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ABSTRACT

Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate

system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and

scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months,

seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model

can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and

seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate

and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution

(50 km 3 50 km) atmosphere and land components as well as more moderate-resolution (;100 km) sea ice

and ocean components. The simulation of TC climatology and interannual variations in this climate model is

substantially improved by correcting systematic ocean biases through ‘‘flux adjustment.’’ A suite of 12-month

duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model

to observationally constrained conditions at the start of each forecast period, using both the standard and flux-

adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting

Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially

improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting

the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional

TC activity months in advance are feasible.

1. Introduction

Predicting and projecting future tropical cyclone (TC)

activity is a topic of scientific interest and high societal

significance. Forecasts of TCs provide information to

support planning, with the potential utility of the fore-

casts limited in part by their expected and realized skill and

by the relevance of the quantity being predicted to the

particular decision structure. A variety of methodologies

have been developed to predict the path and intensity of

individual TCs days in advance and, because of their

demonstrated skill and regionally specific information,

a broad range of sectors regularly implement decisions

based on these 1–5-day forecasts. Given the potential

utility of TC predictions on longer lead times, various

methodologies have been developed to skillfully predict

seasonally aggregated, basin-averaged indices of TC ac-

tivity (e.g., Gray 1984; Vitart and Stockdale 2001; Vitart

2006; Vitart et al. 2007; Camargo et al. 2007a; Smith et al.

2010; LaRow et al. 2010; Klotzbach andGray 2009; Jagger

and Elsner 2010; Alessandri et al. 2011; Vecchi et al. 2011,

2013a; Villarini and Vecchi 2013). TCs have a range of
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impacts, which vary regionally (e.g., Pielke et al. 2008;

Kam et al. 2013; Villarini et al. 2014a,b; Scocimarro et al.

2014), and basinwide TC activity can often be a poor

indicator of activity in subregions of the basin, including

coastal areas (e.g., Klotzbach 2011; Villarini et al. 2011b,

2012; Vecchi and Villarini 2014). The utility of seasonal

TC forecasts to decision support would therefore be

enhanced if seasonal TC activity on scales finer than

basinwide could be skillfully predicted. In addition,

seasonal forecasts of regional TC activity would provide

tests of the hypothesized controls on regional TC ac-

tivity, and enable refinement of our understanding of

and ability to project multidecadal changes in regional

TC activity (e.g., Murakami and Wang 2010; Murakami

et al. 2011, 2012, 2013, 2014; Knutson et al. 2008; Bender

et al. 2010). High-resolution dynamical models provide

a potential framework in this direction if they can rep-

resent and predict large-scale climate conditions and the

processes that connect them to regional TC activity.

In general, one can view the TC forecast problem as

a two-step process: 1) predicting what the state of the

future climate system is liable to be (the climate fore-

cast), and 2) predicting what the response of basinwide

TC frequency to what the future climate state is likely to

be (the TC forecast). Sometimes the two steps occur

within a single process, explicitly as when dynamical

coupled climate models are used to predict the future

state of climate, and the response of the TC-like vortices

in the models is used to estimate future TC activity (e.g.,

Vitart 2006; Smith et al. 2010), or implicitly when a sta-

tistical relationship between conditions prior to the TC

season and the future season’s TC activity is used (e.g.,

Gray 1984; Elsner and Jagger 2006; Klotzbach and Gray

2009). Since both the evolution of the climate system

and the response of TC activity to climate are chaotic

processes, these forecasts are not generally deterministic

(i.e., giving a single number) but probabilistic (i.e.,

describing the probability of a range of plausible out-

comes). Methodologies using a two-step approach to

forecasting basinwide activity include high-resolution

dynamical model forecasts forced with either predicted

or persisted climate anomalies (e.g., Zhao et al. 2009;

LaRow et al. 2010; LaRow 2013; Chen and Lin 2011,

2013) and hybrid statistical–dynamical methods for

seasonal TC forecasts (e.g., Wang et al. 2009; Vecchi

et al. 2011, 2013a; Villarini and Vecchi 2013). These

various methodologies have advantages and disadvan-

tages relative to one another, but have all been shown to

be potentially skillful at predicting basinwide activity.

Large-scale climate variations and changes impact

seasonal TC activity by impacting the environment in

which TCs form, develop, propagate, and dissipate (e.g.,

Gray 1984; Emanuel 1995; Bister and Emanuel 1998;

Emanuel and Nolan 2004; Camargo et al. 2007b, 2014;

Knutson et al. 2010, 2013; Zhao et al. 2009; Vecchi and

Soden 2007; Kossin and Vimont 2007; Vimont and

Kossin 2007; Emanuel et al. 2008; Vecchi et al. 2008;

Bender et al. 2010; Villarini et al. 2010, 2011b, 2012;

Tippett et al. 2011). Climate models of moderate and

high resolution can simulate aspects of both large-scale

climate variations relevant to TCs (e.g., Broccoli and

Manabe 1990; Vitart et al. 1997; Emanuel et al. 2008;

Knutson et al. 2008, 2013; Vecchi and Soden 2007;Wang

et al. 2009; Vecchi et al. 2011), as well as aspects of the

response of TCs to these climate changes (e.g., Knutson

et al. 2008, 2013; LaRow et al. 2010; LaRow 2013; Zhao

et al. 2009, 2010; Wang et al. 2014). However, climate

models have deficiencies in both their large-scale cli-

mate as well as in the mean distribution of TCs. It has

been hypothesized that large-scale model biases could

be behind some of the model biases in TC simulation

and sensitivity to climate (e.g., LaRow 2013; Kim et al.

2014; Murakami et al. 2014).

A range of observational and modeling studies in-

dicate that aspects of the seasonally aggregated TC ac-

tivity at spatial scales finer than basinwide are influenced

by large-scale atmospheric and oceanic conditions (e.g.,

Elsner et al. 2001; Camargo et al. 2007c, 2008; Kossin

et al. 2010; Murakami and Wang 2010; Villarini et al.

2010, 2012, 2014a; Murakami et al. 2011, 2013; Colbert

and Soden 2012; Zhang et al. 2012, 2013a–c; Colbert

et al. 2013; Kim et al. 2014), including modes of climate

variability that are potentially predictable months in ad-

vance, such as the El Niño–Southern Oscillation (ENSO)

phenomenon and the Atlantic meridional mode (AMM),

and the response of climate to radiative forcing changes.

Therefore, we hypothesize that there is predictability to

the regional structure of TC activity at scales finer than

basinwide. Further, we hypothesize that initialized pre-

dictions with a high-resolution coupled climate model

are one way of extracting this predictable information.

Finally, we hypothesize that biases in large-scale climate

limit the simulation and forecast skill for TC activity,

and that improvements to large-scale model biases will

improve the simulation and prediction of TC activity in

a high-resolution modeling system.

Here we use a recently developed high-resolution

(;50-km atmosphere and land resolution) coupled cli-

mate model to test the above hypotheses through climate

simulations and initialized seasonal predictions. We as-

sess the ability of the model to predict regional TC ac-

tivity in the Northern Hemisphere (NH) Pacific and

Atlantic Oceans on multiseason leads. We also assess the

impact of model biases that originate from biases in sea

surface temperature (SST) on the simulation and seasonal

forecast of TCs, by exploring parallel experiments with
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a free-running model and a version of the model whose

fluxes are modified to bring its climatological SST in

closer alignment with observations [‘‘flux adjustment’’

using the methodology of Magnusson et al. (2013)].

In the next section we describe the models used, the

forecast experiments, and ways of estimating and as-

sessing TC activity. In section 3, we present the results,

focusing first on the ability of different configurations of

the free-running model to capture TC activity, then on

the ability of the model to predict SST, as well as basin-

wide and regional TC activity. In the final sectionwe offer

a summary of the results and some concluding remarks.

2. Methods

a. Observational data

We use version v03r04 of the International Best Track

Archive for Climate Stewardship (IBTrACS; Knapp

et al. 2010) as our reference TC dataset. To build con-

sistency with the model-based definition of TCs, which

has an explicit duration threshold [see section 2f(2)],

when comparing against model TC tracks with a 2-day

(or 3-day, briefly in section 3a) duration threshold we

consider only those storms for which winds exceed gale

force and are classified as either topical or subtropical

for over eight (twelve) 6-hourly best-track fixes. We

multiply the 1-min maximum wind speeds archived in

IBTrACS by 0.88 to estimate the 10-minmaximumwind

speeds (Knapp et al. 2010).

