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On the scaling limit of loop-erased random
walk excursion

Fredrik Johansson Viklund

Abstract. We use the known convergence of loop-erased random walk to radial SLE(2)

to give a new proof that the scaling limit of loop-erased random walk excursion in the upper

half-plane is chordal SLE(2). Our proof relies on a version of Wilson’s algorithm for weighted

graphs which is used together with a Beurling-type estimate for random walk excursion. We also

establish and use the convergence of the radial SLE path to the chordal SLE path as the bulk

point tends to a boundary point. In the final section we sketch how to extend our results to more

general simply connected domains.

1. Introduction and main results

1.1. Introduction

Let D be an approximation, using the square lattice with small mesh size, of a
simply connected planar domain. Loop-erased random walk (LERW) [4] in D is a
self-avoiding random walk which is constructed by chronologically erasing the loops
from a simple random walk on the scaled lattice that is started from an interior
point and stopped when the boundary of D is hit.

The Schramm–Loewner evolution, SLE(κ) for short, is a one-parameter family
of random Loewner chains that was introduced by Schramm [13] as a candidate for
the lattice-size scaling limit of planar loop-erased random walk (when κ=2). Sub-
sequently, Lawler–Schramm–Werner proved in their paper [10] that radial SLE(2)
is indeed the scaling limit of loop-erased random walk. This implies in particular
that loop-erased random walk has a conformally invariant scaling limit. Other dis-
crete models with appropriate boundary conditions have also been shown to contain
random curves which converge to SLE(κ) for different values of κ. We mention the
critical percolation exploration path [18] (κ=6), cluster interfaces in the spin Ising
and FK-Ising models at criticality (κ=3 and κ= 16

3 ), see [19] and the references
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therein, a perimeter curve for the uniform spanning tree [10] (κ=8), and contour
lines in the discrete Gaussian free field [15] (κ=4).

In this paper we consider a version of loop-erased random walk, namely loop-
erased random walk excursion. This is the self-avoiding random walk defined as the
loop-erasure of a random walk excursion, that is, simple random walk started from
a given boundary point, conditioned on taking the first step into the domain and
then exiting at a prescribed boundary point. We prove that loop-erased random
walk excursion in the upper half-plane converges to chordal SLE(2) as the lattice
size tends to zero. The proof relies on the known convergence of loop-erased random
walk to radial SLE(2) but also on the convergence of radial to chordal SLE and a
version of Wilson’s algorithm.

We remark that the convergence of loop-erased random walk excursion to
chordal SLE(2) in the upper half-plane has previously been considered by Beneš [2]
who obtained several partial results. Zhan proved convergence to chordal SLE(2)
using the “direct” method of proving convergence of the chordal Loewner driving
function to Brownian motion, see [22]. Our method of proof is different from the
approaches taken by these authors and we believe that some of the results that we
establish along the way may be of independent interest.

1.2. Main results

To state our main results, let us set some notation. Let H={z :Im z>0} denote
the complex upper half-plane. For x∈R and δ>0 define �x�δ :=δ�x/δ� and similarly
for z=x+iy ∈C we write �z�δ=�x�δ+i�y�δ for the δZ

2 lattice approximation of z.
Set D(z, R)={w ∈C:|w −z|<R}. We let γδ(t), t�0, denote loop-erased random
walk excursion on δZ

2 ∩H started from 0 parameterized by capacity (we add the
edges to the discrete walk to get a curve) and we let γ(t), t�0, denote the chordal
SLE(2) path also parameterized by capacity. Let T <∞ be fixed and let μ and μδ

denote the laws of the curves γ(t) and γδ(t), t∈[0, T ], respectively, as elements in
the space K of unparameterized curves in C. We use the metric

ρ(α, β)= inf
ϕ

sup{ |α−β ◦ϕ| : t ∈ [0, tα]}

for elements in K, where the infimum is taken over strictly increasing reparameter-
izations, see Section 2.4.

Theorem 1.1. As δ→0, the measures μδ converge weakly to μ with respect to
the metric ρ.
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The proof, which is given in Section 5, is by a “three epsilon argument”. We
want to produce a coupling where loop-erased random walk excursion on δZ

2, with
δ small, and chordal SLE(2) are close with high probability in the sense of the
metric ρ. The idea is to first compare loop-erased random walk excursion from
a boundary point with loop-erased random walk excursion from an interior point
using a version of Wilson’s algorithm together with a Beurling-type estimate for
random walk excursion started from the boundary.

Proposition 1.2. Let R<∞ be fixed. For each ε>0 there exists d0>0 such
that the following holds. Suppose d�d0 and set z=�di�δ , δ>0. Let γδ and γz

δ denote
the loop-erased random walk excursion paths on δZ

2 from 0 and from z, respectively,
both stopped when first hitting {z :|z|=R}. There exists δ0=δ0(d)>0 and for δ<δ0

a coupling of γδ with γz
δ such that

P

(
inf
ϕ

sup
0�t�tγz

δ

|γz
δ (t∧η)−γδ(ϕ(t∧η))| >ε

)
<ε,

where the infimum is taken over strictly increasing reparameterizations and

η = inf{t � 0 : max{ |γz
δ (t)|, |γδ(ϕ(t))| } =R}.

The proof of Proposition 1.2 is given in Section 4. The Beurling-type estimate
that is used in the proof is stated and proved in Proposition 4.2.

The second step is to compare loop-erased random walk excursion from an
interior point with radial SLE(2) using the convergence of loop-erased random walk
from an interior point to radial SLE(2) as established by Lawler–Schramm–Werner,
see Corollary 2.5.

In the last step we will use the fact that the radial SLE path converges to the
chordal SLE path, as the bulk point tends to the boundary. Consider a sequence
{z(n)} ∞

n=1 in the upper half-plane that tends to ∞ with n. We fix κ ∈[0, 4] and let
μ(n) denote the law of the radial SLE(κ) path in H between 0 and z(n), stopped
when hitting {z :|z|=R}. Similarly, we let μ′ denote the law of the chordal SLE(κ)
path stopped when hitting {z :|z|=R}.

Proposition 1.3. As n→∞, the measures μ(n) converge weakly to μ′ with
respect to the metric ρ.

The proof of Proposition 1.3 is given in Section 3. The statement is a direct
consequence of Lemma 3.2 which states that the laws of the driving processes cor-
responding to the paths converge in total variation. (See also [9] where a similar
result is obtained.) Corollary 3.3 is the form of Proposition 1.3 that we use for the
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proof of Theorem 1.1. In Section 5 we combine the results from previous sections
to prove Theorem 1.1. Although we work in the upper half-plane in the bulk of the
paper, we outline in the final section how similar arguments may be used together
with some additional results from the literature to get an analogous convergence
result in a certain class of simply connected domains.

Acknowledgements. This paper was written while the author was a graduate
student at KTH Royal Institute of Technology and supported by the Knut and Al-
ice Wallenberg Foundation. I thank Wendelin Werner for suggesting the problem
addressed in this paper and for preliminary discussions. I am grateful to Michael
Benedicks, Ilia Binder, Michael Kozdron, and Alan Sola for helpful comments on
earlier versions of the manuscript and to the anonymous referee for his/her sugges-
tions that helped me improve the quality of the paper.

