n,,p, 

Since Yr;,?z,... , Yp are independent, bounded ran- 

be the formula that remains. Then quite surely 
dom variables, we can apply Hoeffding’s Theorem [17] 
to show 

1,’ - m(1 - o)“I = O(n6) 

In’ - (n - p)(l - p”)l = O(n6) 

IP’ - 2(n - p)P(l - P)I = O(ns> 

Pr(lbp - E(b,)I 2 n6/2) 

(4.3) 

where 
P 

Ly=&q)--pl 

Combining (4.1), (4.2), and (4.3) completes the 
proof of Claim 4.1. 0 

(a is th p b b’ e ro a alaty that a random literal in w is pure), 
and 

Returning to the proof of the theorem we now 

B= & (edPa - c4i> - 1)) 

consider the number of clauses left in w’. Fix Dp. The 
probability that a certain clause does not contain any 
pure variables is precisely 

(, is approximately the probability that a fixed literal 
appears only in clauses that are deleted). 

3m- Dp 3m-Dp-1 3m-D,-2 

3m ’ 3m-1 ’ 3m - 2 

The value h above is dejined as before by = 1-z 3(1+O(n~-1)). 
( > 

XIA 
l-e-ri’ Hence using Claim 4.1 we see that 

where X = 3m/(2n - p) is the average number of 
occurrences of a literal in w. 

E(m’)=E(m(l-$)3(l+O(m-1))) 

Proof. Let Xi denote the number of occurrences of 
= m(1 - o)” + O(n’), 

the i’th literal contained in w. We start by analyzing where 
the number of pure literals in w. Assume that the XP P 
first p literals correspond to pure variables. Let Dp = 

cr=3m=2n. 

x1+x2+.. . + X,. Thus E( Dp) = Xp. 
We also need to show that m’ is concentrated 

CLAIM 4.1. around its mean. This can be easily derived via 

IDp - Ap[ < n6 
the use of martingale tail inequalities. To do so, 

q.s. fix x1,x2,..., Xznep, the number of occurrences of 
each literal. Now consider some random permutation 
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41,&j.‘., 4sn of the 3m literals. Now interchanging a By martingale arguments again, we can show that for 
pair q5i, 4j can change m’ by at most one. Hence (see all k, 1 5 Inn, almost surely 
e.g. Alon and Spencer [l]), j,k+l 

Pr(lm’- E(m’>l L t I XI,&, . . .,XZ,,-~) 

2t2 

( > 

vk,l = cn - P> p _ 1)2k!l! + Otn6). 

6 2exp -3m . Putting 

Putting t = n6 and removing the conditioning shows P= 
that 

A(exp((2a - 02)i) - l), 

Im’ - E(m’)l < n6 q.s. we see that 

Let us now consider n’ and p’. The same use of E(n - p - n’) = (n - p),S” + O(n6). 
the martingale argument above shows that both are 
sufficiently concentrated around their means. Thus we Note that /3 is approximately the probability that 
need only to estimate E(n’) and E(p’). a fixed literal appears only in clauses that are deleted. 

Again fix the number of occurrences of each literal. A similar argument to the above yields the (intuitively 

Consider a fixed non-pure variable, xj say. Suppose that reasonab1e) fact that 
the literal xj occurs k 2 1 times, and that Zj occurs 
1 2 1 times. Now throw the literals randomly into 3m 

E(p’) = 2(n - p)P(l - P) + O(n’). 

slots corresponding to the literals of w as follows: (a) 0 
throw the Ic + 1 literals xj and %j; (b) fill the clauses 
containing them with other literals; (c) fill the other 
clauses. 4.3 The first iteration. 

With probability 1 - O((k: + 1)2/m) no two of the 
k + 1 literals end up in the same clause. Assuming this, 

The first iteration of the algorithm is different since we 

the probability T that the variable xi does not make it start with a random w E a$,,. 

to the next round satisfies 

(2CYmin - cY~in)k+’ 5 T 2 (2o,,, - OJi.Jk+’ 

where 

THEOREM 4.3. Suppose that w is chosen uniformly 

from f&Z&. Let n’ be the number of variables that 
actually appear in w and let p’ be the number of pure 
variables in w. Then q-s. 