We explore three main monthly SST datasets: the

United Kingdom’s Met Office Hadley Centre Sea Ice

and Sea Surface Temperature dataset (HadISST.v1;

Rayner et al. 2003), the Interim European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-Interim, herein ERA-I; Dee et al. 2011),

and SST data from the National Aeronautics and Space

Administration (NASA) Modern-Era Retrospective

Analysis for Research and Applications (MERRA) re-

analysis (Rienecker et al. 2011). We use the HadISST.v1

SST, climatological sea surface salinity (SSS) from the

World Ocean Atlas 2005 (Antonov et al. 2006) and

surface zonal and meridional wind stresses from ERA-I

to build our ‘‘flux adjusted’’ version of the model (sec-

tion 2c). In addition, we use three-dimensional atmo-

spheric temperature, wind, and humidity data from the

ERA-I and MERRA analyses as estimates to assess the

large-scale structure of the atmosphere in the model

simulations (section 3a).

b. Model description

To build a seasonal-to-decadal forecast system for

regional climate impacts, including TCs, we have built

a high-resolution coupled climate model, with its high

resolution focused on the land and atmosphere compo-

nents. The atmosphere and land components of thismodel

are taken from thehigh-resolutionCoupledModel version

2.5 (CM2.5; Delworth et al. 2012) recently developed at

the Geophysical Fluid Dynamics Laboratory (GFDL),

with a horizontal resolution of approximately 50 km 3

50 km using a cubed sphere finite volume dynamical

core (Putman and Lin 2007). However, in contrast to

CM2.5, which has high resolution in both its atmosphere

and ocean components, the ocean and sea ice compo-

nents of this new model are based on the low-resolution

GFDL Coupled Model version 2.1 (CM2.1; Delworth

et al. 2006; Wittenberg et al. 2006; Gnanadesikan et al.

2006). CM2.1, which has a horizontal grid spacing of 18

for the ocean and sea ice components (telescoping to

0.3338meridional spacing near the equator), and;28 for

the atmosphere and land components, has been used

for numerous seasonal-to-decadal variability research,

predictability, and forecast activities (Vecchi et al. 2006,

2011, 2013a;Zhang et al. 2007; Song et al. 2008;Wittenberg

2009;Msadek et al. 2010, 2013, 2014; Choi et al. 2013;Yang

et al. 2013; Kosaka et al. 2013; Wittenberg et al. 2014).

The new coupled climate model used here is referred

to as the forecast-oriented low ocean resolution version

of CM2.5, or FLOR. Our goal of capturing regional

scales and extreme events (including TCs) requires us to

pursue a model with high atmosphere and land re-

solution. The relatively lower ocean/sea ice resolution

provides computational efficiency relative to the full

version of CM2.5 (Delworth et al. 2012), allowing us to

pursue large ensembles of forecasts. A coupled ensem-

ble Kalman filter (EnKF) data assimilation system was

built on CM2.1 (Zhang et al. 2007), which underpins our

quasi-operational intraseasonal to decadal forecast

activities. So an additional benefit of using the low

ocean resolution in FLOR is that we can readily take

ocean and sea ice initial conditions from the CM2.1

EnKF, which are key sources of predictability on

multimonth to multiseason leads. A coupled assimila-

tion project with FLOR is underway, which we expect

will yield further improvements over the performance

reported here.

The high-resolution CM2.5 model, which includes

enhanced resolution in both its atmospheric/land and

oceanic/sea ice components, exhibited substantial im-

provements in its near-surface and atmospheric climate

simulation relative to CM2.1 (e.g., Delworth et al.

2012; Doi et al. 2012; Delworth and Zeng 2014; A. T.

Wittenberg et al. 2014, unpublished manuscript). In

building FLOR, we hypothesize that the improvements

in the simulation by CM2.5 of the climate features that

are crucial to the forecast of seasonal-to-decadal regional

climate and extremes arise from enhancements to

7996 JOURNAL OF CL IMATE VOLUME 27



atmosphere and land rather than ocean and sea ice res-

olution. For the simulation of a series of near-surface and

atmospheric quantities, such as the structure of anomalies

tied to the ENSO phenomenon and large-scale SST, land

and ocean precipitation, and near-surface winds, the im-

provements seen in CM2.5 relative to CM2.1 are evident

in FLOR (Jia et al. 2014, manuscript submitted to J.

Climate; A. T. Wittenberg et al. 2014, unpublished

manuscript). This suggests that, at least for the range of

horizontal resolutions we have explored (between 18

and 0.18 for the ocean/sea ice, and 250 and 50 km for the

atmosphere/land), and for the numerical methods and

parameter settings in these models, improvements in

the simulation of near-surface climate and its vari-

ability are more closely connected to atmospheric than

oceanic resolution. This is a fortuitous result, since the

cost of running FLOR is about half of that for the full-

blown CM2.5, and we already have ocean/sea ice initial

conditions at the resolution of FLOR.

We have explored two alternative versions of FLOR,

which are referred to internally at NOAA/GFDL as

FLOR-B01 and FLOR-A06. The alternative formula-

tion of FLOR will be referred to as FLOR-A06. These

two model versions have identical atmospheric, land,

and sea ice configurations, but have slightly different

parameterizations in the ocean. In both versions of

FLOR, the ocean component has been slightly altered

from that ofDelworth et al.’s (2006) version of CM2.1 by

having a more realistic representation of the solar ab-

sorption by the ocean, using a biharmonic horizontal

viscosity scheme, as well as some fixes documented in

Delworth et al. (2012). In addition to these changes,

FLOR-B01 incorporates the newer, higher-order ad-

vection scheme used in CM2.5 (Delworth et al. 2012)

and an updated parameterization for eddies (Ferrari

et al. 2010). Since most of the results described in this

paper, along with the flux-adjusted version of the model,

are done using FLOR-B01, henceforth we will refer to

that version of the model simply as FLOR, without the

modifier.

The resulting models, FLOR and FLOR-A06, have

most of their computational expense and resolution con-

centrated in the atmosphere and land components. The

choice to concentrate resolution in the atmosphere/land,

and keep the ocean resolution relatively low, had three

principal motivations: 1) FLOR is being targeted to

understanding and predicting regional climate and ex-

tremes, for which atmosphere and land resolution are

likely to be of value; 2) computational constraints lim-

ited the ensemble sizes and length of experiments that

could be performed with the full, high-ocean-resolution

CM2.5; and 3) ocean and sea ice initial conditions over

the period 1980–2013 are available on the resolution of

CM2.1, making the generation of initialized experiments

relatively straightforward. A further consideration was

the quality of the simulation of near-surface and atmo-

spheric climate,whichwas found to improve considerably

as the atmospheric resolution went from;28 in CM2.1 to

0.58 in FLOR (Jia et al. 2014, manuscript submitted to

J. Climate; A. T. Wittenberg et al. 2014, unpublished

manuscript), yielding approximately 20 atmospheric grid

points for every previous grid point. However, various

measures of improvement to near-surface and atmo-

spheric climate showed much more marginal improve-

ments coming from the additional resolution in the ocean

of the 0.258 ocean in CM2.5 compared to the lower-

resolution FLOR (Jia et al. 2014,manuscript submitted to

J. Climate; Wittenberg et al. 2014).

c. Flux adjustment

We wish to test the hypotheses that 1) improvements

to the mean climate simulation should lead to improve-

ments in the simulation of TCs (e.g., Kim et al. 2014) and

2) an improved mean simulation of TC activity should

yield improved forecasts of basinwide and regional TC

activity. To test these hypotheses, we developed an al-

ternative configuration of FLOR whose resolution, nu-

meric, and parameter settings are identical to the standard

FLOR configuration, except that it is ‘‘flux adjusted.’’

