
ON THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
AND p-VALENT FUNCTIONS

BY

A. W. GOODMAN

1. Introduction. It is well known(') that the function

/, z      mII (l - z,t)-y>dt + c2
0       j=l

subject to the conditions

(1.2) | z¡\ = 1, j = 1, 2, • • • , m,
m

(1.3) Z7í = 2,
¡-i

(1.4) 0<7/á2, j = í, 2, •■-,»,
maps the open unit circle | z| < 1 (hereafter denoted by E) onto P the interior
of an w-sided convex polygon. The vertices of the polygon are Wj=fi{z¡) and
the exterior angle(2) at the vertex w¡ is 7y7r. Conversely if P is given, then zi,
z2, • • • , zm, Ci, and c2 can be determined such that (1.1) maps E onto P, and
moreover the origin can be carried into any preassigned point of P and the
value of arg/'(0) can be arbitrarily preassigned. The equation (1.1) subject to
the conditions (1.2) and (1.3) is one form of the Schwarz-Christoffel trans-
formation^).

Schwarz(4) stated that the formula (1.1) is easily generalized to the case
where P is a multi-sheeted domain bounded by straight lines and containing
branch points, and Christoffel(6) considered this generalization in some detail.

Study(6),    Loewner(7),    Gronwall(8),    Bieberbach(9),    Paatero(10),    and

Presented to the Society, December 30, 1948; received by the editors March 31, 1949.
(') Churchill, Introduction to complex variables and applications, New York, McGraw-Hill,

1948.
(2) If 1 ¿7, ¿2, then w¡= «. There is no difficulty in extending the concept of an exterior

angle to this case. The region P is unbounded but still convex.
(3) The Schwarz-Christoffel transformation is usually given as a function which maps the

upper half-plane onto the interior of a polygon. It is easy to obtain (1.1) from the standard
form as indicated in §2.

(4) Ueber einige Abbildungsaufgaben, J. Reine Angew. Math. vol. 70 (1869) pp. 105-120, or
Mathematische Abhandlungen, vol. 2, pp. 65-83, in particular p. 77.

(6) Ueber die Abbildung einer n-blattrigen einfach Zusammenhängender ebenen Fläche auf
einen Kreise, Göttingen Nachrichten, 1870, pp. 359-369.

(6) Vorlesungen über ausgewählten Gegenstände der Geometrie, vol. 2, Leipzig, Teubner,
1913.

(7) Untersuchungen  über die   Verzerrung bei konformen  Abbildungen des Einheitskreises
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Robertson(u) have used the Schwarz-Christoffel transformation as a starting
point for the derivation of properties of univalent functions. As far as I have
been able to discover, it was Robertson who first pointed out that equation
(1.1) leads to a very simple proof that \bn\ ^n\bi\ for the coefficients of a
univalent function in the special case that the image of E is starlike with
respect to the origin.

By using Robertson's methods together with a generalization of (1.1)
we are able to prove a number of theorems about certain subclasses of the
class of p-valent functions.

As a by-product, we obtain two more proofs that

(1.5) £-2 = T'

and we prove the arithmetic identities

(1-6) D'=± 1 = 2 ¿ 1 //2m_2,
m=i i2m — \y m=i i2m — 1)-

00        1 2   °°        1

(1.7) E' = £ —- = - £ —— H2m.h
,„=i (2m)3       9 m=i i2m)2

(1.8) F'= ¿-=  ¿-Jff«_„
m-i ni6      m_2 ml

where

1 1 1
(1.9) Hm=l+ — + — + ••• + — •

2 3 m

2. The generalized Schwarz-Christoffel transformation. The material of
this paragraph is either contained or implied in the works of Schwarz and
Christoffel. It is included here for completeness. Let

m

(2 • 1) giu)   =   II («> -  «)"7Í. Ml  < M2  <   •  •  •   <  Um,
1-1

\z\ <1, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Berichte der
Gesellschaft die Wissenschaften zu Leipzig vol. 69 (1917) pp. 89-106.

(8) Sur la déformation dans la représentation conforme, C. R. Acad. Sei. Paris vol. 162 (1916)
pp. 249-252.

(9) Aufstellung und Beweis des Drehungssatzes für schlichte konforme Abbildungen, Math.
Zeit. vol. 4 (1919) pp. 295-305.

(10) Über die conforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind,
Annales Academiae Scientiarum Fennicae, ser. A vol. 33 (1931) pp. 1-78.

(u) On the theory of univalent functions, Ann. of Math. vol. 37 (1936) pp. 374-408, in par-
ticular p. 380.
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p-i
(2.2) h(u) = II («/ - «)(a» - «). 3(«,0 > 0.

(2.3) w = /2(z) = c3 I    g(u)h(u)du + c4,

where the path of integration is subject to the restrictions 3(m)2:0, U9¿Uj,
j=l, 2, • ■ • , m. When 3(w)=0, arg g{u) is constant and A(w)>0. So f2(z)
maps each segment u<Ui, u¡<u<u¡+i, un<u, onto some straight line seg-
ment. These image segments may be half-rays extending to infinity, or may be
full lines. The function f2{z) is regular in 3KZ)>0, and has critical points at
z — a¡. Thus/2(z) maps 3(z) >0 onto a multi-sheeted region whose boundary
consists only of straight line segments, half-rays, and full lines. We shall refer
to such regions as multi-sheeted polygons. The function /2(z) will be regular
and univalent in a neighborhood of infinity if we require that

m

(2.4) Et, = 2/>.
3=1

Conversely(12), if P is any multi-sheeted polygon subject only to the con-
dition that there exists a function/(z) mapping 3(z)>0 onto P, regular for
3(z)>0, and regular and univalent in a neighborhood of infinity, then /(z)
has the form (2.3) and (2.4) is satisfied (13).