(Y,in = 4 - 2(k + 0 4 
3m-(k+l)’ amax = 3m - 3(/c + 1) ’ 

n’ = n(1 - exp(-3m/n)) + O(n6) 

(During part (b) of the construction there are at most 
p’ = 2nexp(-3m/(2n))(l- exp(-3m/(2n))) + O(n6) 

3m-(k-+1) A ‘t 1 an a east 3m-3(k+l) literals not yet used, 
out of which at most DP and at least DP - 2(k + 1) are 

Proof Use the martingale argument. 0 

pure.) Thus assuming k, 1 5 Inn (see Equation (4.2)) 
we conclude that 4.4 A sufficient condition for success. 

r= (5 (Sk>“) (1+o(g-y. 
LEMMA 4 4 Let w be a random formula in C&f?,,, 

and ,etc=;,7;. With high probability every subset of 

Let vk,l denote the number of j’s such that Xzj = k, n/(600c2) clauses in w has at least one pure literal with 

and Xej = 1. Then respect to itself. 

E(n-p - n’) Proof. If a certain subset of k clauses does not 

= E(l<~,“nw(~ - ($‘)“” 

have a pure literal with respect to itself, then its 3k 
literals are all chosen from among a set of less than 3k/2 
variables. The probability that there exists a subset of - ?- 

+0(F)) 
k clauses in w such that all its 3k literals belong to a set 
of e < 3k/2 variables is less than 

=E c vk,l(h - a2)k+’ + o(n6). 
l<k,l<lnn > p=t&-,2(T) (2) (g3”. - 
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Since 1 = 31c/2 gives the largest term in the sum, 

= F (# (;)3’2 (;)1’2)k = o(l), 

for k 5 n/(600c2). 0 

Hence if the algorithm starts with cn clauses, and 
at some point during its execution the number of 
clauses remaining becomes less than n/(600c2) then the 
algorithm will succeed (w.h.p.), since from that point 
on the Lemma above promises that the algorithm will 
not run out of pure literals. 

4.5 Putting everything together. 

In this subsection we show that if the algorithm starts 
with w drawn from fliz),3,!n, it almost surely finds a 
satisfying assignment, if c 5 1.63. The idea of the 
proof is to use Theorem 4.3 once, and then Theorem 4.2 
repeatedly, to show that after a fixed, finite number of 
iterations, with high probability the number of clauses 
left in w is less than n/(600c2), after which by Lemma 
4.4, the algorithm almost surely does not fail. 

Lemmas 4.1 and 4.2 ensures that the uniformity 
conditions required by Theorem 4.2 are satisfied. How- 
ever there are two potential stumbling blocks: 

In principle, at the start of each application of 
Theorem 4.2 the values m, n, and p are known 
only within a 1 +o( 1) factor. Nevertheless it can be 
shown that if we use such approximate values, the 
values predicted for m’, n’, and p’ still are almost 
surely within a 1 + o( 1) factor of the actual values. 
Since the number of iterations is finite, this suffices 
to prove that the final values are accurate within a 
a 1 + o( 1) factor. 

In practice, what we have at the start of each ap- 
plication of Theorem 4.2 are the numeric estimates 
for m, n, and p. (More precisely numeric estimates 
of the ratios m/no, n/no, and p/no, where no is 
the initial n.) Since we use finite precision, we 
need to worry about the cumulative round-off er- 
ror. Again since the number of applications is small 
(say < 100) if we use enough precision (say 40 dig- 
its) then we can guarantee that the final results are 
correct to, say, 10 digits, and Lemma 4.4 can be 
applied. 

The full details of the proof, which include the complete Simulation experiments show excellent concordance 
error analysis, are left for the final paper. with these values even for moderate values of n. Details 

The battle plan above when applied to m = 1.637~ 
results in the values presented in Figure 1, that is, we 
apply Theorem 4.3 once and Theorem 4.2, iteratively 77 
times to conclude that after 78 iterations, almost surely 
the number of clauses left is (.0000148 f 10-7)7z(1 + 
o(l)). Since this is less than n/(600. 1.632) % .000627n, 
by Lemma 4.4 the algorithm will almost surely succeed 
in this case. (The actual computations were done by 
MAPLE [4]) with 30 digits of accuracy, which ensure more 
than 7 digits in the final result. 