That is, climatological adjustments are made to the

model’s momentum, enthalpy and freshwater fluxes from

atmosphere to ocean to bring the model’s long-term cli-

matology of SST and surface wind stress closer to obser-

vational estimates over 1979–2012. Flux adjustments are

computed applying amethod similar to that ofMagnusson

et al. (2013). We refer to this alternative configuration as

FLOR-FA.

The procedure we follow to build FLOR-FA is the

following, which begins from the end of a 100-yr control

simulation with FLOR using 1990 levels of radiative

forcing and land use:

d A simulation with FLOR is performed over 1961–

2012, restoring the model’s SSS to the World Ocean

Atlas climatological values (Antonov et al. 2006) and

SST to the 1961–2012 monthly estimates from theMet

Office Hadley Center SST product. The SSS and SST

values are restored using a 5-day restoring time scale

and this experiment is referred to as FLOR-

NUDGE1.
d The output of FLOR-NUDGE1 is compared to the

ERA-I data over 1979–2012 to compute monthly

climatological differences in the zonal and meridional

momentum flux between atmosphere and ocean.

These climatological differences will be referred to

as TAU_ADJUST.
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d The nudging experiment is repeated, this time adding

the climatological TAU_ADJUST to the FLOR sim-

ulation while SSS and SST are restored to the obser-

vational estimates. This experiment is referred to as

FLOR-NUDGE2.
d The climatological SSS and SST adjustments over

1979–2012 are computed from FLOR-NUDGE2, with

their global-mean, annual-mean removed. These

adjustments are referred to as SSS_ADJUST and

SST_ADJUST.
d The final flux-adjusted experiment is performed by add-

ing the climatological TAU_ADJUST, SSS_ADJUST,

and SST_ADJUST to FLOR. This produces the final

simulation referred to as FLOR-FA.

In addition to our standard FLOR-FAmodel derived as

described above, we tested an intermediate version in

which we only adjusted enthalpy and freshwater fluxes,

after nudging the observational estimates. This alter-

native flux-adjusted model, which we will refer to as

FLOR-FA.05, exhibits comparable performance to the

standard FLOR-FA and is used briefly in section 3d to

assess impacts of ensemble size on prediction skill. Both

FLOR-FA versions are based on FLOR-B01.

d. Control simulations

We generate 100-yr control climate simulations with

both configurations of the FLOR model (standard and

flux adjusted) by prescribing radiative forcing and land-

use conditions representative of 1990. These experiments

are referred to as ‘‘present-day control’’ experimentswith

FLOR and FLOR-FA. These experiments are used to

characterize the climatological simulation and inter-

annual variability of FLOR and FLOR-FA.

e. Forecast experiments

We explore the seasonal prediction skill for large-

scale climate and TCs through a series of 12-member

ensemble retrospective seasonal forecasts initialized on

the first of each month over 1981–2013, each integrated

for 12 months with each version of the model, or 9504

model-years of retrospective forecasts. FLOR has an

ocean and sea ice component on the same grid as CM2.1,

which is our current ‘‘workhorse’’ seasonal-to-decadal

forecast model at GFDL and for which we have a set of

initial conditions built through EnKF data assimilation.

Therefore, for each forecast we initialize each of the 12

ensemble members with an ensemble member of the

CM2.1 EnKF ocean and sea ice initial conditions. For

our atmosphere and land initial conditions we use initial

states from a suite of SST-forced atmosphere–land-only

simulations using the components in FLOR. That is, the

ocean and sea ice are initialized with observationally

constrained estimates of their state, while observations

impact the atmosphere and land initial state only

through the information that is contained in the SST and

radiative forcing that is used in the atmospheric general

circulation model (AGCM) experiments. Since proper

initialization is a key source of seasonal predictability,

the experiments described here are not ‘‘optimal’’

forecast experiments, but represent a lower bound, to

some extent, on the potential retrospective predictive

skill of a system like FLOR. However, retrospective

forecasts often outperform real forecasts—even when

care is taken to cross-validate—so these experiments are

not necessarily a lower bound estimate on future fore-

cast skill. We pursue this suboptimal experimental de-

sign since it allows us to efficiently assess aspects of the

performance of FLOR and provides a baseline for fu-

ture experiments using an assimilation system built with

FLOR. Further, since the initial conditions are the same

between our seasonal to decadal forecast system built

with CM2.1 and these FLOR experiments, we can iso-

late the impact of model configuration on forecast skill.

Ensemble forecasts over the period 1981–2013, ini-

tialized on the first day of every month, are generated

with both FLOR and FLOR-FA by using the ocean and

atmosphere initial conditions generated from a coupled

EnKF analysis with CM2.1 (Zhang et al. 2007), which

blends ocean and atmosphere observations into a cou-

pled simulation. There is an ensemble of 12 ocean and

sea ice initial conditions available over the period 1981–

2013, each representing an equally plausible state that is

consistent with both the observed record and the climate

model. Since the FLOR atmosphere and land models

are different from those of CM2.1, we generate a series

of atmosphere and land initial conditions offline by

performing an ensemble of three SST-forced free-

running AGCM simulations with the atmosphere/land

component of FLOR. For the FLOR and FLOR-FA

forecasts a 12-member ensemble is generated by ap-

plying the first AGCM member to the first four ocean

members, the second AGCM member to ocean mem-

bers 5 through 8, and the third AGCMmember to ocean

members 9 through 12. We note that this initialization

does not constrain the atmosphere beyond the in-

formation present in SST and radiative forcing, and that

the ocean initial conditions are not ‘‘optimal’’ for FLOR

or FLOR-FA. Therefore, we speculate that subsequent

forecasts based on initial conditions from an EnKF as-

similation with FLOR and FLOR-FA, and that included

atmospheric observations, are likely to improve on the

solutions presented here.

Prediction experiments were also performed every

month with FLOR-A06, and initialized on 1 July with an

alternative FA version of FLOR in which only fresh-

water and enthalpy fluxes were corrected (referred to as
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FLOR-FA.05; see section 2c); these two additional sets

of predictions are only discussed briefly in section 3d as

a way to assess the impact of increased ensemble size on

forecast performance.

f. Tropical cyclone statistics

1) TROPICAL CYCLONE TRACKING

Based on 6-hourly snapshots of atmospheric state, we

use the method described in Zhao et al. (2009), with the

parameter settings in Kim et al. (2014), to track TCs in

the FLOR output. This tracking scheme derives from

the Vitart et al. (1997) tracking scheme. For most of our

analyses we impose a 2-day duration threshold on TCs

before they are identified, and thus compare to obser-

vations with a similar duration threshold applied, since

the history of counts of TCs of duration shorter than two

days does not correspond to that of longer-duration

storms (Landsea et al. 2010; Villarini et al. 2011b). To

define TCs of different categories (e.g., tropical storms,

category 1 cyclones, etc.), we use a 90% scale on the

observed threshold to account for the model resolution,

based onWalsh et al. (2007)—so themodel threshold for

gale-force winds is 15.3m s21, rather than 17m s21, and

the threshold for a category 1 cyclone on the Saffir–

Simpson wind scale is 29.7 rather than 33m s21. When

exploring basinwide counts in the retrospective fore-

casts, model counts are scaled by the ratio of the ob-

served to ensemble-mean predicted values for the

period 1982–2005:

C*(t, e)5
O198222005

C198222005

C(t, e) , (1)

where C(t, e) is the raw count prediction for year t and

ensemble member e, h�i1982–2005 is the time average over

1982–2005, and the overbar denotes ensemble averag-

ing. We use the period 1982–2005 as our reference pe-

riod since that was the period used to develop the

statistical component of the hybrid statistical–dynamical

prediction scheme [see section 2f(3) below]. This mul-

tiplicative scaling does not impact correlation measures

of forecast skill.

2) TROPICAL CYCLONE DENSITY

We use ‘‘TC density’’ as a metric with which to assess

the predictability of regional TC activity; we define TC

density as the total number of days in a season in which

a TC is inside a box 108 longitude by 108 latitude, cen-

tered in each 18 grid point. We explore 108 3 108 regions

because they are smaller than the scale of the basins, but

still large enough to have a sufficiently large sample size

to perform meaningful statistics with 32 years of verifi-

cation data.We compute 108 3 108 density at every point

in a 18 3 18 grid to minimize the impact of the edges of

larger discrete boxes in computing density (e.g., a storm

passing at a position just slightly to the east of an edge

and one just slightly to the west of an edge would be

placed in two disjoint 108 boxes; having sliding boxes

reduces this impact). The 108 scale is comparable to the

average diameter of observed TCs (measured by the

outer radius of the TC; Chavas and Emanuel 2010) and

is broad enough to include most of the areas where

impacts of individual TCs in models and observations

are evident (e.g., Lin et al. 2010; Villarini and Smith

2010; Villarini et al. 2011a, 2014a,b; Scocimarro et al.