2. Preliminaries

2.1. Random walk excursion

Let S′ be simple random walk on Z
2 started from z ∈Z

2 ∩H. For m∈Z let
τm=min{j :ImS′(j)=m}. It follows from a gambler’s ruin estimate that P

z(τm<

τ0)=Im z/m. If Im z<m and Imw�m the Markov property of simple random walk
implies that

(2.1) P
z(S′(1) =w | τm <τ0) = p(z, w)

Imw

Im z
,

where p(z, w) are the transition probabilities for simple random walk. Since the
right-hand side is independent of m we may let m→∞, and in this way we obtain
the transition probabilities for random walk excursion started from z. We note the
useful fact that random walk excursion stopped at τm has the same distribution as
simple random walk conditioned on {τm<τ0}, stopped at τm.

Let S be random walk excursion. We allow S to be started from x∈Z and
then we set P

x(S(1)=x+i)=1. By its construction, random walk excursion has
the strong Markov property, and can be thought of as simple random walk condi-
tioned to exit H at ∞ or as simple random walk on Z

2 with edge weights defined
using (2.1). Let us note also that the formula for transition probabilities for ran-
dom walk excursion on the scaled lattice δZ

2 are the same as for Z
2. That is, if

Sδ is random walk excursion on δZ
2 then P

z(Sδ(1)=w)=pδ(z, w)(Im w/ Im z) (if
Im z>0), where pδ(z, w) are the transition probabilities of simple random walk on
δZ

2.
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The Markov property and (2.1) imply that probabilities for random walk ex-
cursion can be related to corresponding probabilities for simple random walk, S′.
We use the notation S[i, j]={S(i), ..., S(j)}. Suppose z0 ∈Z

2 ∩H. We have

(2.2) P
z0(S[1, k] = {z1, ..., zk }) = P

z0(S′[1, k] = {z1, ..., zk })
Im zk

Im z0
,

provided Im zj >0, j=1, ..., k; otherwise the probability on the left-hand side is
zero. In particular, (2.2) implies the following formula for hitting probabilities. Let
E ⊂D ⊂Z

2 ∩H. Set τD=min{j�0:S(j)∈D} and let τ ′
D be the corresponding time

for S′. Then

P
z(S(τD) ∈ E) =

∑
w∈E

P
z(S′(τ ′

D) =w, ImS′(j) > 0 for j � τ ′
D)

Im w

Im z
.

In contrast with simple random walk, random walk excursion is not recurrent.
Indeed, let σz=min{j�1:S(j)=z}. By the strong Markov property, for z ∈H, it is
enough to check that

P
z(σz < ∞) < 1.

By (2.2), P
z(σz<∞) is equal to the probability that simple random walk started

from z returns to z before leaving the upper half-plane, and this probability is
clearly strictly smaller than 1.

Let us now briefly sketch how to define random walk excursion in other do-
mains. For simplicity we assume that D�Z

2 is simply connected, that is, Z
2 \D is

connected. Let ζ be a vertex on the boundary of D. Let S′ be simple random walk
and define τ =min{j�0:S′(j)∈∂D}. For z ∈D define

H(z, ζ) = P
z(S′(τ) = ζ).

Then z 
→H(z, ζ) is discrete harmonic, that is, H has the discrete mean-value prop-
erty in D. If H(z, ζ)>0, then we can condition S′ on {S′(τ)=ζ}, and the thus
constructed random walk S will have transition probabilities

P
z(S(1) =w) = p(z, w)

H(w, ζ)
H(z, ζ)

,

and a formula analogous to (2.2) holds in this case too. We allow S to be started
from z ∈∂D such that P

z(S′(1)∈D)>0 and set

P
z(S(1) =w) := P

z(S′(1) =w | S′(1) ∈ D, S′(τ) = ζ).
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2.2. Loop-erased walks

Let S={S(0), S(1), ...} be a nearest-neighbor path in Z
2 visiting no vertex

infinitely many times. The loop-erasure of S, L{S}, is the non-self-crossing nearest-
neighbor path defined as follows. Set

t0 =max{j � 0 : S(j) =S(0)},

and inductively for k=1, 2, ...,

tk =max{j > tk−1 : S(j) =S(tk−1+1)}.

Then we define L{S}(j):=S(tj) so that

L{S} = {S(t0), S(t1), ...}.

Note that L{S}(0)=S(0). One can equivalently start from S(0) and chronologically
erase loops as they form. Another interpretation is the cycle-popping procedure
used in [20].

If S′ is (stopped) simple random walk, then we call L{S′ } loop-erased random
walk, and if S is random walk excursion, then we call L{S} loop-erased random walk
excursion. Note that the infinite loop-erased random walk in Z

2 has to be defined
by taking a limit due to the recurrence of simple random walk, see [5].

Let S be random walk excursion and set Sm :=S[0, τm], that is, Sm is defined by
S stopped when first reaching {z :Im z�m}. Suppose m>m0>Im z. By considering
the event that S never revisits {z :Im z�m0} after first visiting {z :Im z�m}, using
(2.2) and recurrence of simple random walk, we see that

(2.3) P
z(L{Sm}[1, τ ′

m0
] =L{S}[1, τ ′ ′

m0
]) � 1− m0

m
− 1

m
,

where τ ′
m0

and τ ′ ′
m0

denote the first times the loop-erased walks reach {z :Im z�m0}.
The corresponding inequality for random walk excursion on δZ

2 reads

(2.4) P
z(L{Sm

δ }[1, τ ′
m0

] =L{Sδ }[1, τ ′ ′
m0

]) � 1− m0

m
− δ

m
.

2.3. Wilson’s algorithm

A uniform spanning tree on a finite graph is a random spanning tree chosen
from the uniform distribution over all spanning trees. (There are only finitely many
such trees for a finite graph.) It was shown by Pemantle [11] that the branches
in a uniform spanning tree of an unweighted, undirected, finite graph have the
distribution of loop-erased random walks. Wilson, see [20] and references therein,
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later showed that one can go in the opposite direction by giving an elegant and
efficient algorithm for sampling uniform spanning trees using loop-erased random
walk.

We will use Wilson’s algorithm to couple loop-erased random walk excursions
started from different points. On one hand our situation is different from the usual
setting for Wilson’s algorithm, since we are dealing with random walks on an infinite
graph. On the other hand we are not interested in sampling uniform spanning trees
but rather in coupling loop-erased random walks. In fact, one may argue that using
Wilson’s algorithm for random walk excursion is a natural way to define a random
weighted spanning tree (rooted at ∞) on the infinite graph Z

2 ∩H.
We now give a proof of a version of Wilson’s algorithm which is suited for

our needs. We follow closely Lawler’s discussion in [6], where an elegant proof of
Wilson’s algorithm for a finite graph is given. The identity (2.5) below is key to the
approach. Suppose X is a Markov chain on Z

2 with transition probabilities p, and
for z /∈A⊂Z

2 define

G(z, A) =
∞∑

j=0

P
z(X(j) = z, j < τA),

that is, G is the expected number of visits to z before hitting A of the chain started
from z. For a transient chain, G may be interpreted as the Green function for Ac

evaluated at the “pole”. For x, y /∈A (we allow A to be the empty set)

(2.5) G(x, A)G(y, A∪ {x}) =G(y, A)G(x, A∪ {y}).

Indeed, by decomposing the sum and using the Markov property we find that

G(x, A) =G(x, A∪ {y})+P
x(τy <τA)

∞∑
j=0

P
y(X(j) =x, j < τA)

=G(x, A∪ {y})+P
x(τy <τA)Py(τx <τA)G(x, A),

so that
(1−P

x(τy <τA)Py(τx <τA))G(x, A) =G(x, A∪ {y}).