We can probably prove a slightly better bound than 
1.63 at the expense of even more iterations, but for 
m > 1.7n the algorithm is almost certain to fail - the 
proof of this is given in the next section. 

0 1.6300000 .9924785 .1584094 

~, 

16 .6839027 .5604441 .0039727 
17 .6766309 .5564652 .0036935 
18 .6698942 .5527661 .0034551 

I .I . I . I . f 

Figure 1: Repeated applications of Theorem 1 for m = 
1.63n. 
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will be given in the final paper. We complete the proof by showing that for i > s 

4.6 An upper bound on the performance of the 
algorithm. 

We show in this section that our analysis of the algo- 
rithm is close to optimal. For formulas with more than 
1.771 random clauses the algorithm almost always fails. 

THEOREM 4.4. Let w E flg!n, with m > 1.7n. 
Then with high probability the algorithm fails to find a 
satisfying assignment for w. 

Proof. (Outline) Without loss of generality we can 
assume that m/n = 1.7. Let ni, mi, pi denote the 
number of variables, clauses and pure literals at the 
end of iteration i. Let &, &, CY~, and pi denote the 
associated values of X, A, cr, and /3 (See Theorem 4.2.) 

Suppose that ffk gets small. Then simple estima- 
tions give 

If simultaneously ,& is reasonably large, so that 2& < 

e’” - 1 then we can expect (Ni to tend to zero. More 
precisely, fix e > 0 and let < = &, and 77 = r,~ satisfy 

x - = 1-2~ and t 
ec - 1 w = 7. 

(4.6) 

(4.7) 

(4.8) 

E(~i+l) I (1 - c/B)E(pi) 

mi+i 2 rni - O(pi Inn) 

ni+i >_ ni - O(pi Inn) 

Inequality (4.6) h s ows that (w.h.p.) there exists a 
t 2 s, t = O(lnn) such that pt = 0 and then (4.7) 
shows that mt 2 m, - O(n6(lnn)2) > 0 and thus the 
algorithm has failed. 

The proof of (4.7) and (4.8) is immediate since quite 
surely no pure variable appears in the formula more 
than Inn times. 

To prove (4.6) fix i 2 s and let p = p;, v = ni, 
and p = rni. Let Yi , Yz, . . . , Y, be as in Lemma 4.3. 
Assume that the first p literals are pure and condition 
on Xi + . . f + X, = Yi + . . . $ YP = D. Consider the 
probability that the complement of the z,,+i (the p + 1 
literal) becomes pure. The number of occurrences of 
zP+i is X,+1 which is of course distributed as Y,,+i . We 
obtain that 

E(pi+l 1 D) 2 (2~ - p) e Pr(Y,+l = k 1 0) 
k=l 

Then 

%i, 
XI, 2 77 implies ^ 5 1 - 26. 

exk - 1 

Suppose that after a (bounded) number of iterations we 
reach a stage r where quite surely 

Applying Theorem 4.1 twice we obtain that 

Pr(Yp+l = k I D) 

Pr(Y,,+l = k A Y,,+z +. . . + Y, = 3~ - D - k) 
= 

Pr(Y,+l +. . . + Y, = 3~ - D) 

= 
Pr(Y,+l = k) Pr(Y,+2 + ... + Y, = 3~ - D - k) 

Pr(Y,+l + ... + Y, = 3p - D) 

(When m = 1.7n and E = 10b4/2 we find that Theorems -k 

4.2 and 4.3 imply that this happens at r = 20.) 
Calculations, using Theorem 4.2 and (4.4) then show 

= (eii y l)k! (1+ ww) 

that as long as mi, ni, pi 2 n6 and i > r then quite 
surely But quite surely k 5 In n and ID - ApI 2 filn n. 