2014).

3) STATISTICAL–DYNAMICAL HYBRID SCHEME

Themain focus of this work is the seasonal forecasting

of regional NH TC activity, but in order to assess the

performance of this new system against its predecessor

system (CM2.1), we explore predictions of North At-

lantic hurricane frequency. We use the hybrid statistical–

dynamical North Atlantic hurricane frequency forecast

framework by Vecchi et al. (2011, 2013a), referred to as

theHybridHurricane Forecasting System (HyHuFS), to

compare the North Atlantic basinwide hurricane fore-

casts of FLOR and FLOR-FA to the forecasts using

CM2.1. The HyHuFS scheme combines a statistical

emulator of a high-resolution dynamical atmospheric

model (Zhao et al. 2009, 2010) and initialized forecasts

of SST. The statistical emulator is formulated as a Poisson

regression model with two predictors: tropical Atlantic

SST and tropical-mean SST, each averaged over the

August–October season. The choice of these two pre-

dictors is motivated by dynamical considerations, ob-

served relationships between hurricane activity and SST,

and the sensitivity of dynamical models to SST pertur-

bations (e.g., Vecchi and Soden 2007; Swanson 2008;

Vecchi et al. 2008, 2013b; Knutson et al. 2008, 2013;

Villarini et al. 2010, 2012; Vecchi and Knutson 2011;

Tippett et al. 2011; Camargo et al. 2013). Following

Vecchi et al. (2011, 2013a), we model the rate of occur-

rence l of North Atlantic hurricane frequency using a

Poisson regression model as follows:

l5 e1:70711:388SST
MDR

21:521SST
TROP , (2)

where SSTMDR and SSTTROP are anomalies in the re-

gional SST indices relative to the 1982–2005 average;

SSTMDR is the average over the hurricane main de-

velopment region (108–258N, 808–208W), and SSTTROP

is the global, 308S–308N average of SST. Relative-SST

based models, along with other seasonal prediction

models, can fail for particular years, as they did in 2013

(Vecchi and Villarini 2014).
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3. Results

a. Simulation of TC activity

Although the focus of this paper is TC activity fore-

casts in the Northern Hemisphere (NH) Pacific and

Atlantic, we begin by briefly exploring the global geo-

graphic distribution of TCs in FLOR. The present-day

control simulation with FLOR is able to recover many

aspects of the geographic distribution of genesis and storm

track (Figs. 1b–e) that bears considerable resemblance to

the observed (Figs. 1a–d), yet biases in the simulation of

TCs in FLOR are evident. For example, there is too

much activity in the Southern Hemisphere and Indian

Ocean. There are also regional biases in the NH Pacific

and Atlantic basins, which are the main focus of this

work. In the northern central Pacific (around the

Hawaiian Islands) there is excessive activity in FLOR,

such that the clear distinction between the east and west

Pacific in observations is not evident in FLOR. In the

North Atlantic there is no genesis in the Caribbean and

Gulf of Mexico, and very few tracks make it into the

western Atlantic.

Overall, the simulation of TCs in FLOR is compara-

ble to that in CM2.5 (Kim et al. 2014), although there is

more North Atlantic activity in FLOR than in CM2.5.

Based on a 3-day duration threshold, Kim et al. (2014)

report 2.4 TCs per year in the North Atlantic, and using

the same duration threshold FLOR has 4.5 TCs per year

(the observed average is 7.3 over the 1981–2011 period

and 6.7 over the 1966–2011 period). The annual cycle of

genesis in each basin is of comparable quality to that of

CM2.5, comparing well with observations in all basins

except the north Indian Ocean (not shown). A key de-

ficiency both in FLOR and CM2.5 is in the intensity

distribution of the TCs: in part due to their resolution,

both models have too small a range for TC intensity,

which is truncated away from high intensity.

It has been hypothesized (Kim et al. 2014; LaRow

2013) that biases in model simulations of TCs arise in

part due to large-scale climate, some of which may be

traced to biases in the SST simulation. The standard

version of FLOR exhibits substantial SST biases during

the NH TC season (July–November; Fig. 2b), with cold

biases in the North Atlantic and northwest Pacific, and

warm biases near the equator. As can be seen in the

middle panels of Fig. 3, FLOR exhibits considerable

biases in vertical wind shear and potential intensity (PI;

Bister and Emanuel 1998). High values of wind shear

tend to limit TC development and intensification (e.g.,

Frank and Ritchie 2001; Emanuel and Nolan 2004),

while high values of PI tend to enhance TC development

(e.g., Bister and Emanuel 1998; Emanuel et al. 2008).

The PI and shear biases in FLOR would tend to make

the North Atlantic, in particular the western sector of

FIG. 1. Location of (left) TC genesis and (right) TC tracks, based on (top) the IBTrACS data (Knapp et al. 2010),

focusing on TCs that last a minimum of two days, (middle) the first 30 years of a control climate simulation with 1990

radiative forcing values from FLOR, and (bottom) the first 30 years of a control climate simulation with 1990 ra-

diative forcing values from FLOR-FA.
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the Atlantic, anomalously hostile to TC genesis and in-

tensification Further, FLOR exhibits a low-shear, high-

PI region in the north central Pacific, which would act to

make that region overly favorable to TC genesis and

intensification.

The present-day control simulation with the flux-

adjusted configuration of FLOR allows us to test the

hypothesis that improved representation of mean climate

should lead to improved representation of TC clima-

tology. As designed, the flux adjustments reduce the

climatological biases in SST, leading to long-term av-

erage SST biases in theNHTC season (July–November)

SST of generally less than 0.58C, when the standard

FLOR model has biases that are much larger, even ex-

ceeding 38C over large regions (Fig. 2c). As a result of

the reduced SST biases, the FLOR-FA model has

FIG. 2. Bias and impact of flux adjustment on SST. (top) The climatological July–November values computed over

1981–2010 from theHadISST.v1 SST product (Rayner et al. 2003); results are very similar when comparing against SSTs

from either the ERA-I (Dee et al. 2011) orMERRAanalyses (Rienecker et al. 2011). (middle),(bottom) The difference

between the climatological July–November values averaged over the first 100 years of the present-day control simulation

with FLOR and FLOR-FA, respectively. Notice the reduction of bias arising from flux adjustment.

1 NOVEMBER 2014 VECCH I ET AL . 8001



a substantially improved simulation of many aspects of

near-surface climate, including vertical wind shear and

PI over the NH TC season (lower panels in Fig. 3).

Concurrent with improvements in NH PI and wind

shear, the climatology of Pacific and Atlantic TC genesis

and tracks in FLOR-FA is improved relative to the

standard version of FLOR (Fig. 1). The flux adjustments

cause the western NorthAtlantic to be less hostile to TCs,

allowingTCgenesis and track to extend into theCaribbean,

the Gulf of Mexico, and the Sargasso Sea; in FLOR-FA

there is a clear, and more realistic, separation between

eastern and western North Pacific TCs. These results lend

support to the hypothesis that NHPacific andAtlantic TC

frequency and track simulation depend, to a substantial

degree, on improved simulation of large-scale climate.

However, the FA run does not improve all aspects of

TC simulation in FLOR. In particular, FLOR-FA does

not produce substantial improvement in the simulation

of Indian Ocean and Southern Hemisphere TC clima-

tology (Fig. 1), suggesting that factors beyond those

addressed through flux adjustment are important to

correctly simulating TCs in these regions. Currently, we

are exploring a set of possibilities for misrepresented

processes in the model that could be behind these

persistent TC biases. We suspect that the spuriously

enhanced convection in the Southern Hemisphere

tropics (known as the ‘‘double intertropical convergence

zone’’ error) that has been pervasive in dynamical

models for decades is partly to blame for these TC er-

rors, the underlying causes for which remain elusive.