Note that the factor in front of G(x, A) is symmetric in x and y. Since the analogous
identity holds for G(y, A), (2.5) follows directly. Suppose X is started from z0

and stopped when hitting A. Let {zj }k
j=0 be a self-avoiding nearest-neighbor path

connecting z0 with A such that z0, ..., zk−1 ∈Ac and zk ∈A. It follows directly from
the definition of the loop-erasing procedure that

P (L{X} = {z0, ..., zk }) =
k−1∏
j=0

p(zj , zj+1)
k−1∏
j=0

G

(
zj ,

j−1⋃
n=0

{zn} ∪A

)
,
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and by (2.5), since any permutation can be written as a product of transpositions,
the second product on the right is symmetric as a function of zj , j=0, ..., k.

Lemma 2.1. (Wilson’s algorithm for LERW excursion) Let z1, z2 ∈δZ
2 ∩H,

δ>0. Let S1 be random walk excursion from z1, and set L1=L{S1}. Let further
S2 be independent random walk excursion from z2, stopped when hitting L1. Set
L2=L{S2} and suppose k ∈N∪ { ∞} is such that L1(k)=L2 ∩L1. Then L2 ∪L1[k, ∞)
has the distribution of loop-erased random walk excursion from z2.

Proof. Without loss of generality we assume that δ=1. The conclusion is
trivial if k=∞, that is, if S2 never hits L1, so we may assume that k is finite. Fix
Z�m>max{Im z1, Im z2}, put Im={z ∈Z

2 :0�Im z�m}, and write Jm ⊂Im for the
vertices with imaginary part equal to m. We shall sample a random subset of Im.
Let τ1,m=min{j�0:S1(j)∈Jm} and Lm

1 =L{S1[0, τ1,m]}. Define τ2,m in the same
way with S1 replaced by S2 and let τL1,m denote the first time S2 hits Lm

1 (set
it to ∞ if this never happens). Let Lm

2 =L{S2[0, τL1,m ∧τ2,m]}, set Tm(z1, z2):=
Lm

1 ∪Lm
2 , and let Tm(z2, z1) denote the random set obtained by repeating the same

procedure starting with random walk excursion from z2 instead. We will show
that Tm(z1, z2)

d=Tm(z2, z1). The lemma then follows from (2.3) by letting m→∞.
Indeed, let X={x0, ..., xn} �z1, z2 be a rooted tree in Im (with Jm collapsed to one
single vertex x0 that we take to be the root) with at most two branches connecting
z1 and z2 with x0 such that at least one of z1 and z2 is a leaf. For each xj ∈X \ {x0},
denote by x∗

j the unique vertex following xj in the path from xj to the root in X .
Define

(2.6) f(x1..., xn; {x0}) =
n∏

j=1

G(xj , {x0} ∪Aj−1),

where Aj =
⋃j

k=1{xk } and A0=∅. Then in view of the discussion preceding the
statement of the lemma we have

(2.7) P(Tm(z1, z2) =X) = f(Z1, Z2; {x0})
n∏

j=1

p(xj , x
∗
j ),

where Z1=(z1, ..., zm) are the vertices in the unique path in X from z1 to x0 (ordered
according to the path), and Z2 are the vertices in the path from z2 to x0 (in order)
not already listed in Z1. We showed that f is a symmetric function and so is the
product in (2.7). Hence we can write P (Tm(z2, z1)=X) in the same manner starting
instead with all the vertices in the path from z2 to x0, and rearrange the right-hand
side using the symmetry of f , to find that

P(Tm(z1, z2) =X) = P(Tm(z2, z1) =X),

which completes the proof. �
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2.4. A metric space of curves

Let K denote the space of unparameterized paths in C, that is, the space of
equivalence classes of continuous functions (defined on intervals, taking values in C)
modulo increasing reparameterizations. This means that α(t), t∈[0, tα], and β(t),
t∈[0, tβ ], are in the same equivalence class if and only if there exists a continu-
ous strictly increasing function ϕ : [0, tα]→[0, tβ ] such that α=β ◦ϕ pointwise. (Of
course, that 0 is on the boundary of both intervals is not important.) We endow K
with the metric ρ [1] defined by

ρ(α, β)= inf
ϕ

sup{ |α(t)−β ◦ϕ(t)| : t ∈ [0, tα]},

where the infimum is over strictly increasing reparameterizations as above. The
metric space (K, ρ) is complete and separable, but it is not necessarily compact,
see [1]. We will usually not distinguish between a representative of a given element
in K and the element itself.

We state two easily verified lemmas. Let γ1, γ2 ∈ K. Pick parameterizations for
both curves and assume without loss of generality that they are defined on [0, 1].
For a curve γ we define γrev to be the time-reversed curve, that is, the equivalence
class determined by tracing γ backwards.

Lemma 2.2. Fix z ∈C and ε>0. For j=1, 2, suppose γj(0)∈D(z, ε), and let
τ ε
j be such that γj [0, τ ε

j )⊂D(z, ε). Let γε
j be the curves determined by γj(t), t∈[τ ε

j , 1].
Then

(2.8) ρ(γ1, γ2) � ρ(γε
1 , γε

2)+2ε.

Lemma 2.3. It is true that

ρ(γ1, γ2) = ρ(γrev
1 , γrev

2 ).

Suppose now that γj , j=1, 2, 3, are such that γj(0)∈D(0, R). Suppose further
that the curves intersect ∂D(0, R) and for each j=1, 2, 3, let γR

j be the curve de-
termined by γj stopped at the first hitting time of ∂D(0, R). Note that an upper
bound on ρ(γ1, γ2) gives no non-trivial information on ρ(γR

1 , γR
2 ). Since we need to

consider stopped paths, we can instead use

ρR(γ1, γ2) := inf
ϕ

sup
t∈[0,1]

|γ1(ϕ(t∧η))−γ2(t∧η)|,

where the infimum is over increasing reparameterizations and

η = η(ϕ, R)= inf{t � 0 : max{ |γ1(ϕ(t))|, |γ2(t)| } =R}.
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Clearly ρ(γ1, γ2)<ε implies ρR(γ1, γ2)<ε. The function ρR does not satisfy the tri-
angle inequality but when ε is small enough compared to R it has the property that
ρR(γ1, γ2)<ε and ρR(γ2, γ3)<ε implies that ρR/2(γ1, γ3)<2ε (if γj(0)∈D(0, R/2))
and this is sufficient for our purposes.

2.5. Loewner differential equation and versions of SLE

Given K, a compact subset of H such that H\K is simply connected, we define
the half-plane capacity of K by

hcap(K) = lim
z→∞

z(gK(z)−z),

where gK : H\K→H is the unique Riemann map normalized so that

lim
z→∞

(gK(z)−z)= 0.

Let Bt be standard Brownian motion on R. Let κ>0 and consider the solution
to the chordal Loewner equation for H,

(2.9) ∂tgt(z) =
2

gt(z)−
√

κBt

and g0(z) = z, z ∈ H.

For each t>0, gt : H\Kt→H is a conformal map, where Kt is a compact subset of
H such that H\Kt is simply connected. It follows from (2.9) that hcap(Kt)=2t,
and we say that Kt is parameterized by half-plane capacity. We call the family of
solutions (gt)t the chordal SLE(κ) Loewner chain. It describes a continuous path
growing in H from 0 to ∞: the function t 
→γ(t):=limy→0+ g−1

t (
√

κBt+iy) can be
proven to be a.s. continuous and is called the chordal SLE(κ) path. It is known
that γ is a.s. simple if and only if κ ∈[0, 4] and that limt→∞ |γ(t)|=∞ a.s., see [12]
or [7].

