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ON THE SCHWARZ ALTERNATING METHOD FOR

EIGENVALUE PROBLEMS

S.Y. MALIASSOV�

Abstract. In this paper an analogue of the Schwarz alternating method is considered to �nd a minimal

eigenvalue and its corresponding eigenvector of generalized symmetric eigenvalue problem. The technique

suggested is based on decomposition of the original domain into overlapping subdomains and on consideration

of local eigenvalue problems in subdomains. Both multiplicative and additive variants of the method are

constructed and studied.

It is shown that a discretization of the multiplicative variant of the Schwarz method is equivalent to the

block coordinate relaxation method. An additive variant of the method is suitable for realization on parallel

architecture.

Key words. Eigenvalue problem, Schwarz method, domain decomposition method.

AMS subject classi�cations. 65N25, 65N55, 65F15.

In this paper we propose an analogue of the Schwarz alternating method to
evaluate the principal eigenvalue and its corresponding eigenfunction of a second
order symmetric elliptic operator in a bounded domain in IRd. The technique
suggested is based on decomposition of the original domain into overlapping
subdomains and on consideration of local eigenvalue problems in subspaces con-
nected with these subdomains.

Domain decomposition methods (DD) are powerful techniques for solving
boundary value problems. Recently, DD algorithms have become increasingly
popular because they take full advantage of modern parallel computing technol-
ogy. Although there are many papers on domain decomposition for the linear
applications (see, e.g., [13, 5, 9, 1]), there are relatively few results on application
of DD methods for eigenvalue problems.

One of the approaches is presented in [11] where an approximation to the
principal eigenpair is computed by solving a sequence of linear problems in the
subdomains. Several other domain decomposition methods also using lineariza-
tion were proposed in [10, 15]. These works are based on a nonoverlapping

partitioning of the computational domain and using some iterative techniques
for the Schur complement of the block corresponding to the interface variables.
Another way to apply domain decomposition idea to eigenvalue problem is a
divide-and-conquer method proposed in [4]. The authors introduced a parallel
algorithm for computing all the eigenpairs of the symmetric and positive de�nite
matrix, �rst, parallelizing the Householder transformation and, then, providing
the multilevel parallel method of solving eigenvalue problem for three-diagonal
symmetric matrix.

A di�erent approach was presented by the author in the previous work [12]
where only a multiplicative algorithm and its discretization were described with
some limiting assumptions. In that algorithm an approximation to the principal
eigenpair is computed by solving sequentially a series of minimization problems
for the Rayleigh quotient in the subdomains. On the algebraic level this method
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2 S. MALIASSOV

is equivalent to the one developed in [8] and can be considered as a generalization
of the block coordinate relaxation applied directly for a matrix eigenvalue prob-
lem [6]. An important feature of this approach is that the subspace problems
are also generalized eigenvalue problems, which allows to apply the algorithm
recursively. The recursive implementation of this method was proposed in [2],

where based on [12] and [8] the authors presented multilevel algorithm of opti-
mal complexity. Due to a minor aw in the proof of the multiplicative Schwarz
method in [12], the convergence of the sequence of functions to the eigenfunc-
tion is not obvious in some cases. For this reason in the present work the author
provides another proof for multiplicative method, presents an additive version
of the algorithm, and, also, extends the area of applicability for the method.

The theory developed in this paper provides an approach in which domain
decomposition methods, namely the Schwarz alternating methods, both multi-

plicative and additive, can be used to solve spectral problems. It is shown that a
discretization of the multiplicative variant of the Schwarz method is equivalent
to the block coordinate relaxation method. An additive variant of the method
is suitable for realization on parallel architecture.

The outline of the paper is as follows. In Section 1 we pose the problem,
formulate the Schwarz alternating method, and prove its convergence. In Section
2 we provide an additive version of the algorithm. In Section 3 discretizations
of the developed methods are considered.

1. Multiplicative Schwarz method. Let 
 be a bounded domain in IRd

with a Lipschitz boundary and L be a uniformly elliptic, self-adjoint, positive
de�nite operator. We consider the eigenvalue problem for L on 
 with homoge-
neous Dirichlet boundary conditions:

Lu = �u; in 
;
u = 0; on @
:

(1.1)

We note that the eigenvalue problems with di�erent types of boundary conditions
on some subsets of @
 can be treated in a similar way but for the sake of
simplicity are not described here.