We now focus more closely on the simulation of TC

density in the NH Pacific and Atlantic by comparing

108 3 108 TC density in observations (Fig. 4a) and the

FLORmodels (Figs. 4b,c). Consistent with the TC track

maps in Fig. 1, FLOR (Fig. 4b) has excessive activity in

the North Pacific, particularly in the central and western

sections, and almost no activity in the western Atlantic.

The flux-adjusted version of FLOR (Fig. 4c) shows

considerable improvement over FLOR in the Atlantic,

and some improved representation of the separation

between the east and west Pacific TC basins. However,

FLOR-FA still has too much activity in the Pacific rel-

ative to the Atlantic—a deficiency seen in other models

at GFDL, even when forced with observed SSTs (e.g.,

Zhao et al. 2009, 2010; Chen and Lin 2011). The source

of this deficiency in the TC simulation is still poorly

understood, although it appears to originate in the at-

mospheric component of the model.

FIG. 3. Bias and impact of flux adjustment on (left) vertical wind shear and (right) TC potential intensity. (top) The climatological July–

November values computed over 1981–2010 from theMERRAanalysis (Rienecker et al. 2011); results are very similar when compared to

output from the ERA-Interim reanalysis (Dee et al. 2011; not shown). (middle),(bottom) The difference between the MERRA clima-

tological July–November values averaged over the first 100 years of the present-day control simulation with FLOR and FLOR-FA,

respectively. Notice the reduction of bias arising from flux adjustment.
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Figure 5 shows the rank correlation of TC density to

Niño-3.4 SST anomalies (SSTA) in observations and the

present-day control simulations of FLOR and FLOR-

FA. The observed record indicates that TC density in the

west Pacific shows a strong positive relationship to El

Niño, with weaker positive correlations in the east Pa-

cific and negative ones in the Atlantic (Fig. 5a). To some

degree FLOR recovers some of the basic features seen

in observation, with positive correlations in the west

Pacific and negative correlations in the Atlantic (Fig. 5b).

However, FLOR also exhibits differences with obser-

vations: the region of positive correlation in the west

Pacific is displaced about 208–408 to the east relative to

observations, the negative correlation values in the

North Atlantic are larger than observed (and there is

insufficient activity to compute a correlation in the

westernAtlantic), and the far eastern Pacific shows large

negative correlations that are absent in observations,

which shows nominally positive correlation. Meanwhile,

the correlations of TC density to Niño-3.4 in FLOR-FA

agree more with observations than do those in FLOR

(Fig. 5c). Flux adjustment appears to improve the sen-

sitivity of TC activity to climate variability, in addition to

improving aspects of the mean TC climatology.

We speculate that the differences in relationship of

TC activity to El Niño in FLOR and FLOR-FA may

be in part due to the differences in the character of El

Niño in each version of the model. The amplitude of El

Niño in FLOR is substantially larger than that in ob-

servations and in FLOR-FA (Fig. 6; Wittenberg et al.

2014), including a larger number of ‘‘extreme’’ El Niño

events in which atmospheric convection makes its way

across to the eastern equatorial Pacific (e.g., Vecchi and

Harrison 2006; Vecchi 2006; Lengaigne and Vecchi

2010). We hypothesize that the stronger El Niños in

FLOR, with a more eastward extension to their convective

anomalies, would lead to an enhanced negative response in

the east Pacific and North Atlantic and an eastward ex-

tension of the west Pacific positive correlation. This hy-

pothesis is currently being tested with a suite of

perturbation experiments (L. Krishnamurthy 2014, per-

sonal communication).

FIG. 4. Long-term average 108 3 108 TS density: (a) 1980–2011 average from IBTrACS

(Knapp et al. 2010) and (b),(c) the average over the first 100 years of the present-day control

simulation with FLOR and FLOR-FA, respectively. Blue box in the northern central Pacific

indicates the 108 3 108 scale, for reference.
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b. Forecast of August–October SST

We begin our analysis of the retrospective forecasts

using FLOR and FLOR-FA by focusing on the retro-

spective skill for August–October SST (ASO-SST) over

the period 1981–2012 (Fig. 7), since August–October is

the peak of TC activity in the NH. For the July-, April-,

and January-initialized forecasts highlighted in Fig. 7,

FLOR and FLOR-FA exhibit comparable correlation

when forecasting ASO-SST, and both exhibit skill that is

either comparable to or somewhat better than CM2.1.

For all threemodels, forecast skill for ASO-SST is larger

for shorter leads (forecasts initialized 1 July and veri-

fying 1 August through 31 October) than for longer lead

forecasts (initialized 1 April and 1 January), as one

would expect. Improvements relative to CM2.1 are

most prominent in the western equatorial Pacific, at the

edge of the observed west Pacific warm pool—a key

location for the generation of the remote connections

to tropical Pacific variations. As noted in Jia et al.

FIG. 5. Rank correlation of 108 3 108 TS density and August–October Niño-3.4 SST anomalies. (a) 1980–2011 rank correlation of TC

density from IBTrACS (Knapp et al. 2010) against Niño-3.4 SSTA from HadISST (Rayner et al. 2003); (b),(c) rank correlations over the

first 100 years of the present-day control simulation with FLOR and FLOR-FA, respectively. In (a) the rank correlation is masked at the

p 5 0.2 level, with nonsignificant values shown by unshaded contours. In (b) and (c) the rank correlation is masked at the p 5 0.1 level.

Gray shading in all panels indicates the regions of the northern Pacific and Atlantic in which TC density for each dataset is nonzero for

25% of the years. Blue box in the northern central Pacific indicates the 108 3 108 scale, for reference.
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(2014, manuscript submitted to J. Climate) FLOR and

FLOR-FA show some improvement over CM2.1 in

forecasts of eastern equatorial Pacific ASO-SSTs when

initialized before boreal spring. Tropical Atlantic

ASO-SST skill is comparable in all three systems, with

slightly larger nominal correlation values in the FLOR-

FA forecasts.

For January and April start dates, forecasts of ASO-

SST in west Pacific regions of TC genesis exhibit sub-

stantially improved correlation in FLOR compared to

CM2.1, with more modest improvements in the east Pa-

cific and North Atlantic. A concern prior to generating

these forecasts was the potential inconsistency be-

tween the ocean initial conditions generated using

CM2.1 and the FLOR models, but any impact of that

inconsistency is not sufficient to reduce the overall

ASO-SST forecast skill with FLOR below that of

CM2.1. We are thus encouraged to explore the ability

of FLOR and FLOR-FA to predict seasonal NH Pa-

cific and Atlantic TC activity from January, April, and

July initial conditions.

c. Forecast of basinwide TC activity

As a first step in assessing FLOR’s TC forecast skill,

we focus on retrospective forecasts of Atlantic hurricane

frequency. While our ultimate goal is forecasts of

regional TC activity, basinwide Atlantic hurricane fre-

quency provides a useful touchstone.A hybrid statistical–

dynamical forecast system for hurricane frequency based

on CM2.1 has been developed (Vecchi et al. 2011; see

their section 2.e.i), and this hybrid system (HyHuFS) is

readily applicable to forecasts of SST from any model,

including FLOR and FLOR-FA. We can then compare

the performance of the HyHuFS scheme in FLOR and

FLOR-FA to that in CM2.1 (their predecessor model),

and these can be compared to forecasts based on counting

TCs directly in FLORandFLOR-FA.Weassess the 1981–

2012 retrospective performance of these basinwide North

Atlantic hurricane frequency forecasts (Fig. 8) through the

Spearman rank correlation (Rrank) and mean square skill

score (MSSS), which provide complementary information

about the performance of the forecast systems (Goddard

et al. 2013). We use rank correlation as our correlation

metric, sincewe do not expect the ensemble-mean forecast

of number of hurricanes and the number of hurricanes

observed each year (which is an integer count) to follow

a Gaussian distribution. Rank correlation describes the

ability of the forecast system to identify the relative or-

dering of years (least to most active) in the observed re-

cord correctly, while MSSS also includes information

about the conditional bias of the forecasts. Both Rrank and

MSSShave a value of 1 for a perfect forecast, with negative

values indicating substantial failures in performance.