Radial SLE(κ) is defined similarly but using the radial Loewner equation

(2.10) ∂tgt(z) = gt(z)
Ut+gt(z)
Ut −gt(z)

and g0(z) = z, z ∈ D,

where Ut=exp(i
√

κBt). The conformal maps gt : D\Kt→D now describe a contin-
uous path growing from 1 to 0 in D (see [8]); the radial SLE(κ) path. It is usually
parameterized by logarithmic capacity.

Both the chordal and radial versions of SLE can be defined in arbitrary sim-
ply connected domains using a suitably normalized Riemann map from H and D,
respectively. In particular we will need to consider radial SLE(κ) in H between 0
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and z, defined as the image of the radial SLE path in D under the Möbius trans-
formation ϕz : D→H such that ϕz(0)=z and ϕz(1)=0. Note that the radial path
only intersects ∂D at 1 when κ�4, so the image path under ϕz does not escape to
infinity in this case.

We can think of the SLE paths as random elements of K. We use the notation
γ to refer to the chordal SLE path in H, and γ0,z to refer to the radial SLE path
in H from 0 to z ∈H. We will also need to consider the (properly stopped) time-
reversal of γ0,z under the mapping ι(z):=−1/z, and we denote the thus obtained
curve by γw,∞, where w=ι(z). We use this particular notation for convenience and
γz,∞ should be only interpreted as shorthand for ι(γ0,ι(z))rev.

We now review the definition of chordal SLE(κ, ρ) with one force point in
H. See [16] for more details. Let κ>0 and ρ∈R and consider the solution to the
following system of stochastic differential equations

(2.11)

⎧
⎪⎪⎨
⎪⎪⎩

dWt =
√

κ dBt+Re
(

ρ

Wt −Vt

)
dt,

dVt =
2

Vt −Wt
dt,

with initial value (W0, V0)=(0, z). We define SLE(κ, ρ) with force point z as the
chordal Loewner chain (gt)t driven by Wt for 0�t<τ , where τ =τ(z) is the infimum
of τ such that 0 is in the set of limit points of |Vt −Wt|, when t→τ −. If this
never happens we put τ =∞. The corresponding trace is the SLE(κ, ρ) path. (It
exists almost surely up to a stopping-time by absolute continuity.) Notice that
t 
→Vt describes the flow of z under gt. Of course, ρ=0 yields ordinary SLE(κ).
Intuitively, the effect of the term involving ρ in (2.11) is to introduce attraction of
the path towards z if ρ is negative and repulsion if ρ is positive.

2.6. Convergence of LERW to radial SLE(2)

Our proof of Theorem 1.1 uses the convergence of (unweighted) loop-erased
random walk started from a bulk point to radial SLE(2) [10, Theorem 1.1].

Theorem 2.4. (Lawler–Schramm–Werner) Let D�C be a simply connected
domain with 0∈D. For δ>0, let μδ be the law of the time-reversal of loop-erased
random walk on δZ

2 started at 0 and stopped when hitting ∂D. Let νD be the law
of radial SLE(2) in D, with bulk point 0, started according to harmonic measure.
Then as δ→0, the measures μδ converge weakly with respect to ρ to νD.
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Recall, from Section 2.5, that γz,∞ is the curve determined by ι(γ0,ι(z))rev,
where γ0,ι(z) is the radial SLE(2) path in H. We will now derive the following
corollary from Theorem 2.4.

Corollary 2.5. Fix z ∈H and R>|z|. Let γz
δ denote the loop-erased random

walk excursion path from �z�δ , and let γz,∞ be the time-reversal of radial SLE(2)
in H. For any ε>0 there exists δ0>0 so that if δ<δ0 there is a coupling of γz

δ and
γz,∞ such that

P (ρR(γz
δ , γz,∞) >ε) <ε.

Proof. Let m>Im z and, as before, set

Im = {z : 0 < Im z <m} and Jm = {z : Im z =m}.

Let ψm : Im→D denote the conformal mapping normalized by the conditions
ψm(z)=0 and ψm(Re z+im)=1. Let Sδ be random walk excursion from �z�δ , and
set τm=min{j�0:ImSδ(j)�m}. When δ→0 (the proof of) Theorem 2.4 implies
that the law of the time-reversal of L{Sδ[0, τm −1]} converges weakly with respect
to ρ to the law of γζ,z , radial SLE(2) in Im with bulk point z, where the point
ζ ∈Jm is chosen according to the density

(2.12) ζ 
−→ sin(π Im z/m)/Im z

2 cosh(π(ζ −Re z)/m)+2 cos(π Im z/m)
.

(See the remark immediately following this proof.)
Since the harmonic measure of Jm from z in Im equals Im z/m, conformal

invariance implies that

ψm(Jm) =
{

eiθ : θ ∈
[

−π Im
z

m
, π Im

z

m

]}
.

It follows that ψm(γζ,z) for large m is a small random rotation of the standard
radial SLE(2) path in D and as m→∞ these paths clearly converge weakly with
respect to ρ. By mapping back to the half-plane we see that we can choose m1<∞
so that whenever m>m1 we may couple γz,∞ with γz,ζ =(γζ,z)rev and

P(ρ3R(γz,∞, γz,ζ) >ε) <ε.

Similarly using (2.4) we can find m2<∞ such that if m>m2 then γz,m
δ with high

probability is close (in the sense that ρ3R is small) to γz
δ and this is true uniformly

in δ. Let m>max{m1, m2}. Theorem 2.4 implies that we can find δ0=δ0(m, ε) such
that for δ<δ0 there is a coupling of the LERW path γz,m

δ with the radial SLE(2)
path γz,ζ and the probability that ρ3R(γz,m

δ , γz,ζ)>ε is at most ε. Putting things
together we get, whenever δ<δ0, that
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P(ρR(γz
δ , γz,∞) > 3ε) � P(ρ3R(γz

δ , γz,m
δ ) >ε)

+P(ρ3R(γz,m
δ , γz,ζ) >ε)+P(ρ3R(γz,ζ , γz,∞) >ε) < 3ε,

and we have proved the corollary. �

Remark. The formula (2.12) comes from the fact that simple random walk
conditioned on exiting Im through Jm converges, as δ→0, to Brownian motion con-
ditioned on the analogous event. (Note also that this event has a probability which
is bounded away from zero by a constant depending only on Im z and m.) Hence
the density can be calculated using the half-plane Poisson kernel after a change of
coordinates. Note that we may let Im z→0 to obtain the hitting distribution of a
Brownian excursion.

3. Convergence of radial to chordal SLE

In this section we prove Proposition 1.3 and we will assume that κ�4. Consider
a sequence {z(n)} ∞

n=1 in H such that z(n)→∞ as n→∞. We write z(n)=x(n)+iy(n).
For each n write γ(n)(t):=γ0,z(n)

(t), t∈[0, Tn], for the radial SLE(κ) path in H

from 0 to z(n) parameterized by half-plane capacity, that is, hcap(γ(n)[0, t])=2t and
limt→Tn − γ(n)(t)=z(n). Note that Tn is random. As before let γ(t), t∈[0, ∞), denote
the chordal SLE(κ) path parameterized by half-plane capacity. By considering a
Loewner chain driven by a constant function we can see that

(3.1) hcap(β[0, t]) � sup
0�s�t

(Im β(s))2

2

holds for a non-self-intersecting path β(t) in H parameterized by half-plane capacity
with β(0)∈R. Since Im γ(n)(Tn)=y(n), it follows that Tn�(y(n))2/4. For R<|z(n)|,
we define the stopping times TR=inf{t:|γ(t)|�R} and T

(n)
R =inf{t:|γ(n)(t)|�R}.