Since operator L is positive de�nite then on its domain

D(L) = fuju 2 L2(
);Lu 2 L2(
); uj@
 = 0g

we de�ne the energy inner product [7]:

[u; v]� (Lu; v); 8u; v 2 D(L)(1.2)

and corresponding energy norm [u] = [u; u]1=2, u 2 D(L). Completing D(L) in

[�] we de�ne the energy space H of operator L.
The Rayleigh quotient of problem (1.1) has the form [14]:

R(u) =
[u]2

kuk2
:

The eigenvalues of (1.1) are de�ned by the expressions:

�1 = inffR(u)ju 2 H n f0gg = R('1);

�k = inffR(u)ju 2 H n f0g; ('i; u) = 0; i = 1; : : : ; k � 1g = R('k);



ON THE SCHWARZ ALTERNATING METHOD FOR EIGENVALUE PROBLEMS 3

where k'kk = 1, k � 1. Here we assume that the eigenspace corresponding to
�1 is described by only one eigenfunction '1.

Let domain 
 be represented as a union of �nite number of overlapping
subdomains 
1; : : : ;
m with the Lipschitz boundaries @
1; : : : ; @
m:


 =
m[
i=1


i:

We de�ne in H closed subspaces

Hi = fu 2 Hju(x) = 0; x 2 �
 n 
ig; i = 1; : : : ;m:(1.3)

The Schwarz alternating method for evaluation of the principal eigenvalue
and its corresponding eigenfunction of problem (1.1) has the following form. Let
the function u0 2 H n f0g be de�ned in such a way that �1 � R(u0) < �2. Then
the sequence of functions fu�g is constructed by solving the following problems:

�n+
1
m = inf fR(u)ju 2 un +H1 n f0gg = R(un+

1
m );

: : : : : :

�n+
i
m = inf

n
R(u)ju 2 un+

i�1
m +Hi n f0g

o
= R(un+

i
m );

: : : : : :

�n+
m
m = inf

n
R(u)ju 2 un+

m�1
m +Hm n f0g

o
= R(un+

m
m );

�n+1 = �n+
m
m ; un+1 = un+

m
m ; n = 0; 1; : : :

(1.4)

Note that if for some i we have �n+
i
m = �n+

i�1
m then we take un+

i
m � un+

i�1
m .

Here by u�+Hi we denote the direct sum of the subspaces. For any v 2 u�+Hi

there is a representation v = �u� + vi, where vi 2 Hi and � 2 IR. Since

R(u) = R(� � u) for any nonzero constant �, we assume that kun+
i
m k = 1 for

any n and i.
For algorithm (1.4) we can formulate the following statement.
Theorem 1.1. Let the initial guess u0 2 Hnf0g satisfy the inequalities �1 �

R(u0) < �2. Then the sequence f�ng1n=1 converges to the principal eigenvalue �1
and the sequence fung1n=1 can be chosen in such a way that it converges in the

energy norm to the corresponding eigenfunction '1, i.e.

lim
n!1

�n = �1; lim
n!1

[un � '1] = 0:

To prove this theorem we need an auxiliary lemma.
Lemma 1.2. Let U be a subspace of H and there exists a real number b

such that for any u 2 U the inequality R(u) � b holds true. Let fukg1k=1 � U

be a sequence that converges to some element u� in L2(
) and the sequence

fR(uk)g1k=1 is nonincreasing and converges to b, i.e.

lim
k!1

kuk � u�k = 0; lim
k!1

R(uk) = b:

Then R(u�) = b.
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Proof. First, we show that lim
k;m!1

[uk; um]� b (uk; um) = 0.

Since 8u 2 U we have R(u) � b and uk 2 U for any k then R(uk +�um) � b

for any � 2 IR. It implies the inequality

�2
�
[um]2 � b kumk2

�
+ 2�

�
[uk; um]� b (uk; um)

�
+

�
[uk]2 � b kukk2

�
� 0;

which holds true for any � only if the discriminant of the quadratic function in
the left hand side is nonpositive, i.e.