For most forecast initialization times, HyHuFS ap-

plied to FLOR and FLOR-FA SST forecasts performs

as well as or better than when applied to CM2.1 SST

forecasts. For July–initialized forecasts CM2.1 HyHuFS

has similar retrospective Rrank to HyHuFS from FLOR

and FLOR-FA, but both FLOR and FLOR-FA out-

perform CM2.1 in MSSS, reflecting a larger conditional

bias in the short-lead hybrid forecasts with CM2.1. For

all leads, the HyHuFS forecasts with FLOR-FA SSTs

show the best overall performance. Since HyHuFS is

based on the scaled temperature difference between

Atlantic and global tropical SST, FLOR-FA is able to

successfully predict the difference between tropical

Atlantic and tropical-mean SST in a way that leads to

skillful Atlantic basinwide hurricane forecasts from one-

to three-season leads.

Comparing the darker blue bars and red bars in Fig. 8,

representing the hybrid and dynamical forecasts re-

spectively, it is clear that the hybrid statistical–dynamical

forecasts of Atlantic hurricane frequency outperform the

purely dynamical forecasts based on counting TCs in both

FIG. 6. Power spectrum of Niño-3.4 SST (58S–58N, 1708–1208W

average) based on observational estimates, FLOR, and FLOR-FA.

Black line shows the power spectrum computed from monthly

Niño-3.4 SST usingHadISSTv1 (Rayner et al. 2003). The red (blue)

line shows the power spectrum computed from monthly Niño-3.4

SST from FLOR (FLOR-FA). Thick lines show the values over

a 100-yr segment, thin lines show the values over nonoverlapping

33-yr segments to highlight variability.
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FLOR and FLOR-FA, at least at longer leads. This result

may appear counterintuitive, yet is reasonable given the

large amplitude of variations in hurricane frequency in

the Atlantic that are unconstrained by SST (Zhao et al.

2009, 2010; Villarini et al. 2010, 2012); in an SST-forced

AGCM of comparable resolution to this, the standard

deviation of NA hurricane frequency across ensembles

forced with identical SST is 1.7 hurricanes per year

(Zhao et al. 2009, 2010). Uncertainties in forecasts of

hurricane frequency include an element arising from un-

certainties in forecasts of large-scale climate (the two SST

indices in HyHuFS, and the totality of the climate signal

impacting hurricanes in the dynamical forecasts). The

HyHuFS system predicts the expected value of hurricane

frequency for each of the 12 ensemble members; the dy-

namical forecasts, on the other hand, give a single sample

of hurricane frequency for each of the 12 ensemble

members, so the estimates of the expected value of hur-

ricane frequency in these forecasts include a component

from inadequately estimating the expected value for each

ensemble member from a single realization. We suspect

that these results may be general to some degree, and,

for quantities with a large unforced component, prop-

erly designed hybrid statistical–dynamical models may

be expected to outperform, and to give a fuller repre-

sentation of the forecast probability density than purely

dynamical models, for the narrow questions to which

their statistical elements are targeted. Recent analysis of

FLOR forecasts of temperature and precipitation over

land indicates that statistical refinement, essentially

a reduced-space reconstruction of the predictands, leads

to improvement over the raw forecasts (Jia et al. 2014,

manuscript submitted to J. Climate). Therefore, statis-

tical and dynamical forecast methodologies should not

be viewed as competing alternatives, but efforts should

be built to integrate them to build off the strengths

of each.

From comparing the dynamical forecasts of North At-

lantic hurricane frequency in FLOR to those in FLOR-

FA (cf. light red and dark red bars in Fig. 8), it is clear that

FIG. 7. Retrospective forecast skill of 1981–2012 August–October SST. Shading indicates the retrospective correlation of predicted vs

observed SST (HadISST;Rayner et al. 2003). Focus is on (top) 1 July, (middle) 1April, and (bottom) 1 January initialized forecasts; results

are for (left) CM2.1, (middle) FLOR, and (right) the flux-adjusted version of FLOR.
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the flux adjustment leads to enhanced forecasts, particu-

larly at longer leads. This is in part explainable by im-

provements in forecasts of large-scale conditions (e.g.,

SST) in FLOR-FA (compare the skill of the hybrid

forecasts in FLOR to FLOR-FA in Fig. 8). But there is

an element of the improvement in FLOR-FA that

comes from improved representation of the TC genesis

and track structure in FLOR-FA, and the response of

TC density to climatic variations, so that TCs tend to

form and intensify in the correct position relative to

climatological and anomalous large-scale climate con-

ditions that impact their seasonal frequency. For July

start dates, there is less of an improvement in dynamical

Atlantic hurricane frequency forecasts between FLOR-

FA and FLOR, as the models have been initialized to

conditions close to observations and there has been in-

sufficient time for FLOR to have substantial drift to its

own, more biased, climatology.

The improvement in climatological TC tracks in the

FLOR-FA forecasts relative to forecasts with FLOR

can be seen in Fig. 9. For the July-initialized forecasts,

the climatological TC density in FLOR and FLOR-FA

both match observations relatively well; both models

have been initialized with observational estimates and in

the fewmonths between initialization and the end of the

TC season, there is limited drift to the large-scale cli-

mate. However, as lead times for the forecasts become

longer (April- and January-initialized forecasts), the TC

density from the initialized forecasts with FLOR ex-

hibits clear indications of the drift toward that model’s

free-running climatology. For the January forecasts,

even if the FLOR forecasts had succeeded in recovering

perfect large-scale anomalous conditions relevant to

Atlantic hurricane variability, the model’s TCs would be

imperfectly alignedwith those climate anomalies (unless

they were spatially homogeneous anomalies). We hy-

pothesize that this improvement in forecast skill of TCs

from FA should also be evident in other quantities that

exhibit strong nonlinearities (e.g., features with genesis,

limited existence, and termination; features impacted by

threshold nonlinearities), such as rainfall in arid regions,

snowfall, and midlatitude storms.

Given the improvement of North Atlantic seasonal

hurricane frequency forecasts with FLOR and, in par-

ticular, FLOR-FA over CM2.1 (Fig. 8), we wanted to

assess how the forecasts with this new model system

compared with those in the published literature (e.g.,

Vitart et al. 2007; Klotzbach and Gray 2009; Zhao et al.

2009; LaRow et al. 2010; Wang et al. 2009; Chen and Lin

2013). Each of these other published studies used a dif-

ferent verification period, and each focused on a differ-

ent combination of start dates, so we compare the

performance of the dynamical and HyHuFS predictions

FIG. 8. 1981–2012 retrospective forecast skill for North Atlantic

hurricane frequency using hybrid statistical dynamical (blue bars)

and dynamical (red bars) approaches. Values are shown for (top)

1 July, (middle) 1 April, and (bottom) 1 January initialized fore-

casts. (left) The retrospective rank correlation between the pre-

dictions and observations (IBTrACS; Knapp et al. 2010); (right)

the retrospective mean skill score square against observations

(IBTrACS; Knapp et al. 2010).
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with FLOR-FA over the verification period and start

dates used by each of the other systems (Fig. 10). In

Fig. 10, symbols above the diagonal indicate nominal

improved performance of FLOR-FA relative to the

other methods. Overall, the performance of FLOR-FA

is comparable to most of the other methods, with some

indication that it outperformed the other systems at

longer leads, particularly for the HyHuFS predictions

with FLOR-FA. That is, not only does FLOR-FA out-

perform our old system (CM2.1-HyHuFS; Vecchi et al.

2011, 2013a), but its performance is competitive relative

to other published studies. It appears that differences in

verification period are a small factor in the differences

between retrospective skills in these various methods, so

differences in correlation likely reflect differences in the

forecast methods: compare the vertical span of like

symbols (e.g., circles) in Fig. 10, which indicates the de-

pendence on verification period, with the horizontal span

of like symbols, which indicates the dependence on

method. However, retrospective performance is an im-

perfect estimate of future prediction skill.