Note that the stopped paths are contained in D(0, R). Since the paths are param-
eterized by half-plane capacity this implies that TR and T

(n)
R are both bounded by

R2/2. Indeed, the half-plane capacity of a semi-disc of radius R equals R2.
In [16] Schramm and Wilson calculated explicitly the chordal Loewner driving

process for the radial SLE path in H. It turns out that the driving process has the
same distribution as that of the SLE(κ, κ −6) path, up to a suitable stopping time.
To be more precise, the following result is contained in [16, Theorem 3].

Lemma 3.1. (Schramm–Wilson) Let φ be a Möbius transformation map-
ping D onto H. Denote by γ̃ the standard radial SLE(κ) path in D. Then the path
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φ◦γ̃, parameterized by half-plane capacity, has the same law as the SLE(κ, κ −6)
path started at φ(1) with force point φ(0), stopped at an a.s. positive stopping time.

Recall that we assume that κ ∈(0, 4]. In this case, the radial path is a.s. simple
and only touches ∂D at t=0, so the image path under φ does not disconnect φ(0)
from infinity, nor does it escape to infinity. We can take the stopping time in
Lemma 3.1 to be the hitting time of ∂D(φ(1), R) as long as |φ(1)−φ(0)|>R.

It is known that SLE(κ, ρ) can be obtained by weighting SLE(κ) by a mar-
tingale in the sense that the driving process can be obtained by an absolutely
continuous change of measure via Girsanov’s theorem, see [21] and [16]. We shall
review the case of one force point z ∈H. By applying Itô’s formula one can show
that the process

(3.2) Dt := |g′
t(z)|(8−2κ+ρ)ρ/8κy

ρ2/8κ
t |

√
κBt −zt|ρ/κ

is a local martingale on the interval [0, τ(z)). (See Section 2.5 for the definition
of τ(z) and [16] for details about the local martingale.) Here xt+iyt=zt :=gt(z),
where gt is the chordal SLE(κ) Loewner chain. We can take ηm=inf{t:yt�1/m},
m=1, 2, ..., as a localizing sequence. Clearly, ηm are stopping times increasing to
τ(z) and Dt∧ηm is a true martingale for each m.

Notice that the local martingale Dt takes on a particularly nice form when
κ=2 and ρ=κ −6=−4, namely Dt=yt/|

√
κBt −zt|2 which we recognize as the half-

plane Poisson kernel with pole at
√

κBt, evaluated at zt. A discrete version of
this invariant martingale is the observable that is used to prove convergence of the
Loewner driving function in [10].

We see that Dt is strictly positive, so it is an exponential local martingale. If
we use a stopped and normalized version of Dt in Girsanov’s theorem, a calculation
of the resulting drift shows that we obtain a measure Q under which

√
κB properly

stopped has the distribution of the driving process (2.11) for SLE(κ, ρ) with force
point z.

This leads to the following result.

Lemma 3.2. Assume that κ ∈(0, 4] and that {z(n)} ∞
n=1 is a sequence in H

such that z(n)→∞, as n→∞. For each n, let (W (n)
t )t denote the chordal driving

process for radial SLE(κ) in H between 0 and z(n), parameterized by half-plane
capacity. Then for every fixed R>0, as n→∞, the law of (W (n)

t∧T
(n)
R

)t converges in

total variation to the law of (
√

κBt∧TR
)t, where B is standard Brownian motion.

Proof. We may assume that |z(n)|>2R for all n. Let B be standard Brownian
motion on R under the measure P . By Lemma 3.1, under P , W (n) has the same
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distribution as the driving process for the SLE(κ, κ −6) path with force point z(n)

up to a stopping time that we can take to be T
(n)
R ; clearly T

(n)
R <τ(z(n)) a.s. Let

D(n)=D
(n)

t∧T
(n)
R

be defined by (3.2) with z replaced by z(n) and ρ replaced by κ −6

and normalized so that D
(n)
0 =1. Hence if σ :=t∧TR then

(3.3) D(n) = |g′
σ(z(n))|(2−κ)(κ−6)/8κ

(
y
(n)
σ

y(n)

)(κ−6)2/8κ∣∣∣∣
√

κBσ −z
(n)
σ

z(n)

∣∣∣∣
(κ−6)/κ

.

We claim that D(n) is a bounded martingale. Indeed, Koebe’s estimate implies
that

|g′
t(z

(n))| � Im gt(z(n))
dist(z(n), ∂Ht)

for t<τ(z(n)), where Ht=H\γ(n)[0, t] and � means that both sides are bounded
by a constant times the other. Since γ(n)[0, T

(n)
R ] is contained in a closed half-disc

centered at the origin with radius R, we have for t�T
(n)
R that

Im gt(z(n)) � Im ψ(z(n))= Im z(n)

(
1− R2

|zn|2

)
,

where ψ(z)=z+R2/z maps the complement of the half-disc onto H. Since also
Im gt(z(n))�Im z(n) we get that

Im gt(z(n))
dist(z(n), ∂Ht)

� 1,

when t�T
(n)
R and consequently the same holds for |g′

t(z(n))|. Hence, for each n,
D(n) is bounded. By dominated convergence, we may pass to the limit to obtain

1 = lim
t→∞

E[D(n)

t∧T
(n)
R

] = E[D(n)

T
(n)
R

].

Consider the measure Q(n) defined by

dQ(n) =D(n) dP.

By Girsanov’s theorem, under Q(n), (
√

κBt∧TR
)t has the same law as (W (n)

t∧T
(n)
R

)t

under P . This means that under Q(n), the stopped chordal SLE(κ) path has the
same law as the stopped radial path in H under P . We show that D(n)→1, as n→∞,
P -a.s. By the series expansion of g

T
(n)
R

at infinity, keeping in mind that T
(n)
R is

bounded P -a.s. we have that z
(n)

T
(n)
R

=z(n)+O(1/|z(n)|), y
(n)

T
(n)
R

=y(n)+O(y(n)/|z(n)|2),
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and x
(n)

T
(n)
R

=x(n)+O(x(n)/|z(n)|2) for large n. Also |g′
T

(n)
R

(z(n))|=1+O(1/|z(n)|2) if

n is large enough. Thus, plugging this into (3.3), we obtain that P -a.s.

lim
n→∞

dQ(n)

dP
= lim

n→∞
D(n) =1.

This implies that Q(n) converges to P in total variation, which in particular implies
that the law of (W (n)

t∧T
(n)
R

)t converges in total variation to that of (
√

κBt∧TR
)t. �

Proof of Proposition 1.3. By Lemma 3.2 the driving processes converge in law.
Hence, since the paths are simple, it follows that the laws of the paths in the
capacity parameterization converge weakly with respect to local Hausdorff distance
(at any fixed time), see Proposition 5.1 of [14]. To prove that the paths converge
with respect to ρ we have to prove tightness. To this end, note that there is an
α=α(κ)>0 such that γ is Hölder-α in the capacity parameterization almost surely;
see, e.g., [7]. Consequently, by absolute continuity, the same holds for γ(n). Fix
ε>0 and let M<∞ be such that P (Cα�M)�1−ε/2, where Cα is the (random)
Hölder-α norm of γ. Then if C

(n)
α is the Hölder-α norm of γ(n) we have

P (C(n)
α �M) =Q(n)(Cα �M).