�
[uk; um]� b (uk; um)

�2
�

�
[uk]2 � b kukk2

� �
[um]2 � b kumk2

�
� 0:

Now since fR(uk)g is nonincreasing then [uk]2 � b kukk2 for any k. Hence,

���[uk; um]� b (uk; um)
��� � �

[uk]2 � b kukk2
�1=2 �

[um]2 � b kumk2
�1=2

:

Then lim
k!1

([uk]2 � b kukk2) = 0 implies lim
k;m!1

[uk; um]� b (uk; um) = 0.

Using these two limits it is easy to conclude that

lim
k;m!1

�
[uk � um]2 � b kuk � umk2

�
= 0:(1.5)

Then, since fukg is convergent in L2(
), from (1.5) it follows that it is
also convergent in H. Obviously, fukg converges in H to the same element u�.
Indeed, assume that fukg converges in H to some u1 such that ku� � u1k 6= 0.
Then [uk � u1]

2
� b kuk � u1k

2 for any k. Taking the limit as k ! 1 we get
0 � b ku�� u1k

2, i.e. ku�� u1k = 0. This is a contradiction. Thus, we conclude
that lim

k!1
[uk � u�]2 = 0 and, �nally, lim

k!1
R(uk) = R(u�) = b.

Now we can prove Theorem 1.1.

Proof. From the variational de�nition of the eigenvalues [14] it follows that
the sequence f�ng1n=0 is nonincreasing. Since it is bounded from below by �1
then it is convergent. Let �� = limn!1 �n. Then �1 � �� < �2.

Fix an integer i = 1; : : : ;m, and consider the minimization problem for the

Rayleigh quotient on the subspace un+
i�1
m +Hi. Let u

n+ i
m be a solution to this

problem. Then �n � �n+
i�1
m � �n+

i
m � �n+1. For this reason the sequence

f�n+
i
mg

1

n=0 must converge to ��.

We remind that on each step we normalize the elements un+
i
m . Hence,

R(un+
i
m ) = [un+

i
m ]2 and

lim
n!1

[un+
i
m ]2 = ��:(1.6)

From (1.6) it follows that there exists some positive constant C such that

[un+
i
m ] < C for any n, i.e. the sequence fun+

i
mg

1

n=0 is bounded in the energy
norm. Since H is compactly embedded into L2(
) this sequence is compact in
L2(
).

Now from fun+
1
m g we choose a subsequence fun1+

1
mg which converges in

L2(
) to some element u
1
m . Then for each i = 2; : : : ;m, from the sequence
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fun1;:::;(i�1)+
i
m g we choose a subsequence fun1;:::;i+

i
m g which converges in L2(
)

to some element u
i
m .

Finally, we obtain the sequence funk+
i
mg which is convergent in L2(
) for

any i = 1; : : : ;m:

lim
k!1

kunk+
i
m � u

i
m k = 0:

By Lemma 1.2 for all the elements fu
i
mg

m
i=1 we have the equalities

R(u
i
m ) = ��:(1.7)

Now let vi be an arbitrary element from Hi such that [vi] < c = const. Than

for any �; � 2 IR we have R(�u
i�1
m + �vi) � ��. Using (1.7) from this inequality

we get

�2
�
[vi]

2
� ��kvik

2
�
+ 2��

�
[u

i�1
m ; vi]� ��(u

i�1
m ; vi)

�
� 0;

which holds true for any � and � only if

[u
i�1
m ; vi] = ��(u

i�1
m ; vi):(1.8)

Now we shall show that the limit elements u
i
m coincide, i.e. there exists an

element u1 2 H n f0g such that u
i
m = u1, i = 1; : : : ;m.