Of particular interest is comparing FLOR-FA to the

studies of Zhao et al. (2009; light green) and Chen and

Lin (2013; violet), which were made using atmospheric

models that share some elements with FLOR [namely

the cubed sphere dynamical core of Putman and Lin

(2007)]. Themethod used in Chen and Lin (2013) differs

from that in Zhao et al. (2009) by 1) using a higher

resolution atmosphere (;25 km instead of ;50 km),

2) initializing the atmospheric state with observational

estimates, and 3) focusing on a different verification

period. The verification period alone is unlikely to ex-

plain Chen and Lin’s (2013) outperformance of Zhao

et al. (2009), since the July-initialized FLOR-FA retro-

spective forecast skill is comparable for all verification

intervals. Therefore, it appears that some combination

of the enhanced resolution and atmospheric initializa-

tion played a role in the skill difference between Zhao

et al. (2009) andChen and Lin (2013), addingmotivation

to ongoing efforts to build a fully coupled initialization

system with FLOR/FLOR-FA.

d. Forecast of regional TC activity

We are encouraged to explore the predictive skill of

FLOR for regional TC activity from its forecast quality

for North Atlantic basinwide activity (Fig. 8), NH SST

(Fig. 6) and its overall simulation of TC genesis and

track climatology (Figs. 1, 4, and 5). Variations of TC

activity at spatial scales smaller than basinwide have

been connected to large-scale modes of climate vari-

ability that are potentially predictable on seasonal

time scales, such as ENSO, the Atlantic multidecadal

oscillation, the Pacific decadal oscillation, and the

AMM. Therefore, we expect that the initialized FLOR

FIG. 9. Mean observed (black dotted; Knapp et al. 2010) and predicted (blue) 108 3 108 TC density based over 1981–2011. Results are

shows for (top) 1 July, (middle) 1 April, and (bottom) 1 January initialized forecasts, for (left) FLOR and (right) FLOR-FA. For each

forecast, density is computed for the postinitializationmonths of the calendar year for both observations and forecasts (e.g., for 1 July they

are based on July–December). Dashed box in the northern central Pacific indicates the 108 3 108 scale, for reference.
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forecasts may exhibit skill in forecasts of regional TC

activity. We further hypothesize that, particularly for

longer leads when the model biases are able to emerge

more fully, forecasts of regional TC activity with the

flux-adjusted version of FLOR should outperform those

with the standard version of FLOR. We expect FLOR-

FA to outperform FLOR in regional TC activity fore-

casts both because of its improved forecasts of basinwide

activity (Fig. 8) and because it has an improved track

climatology.

For much of the NHPacific andAtlantic basins there is

significant skill in forecasts of regional TC activity ini-

tialized 1 July over the period 1981–2011 using FLOR

and FLOR-FA (Fig. 11, top) measuring the retrospective

performance of forecasts of regional TC activity using

Rrank. The largest correlations tend to be in marine re-

gions and at themargins of themodeled and observed TC

density. There are significant retrospective correlations

over some land areas, indicating the potential for some

skillful seasonal forecasts of regional TC activity over

land, although most land areas do not show skill.

The longer multiseason lead forecasts initialized in

1 April and 1 January show a rapid decrease in retrospec-

tive skill in the FLOR forecasts (left column of Fig. 11),

with only spotty regions of significant skill in January

forecasts.However, FLOR-FA retains significant skill over

broad areas for longer, with the January-initialized

forecasts of regional TC activity in FLOR-FA compa-

rable to those initialized in April in FLOR. Flux ad-

justment leads to substantial improvement in FLOR’s

ability to predict regional TC activity, although the skill

near land decays rapidly for both FLOR and FLOR-FA.

The strongest correlations, apparent over the longest

leads, are evident in the west Pacific, generally collocated

with the region exhibiting a strong connection to ENSO,

including the narrow strip extending over Taiwan and

southeastern China (Fig. 5). This collocation suggests that

skillful ENSO forecasts are likely to be behind the skill in

the west Pacific; this remarkable long-lead prediction skill

reflects in part the reduced ‘‘spring predictability barrier’’

in FLOR relative to CM2.1 (Jia et al. 2014, manuscript

submitted to J. Climate). The North Atlantic (centered in

the Caribbean Sea and western Gulf of Mexico) and

central Pacific regions of persistent skill are not regions

with as strong a connection to ENSO as the west Pacific

(Fig. 5), suggesting that skillful forecasts of other climate

phenomena are influential. We hypothesize that pre-

dictions of theAMMare important for theNorthAtlantic

skill (Vimont and Kossin 2007, Kossin and Vimont 2007),

and that distinguishing between extreme andmoderate El

Niño events (e.g.,Vecchi andHarrison 2006; Vecchi 2006;

Lengaigne and Vecchi 2010) may provide some of the

skill in the east and central Pacific. These hypotheses are

currently being tested.

FIG. 10. Comparison of retrospective forecast skill for North Atlantic hurricane frequency from the (left) dy-

namical and (right)HyHuFS seasonal predictions with FLOR-FAwith those of othermethodologies in the published

literature. In this figure, in contrast to Fig. 8, we use the Pearson correlation against observed hurricane frequency as

ourmeasure of skill, since it was used in these other published studies. The correlations with FLOR-FAare computed

over the same periods as each published study, with the colors of the symbols indicating the method to which FLOR-

FA is being compared. The various symbols indicate the initialization month for the predictions. The 1:1 line is

indicated in dashed gray.
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The improvement in regional TC activity forecasts

by flux adjustment is further highlighted in Fig. 12,

which shows the fraction of the ‘‘TC regions’’ in the NH

Pacific and Atlantic that exhibit significant (Fig. 12a) or

substantial (Fig. 12b) retrospective rank correlation in

the forecasts of TC density. At short leads (June and July

initialization), the fraction of TC regions exhibiting sig-

nificant skill is comparable in FLOR and FLOR-FA, but

FIG. 11. Retrospective forecast skill of 1981–2011 TC density. Shading indicates the retrospective rank correlation of predicted vs

observed (IBTrACS; Knapp et al. 2010) 108 3 108 TC density, masked at a two-sided p 5 0.1 level. Results are shown for (top) 1 July,

(middle) 1 April, and (bottom) 1 January initialized forecasts, for (left) FLOR and (right) FLOR-FA. For each forecast, density is

computed for the postinitialization months of the year for both observations and the forecasts (e.g., for 1 July they are based on July–

December). Blue box in the northern central Pacific indicates the 108 3 108 scale, for reference. Gray shading in all panels indicates the

regions of the northern Pacific and Atlantic in which observed TC density is nonzero for at least 25% of the years.

FIG. 12. Percent area of North Pacific and Atlantic regions with nonzero observed 108 3 108 TC density in one-

quarter of available years that show over 1981–2011, when compared with observations (IBTrACS; Knapp et al.

2010): (a) significant (at p , 0.1) retrospective forecast rank correlation, and (b) retrospective rank correlation

greater than 0.5. The different lines show the values using FLOR (black) and FLOR-FA (blue); the horizontal axis

indicates the initialization dates (longest lead forecasts are to the right). For the July-initialized forecasts, the red,

yellow, and green symbols indicate the retrospective skill measures for the FLOR1FLOR-FA24-member ensemble,

FLOR1FLOR-FA1FLOR-A06 36-member ensemble, and the FLOR1FLOR-FA1FLOR-A06 1 FLOR-FA.05

48-member ensemble.
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for longer leads there is a rapid divergence with FLOR-

FA showing considerably larger areas with significant

correlation. The fraction of TC regions with significant

(at p , 0.1) correlation in FLOR-FA forecasts initial-

ized in January (three-season lead) is larger than for

FLOR forecasts initialized in April (two-season lead);

January-initialized forecasts with FLOR-FA have al-

most twice the area with significant rank correlation

than do those with FLOR (Fig. 12a). There is a notice-

able jump in skill between forecasts initialized in May

and those in June, which likely reflects the so-called

spring predictability barrier that remains in the FLOR

forecasts of ENSO (Jia et al. 2014, manuscript submitted

to J. Climate). The difference between FLOR-FA and

FLOR performance is more striking if one focuses on

the percentage of TC regions that exhibit retrospective

rank correlation exceeding 0.5 (Fig. 12b); for all start

dates FLOR-FA shows more area with rank correlation

exceeding 0.5. With FLOR, flux adjustment adds about

a season of lead to the forecast performance of regional

TC activity as measured by these two metrics.