Hence, using the fact that Q(n) converges to P in total variation, we get that
P (C(n)

α �M)�1−ε, whenever n is sufficiently large. By the Arzelà–Ascoli theorem
this proves tightness. Finally, since the stopped driving processes converge weakly
with respect to the supremum norm on, say, [0, R2/2], we can couple them in such
a way that T

(n)
R converges to TR in probability. (Recall that TR and T

(n)
R are

bounded by R2/2.) Indeed, the probability that there is a subinterval of [0, R2/2]
of any fixed positive length on which the supremum of the modulus of a Brownian
motion is smaller than ε is o(1) as ε→0. Hence, using absolute continuity and a
modulus of continuity estimate for chordal SLE, we conclude that for any ε>0, if
n is sufficiently large, we can couple the stopped paths so that their ρ distance
exceeds ε with probability at most ε. It follows that the stopped paths converge
weakly with respect to ρ. �

Here we again use the notation of Section 2.4.

Corollary 3.3. Let R>1 and κ ∈(0, 4]. For every ε>0 there exists d0>0 so
that if |z|<d0 then there is a coupling of γz,∞ and γ such that

P (ρR(γz,∞, γ) >ε) <ε.
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The idea is to argue that the inverted and reversed paths are close after the
first time they hit ∂D(0, ε), if |z| is small enough. By reversibility of chordal SLE,
the distribution of the chordal path is invariant under inversion and time-reversal.

Proof of Corollary 3.3. Let ε>0 be smaller than R. Consider the last time γ

hits ∂D(0, 1/ε):
σ =sup{t � 0 : |γ(t)| =1/ε},

where the path is parameterized by half-plane capacity. The transience of chordal
SLE implies that σ<∞ a.s. Clearly |γ(t)|>1/ε for t>σ. Consequently we can
choose a (non-random) R0<∞ such that

(3.4) P (σ <TR0) � 1−ε,

where TR0 =inf{t�0: |γ(t)|=R0} is a stopping time. Proposition 1.3 implies that
for all ε1>0 there exists R1 so that if |z|>R1 then there is a coupling of γ0,z and
γ such that

(3.5) P (ρ(γ0,z, γ) >ε1) <ε1

for the paths stopped when hitting ∂D(0, R0). By taking R1 larger if necessary,
we can assume that the estimate analogous to (3.4) holds also for γ0,z . We now
apply the mapping ι(z)=−1/z to the paths. Note that ι is uniformly continuous
on {z :|z|�1/R}. Hence, by choosing ε1<ε small enough (and the corresponding
R1<∞ sufficiently large), (3.4) and (3.5) together with Lemmas 2.2 and 2.3 imply
that if |z|>R1 then there is a coupling of γ0,z and γ such that

(3.6) P (ρR(ι(γ0,z)rev, ι(γ)rev) > 3ε) < 3ε.

By reversibility of chordal SLE, see [23], considered as paths stopped when exiting
D(0, R), ι(γ)rev has the same distribution as γ. The corollary then follows from
(3.6) by taking d0=1/R1 and recalling that γw,∞ is shorthand for ι(γ0,ι(w))rev. �

4. Coupling of LERW excursions

The goal of this section is to prove Proposition 1.2. We shall use our version of
Wilson’s algorithm (Lemma 2.1) to couple LERW excursions from nearby points.
For this, we need a uniform estimate on a hitting probability for random walk
excursion. The difficulty is that we start from a boundary point which prohibits
using (2.2) directly.

For L>0 set

R =R(L) = {z : −1 <Re z < 1 and 0 � Im z <L},

E =E(L) = {z ∈ ∂R : Im z =L}.
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Lemma 4.1. Let S be random walk excursion on δZ
2 started from δi, 0<δ<L.

Let pS be the probability that S exits R using an edge intersecting E. Then there is
a constant c>0 depending only on L such that pS >c.

Proof. Let X be simple random walk on δZ
2 started from δi. Define the

reflected random walk X ′ by

X ′ =

{
X, if ImX�0,

X, otherwise.

It follows from the definition that the probability pX′ that X ′ exits R through E

is the same as the probability that X exits R∪R through E ∪E. Hence, by the
convergence of simple random walk to Brownian motion, pX′ >c for some constant
c>0 depending only on L.

Set τS =min{j�1: Im S�L} and let τX′ be the corresponding stopping-time
for X ′. We see from the transition probabilities for S and X ′ that

(4.1) P (τS <j) � P(τX′ <j), j � 1.

Let ηS =min{j�1:|Re S|�1} and let ηX′ be the corresponding stopping-time for
X ′. The random walks Re X ′ and Re S have the same distribution, so by using
(4.1) we get that

pS = P(τS <ηS) =
∞∑

j=1

P(τS <j)P(ηS = j) �
∞∑

j=1

P(τX′ <j)P(ηX′ = j) = pX′ ,

and since pX′ >c the proof is complete. �

Let Sδ denote random walk excursion on δZ
2 started from 0. Consider the

half-square
Q =Q(r) = {x+iy : −r <x<r and 0 <y <r},

where r< 1
2 . Let hβ(x)=x/|log(x)|β for β ∈[0, 1) fixed and define the weak cone

Cβ = C(hβ) = {x+iy : −1 <x< 1 and y >hβ(|x|)}.

We set Tr=min{j�0:Sδ(j) /∈Q(r)} and consider the stopped walk Sδ(j), j=0, ..., Tr.

Proposition 4.2. Fix 0�β<1 and r< 1
2 . For each ε>0 there exists a d0>0

such that the following holds uniformly in δ>0 sufficiently small. Let Kδ ⊂δZ
2 ∩H

be a connected set with dist(0, Kδ)�d0 that separates the two components of ∂Cβ ∩
(Q(r)\Q(d0)) in Q(r)\Q(d0). Then

(4.2) P (Sδ ∩Kδ = ∅) <ε.
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Remark. Connectedness is meant in the sense that Kδ contains a nearest-
neighbor path between any two of its vertices.

Remark. For β=0 we can see from the proof that the upper bound in (4.2) can
be taken to be c1(dist(0, Kδ)/r)c2 for uniform constants 0<c1, c2<∞, and in this
case we may take r to be arbitrarily large.

Remark. It is necessary to assume that Kδ separates the boundary components
in a weak cone such as Cβ . Indeed, if K(d)={x+iy : x�0 and y=d}, then there is
a uniform constant c>0 such that for all d>0,

P(Sδ ∩K(d) = ∅) >c,

whenever δ>0 is sufficiently small compared to d. (Sδ is considered as a curve
whereby the intersection is well defined.) To see this, note that for δ>0 sufficiently
small the probability of the event that Sδ reaches {z :Im z>2d} without hitting K(d)
is uniformly bounded from below by some strictly positive constant independent of
d. By the strong Markov property and a gambler’s ruin estimate for simple random
walk, conditional on this event, there is a strictly positive probability (independent
of d) that Sδ never returns to {z :Im z�d}. This implies the stated inequality. See
also [7].

Proof of Proposition 4.2. Let us fix m∈N to be determined later. We define
dk=2−kr for k=0, 1, ..., m. Note that dk+1<dk. For each k=1, ..., m define the
dyadic half-annulus

Ak = {x+iy : dk �max{ |x|, y} � dk−1 and y � 0}

and then set

Bk = {x+iy : |x| � y and 0 � |x| � dk−1} ∩Ak,

Ck = {x+iy : hβ(|x|) � y � |x| and 0 � |x| � dk−1} ∩Ak,

and
Dk =Ak \(Bk ∪Ck).