Assume that there is an index r such that

u
r�1
m 6= u

r
m :(1.9)

Then there exist a real number � 6= 0 and an element �vr 2 Hr n f0g such that

R(u
r�1
m ) = R(u

r
m ) = R(�u

r�1
m + �vr) = ��. Then we have

�2
�
[u

r�1
m ]2 � ��ku

r�1
m k

2
�
+ 2�

�
[u

r�1
m ; �vr]� ��(u

r�1
m ; �vr)

�
+
�
[�vr]

2
� ��k�vrk

2
�
= 0:

From (1.7) and (1.8) it follows that [�vr]
2 = ��k�vrk

2. Since �vr 6= 0 we have

R(�vr) = ��. Then, by algorithm (1.4), �0+
i
m = �0+

r
m = ��, i = r + 1; : : : ;m, and

�n+
i
m = �0+

r
m = ��, n = 1; 2; : : :, and i = 1; : : : ;m. Thus, we must have un+

i
m �

u0+
r
m , n = 1; 2; : : :, and i = 1; : : : ;m. It follows that all the limit elements

u
i
m must be the same: u

i
m � u0+

r
m , i = 1; : : : ;m. This is a contradiction to

(1.9). Hence, assumption (1.9) is wrong and there exists u1 2 H n f0g such that

u
i
m = u1, i = 1; : : : ;m.
Then from (1.8) it follows that [u1; vi] = ��(u1; vi) for any vi 2 Hi, i =

1; : : : ;m. Since H = H1 + : : : + Hm, an arbitrary function v 2 H can be
represented as v =

Pm
i=1 vi with vi 2 Hi. Thus, for any v 2 H we have

[u1; v] = ��(u1; v):(1.10)

It implies that u1 is an eigenfunction of problem (1.1) corresponding to eigenvalue
��. By the variational principle for eigenvalues we have �� � �1 and u1 � '1.
Thus, the sequence f�ng converges to �1, i.e.

lim
n!1

�n = �1:(1.11)
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Now let us show that the entire sequence fung1n=0 de�ned by (1.4) converges
in the energy norm.

First, we claim that

lim
n!1

j(un; '1)j

kunk � k'1k
= 1:

For the convenience of the presentation the proof of the claim is provided in the
end of this section. Assuming this claim for the moment, we complete the proof.

For any index n such that (un; '1) < 0 we can take (�un) instead of un. It
is easy to see that this procedure does not violate algorithm (1.4). For such a
new sequence we have

lim
n!1

(un; '1)

kunk � k'1k
= 1:(1.12)

Then it is easy to check that

[un � '1]
2 = [un]2 + ['1]

2
� 2[un; '1] = �nkunk2 + �1k'1k

2
� 2�1(u

n; '1) =

(�n � �1)ku
n
k
2 + �1(ku

n
k � k'1k)

2+

2�1ku
n
k � k'1k

 
1�

(un; '1)

kunk � k'1k

!
:

(1.13)
Since k'1k = 1 and kunk = 1 for all n, then using (1.11) and (1.12) we take

the limit in (1.13) as n!1. Then

lim
n!1

[un � '1]
2 = 0(1.14)

that completes the proof.
Now we provide the proof of the claim.
Lemma 1.3. The sequence fung1n=0 de�ned by algorithm (1.4) satis�es the

following condition

lim
n!1

j(un; '1)j

kunk � k'1k
= 1:(1.15)

Proof. We shall prove that fact by contradiction. Assume that (1.15) is not
true. Then there exists some subsequence funkg

1

k=0 such that

lim
k!1

j(unk ; '1)j

kunkk � k'1k
= a < 1:(1.16)

Since funkg is bounded in H then in turn there exists a subsequence funklg
1

l=0

which is convergent in L2(
). Let u� 6= 0 be its limit, i.e. liml!1 kunkl�u�k = 0.
By Lemma 1.2 funklg

1

l=0 converges to u
� in H and R(u�) = �1.

It implies that u� is the eigenfunction corresponding to the minimal eigen-

value �1 of problem (1.1). From (1.16) it follows that

j(u�; '1)j

ku�k � k'1k
= a < 1:
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Using an orthogonalization we de�ne the function '2 = u� � �'1 such that
k'2k = 1 and ('1; '2) = 0. Obviously, R('2) = �1.