The substitution u = i(i— t)/{\-\-t) in the integral (2.3) gives

/, z     m p—1II (1 - kO-wJI (' - 0i)(l - ßit)dt + ch

where

(2.6) |z,-| = l, z,-¿¿ zk   if   j 5¿ A; y, A = 1, 2, • ■ • , m

(2.7) \ßi\<U i = 1,2, •••,/»- 1.
Since u=i(í—t)/(l+t) maps E onto the half-plane 3KM)>0, w=f(z) maps
E onto a multi-sheeted polygon P. The vertices of P are Wj=f(z,) and the
exterior angle at w¡ is 7y7r. P has branch points at w* =f{ßi), and the number
of sheets tied at wf is just one more than the number of times (t—ßj) occurs
as a factor in the integrand of (2.5). Again if P is any multi-sheeted polygon
subject only to the condition that there exists a function/(z), regular in E
and mapping E onto P, then /(z) has the form (2.5) and (2.4) is satisfied.

(i2) We omit the proof of this. It is an elementary generalization of the proof in the plane
case. See Julia, Leçons sur la représentation conforme des aires simplement connexes, Gauthier-
Villars, 1931, pp. 67-71.

(I3) A still more general form of the Schwarz-Christoffel transformation was obtained inde-
pendently by D. Gilbarg, A generalization of the Schwarz-Christoffel transformation, Proc. Nat.
Acad. Sei. U.S.A. vol. 35 (1949) pp. 609-612.
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3. Some examples. The function

it — a) il - at)

(3.1)

/•' it — a) il - at)---~--44 (-1<«<1)
o 1 — t

If 1 + z2 1 + z)
= —\ (1 + a2) log- - 2a log-\

4  ( 1 — z2 1 — z)

maps E onto the two-sheeted region comprised of the two infinite strips
|3(w)| <7r(l-a)2/8 and |3(w)| <7r(l-|-a)2/8. It is perhaps interesting to
observe the limit case a — 1. One of the strips disappears and the limit
function maps E onto the infinite strip | 3(w) | <ir/2, slit along the real
axis from — <x> to — 2_1 log 2, the latter being the limit point of the branch
point fia) of (3.1) as a—>1.

Similarly the function

C  it - a)(l - at)
w=\--dt i- 1 < a < 1)

Jo 1 + ¿4
(3.2) i  ( 1 + *21/sz - z2 1 - ««s

= — ^ a2"2 log-h (1 + a2) log
4 I 1 - Í21'** - z2

1 - ¿z2 ^

1 + ÎZ2 j

maps £ onto a region which consists of the two infinite strips — 7r(l-|-a2)/8
<9î(w) <tt(1 + 23/2a+a2)/8 and -tt(1 +a2)/8 <9î(w) <tt(1 -23/2a+a2)/8. The
symmetrical position of the two strips in the first example is lacking in the
second example.

As a third example, the function

r* it- a)il - at) it - b) il - bt)
w =   I     -dt (- 1 < a, b < 1)

Jo 1 - ¿6
1   (                                                       1 + z3 1 + z

(3.3) = — Ui + a2 + b2 + ab + a2b2) log-{- 3ab log
6   { 1 - Z3 1-8

1 — 2z2 + z41
+ ia+ 6)(1 + aft) log I

1 + z2 + z4 j

maps £ onto a region comprised of the three infinite strips

| 3(w) | < ~<1 + a)2(l + b)2,

|3(«0| <Y^ {(l + «2)(l + 62) - 2ab\,

| 3:(w) | < j2 (1 - «)2(1 - b)2.
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A slightly different example is the function

/ 11 +
// 1-dt = — log

o   (1 - 0(1 + 03             8 1 - z       4(1 + z)2
which maps E onto the region formed by the two half-planes 3(w) > — 7r/16
and 3(w) <7r/16 joined at the branch point w = 0. These two half-planes over-
lap to cover doubly the strip about the real axis of width x/8, the rest of the

w = /(z) =  Í -dt
Jo    (1 -*•)»»/•

plane being covered once. One should note that (3.4) is obtained by adding
two functions, one of which maps E onto a strip and the other maps E onto
a slit plane.

Finally we observe that the function

tp-
(1  _ ¿«)2p/n

(3.5) Zv 2""" "^4- I ¿-p

p    '    "i mlimn + p) k-a\n

maps E onto a regular /»-sheeted w-gon. The case »=12, p = 5 is shown in
Fig. 1. The number placed by the vertex denotes the sheet in which that
vertex lies, when the positive real axis is taken as the tie-line. Of course these
numbers are not uniquely determined.