Next, let Ek=∂Ck ∩∂Dk=∂Cβ ∩Ak and F k=
(

3
4∂Ak

)
∩Ak. Finally we set Gk=

∂Bk ∩∂Ck. We use the subscripts − and + to distinguish components with negative
and positive real parts.

Let Tk be the first time that Sδ has used an edge intersecting F k. Notice
that Tk−1>Tk. Given Sδ(Tk), let J −

k be the event that Sδ[Tk, Tk−1] uses an edge
intersecting Ek

− before exiting Ak, and let J+
k be defined in the same way with Ek

−
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Figure 1. Sketch for the proof of Proposition 4.2. The probability of this event is
bounded below by c/kβ , β<1

replaced by Ek
+. We claim that there is a constant c>0 only depending on β and r

such that for k=1, ..., m,

(4.3) min{P (J −
k ), P (J+

k )} >
c

kβ

whenever δ>0 is small enough. The proposition is a consequence of this fact and
the (strong) Markov property of random walk excursion. Indeed, by assumption
there is always a lattice path in Kδ separating the vertex Sδ(Tk) from at least one
of Ek

− and Ek
+ in Ak. Hence

P(Sδ[Tk, Tk−1]∩Kδ �= ∅ | Sδ(Tk)) �min{P(J −
k ), P(J+

k )}.

Since

{Sr
δ ∩Kδ = ∅} ⊂

m⋂
k=1

{Sδ[Tk, Tk−1]∩Kδ = ∅},

the Markov property and (4.3) imply that
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P(Sr
δ ∩Kδ = ∅) �

m∏
k=1

P(Sδ[Tk, Tk−1]∩Kδ = ∅ | Sδ(Tk)) �
m∏

k=1

(
1− c

kβ

)
<ε,

if m<∞ is chosen sufficiently large and δ>0 sufficiently small. Here we have used
that β<1.

It remains to prove (4.3). Let S̃δ be random walk excursion started from
�−(dk+dk−1)/2�δ+δi, and let pk denote the probability that S̃δ uses an edge in-
tersecting Ek

+ before exiting Ak. If δ is small enough, this probability is positive.
By symmetry and the Markov property, it is enough to prove that pk is bounded
from below by c/kβ , where c>0 may depend on β and r. By Lemma 4.1 the
probability that S̃δ hits Gk

− in a point with x-coordinate in the middle third of
[−dk−1, −dk] before exiting Ak is bounded from below by a constant c1>0 inde-
pendent of δ>0 small enough and k. By the Markov property and (2.2) using the
fact that Imw/ Im z �1 for any z, w ∈Bk, the same holds with Gk

− replaced by Gk
+.

Finally, since Imw/ Im z�c/kβ |log r|β for z ∈Gk
+ and w ∈Ek

+, using (2.2) and the
Markov property once again, we see that

pk >
c/|log r|β

kβ
,

where c>0 only depends on β whenever δ>0 is small enough. This proves (4.3)
and completes the proof. �

To prove Proposition 1.2 we need to show that the initial part of the LERW
excursion path from a point close to 0 satisfies the weak cone separation condition
from Proposition 4.2 with large probability. It would be desirable to prove this
directly; we shall however use Theorem 1.1 from [17] (in a slightly modified form).
As before, let hβ(x)=x/|log x|β and let C(hβ)=

{
x+iy :y>hβ(|x|) and |x|< 1

2

}
. Set

β(κ)=1/(8/κ −2).

Lemma 4.3. (Schramm–Zhou) Let γ be the standard chordal SLE(κ) path,
κ ∈(0, 4) and let β>β(κ). For each ε>0 there exists an r>0 such that

(4.4) P (γ(0, Tr] ⊂ C(hβ)) � 1−ε,

where Tr=inf{t�0: |γ(t)|�r}.

Note in particular that β(2)= 1
2 <1.

Remark 4.4. Actually, C(hβ) is not the optimal weak cone implied by the result
from [17]. Let gβ(x)=|log x|2β/(|log x|2β +1), and set

C ′
β = {z : Re z =xgβ(|x|), Im z >hβ(|x|)gβ(|x|) and |x| <r}.
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Then C ′
β(κ) is the sharp weak cone for SLE(κ). However, since gβ�1 and hβ(|x|) is

convex we see that C ′
β ⊂ C(hβ).

Proof of Proposition 1.2. Let ε>0 be given. Let r′ be such that (4.4) holds
with ε as given and β= 2

3 > 1
2 =β(2). Let r :=min{r′, ε}/2. Let d′ ′ be the constant

whose existence is asserted by Proposition 4.2 and which corresponds to ε, r/
√

2
and β= 2

3 . (That is, d′ ′ =d0=d0

(
ε, r/

√
2, 2

3

)
in the notation of Proposition 4.2.) By

Corollary 3.3 there exist d∗ and d′ with 0<d′ �d∗ �d′ ′ <r such that if y<d′ and η

is the radial SLE(2) path in H from ∞ to iy, then

(4.5) P(η ∩ A(d∗, r) ⊂ C(h3/4)) � 1−ε,

where A(a, b)={z : a<|z|<b}. Here we used that C(h2/3)�C(h3/4).
Let Sy

δ be random walk excursion on δZ
2 from a lattice point closest to iy.

Set Ly
δ :=L{Sy

δ }[0, Tr] and consider the event Eδ that Ly
δ ∩ A(d∗, r)⊂ C(h4/5). By

the convergence of radial LERW to radial SLE(2) (Corollary 2.5) and (4.5), since
C(h3/4)�C(h4/5), there exists δ0=δ0(y)>0 such that

(4.6) P (Eδ) > 1−2ε,

whenever δ<δ0. Let Sδ be random walk excursion from 0, and let Fδ be the event
that Sδ hits Ly

δ before hitting ∂D(0, r). By Proposition 4.2 we see that P (F c
δ | Eδ)<ε,

since y�d′ ′, and this holds uniformly in δ small enough. Hence in view of (4.6) we
get that

P (Fδ) > 1−3ε

for all δ small enough. We now apply Wilson’s algorithm (Lemma 2.1) to see that
we may couple LERW excursion from 0 with LERW excursion from iy (both on δZ

2,
with δ small enough) so that with probability at least 1−3ε the paths agree outside
the disc D(0, r)⊂D(0, ε). In view of Lemma 2.2 this completes the proof. �

5. Proof of Theorem 1.1

We now combine the results from the previous sections to prove our main result,
Theorem 1.1. For the moment, let R>1 be fixed and let ε>0 and T <∞ be given.
It will be enough to show that when δ>0 is sufficiently small we can couple γ and
γδ so that

(5.1) P(ρR(γ, γδ) >ε) <ε.
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Figure 2. Sketch for the proof of Proposition 1.2. Since the loop-erased path is con-
tained in a weak cone, it is quickly hit by the random walk. Note that r<ε�R

Indeed, assume that such a coupling exists and that γ and γδ are parameterized by
capacity. There is a uniform constant c<∞ such that (see [7])

diam(γ[0, t]) � c
(√

t+ sup
0�s�t

|Ws|
)
,

where W =
√

2B is the scaled Brownian motion driving γ. Consequently we can
choose R0=R0(T, ε)<∞ such that

P (γ[0, 2T ] ⊂ D(0, R0)) > 1−ε.