Thus, we get the eigenspace corresponding to �1, the basis of which contains
at least two functions. That result contradicts the assumption on the size of the
eigenspace corresponding to �1. Hence,

lim
n!1

j(un; '1)j

kunk � k'1k
= 1:

Remark 1.1. Algorithm (1.4) can be extended to the case of multiple eigen-

values, that is when the eigenspace corresponding to �1 has a �nite dimension

r > 1. Instead of the elements un+
i
m in the de�nition of the algorithm we have to

consider subspaces En+ i
m which are de�ned by r linearly independent functions

in H.

Remark 1.2. Also, modi�ed version of algorithm (1.4) can be used to �nd

�p, p > 1, and its corresponding eigenspace, provided that all the eigenspaces Ei,

i = 1; : : : ; p�1, corresponding to the eigenvalues �i, i = 1; : : : ; p�1, are known.

In this case instead of space H in the algorithm we have to use the space

Hp = fuju 2 H; (u; ') = 0;8' 2 Ei; i = 1; : : : ; p � 1g:

2. Additive Schwarz method. Here we provide an additive version of
algorithm (1.4) in which the computation in each subdomain can be carried out

independently on each iteration.

Let the function u0 2 H nf0g be de�ned in such a way that �1 � R(u0) < �2.
Then the sequence of functions fu�g is constructed by solving the following

problems:

�n+
1
m = inf fR(u)ju 2 un +H1 n f0gg = R(un+

1
m );

: : : : : :

�n+
i
m = inf fR(u)ju 2 un +Hi n f0gg = R(un+

i
m );

: : : : : :

�n+
m
m = inf fR(u)ju 2 un +Hm n f0gg = R(un+

m
m );

�n+1 = inf
n
R(u)ju 2 fun+

1
m ; : : : ; un+

m
mg

o
= R(un+1)

n = 0; 1; : : :

(2.1)

Note that the function un+1 is de�ned as a linear combination of functions

fun+
i
mg

m
i=1. Thus, the last variational problem in (2.1) is a �nite dimensional

one. As in the previous section if for some i we have �n+
i
m = �n then we take

un+
i
m � un. Also, we assume that kun+

i
mk = 1 for any n and i.

For algorithm (2.1) we formulate the following statement.

Theorem 2.1. Let the initial guess u0 2 Hnf0g satisfy the inequalities �1 �

R(u0) < �2. Then the sequence f�ng1n=1 converges to the principal eigenvalue
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�1 and the sequence fung1n=1 can be chosen in such a way that it converges in

energy norm to the corresponding eigenfunction '1, i.e.

lim
n!1

�n = �1; lim
n!1

[un � '1] = 0:

Proof. By the de�nition, f�ng1n=0 is the nonincreasing sequence which is
bounded below by �1. Hence, it converges to some number ��. Obviously, �1 �
�� < �2.

Since kunk = 1 for any n we have R(un) = [un]2 and

lim
n!1

[un]2 = ��:(2.2)

It implies that there exists some positive constant C such that [un] < C for
any n, i.e. the sequence fung1n=0 is bounded in the energy norm. Hence, this
sequence is compact in L2(
) and we can choose a subsequence funkg1k=0 which
is convergent in L2(
) to some element u�. Since limk!1R(unk ) = �� then by
Lemma 1.2 we have R(u�) = ��.

Now we shall show that (��; u�) is an eigenpair of L.

Let vi be an arbitrary element from Hi such that [vi] < c = const. Than for
any � 2 IR we have

R(unk + �vi) � �nk+
i
m � �nk+1:(2.3)

Since funkg1k=0 is convergent in both L2(
) and H, we can take the limit in (2.3)
as k !1. Then we get R(u� + �vi) � �� or, equivalently,

�2
�
[vi]

2
� ��kvik

2
�
+ 2�

�
[u�; vi]� ��(u�; vi)

�
� 0:

This inequality holds true for any � only if [u�; vi] = ��(u�; vi). As before, in
(1.10), we conclude that [u�; v] = ��(u�; v) for any v 2 H. It implies that u� is an
eigenfunction of problem (1.1) corresponding to eigenvalue ��. By the variational
principle for eigenvalues we have �� � �1 and u� � '1. Thus, the sequence f�

n
g

converges to �1, i.e.

lim
n!1

�n = �1:(2.4)

Using the same arguments as in the proof of Theorem 1.1 and an analogue
of Lemma 1.3 for algorithm (2.1) it is easy to check that the entire sequence
fung1n=0 can be de�ned by (2.1) in such a way that it converges in the energy
norm.