4. The arithmetic identities. For the example function (3.5), it is easy to
see, either directly from the integral, or by a consideration of the symmetry
of the image region, that /(eiWn) is a point bisecting the line segment joining
/(l)and/(ei2ir/").So

(4.1) | /(««"-) | - /(l) cos W«),
for all positive integers p and n such that 0<2p/n<l.
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1950] THE SCHWARZ-CHRISTOFFEL TRANSFORMATION 209

If we use the infinite series form of the function, multiply by p, and intro-
duce the new variable f = 2p/n,

oo /_ 1 \ my       m—1

i + E   „ V",na + A)
m-i m\(2m + f) A=o

(4.2) /ce î- m—1 >

cos (fx/2) h + s      ^>A n (?+ *)
,i w!(2ot + f) A=o

Each side is an analytic function of f, for a sufficiently restricted f, and since
the two functions coincide on the everywhere dense set of rationls 0<f
= 2p/n<l, (4.2) is an identity in f and we may equate coefficients of like
powers of f in the power series expansion. For f2 this gives

8        ~o (2« + l)2

from which, by a well known trick, one can obtain (1.5). Equating coefficients
of Ç3 gives (1.6). Other identities can be obtained by using the coefficients
of higher powers of f, but these appear to be quite complicated and of little
interest.

By dissecting the regular ^-sheeted ra-gon into 2n triangles, it is easy to
see that the area of that figure is

(4.4) A = w/(l) | f(eiTln) | sin (pv/n).

On the other hand, by a well known formula(u) for the area of the image of E,
applied to (3.5), we have

( 1 °° 1 m~1 /2p       \2\
(4.5) A=Tr-£™\am\2   = A- +  Z ,,,11 (-+*)}■

m-i \p       m=i {mn + p){m\)2 k=,o\n /)

If we equate (4.4) and (4.5), multiply by 2p2/n, and introduce the new
variable f, we find

/ oo 5-2 m—1 \

^r + Z       '    — lKr+*)4

(4.6) =2sin(r*/2)h+E-———-II (r+*)>
I        m=i    (2m-\rt)m\     ft_0 J

/ oo /_ 1 "\ mî-       m—1 \

•{i + d „ ',; ,na+A)i.
(.        ™=i   (2w + f)w! fc=o ;

Again we have coincidence of two analytic functions of f for an every-
where dense set of rational f, in the interval 0<f <1, and hence (4.6) is an
identity. If we equate coefficients of f3 in the power series expansions of (4.6)
we have

(") Polya-Szegö, Aufgaben und Lehrsätze, vol. 1, New York, Dover, 1945, p. 109.
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7T3 » 1
(4.7) — =2x£

12 Z.I i2m)2

and hence (1.5). If we equate coefficients of f4, we obtain (1.7). Finally we can
combine (4.1) and (4.4) to obtain

(4.8)    A = m{/(1)}2 cos iprr/n) sin iprr/n) = 2-1«{/(l)}2 sin i2pir/n).

This together with (4.5) yields

7T

(4.9)

/ oo 5-2 in—1 \

I        »«i   (2m + H (ml)2 fc^o )
t 00 > m—l

= sinful + £ n (r + ft)
(,       m_i  (2ot + nm\ k=0

once more an identity in f. Equating coefficients of f4, we obtain (1.8).
The three equations (1.6), (1.7), and (1.8) are certainly not independent.

For if we replace the multipliers 2, 2/9, and 1 by unknowns, d, e, and /, it
is easy to see that

D'      FJ      F'
(4.10) +_ =d       e       f
and since E' = F'/8 and D' = 7F'/8,

7        1       8
(4.11) T + ~ = T-d        e        f

Thus any two of the three equations (1.6), (1.7), and (1.8) would imply the
third.

5. The two subclasses of ^-valent functions. We generalize the idea of a
convex region to include certain ^-sheeted regions in the following way. Let
Wi be a boundary point of a ^-sheeted region R and let w&(r) be the subregion
of R consisting of those points w of R in the same sheet with Wh and satisfying
the inequality \w — wb\ <r. If for every boundary point wb of R there is an
r>0 such that w¡,(r) is convex, then R is said to be a locally convex region.

Now if/(z) is regular in E and if /''ire'6) 5^0, it will map \z\ <r<l onto a
region Rir) whose boundary/(rei9) is an analytic curve with a continuously
turning tangent. Let ^ be the angle of intersection of this tangent with the
real axis. The angle ty is not uniquely determined as a function of 0, but will
be so if we fix on one of the possible values of ip when 6 = 0, and determine
ypiff) for O^0<2tt by continuity. Then ^'(0) ^0 if and only if Rir) is a locally
convex region. It is well known(16) that ¿'(0) = l+3i(z/"(z)//'(z)).

(I6) Montel, Leçons sur les fonctions univalentes ou multivalentes, Gauthier-Villars, 1933, pp.
11-14.
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Definition. The function /(z) is said to be an element of the class C(p),
p a positive integer, if it is regular in E, if /(0) =0, and if there is a p<l such
that for all r in the interval p<r<l

/      f"{rei6)\(5.1) G(r, 6) = 1+3Î [reis-^—^)>0, 0 S 6 S 2w,

and

/, 2ir G{r, 6)dd = 2-Kp.
o

Uf(z)GC(p), it maps \z\ <r<l onto a locally convex region. Furthermore
/'(z) has exactly p — i roots in the circle \z\ <r, multiple roots being counted
in accordance with their multiplicities. For if v is the number of these roots,

r2* r    (    z/"(z)\2ttP=\    G(r,e)d6 = 3i<f> (1+-777VP
Jo Jz=re<e\        f (z) /

1  rf"(z)
= 2t + 3Î — <b —— dz = 2tt + 2tv.if  /'(*)

Finally /(z) is at most ^-valent in E. For the contour integral which gives the
number of roots of/(z) — c is just the variation of arg (f(z)—c) along the con-
tour, divided by 27r. But the bounding curve of R(r) for a function of class
C(p) is a curve which turns continuously in a counterclockwise manner as
9 runs from 0 to 27r, and the total number of complete turns is exactly p.
Thus the variation in arg (/(z) — c) cannot exceed 2irp. It is obvious that
f(.z)GC(p) may be divalent.