Values outside of these ranges make insignificant con- 

(4.5) Ai 2 9 tributions to the expectation in (4.9) and so we assume 

@i+1 I (l-E)% 
that k, D are within these ranges. Thus 

ni 2 n,(l- 6) - O(n6) 

mj 2 mr(l- e)3- O(n6) E(Pi+l I D> I $3 (e4337nn) - 1) 

Thus (q.s.) there exists a s > r, with s = O(ln n) and a 
constant y > 0 such that 

ms,ns 2 7n and p,<n6. 

x (1 + O(n6-l)) 

2/i 
I- 

ex - 1 
. 7 . D . (1 + O(n6-l)) . 
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Removing the conditioning, and substituting Xi = original was modified for ease of readability.) The 

3~/(2v - P), we get program maintains three global variables, mu, nu, pi, 
that represent respectively the ratios m/no, n/no, and 

2J; 
E(pi+l) I - . y (1 + O(P)) 

p/m. 

eXi - 1 Digits := 40; 

= --j$--p (1 + O(n’-l)) start := proc(c) 
# Apply Theorem 2 to compute the initial values 

mu := c; 
and (4.6) follows since X; > n (see (4.5)). This nu := 1 - exp(-3*c); 

completes our outline proof. 0 pi:= P*exp(-3*c/2)*(1 - exp(-3*c/2)) ; 
printcmu, nu, pi) ; 

end ; 

5 Concentration of maximum satisfiability 

Given a formula w, let M(w) denote the maximum 
number of clauses in w that can be simultaneously 

satisfied. Let T(m,k) = E(M(w)) for w E 0$$. 
We prove that M(w) is tightly concentrated around 
T(m, le). 

Let X0(a), X2(a), . . . , Xm(a) be a sequence of ran- 
dom variables (the “Doob martingale”) defined by 

Xi(a) = E(M(w) Iw E Q and the first i clauses 

in u and w are identical). 

ret := proc() 
# Compute current alpha, lambda, lambdah, and beta 

alpha : = pi/ (2*nu-pi) ; 
lambda : = 3*mu/ (2*nu-pi) ; 
lambdah := fsolve(lambda=x/(l-exp(-x1) ,x, 

fulldigits) ; 
beta := l/(exp(lambdah)-1) 

* (exp((2*alpha - alpha^2)*lambdah) -1) ; 
# Save the old values 

muold := mu; nuold := nu; piold := pi; 
# Apply Theorem 1 to compute neu values 

mu := muold*(l-alpha)-3; 
nu := (nuold - pi)*(l-beta-2); 

Clearly XO = E(M) = T(m,k) and X,(u) = M(u). 
:= 2*(nuold-piold)*beta*(l-beta); 

Also E(Xi+l 1 Xi) = Xi, which is the martingale end 
F:int(mu, nu, pi). 

, 

condition. Since (Xi+i(u) - Xi(u)1 5 1, we can use ’ 
Azuma’s inequality to prove: The program used to generate Figure 1 was: 

THEOREM 5.1. Let w E f$& and let T(m, k) = 
sta.rt(l.63); for j to 80 do reco od; 

E(M(w)). Then 

P+!(w) - T(m,k)j > ds) 5 l/m. 
B Simulation results 

Below is a run of a simulation using 100000 variables and 

The martingale technique only shows that the value 
163000 random clauses. Notice that the results are very 

of M(w) is almost sure close to it expectation. It 
close to the predictions made in Figure 1. If we average 

does not specify the expectation. For n linear in m 
over several runs, then the numbers are even closer. 

computing the expectation is an open problem; for 
But our proof shows, and the experiments confirm, that 

n = o(m) a straightforward calculation shows that 
almost surely for every run the results are very close to 

M(w) is almost always close to (1 - 2-k)m. 
expected values. 

Acknowledgement Iter. 1 m/n0 n/n0 p/n0 1 Clauses 
1 I 1.630000 1 0.992950 1 0.160770 1 123687 

We wish to thank Moshe Vardi for introducing us to 
this problem, and for several discussions and references. 

Appendices 

A The MAPLE program 

Below is a straightforward MAPLE program used to 
compute the table in Figures 1. (This is ;n”, rnzrzE 
as an example of Maple programming. 
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