Let Eδ be the event that ρR0(γδ, γ)�ε and γ[0, 2T ]⊂D(0, R0). Whenever δ>0 is
sufficiently small we have P (E c

δ )<2ε. By taking δ smaller if necessary, on Eδ , there
is a reparameterization ϕδ of γ with the property that

sup
0�t�T

|γδ(t)−γ(ϕδ(t))| = o(1)

as δ→0. This estimate implies that

2ϕδ(t) =hcap(γ[0, ϕδ(t)]) =hcap(γδ[0, t])+o(1) = 2t+o(1).

Here we used that if the paths converge in the Hausdorff metric, then the corre-
sponding uniformizing conformal mappings and their derivatives converge uniformly
on compact sets. Hence, using a modulus of continuity estimate for γ in the capac-
ity parameterization (see [7]) we see that whenever δ is small enough the ρ-distance
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of γ(t), t∈[0, T ], and γδ(t), t∈[0, T ], is smaller than ε on Eδ , and the probability of
this event is at least 1−2ε.

It remains to prove the existence of a coupling such that (5.1) holds. Let R>1
be fixed. By Proposition 1.2 we can find d0>0 so that when d�d0 and z is a lattice
point closest to di whenever 0<δ<δ0(d) there exists a coupling of γδ and γz

δ such
that

P (ρ3R(γδ, γ
z
δ ) >ε) <ε.

Corollary 2.5 implies that there exists δ1=δ1(d)>0 such that whenever δ<δ1 there
is a coupling of γz

δ and γz,∞ such that

P (ρ3R(γz
δ , γz,∞) >ε) <ε.

Consequently, as long as δ<min{δ0(d), δ1(d)} there is a coupling of γδ and γz,∞

such that

(5.2) P (ρ2R(γδ, γ
z,∞) > 2ε) < 2ε.

Next, using Corollary 3.3, we can choose 0<d′ �d0 small enough so that whenever
|z′ |�d′ there will exist a coupling of γ and γz′,∞ such that

(5.3) P (ρ2R(γz′,∞, γ) >ε) <ε.

Finally, by combining (5.2) and (5.3) it follows that whenever δ<min{δ0(d′), δ1(d′)}
we can couple γδ with γ in such a way that

P (ρR(γδ, γ) > 3ε) < 3ε.

This concludes the proof. �

6. Other domains

In this section we discuss how to extend our argument for the half-plane to a
certain class of simply connected domains. We stress that we do not give a proof,
but rather a sketch of how one could try to proceed.

Consider a bounded simply connected domain D ⊂H with two marked distinct
boundary points x and y. We assume that ∂D is locally analytic around x and
y, and that x lies in an open interval I ⊂R such that R∩∂D=I . This means that
we can reflect D in I to obtain the simply connected domain D̃=D ∪D ∪I . For
each δ>0, the intersection of ∂D̃ with the closed faces of δZ

2 partitions the plane
and we let D̃δ ⊂D̃ be the component containing the origin. Set Dδ=D̃δ ∩H. Then
D̃δ and Dδ are grid domains in the terminology of [10], that is, they are simply
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connected domains with boundary contained in the edge set of δZ
2. Let Vδ and

Ṽ δ be the interior vertices in Dδ and D̃δ , respectively. Note that Dδ converges to
D in the Carathéodory sense, as δ→0. We choose a sequence yδ ∈∂Vδ, accessible
by simple random walk from 0, such that yδ→y as δ→0. Define ϕδ : Dδ→H to
be the conformal mapping such that ϕδ(0)=0, ϕδ(yδ)=∞, and |ϕ′

δ(0)|=1. We
extend ϕδ to ϕ̃δ (defined on D̃δ) by Schwarz reflection. Set uδ :=�ϕ−1

δ (i)�δ and
let ϕ̂δ : Dδ→H be the conformal mapping normalized by ϕ̂δ(yδ)=∞ and ϕ̂δ(uδ)=i.
Then for each δ>0 we can write ϕ̂δ=c1ϕδ+c2, where c1 and c2 are real-valued and
satisfy |c1 −1| � |c2| �δ.

Let γδ be loop-erased random walk excursion on Vδ from 0 to yδ and for
z ∈Dδ let γz

δ be loop-erased random walk excursion on Vδ from �z�δ to yδ , provided
�z�δ ∈Vδ . A natural extension of our main result is to show that the law of the
curve ϕδ(γδ) converges weakly, as δ→0, to the law of the chordal SLE(2) path in
the sense of Theorem 1.1.

Loop-erased random walk from an interior point, by Lawler–Schramm–Werner’s
theorem, is known to converge to radial SLE. (Recall, however, that their result is
for the loop-erasure of an unconditioned walk. Consequently one will have to be
careful regarding tightness. Instead of conditioning on a fixed exiting point one
could, e.g., condition the simple random walk generating the loop-erased random
walk to exit at some (small) part Jδ of the boundary containing yδ with harmonic
measure uniformly bounded away from 0.) Since the convergence of radial SLE to
chordal SLE can be used without modification, it remains to check that an analogue
of the hitting estimate Proposition 1.2 holds on Vδ .

Let R>0. For each ε>0 there exists d0>0 such that the following holds. Assume
that z satisfies |z|�d0 and that ϕδ(�z�δ)∈ Cβ for all δ small enough. Then there
exist δ0>0 and whenever δ<δ0 a coupling of γδ with γz

δ such that

P(ρR(ϕδ(γδ), ϕδ(γz
δ )) >ε) <ε.

The level lines of Imϕδ(z) play a similar part as the level lines of Im z for
random walk excursion in H. Indeed, recall that random walk excursion in Dδ is
obtained by weighting simple random walk by z 
→HDδ

(z, yδ). Let

λδ(z) =
HDδ

(z, yδ)
HDδ

(uδ, yδ)

be the normalized discrete harmonic measure. It was proved in [10, Proposition 2.2]
that λδ(z) converges for z away from the boundary, as δ→0, to a conformally
invariant version of the Poisson kernel: for each ε>0 there exists a δ0>0 such that
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if |ψδ(z)|<1−ε and δ<δ0 then
∣∣∣∣λδ(z)− 1− |ψδ(z)|2

|ψδ(z)−ψδ(yδ)|2

∣∣∣∣<ε,

where ψδ : Dδ→D is a conformal mapping normalized by ψδ(uδ)=0 and ψ′
δ(uδ)>0.

After expressing this using the mapping ϕ̂ to the half-plane instead, we see that
λδ is close to Im ϕ̂δ(z)=Im ϕδ(z)+O(δ) for small δ and z away from the boundary
of Dδ . Now, using discrete Schwarz reflection we can extend λδ to λ̃δ defined
on Ṽ δ and using again the result from [10] this function converges away from the
boundary of D̃δ to Im ϕ̃δ(z), as δ→0. A consequence is that we can write the
transition probabilities for random walk excursion on Vδ as

(6.1) P
z(Sδ(1) =w) = pδ(z, w)

Im ϕδ(w)+ηδ(ϕδ(w))
Im ϕδ(z)+ηδ(ϕδ(z))

,

where |ηδ(z)|→0 as δ→0 uniformly in z away from the boundary of D̃δ . To prove
a version of the Beurling-type estimate Proposition 4.2, we can use/adapt Corol-
lary 3.14 from [3], which is an analog of Lemma 4.1 for this situation. We map
the random walk excursion to the half-plane and argue as before to prove the hit-
ting estimate (4.3) using (6.1) and convergence of simple random walk to Brownian
motion.

References
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