To generalize the concept of a plane region starlike with respect to a point,
to include certain ^-sheeted regions, we consider the line joining a boundary
point w/, with the given point. If as w-0 describes the boundary of R, the line
turns continuously in a counterclockwise direction (or continuously in a
clockwise direction) then R is said to be starlike with respect to the given
point (16).

Now let F{z) be regular in E and F(rew)^0 for p<r<l. If <¡> = arg F(reie),
<¡> is not uniquely determined as a function of 9, but will be so if we fix on one
of the possible values of <p when 0 = 0, and determine </>(#) for 0^0<2tt by
continuity. Then <p'(9)>0 if and only if R(r) is starlike with respect to the
origin. It is well known(15) that <p'{9) =dl(zF'(z)/F(z)).

(16) This concept of a generalized starlike function has been used previously by the follow-
ing authors: Obrechkoff, Bull. Sei. Math. (2) vol. 60 (1935) pp. 36-42; Ozaki, Science Reports
of the Tokyo Bunrika Daigaku Section A, 2 No. 32 and 36 (1936) and 4 No. 77 (1941); Robert-
son, Ann. of Math. vol. 38 (1937) pp. 770-783 and vol. 42 (1941) pp. 829-838, Duke Math. J.
vol. 12 (1945) pp. 669-684; Biernacki, Mathematica Timisoara vol. 23 (1949) pp. 54-59.
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Definition. The function Fiz) is said to be an element of the class Sip),
p a positive integer, if it is regular in E, if £(0) =0, and if there is a p such
that for all r in the interval p<r<l

/reaF'irea) \
(5.3) H(r, 6) = %( ) > 0, 0 g 6 g 2x,

\   Fire'e)    /

and

/. 2t Hir, 6)dd = 2irp.
o

If 7?(z)G5(p), it maps \z\ <r<l onto a region starlike with respect to the
origin. Just as (5.2) implied that/'(z) had p — i roots in E, the condition (5.4)
implies that F(z) has p roots in E. To see that F(z) is not more than ¿»-valent
in E consider 5(X) =A arg (£(reÍS) — Xc), where A denotes the change as 0
runs from 0 to 27r. Let c be fixed and let X vary from 0 to 1. We already have
5(0) =2irp. But ô(X) is always an integer multiple of 2ir, and is a continuous
function of X except when Xc = Wb, a boundary point of the image of | z I < r. At
such points 5(X) jumps +27T. By (5.3) and (5.4) there are exactly p such
boundary points for every c. Finally we remark that for \c\ sufficiently large,
5(1) =0, so that the jumps in ô(X) must be — 2tt and 0^bCK)-¿2rrp for all X
and c.

For p = i, Cip) and Sip) are the classical univalent functions, convex and
starlike respectively, and S(1)DC(1).  It is worth noting that for p^2,
s(p)3>c(p).

Lemma 1(17)- Let c^0 be an arbitrary constant. If /(z)GC(p), then Fiz)
= czf'iz) E:Sip), and conversely if Fiz) £S(p), then fiz) £C(p), where

r Fit)
(5.5) f(z) = c\     -dt.

Jo        t

Proof. For/(z) and Fiz) related as indicated,

,      x F'iz) cf'iz) + czf'iz) f'iz)
(5.6) z —— = z -———— = 1 + z

Fiz) czf'iz) f'iz)

so that (5.3) implies (5.1) and (5.4) implies (5.2), and conversely.

Lemma 2. Le//(z)=z3+ • • • , with critical points ßu /32, • • • , ßp^g^0 in
E, be an element of dp), and suppose further that fiz) is regular for \z\ = 1.
There is a sequence of functions of the form

(") First proved in the univalent case by J. W. Alexander, Functions which map the interior
of the unit circle upon simple regions, Ann. of Math. vol. 17 (1915) pp. 12-22. See also Montel,
loc. cit.
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*-* n a - *Ar» n ( i - —-) (i - $?w
with \zj\ =1, |#m)| <1, 0<yj<iforj = l, 2, • • • , m, and

m

(5.8) 5>í=2#,
i-1

such that, as m—»°o, ßjmy—*ßj, Am-^q, andfm(z)-+f(z) uniformly for \z\ Sr<i.

The proof of this lemma is analogous to the one given by Robertson (18)
and will be omitted. We can apply this lemma to functions of class C{p)
since if/(z)GC(p), then/(rz)/r" will satisfy the conditions for the lemma for
every r, p<r<l. Finally in view of the convergence properties we may con-
sider not (5.7) but the simplified version

/> 2 m p—q   / £ \t*-1 n a - m)-" n ( i - — ) (i - ßiOdt.
0 j-l j=l \ ßj/

Lemma 3. Let
m co

II (i - ZiO-"' = i + Z *r,
,'-1 n=l

where  z¡  and  y¡  are  subject  to  the  conditions   of Lemma   2.   Then   \cn\
SCn+2p-i,2p-i, with equality if and only if Zi = z2= ■ ■ ■ =zm.