3. Matrix formulation of the Schwarz method. Now we consider a
discretization of the methods described in the previous sections. Let 
h

i =SMi

k=1 �k, i = 1; : : : ;m, be regular partitionings of subdomains 
i into simplices
�k [3] (triangles in IR2 or tetrahedra in IR3). We assume that the triangulation
of the whole domain 
 can be de�ned as a union of the triangulations of the

subdomains, i.e. 
h =
Sm
i=1


h
i .
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We denote by Hh and Hh
i , i = 1; : : : ;m, the �nite element subspaces of H

and Hi, i = 1; : : : ;m, respectively, which consist of continuous, piece-wise linear
on each simplex � functions [3].

The �nite element approximation to problem (1.1) has the following form:

�h1 = inffR(u)ju 2 Hh
n f0gg = R('h1);

�hk = inffR(u)ju 2 Hh
n f0g; ('hi ; u) = 0; i = 1; : : : ; k � 1g = R('hk);

(3.1)

where we set k'hkk = 1 for all k. We assume that �h1 is a simple eigenvalue.
Once a basis f i(x)g

N
i=1 for Hh is chosen, where N = dim Hh, then (3.1)

leads to an algebraic eigenvalue problem

Au = �Mu;(3.2)

whereA andM are symmetricpositive de�nite matrices de�ned byAji = [ i;  j],

Mji = ( i;  j), i; j = 1; : : : ; N . We introduce the inner products by (u;v)A =
(Au;v), (u;v)M = (Mu;v), u;v 2 IRN , and its corresponding norms by kukA =

(u;u)
1=2
A , kukM = (u;u)

1=2
M , respectively. The discrete Rayleigh quotient of

problem (3.2) has the form [3]:

Rh(u) =
kuk2A
kuk2M

:(3.3)

Now consider in IRN the subspaces Eni corresponding to the �nite element
subspaces Hh

i , i = 1; : : : ;m, where ni = dimHh
i . Denote by Xi = fxi1; : : : ;x

i
ni
g

the bases of subspaces Eni , i = 1; : : : ;m.
The discrete analogue of the alternating Schwarz method (1.4) for evaluating

the minimal eigenvalue �h1 and its corresponding eigenvector u1 of problem (3.2)

has the following form.
Algorithm 3.1. Let the nonzero vector y0 2 IRN be de�ned in such a way

that �h1 � Rh(y0) < �h2 . Then the sequence of vectors fykg, k = 1; 2; : : :, is

constructed as follows.

1. Set yk0 = yk�1.

2. For each i = 1; : : : ;m, solve the problems:

�
k;i
1 = inf

n
Rh(y)jy 2 span fXi;y

k
i�1g;y 6= 0

o
= Rh(yk;i):(3.4)

Normalize yk;i so that kyk;ikM = 1.
3. De�ne yk = yk;m and �k = �k;m.

Note that the method in the given formulation is equivalent to the method
of group relaxation [6] and the method of alternating subspace iteration [8].

Now we describe the discrete analogue of the additive Schwarz method (2.1).
Algorithm 3.2. Again, let the nonzero vector y0 2 IRN be de�ned in such

a way that �h1 � Rh(y0) < �h2. Then the sequence of vectors fykg, k = 1; 2; : : :,
is constructed as follows.

1. For each i = 1; : : : ;m, solve the problems:

�
k;i
1 = inf

n
Rh(y)jy 2 span fXi;y

k�1
g;y 6= 0

o
= Rh(yk;i):(3.5)
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2. De�ne �k and yk solving the variational problem

�k = inf
n
Rh(y)jy 2 span fyk;1; : : : ;yk;mg;y 6= 0

o
= Rh(yk):(3.6)

Normalize yk so that kykkM = 1.
The minimization problems (3.5) on step (1) of Algorithm 3.2 can be solved

independently. The minimization problem (3.6) on step (2) has the dimensionm,
which can be rather small in comparison with the sizes of subdomain problems.
Thus, this algorithm is suitable for parallelization.