This initial suite of forecasts with FLOR and FLOR-

FA were performed with 12 ensemble members, which

is likely sufficient for forecasts of large-scale ocean in-

dices like Niño-3.4. However, it is unclear the extent to

which 12 ensemble members are sufficient for quantities

with a large internal variability component like regional

TC activity. It is possible that the skill in seasonal, re-

gional TC forecasts described above may be enhanced

through a larger ensemble set. To provide a preliminary

assessment of the impact of larger ensemble sizes on the

retrospective forecast skill of regional TC activity, we

make use of the July-initialized forecasts that are avail-

able from four versions of FLOR (FLOR, FLOR-A06,

FLOR-FA, and FLOR-FA.05), and the observation that

the July-initialized skill for TCdensity in all four versions is

comparable, to generate a pseudo-48-member ensemble

(Fig. 13). This 48-member ensemble should be compared

to the 12-member ensemble with FLOR and FLOR-FA

(Figs. 11a,b). It is worth noting that the retrospective

forecast performance of FLOR-A06 and FLOR-FA.05

in the quantities shown in Figs. 7, 8, 10, and 11 is com-

parable to that of FLOR and FLOR-FA, although there

are differences in the ocean simulation of the various

models and the spatial structure of each model’s ENSO.

Increasing ensemble size leads to systematic improve-

ments in the performance of seasonal forecasts of re-

gional TC activity, as can be seen through the red, yellow,

and green dots in Fig. 12.

Although in this test it appears that the large-scale

gains from additional ensemble members are somewhat

small (cf. Fig. 13 with Figs. 11a and 11b), at this stage we

are unable to assess the extent to which these results for

July-initialized forecasts will hold for other leads (as the

forecast performance of FLOR and FLOR-A06 de-

grades with lead more rapidly than FLOR-FA), or for

a larger ensemble with FLOR-FA. Further, some of the

regions in which there are increases in retrospective

correlation from additional ensemble members are near

land (e.g., the northern Gulf of Mexico, the far western

west Pacific, and the far eastern east Pacific), which

could be of practical importance. We hypothesize that

FIG. 13. Retrospective forecast skill of 1981–2011 TC density combining different versions of FLOR and FLOR-

FA initialized 1 July to create a larger ensemble size. Shading indicates the retrospective rank correlation of pre-

dicted vs observed (IBTrACS; Knapp et al. 2010) 108 3 108 TC density, masked at a two-sided p5 0.1 level. Results

are based on a 48-member ensemble created by combining the 12-member ensembles of predictions with FLOR,

FLOR-FA, FLOR-A06, and FLOR-FA.05; see sections 2a and 2b for descriptions of the models). TC density

computed over July–December. Blue box in the northern central Pacific indicates the 108 3 108 scale, for reference.

Gray shading indicates the regions of the northern Pacific andAtlantic in which observed TC density is nonzero for at

least 25% of the years.
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the nominally nonmonotonic evolution of skill with lead

time in these predictions (e.g., Fig. 12b, comparing the

skill in FLOR-FA in theGulf ofMexico in Fig. 11) is due

in part to the small ensemble size, and that a larger en-

semble may make the forecasts skill decay more

monotonically with lead time. Therefore, while the

12-member ensemble size was sufficient here to show

the potential for seasonal forecasts of regional TC ac-

tivity, we recommend larger ensemble sizes if possible,

with lagged ensembles (e.g., Vecchi et al. 2011, 2013a)

offering a potential way to create slightly larger en-

semble sizes.

4. Summary and discussion

These initial retrospective forecasts of regional, sea-

sonal TC activity with this high-resolution coupled cli-

mate model show skill across much of the NH Pacific

and Atlantic basins multiple months in advance. In

certain regions the flux-adjusted version of this model

leads to significant regional skill multiple seasons in

advance (Fig. 4). At all seasons, the rank correlations for

regional TC activity are comparable to those seen with

basinwide activity forecasts with these models (Fig. 3).

Improvements in simulation of mean climate and TCs

through enhanced resolution and flux adjustment can

lead to skillful retrospective forecasts of regional cli-

mate extremes, suggesting that future forecasts of these

quantities may also be skillful.

Both FLOR and FLOR-FA produce somewhat re-

alistic TC simulations in the NH Pacific and Atlantic

basins, although deficiencies remain in both models.

Overall, the simulation of FLOR-FA is superior to that

of FLOR, indicating that improvements in the mean

climatological SST improve simulation of TCs, either

directly by improving the climatological simulation of

large-scale conditions that impact TCs or indirectly by

impacting the character of interannual variability.

Although these initial results are encouraging, these

forecasts may be improved through a number of ave-

nues. In these forecast experiments we did not attempt

to initialize the atmosphere beyond the information that

can be recovered from prescribing SST. Given the role

of atmospheric patterns not necessarily linked to SST in

modifying TC tracks (such as the role of the North At-

lantic Oscillation in steering Atlantic TCs; Elsner et al.

2001; Kossin et al. 2010; Colbert and Soden 2012;

Villarini et al. 2012, 2014a), we suspect that atmospheric

initialization of these modes may provide some addi-

tional improvement to these results. We have also used

ocean and sea ice initial states built from a different

model system; we are currently testing the hypothesis

that, by providing an initial state more consistent with the

underlying model, initial conditions generated within

FLOR should enhance its skill in predicting large-scale

and regional climate, and the seasonal statistics of weather

extremes (such as TCs). Further, our current ensemble

size is 12, which is likely adequate for forecasts of large-

scale climate indices (such as ENSO indices) but may be

inadequate for quantities with a large stochastic com-

ponent (such as regional climate and the statistics of

weather extremes). We are testing the impact of a larger

ensemble size in improving forecasts of regional TC

activity. This study was performed with two versions of

a single climate model, and studies indicate that multi-

model approaches can outperform forecasts using a sin-

gle model. As climate models at resolutions comparable

to ours are being run in multiple centers around the

world (e.g., Bell et al. 2013), the ability of different

models and multimodel ensembles to outperform the

results shown here should be explored.

As we noted, a statistical–dynamical hybrid approach

outperformed the dynamical model at forecasting

basinwide Atlantic hurricane frequency. The extent to

which hybrid statistical–dynamical forecasts can im-

prove on the results shown here should be explored. In

particular, since forecasts of TC activity—particularly

regional TC activity—are inherently probabilistic, it is

important to develop appropriate error models for these

regional TC forecasts. We suspect that the interensemble

spread of the forecasts is likely to be an inadequate error

model, and efforts to build more adequate ones are par-

amount, because the utility of forecasts such as these will

be limited by the absence of a suitable and reliable esti-

mate of their uncertainty. For example, the results of

Camargo et al. (2007c, 2008), Kossin et al. (2010), Villarini

et al. (2010, 2012, 2014a), Colbert and Soden (2012), and

Zhang et al. (2012, 2013a,b) suggest some basis by which

hybrid models of regional TC activity could be built to

complement and augment the purely dynamical results

presented here. Efforts are underway to assess these

strategies.

The analyses of seasonal predictions of regional TC

activity in this manuscript have focused on deterministic

measures of accuracy using the ensemble mean of the

forecast as the ‘‘best estimate.’’ As was argued above

and elsewhere (e.g., Vecchi and Villarini 2014), climate

predictions should be explicitly probabilistic. This study

has not explicitly developed a probabilistic element to

regional TC predictions, and doing so remains a priority

for extensions beyond the present analysis. Future work

should concentrate on building error models for the

predictions of regional TC activity, and probabilistic

assessments of the forecast performance. Such activities

will likely lead to insights into the mechanisms control-

ling regional TC activity, as well as into its predictability,
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and are likely to yield much more reliable predictions.

Large ensembles (with more than the 12 members pres-

ently available) are likely to be very useful in this process,

providing an additional motivation for larger ensembles

in future predictions (beyond the improvement in de-

terministic performance).

The results presented here show that skillful dynam-

ical forecasts of seasonal regional TC activity at sub-

basin scales are feasible months and seasons in advance,

including in regions over and near land. The potential

for these forecasts should be developed and enhanced,

and their performance improved. Enhancements to

models and understanding, and increased computer ca-

pacity, should enable these future developments.
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