Proof. Clearly c„ = c„(zi, z2, • • • , zm) is a homogeneous polynomial of wth
degree with positive coefficients. Hence a maximum occurs when all z¡ are
equal. The value of the maximum is easily obtained by setting all z¡ = \.
Thus Cn+2p-i,2p-i is just the sum of the coefficients of the polynomial. To see
that this is the only case in which equality occurs, suppose without loss of
generality that Zi = l and zk = ei>9*l. Since c„(zi, z2, • ■ ■ , zm) contains the
terms z\ and z\~xzk both with positive coefficients, it follows that in this case
| Cn\   *C Cn+2p—l,2p—I«

Theorem 1. Let f{z)GC{p), of the form
oo

(5.10) /(z) = z«+ £ anz\ 1 = <?S p,
n=q+l

having p—q critical points ß\, ß2, • • • , ßp-q^0 in E. Then

(5.11) I /(re») | £ fM(r), 0 á f < 1,
and

(18) Loc. cit. footnote 11, pp. 376-377.
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(5.12) | an\ = An, n = q + 1, q+ 2, ■ ■ ■ ,

where

(5.13)
=   Z" +     £    AnZn-

n—q+1

The bounds (5.11) and (5.12) are sharp, since fuiz) £C(£). The extremal func-
tion /m(z) maps E onto a region Rm consisting of p — 1 full planes and a half-
plane, 9í(w) </jií( — 1) if p is odd, 9î(w) >/m( —1) if P is even.

Proof. The function /(z) may be approximated by a sequence of functions
of the form (5.9). Without loss of generality set Zi = l. Then by Lemma 3,
the maximum coefficients in the power series for the first product in (5.9)
occur when Z2 = Z3= • • • = zm = l. These coefficients are then positive, and
hence in combining the second product with the first, maximal coefficients
are obtained by replacing ßs by — \ßj\ for j=l, 2, • • • , p — q. Then (5.9)
becomes (5.13) and the inequality (5.12) is established. The inequality (5.11)
can be obtained by a similar argument, but it is simpler to observe that (5.11)
is a consequence of (5.12), since all the coefficients of /ji/(z) are positive.

Since G(1,0) =0 for/m(z) and since further fuiz) does not vanish on \z\ =1,
the boundary of R consists of a single straight line. The reality of the coeffi-
cients implies that the line is symmetric about the real axis, that is, orthogonal
to the real axis. Finally by noting that/J¡f( —1) has the sign of ( — l)p_1, the
position of the half-plane is easily determined.

Theorem 2. Let F(z)£S(£) of the form (5.10) have p — q roots ßi, ßi, ■ ■ • ,
ßv-q7*0 in E. Then

(5.14) \F(re*)\ á Fu(r), 0 = r < 1,

and

(5.15) \an\ú Bn, n = q+ 1, q+ 2, ■ ■ ■ ,

where

The bounds (5.14) and (5.15) are sharp, since FmÍz)CLSÍP). The extremal func-
tion FmÍz) maps E onto a region Rm consisting of p — 1 full planes and one plane
with a single radial slit.

(1 +s   0,   ) = z* + Z Bnz\
1=0-1-1
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Proof. The inequality (5.15) follows from (5.12) by applying Lemma 1
and Theorem 1 to the function F(z) =zf'(z)/q, where/(z) satisfies the condi-
tions of Theorem 1. The inequality (5.14) is a consequence of (5.15). Since
H(l, 0) =0 for Fm{z) the boundary of Rm consists of radial lines. But the only
root of F'm(z) on | z| = 1 is the simple root at z= — 1, and the only singularity
is the pole at z = +1. Hence the boundary of Rm consists of a single radial line.

There are some special cases of these two theorems which are worth men-
tioning. Let us suppose that instead of fixing \ßj\ for the critical points of
/(z) or the roots of F(z), we merely require that there is a p > 0 such that | ßj|
^pforj=l,2, • • • ,p-q. Then since Ifr+ft-1! = \ßi\ + \ßj\ ^Sp+p-1, it is
easy to see that the extremalizing functions of Theorems 1 and 2 must be
replaced by

-—:r-(l + -)   (1 + pt)*-*dt,
o (i — ty\      p /

and
z«       / zV~«

(5.18) FM(z)=--—(i + —)     (l + Pz)o-e,
(1 — z)2p\ p /

with the same conclusions holding.
In the special case that q=p, we have

(5.19) fM(z) = p-— dt =  £ — C„+3,_i,2P-iZ«
Jo   (1 - ¿)2p n=v  n

and

(5.20) FM(z) =-— =  EC„+P_i,2p_iz",
(1 — z)2p       „_p

again with the same conclusions holding.
This last special case does not require the Schwarz-Christoffel trans-

formation for the proof. For any function F(z)=zv-\- • ■ • GS(p) can be
expressed as \G{z) }p, where G(z) =z+ • • • £S(1), and since z/(l—z)2 is the
extremalizing function for S(i), (5.20) follows. This bound \an\ SCn+p-i,2p-i
was obtained previously by Robertson (19) for a larger class of functions.

Each of the integrals (5.13), (5.17), and (5.19) may be expressed in terms
of a finite number of the elementary functions. However, the last one (5.19)
can be obtained in a simple way directly from the mapping properties of the
function.