For both algorithms 3.1 and 3.2 we formulate the following statement.

Theorem 3.1. Let the initial guess y0 satisfy the inequalities �h1 � Rh(y0) <
�h2 . Then the sequence f�kg1k=1 converges to the minimal eigenvalue �h1 and the

sequence fykg1k=1 can be chosen in such a way that it converges to the corre-

sponding eigenfunction u1, i.e.

lim
n!1

�n = �h1 ; lim
n!1

yn = u1:

The proof of this statement for Algorithm 3.1 is given in [12]. Also, the main
ideas of it can be found in [6] and [8].

Below we provide the proof of Theorem 3.1 for Algorithm 3.2.
Proof. From the variational de�nition (3.5) of the eigenvalues �

k;i
1 it follows

that �
k;i
1 � �k�1, i = 1; : : : ;m. From (3.6) we conclude that �k � �

k;i
1 for any

i = 1; : : : ;m. Thus, the sequence f�kg1k=1 is nonincreasing. Since it is bounded
from below by �h1 then it converges to some number ��. Obviously, �h1 �

�� < �h2.
Let us consider the sequence fykg1k=1. Since kykkM = 1 then kykk2A = �k

and, consequently, limk!1 kykk2A = ��. It implies that there exists a positive
constant C > 0 such that kykkA < C for any k. Then, from fykg1k=1 we can
choose a subsequence fynkg1k=1 which converges to some vector y1 2 IRN . It is
easy to see that ky1kM = kykkM = 1 and ky1k

2
A = lim

k!1
kykk2A = ��.

Now we need to show that the pair (��;y1) is an eigenpair of problem (3.2).
For any subspace Eni , i = 1; : : : ;m, arbitrary vi 2 Eni and � 2 IR we have

ky1 + �vik
2
A

ky1 + �vik
2
M

� ��;

which implies that

�2
�
kvik

2
A �

��kvik
2
M

�
+ 2�

�
(y1;vi)A � ��(y1;vi)M

�
� 0:

This inequality holds true for any � only if

(y1;vi)A � ��(y1;vi)M = 0:(3.7)

Since for arbitrary vector v 2 IRN there exists a representation

v =
mX
i=1

vi; vi 2 Eni; i = 1; : : : ;m;
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then, taking into account (3.7), we conclude that for any v 2 IRN the following
equality holds true: (y1;v)A � ��(y1;v)M = 0. Hence, we have

(Ay1 � ��My1;v) = 0; 8v 2 IRN :(3.8)

From (3.8) it follows that (��;y1) is the eigenpair of problem (3.2). By the
variational principle for eigenvalues we must have �� � �h1 and y1 � u1. Thus,

the sequence f�kg converges to �h1 .
Now we have to show that the entire sequence fykg de�ned by Algorithm

(3.2) converges to u1. It is easy to check that we can use the approach described
in the proof of Theorem 1.1.

First, using the assumption on multiplicity of �h1 (it is a simple eigenvalue)
we can show that

lim
k!1

j(yk;u1)M j

kykkM � ku1kM
= 1:

Then using an analogue of (1.13) for the �nite dimensional norm k � kA we can
demonstrate that

lim
k!1

kyk � u1kA = 0

that completes the proof.
Remark 3.1. Algorithms 3.1, 3.2 can be extended to the case of multiple

eigenvalues, that is when the eigenspace corresponding to �h1 has a �nite dimen-

sion r > 1. Instead of the elements yn;i in the de�nition of the algorithm we have

to consider subspaces En;i which are de�ned by r linearly independent vectors.

Remark 3.2. Also, modi�ed versions of the algorithms can be used to �nd

�hp , p > 1, and its corresponding eigenspace, provided that all the eigenspaces

Ei, i = 1; : : : ; p � 1, corresponding to the eigenvalues �hi , i = 1; : : : ; p � 1, are

known. In this case instead of space IRN in the algorithms we have to use the

space

Hh
p = fuju 2 IRN ; (u;v) = 0;8v 2 Ei; i = 1; : : : ; p� 1g:
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