(19) A representation of all analytic functions in terms of functions with positive real parts, Ann,
of Math. vol. 38 (1937) pp. 770-783, in particular p. 778, inequality (5.8). See also Star center
points of multivalent functions, Duke Math. J. vol. 12 (1945) pp. 669-684, in particular p. 681,
inequality (6.9).
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For simplicity let p be odd and let siz) be defined by the following prop-
erties. i(z) maps E onto a region 5 consisting of p — 1 full planes and a half-
plane 3î(w) > —1, all tied at w = 0. Thus siz) has a pth order root at z = 0.
Let 5(J))(0)>0. The function s(z) is now determined uniquely. The sym-
metry of 5 about the real axis shows that the interval — 1 <z<l goes into a
real segment, and since p is odd and s'(z) ^0 for z^O, this segment is the half-
line — l<w<». So z = l is the only singularity of siz) for |z| ^1. By the
Schwarz reflection principle we can continue siz) across the circle \z\ =1.
The reflection of 5 across the line 9î(w) = — 1 shows that s(z) maps \z\ >1
on a region 5* consisting of p — 1 full planes and a half-plane 3i(w) < — 1 all
tied at w== — 2, the image of z= ». Thus siz) is regular in the entire complex
plane with the exception of the point z=l, and maps the plane on a region
consisting of 2p — 1 sheets. Therefore siz) is a rational function of degree
2p — 1, and since siz) takes every value 2p —1 times, z=l is a pole of order
2p-l and

a„z" + ap+lzv+1 + • • • + ßüp-jz2?-1
(5.21) siz) = -■

(1 - z)2"-1

On the other hand, consideration of 5* shows that Si(z) = — 2— s(l/z) also
maps \z\ <1 onto 5 and takes — 1<z<1 onto the half-line — l<w<».
Hence s(z) =Si(z) or s(z)+i(l/z) = —2. Using this with (5.21) gives

2j)-l

-2l(-l)"CIH,/

(1 - z)2""1
(5.22) i(z)

But except for a magnification the image of E for s(z) is the same as that given
by (5.19). Therefore for p odd

(-1)P£   C-l)"CÍP-I.nZ"
tp

(5.23)        /„(,)«,£-_-*-
Ti = J)

(1 - 0** Cs,_ilJ((l - z)2»"1

A similar argument can be given to show that (5.23) also holds for p even.
The form of the function (5.18) can also be obtained directly from the

mapping properties. For suppose i(z) maps E onto a region S consisting of
p — 1 full planes and a plane with a radial slit along the real axis. The z-plane
is rotated so that i(l) = ». The function is to have a qth order root at z = 0
(gï:l) and a ip — q)th order root at z= —p, 0<p<l. Finally we may require
that s(s)(0) >0, which because of the symmetry of S implies that the interval
0^z<l goes into 0 = w< ». Reflection across the radial slit gives S* just a
duplication of S, and s(z) =s(l/z). Just as before siz) is a rational function of
degree 2p, with a pole of order 2p at z = 1 and a root of order p — q at — 1/p. So
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z«(l + z/p)"-e(l + pz)*-*
5.24) s(z) = c-u(z),

(1 - z)2p

where u(z) is a polynomial of degree not greater than q. Using s(z) = s(l/z)
with (5.24) yields u(z) = 1 and s(z) is identical with (5.18) when c = l. A
similar argument can be given to obtain (5.16).

Theorem 3. Let F(z)GS{p) of the form (5.10) have p — q roots ßu ß2, ■ • ■ ,
ßv-q such that 0< |/3y| ̂ p<l for j= 1, 2, • • • , p — q. Then for p^r^l

i             i             r«       ?=*              .      .    (    r \F(reie)    è-IT (1 - r   0,   ) ( -¡-r - 1 I
(5.25)

r«(l - pr)v-*{r/p - 1)"-«
>

(1 + r)2p

2"Ae bounds are sharp, the first equality occuring for the function (5.16) and the
second for the function (5.18) when z= —r.

Proof. We first note that for \ßs\ ápár- Ja| £1, | (l-z//3y)(l-/33z)|
= | (ft - z) (pV1 - z) ft/ft | è(^ — |/3j|)(|/Sy|-1 — r), with equality if and only if
arg z = arg ft. Using Lemma 1 and Lemma 2 in an obvious fashion the theorem
follows at once.

Corollary. If F(z)=z"+ ■ ■ ■ GS(p), then

rp
(5.26) F(re»)    à-» Ogfgl,

(1 + r)2"

and this inequality is sharp.

This can also be obtained directly from the theorem for univalent func-
tions.

Theorem 4. Letf(z) =z+ • • • GC(p) have critical points p\, ß2, • ■ • , ßv^.i
?¿0 in E. Let n be the least positive root of

(5.27) 0=l-r—-+S,-i-+      '    ,'    , U ^(r).Ll + r       S (iS,t-f      l-H/3iM
Then f(rz)/rGC(l) for every r, O^Zrfiri. The function

(s-28)    /-(,)-//aTo5S(1--r¿r)(1-'lí,l>*
shows that the upper bound r\ cannot be increased.

Proof. Let {/m(z)} be a sequence of functions of the form (5.9) with q= 1
which converges to/(z). For each/m(z)
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(5.29)      1 +
Zf'miz)

lUß) i + Etí-
¡~1      1

zz . P-i
— - £-

ZZj j=1   ßj
+

zßj

1  - Zßi

For|z| =r<l,9t(zzy/(l-zzJ))è-r/(l+r).For|z| :gr<min {|ft|, |/3i|,

9îZ + Zßi

y_l   ßi - z 1  -  Zßi

P-I      .

ÊÎ ft-
p-1

+
z/î,

1

■ +

■  2/3 Í

H ft
1-T   0,

Therefore

(5.30)

for Oglzl áfi.

1+SR /Ä)\
\/¿(z) / =

/i(r) è 0

Theorem 5. Let Fiz) = z+ • • • GSip) have roots ßu ß2, • • ■ , ßp-i^O in
E. Let ri be defined as in Theorem 4. Then .F(rz)/r£.S(l) for every r, O^r^ri.

Proof. Let/(z) be defined by (5.5). Then for each sequence {fmiz)) con-
verging to/(z), the sequence {Fm(z) =zf^iz)} converges to Fiz). Finally

/-(z) '/   Fmiz)\ /   /ra(z)\

\      Fmiz)/ \     fmiz) /

for 0^|z| =rx.
Theorems 4 and 5 are special cases of Theorems 6 and 7 respectively. The

proofs are similar and so are omitted.

Theorem 6. Let fiz) =z"+ • • • GCip) have critical points ßu ßi, ■ ■ ■ , ßP~q
¿¿0 in E. Let r, be the least positive root of

r   2P ?P? 1 I ft I     1
(5.31)   o-f-f 7X-+ ^m—-+1   L\\ = J'-Ll + r       i=1   | |3,-| — r      1 - r\ ßj\J

to-
Then firz)/r" (ECiq) for every r in the interval O^r^r,. The function (5.13)
shows that the upper bound rq cannot be increased.

Theorem 7. Let Fiz) =z3+ • • • GSip) have roots ßu ßi, ■ ■ ■ , ßp-qy^0 in
E. Let rq be defined as in Theorem 6. Then Firz)/rqÇ^Siq) for every r, O^rgr,.
The function (5.16) shows that the upper bound rq cannot be increased.

Since Jqir) is a decreasing function of \ßj\ for r<|/8,-| <1, we obtain
bounds for rq by solving the cubic
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(5.32) 0 = q - r\-~- +(p-q) (-— + —^—)]LI + r \y — r      1 — ryf J

for its least positive root. This gives

is   ¿(1 + yy~-2qy-(1 +y)ip2{l + yy~-ipqy)m
(5.33) p{y) =-» 2qy

so that if Q<mS \ßj\ ^M<1 for j' = l, 2, • • • , p — q, then

am
(5.34) —-i- ^ p(«) ^ r3 ^ P(M).

¿>(1 + w)2

6. The coefficient problem. It has recently(20) been conjectured that if
OO

(6.1) F(z) = £¿„2"
n-l

is ^-valent in E, then for «=£ + 1, £ + 2, • • •

.      .        * 2A(w+¿)! .      ,
(6.2) U>   ^ X-** •11       £[ (n2- k2)(p+ k)l(p- k)\(n-p- l)!1

For p = 2, n = 3, this gives the conjecture that

(6.3) |», | ¿ 5 | &i| +4 | b2\.

Theorem 8. Let F(z)GS(2) have the form (6.1), and let all the coefficients
bn be real. Then (6.3) is valid and this inequality is sharp for every pair \bi\,
\b2\, not both zero.

Proof. We may assume |&i| 5^0, for if bi = 0 (6.3) is a special case of
Theorem 2 with p = q = 2. By Lemma 1 and Lemma 2, we have a sequence of
functions Fm(z) of the form

Fm{z)

(6.4)

~ciz{i-—)(i-ßz)U(i-zß)-yi

/ z \ °° °°
= cizil-)(1 - ßz)Y,Anzn = i«",

\ ß / n=0 n=l

where
m

(6.5) £ Tí = 4,        0 < y,-,        z¡ = cos 0,- + i sin 0,-.
i-i

The sequence Fm(z) converges to F(z) and c„—>£„ as w—>°°. Since ôi^O,

(20) 0« so«« determinants related to p-valent functions, Trans. Amer. Math. Soc. vol. 63
(1948) pp. 175-192.
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ß^Q, and since all coefficients are real, the single critical point must lie on
the real axis, that is ß = ß. From (6.4)

Ao = 1,
m

¿1 ""  2 T)2j,
(6.6)

and

(6.7)

from which

¿    ¿„I Z    \   j=l /

C2   =   ^4lCl-   diß-T- ß-1),

c3 = -42ci - AlCliß + ft1) + cu

(6.8) es = d(l + ^2 - AO + Aict.

It is clear from the conditions (6.5) that \Ai\ ^4. We need only prove
that 11+Ai — ̂ 4i | á=5. Since all the coefficients are real, the image of E under
fiz) will be symmetric about the real axis. In selecting a polygon for ap-
proximation, we may require that this polygon is also symmetric about the
real axis. Then in the sums (6.6), the z¡ occur in conjugate pairs and each ele-
ment of a conjugate pair is multiplied by the same y¡. So

1m 1      /     m \i

Ai - a\ = — 52 iÀ - — ( Ew
¿    j=l •£    \ i=\ /

(6.9) --Ê 7,(2 cos2 9j - 1) - — ( ¿ Tí cos 0,-)
2  í=i 2 \ J=i /

m                                           1     /    m \ 2

=   "  2 + 52 Tí COS2 0,-(   Z Tí COS 0,-J   .
i—i 2 \ ,=i /í=i

By Cauchy's inequality,
m 1     /    m \ 2

52 7í cos2 Oj--( 52 Tí cos 6j) = 0,
i_i 4 \ ;_! /í=i

<2so, using (6.5), we have — 6^ Ai — A1=:2 or

(6.10) - 5 gl + At- A*i£3.

We shall see when we have proved Theorem 12 that (6.3) is sharp for
every pair | £>i|, | b2\, and that the inequalities of Theorems 9, 10, and 11 are
also sharp in the same sense.
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Using Lemma 1  and Theorem 8 we have immediately the following
theorem.

Theorem 9. Letf{z)GC{2) have the form
CO

(6.11) /(z) = X>„z»
n-l

and let all coefficients be real. Then

5 i     i       8 i
(6.12) | a, | =— |«i|+ —|o*|,

and this inequality is sharp for every pair \ai\, \a2\ not both zero.

Notice that the conjecture (6.2) for ^-valent functions suggests the con-
jecture that

_£, 2k2(n + p)l
(6.13) a«   á Ê-\aA

ti n(n2 - k2)(p + k)\(p - k)\{n - p - l)!1

for functions of class C(p) of the form (6.11). This of course gives (6.12) for
p = 2 and n = 3. It also seems reasonable to conjecture that the bounds ob-
tained in Theorems 2, 3, and 7 are valid for all functions regular and £-valent
in E.

The same methods yield the following extensions of Theorems 8 and 9.

Theorem  10.  Let F(z)GS{p)  be  of the form   (6.1)   with  bi = b2= ■ ■ •
= Ap_2 = 0, and let all coefficients be real. Then

(6.14) |ôp+i| g (2p + l)ip- 1)| 6^x1 + 2#| 6P|,

and this inequality is sharp for every pair \ bp-i\, | bp\ not both zero.

Theorem 11. Letf{z)GC{p) be of the form (6.11) with ax=a2--
= 0, and let all the coefficients be real. Then

(6.15) | ap+i J g-I a,,_i I + •
P + 1 P + 1

and this inequality is sharp for every pair \ ap-i\, \ap\ not both zero.

The inequalities (6.14) and (6.15) are special cases of the conjectures (6.2)
and (6.13) respectively.

It has been shown(20) that for every set | &i|, | b2\, • • • , \ bp\ not all zero,
there is a p-valent function with bn satisfying (6.2) with the equality sign.
All of these ^-valent functions are of the type described in the following
theorem and so are of class S(p). From these we can obtain functions of
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class  Cip) for which the equality sign holds in (6.13) for every set  |ßi|,
|a2|, • • • , \ap\ not all zero.

Theorem 12. Let

(6.16) f(t) = Piu) - ¿2 (-l)W*.        «
(1   -  2)2

where a* ̂  0, ¿ = 1,2, • • • , p, and for at least one ¿, a* > 0. Then fiz) is an ele-
ment of class Sip) and, moreover, maps E onto a region R consisting of p — l
full planes and a plane with a single radial slit.

Proof.  It will be simpler and completely equivalent to consider g(z)
-/(-*). Then

(6.17) giz) = aiv + a2v2 + • ■ • + apvp,        v =-—,
(1 + z)2

and for giz)

Hir, 8) - *(.1B = ^+2aiV+...+paP^   i_ <M
\   g(z) I \ ax + a2v + • ■ • + aPvp~l     v   dz)

(z   dv\QM — —Yv   dz/

(6.18)

Now if z = ei6, then v~=l/4, Qiv)>0, and

z   dv      1 — z cos 8
(6.19) T(z) =-= —- = i

v   dz      1 + z sin 8

Therefore G(l, 0) =9î(()(ii)r(eir)) =0, and the boundary of R consists of radial
slits. Since g'(z) has only a single simple root on \z\ =1, there is only a single
slit.

The function fe(z) =zg'(z)/g(z) is regular in some ring domain p<|z| <1.
To determine 9î(â(z)) for \z\ <1, we examine more closely ä(z) for \z\ =1.

A simple computation shows that

V

52 a„a,ifi - j/)V+*-3
(6.20) Q'iv) =

(d + a2v + ■ ■ ■ + a^"-1)2

If only one coefficient a* is different from zero, then Qiy) is a positive con-
stant. Otherwise Q'iv) >0 for v = 1/4.

Let z = eiB and let 0 vary from 0 to tt. Then 7T(z) runs along the imaginary
axis from 0 to —i», vie'6) runs along the real axis from 1/4 to + », and
Qiv) is either a positive constant or a monotonically increasing positive func-
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tion. Thus A(z) maps this arc of the unit circle in a one-to-one manner on
the negative imaginary axis, a counterclockwise direction for z, correspond-
ing to a downward direction for A(z). As 9 runs from it to 2ir, T{z) runs along
the imaginary axis from + °o to 1/4, and Q(v) is either a positive constant
or a monotonically decreasing positive function. Thus A(z) maps this arc in a
one-to-one manner on the positive imaginary axis, with the same correspond-
ance of directions as before. Since a regular function is region-preserving
there exists a p such that for p < | z\ < 1

H(r, 6) = <R(A(z)) > 0,

and hence g(z)GS(p).

Rutgers University,
New Brunswick, N. J.
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