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ON THE SECOND HANKEL DETERMINANT OF

AREALLY MEAN p-VALENT FUNCTIONS

BY

I. W. NOONANÍ1) AND D. K. THOMAS

ABSTRACT.  In this paper we determine the growth rate of the second

Hankel determinant of an areally mean p-valent function.  This result both

extends and unifies previously known results concerning this problem.

I. Introduction and statement of results. Let /be regular in y « {z: |z|

< 1}, with/(z) = 2"_0anz". The qth Hankel determinant of/is defined for

q > 1 by

"n + l "n+q-l

<n + l

Hq(n) =

an+<7-l     .     fln + 2</-2

If n(io) is the number of roots in y of the equation f(z) = cj, / is said to

be areally mean p-valent in 7 [1] if for all R > 0,

W(R, f) = \^Hn(pë$)pdpdQ <pR2.

As usual, / is normalized so that max{|flfc |: 0 < ft < [p]} = 1, and the class of

normalized areally mean p-valent functions is denoted by S .

The problem of determining the rate of growth of 77(ri) as n —► °° when

fESp is well known. Ch. Pommerenke [9] has shown that for p > l,Hq(n) =

0(1) nfcV<7-<7/2 where k _ ißp^/p   The present authors have shown [8] that

ifq>2andp> 2(q - I), then TT^n) = 0(l)n2p'1~q2, where the exponent is

best possible. For strictly univalent functions, Pommerenke [10] has shown

that for q > 2, Hq(n) = 0(i)„-(i/2+«<7+3/2 ^ where ß > 1/4000. In particular,

H2(n) = 0(l)n1/2"2". On the other hand, W. K. Hayman [4] has shown that

H2(n) = o(l)nxl2 when/GSj, and that this is best possible.

It is clear that the known results concerning this problem are incomplete,
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338 j. w. NOONAN AND   D. K. THOMAS

in the sense that given q, best possible growth rates for 77 (n) are known only for

certain values of p. In this paper we shall examine the behavior of 772(n) when

fESp. We prove

Theorem 1. Let fESp.  Then, as «-—►»,

loçiyr1,        o<p<i/4,

H2(n) = anan+2-a2n+x=   o(lyi2p-3l2,      l/4<p<5/4,

0(l)n4p-*,        p > 5/4.
i

7/p > 5/4 and lim^O - r)2pM(r, f) = 0, fAen 772(n) = o(lyiAp-*.

In the opposite direction we have

Theorem 2. Given any positive sequence {en} with lim„_1.aoen = 0,

fAere ex/sis fES  such that for infinitely many n,

lenn~\ 0<p<l/4,

\H2(ri)\>\
{e„n2p-3'2,      l/4<p<5/4.

7n addition, ifp > 5/4 andfESp satisfies a = lim^O - r)2pM(r, f) > 0, then

H-mÄ«) l/"4p"4 - a2Qp - 1)/F(2p)2.

Theorem 2 shows that the results of Theorem 1 are best possible, and also

that when p > 5/4, 0(1) cannot in general be replaced by o(l). These results

essentially solve Problem 6.14' of [2] when q = 2.

II. Preliminary results. With/(z) = 2~_0fl„z" and.y any complex number,

we set A0(n + 2,7,/) = an+2, Ax(n + l,y,f) = an+x - yan+2, and

A2("r y, f) = a„- 2yan+x + y2an+2, so that

(2.1) 772(n) = A2(n, y, f)A0(n + 2,y, f) - Ax(n + 1, v, f)2.

We shall estimate the various terms in (2.1) by combining two methods due

originally to W. K. Hayman [3], [4]. For the sake of brevity, we shall refer

to the existing literature whenever possible.

If Zj £ 7 and z = pe16, Cauchy's theorem gives that

|A2(n,z1,z/')|<^-^1/^|z-z1|2lf-'(z)|dfl,

and upon integrating from p = 1 - 3/n to p = 1 - 2/n, we find that

|A2(n, Z,, Z/')| r27rrl-2//i ,     ,
(2.2) -2—¿-= 0(1) j 0 }xJIh \z - zx \2 lf'(z)\pdpd$.

Henceforth we assume that n is fixed and that zx has been chosen so that
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THE SECOND HANKEL DETERMINANT 339

|z,| = nl(n + 1), \f(zx)\=M(n/(n + 1),/). We also set Mj = \f(zx)\,Mk =
ex~kMx,k>l.

Technical considerations dictate that we now proceed in two similar yet

different ways. We first divide E = {z: 1 - 3/n < p < 1 - 2/n} into disjoint

subsets Ek= {z E E: Mk+X < \f(z)\ <Mk}. Upon using the techniques of [3]

(see also [8, p. 508] ) we conclude that

\A2(n, Zx, zf')\ ~  ( f2ir fl-2/n , |W
(2.3)-= 0(1) Z   Jo J x.3,n \z - H ?Gk(\f(z)\)pdpde J,

where Gk(R) = MlR2l(M2k + R2).

Following Hayman [4], we now introduce a slightly different method.

Choosing X > 2, applying the Schwarz inequality to (2.2), and noting that

Si"S'l-Jjl I/WO + \f(z)h~lpdpde <A(X)

(see [4, p. 81]), we deduce that

|A2(n, zx, zf')\

n

<A(X){n-xl2 +(/o fjln \z-zx f\f(z)\XpdpdO)      \.

(As usual, Ax, A2,. .. denote absolute constants, while A(x, y,. . .) denotes

a constant depending only on x, v,....)

The estimate (2.3) will be used when p > 5/4, and (2.4) will be used when

l/4<p<5/4.

HI. Estimate for (2.4). Applying [6, Lemma 2] and [4, Lemma 3] to

ft* \pew - zj |4 If (V9)!* de, we find that

(3.1)      j20n\peig -z, \4\f(pew)\xd6 <A(p. X) + Ax(Jx(p) + J2(p)),

where

■W = /í/a/o*VeÍ6 ~zi\2\firéetrlog p/rdddr,

J2<ß) = Ji/2Pô te'" - ¿i 14\f'(reie)\2\f(reie)\x-2rlog p/rdd dr.

The essential part of our proof consists of deriving appropriate estimates

for Jx(p) and J2(p). We begin with J2(p).
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340 J. W. NOONAN AND D. K. THOMAS

Lemma 1. Let fESp,\>2,k a positive integer.  Then for any a satisfy-

ing 0 < a < k, we have

r2ir
fP   f¿\reie-zx\2k\f'(reie)\2\f(re'e)\X-2rlogplrd9 dr

1/2

2

<A(p, \,a)¿ ,      vi

HT) l/K2pX<2a+l,

Í2o\a  I2p
Í-) min {Mx, (1 -pY-2P}(2P*-2«-l)/2p

if2p\>2a + 1.

Proof. Divide the range of integration into subsets F, = {rei6: 1/2 <

r<p, Mj+, < \f(rei6)\ < M¡}; also note that log p/r < 2(1 - r). Following

Hayman [4], we suppose that M/-+x >M(l/2,f) for at least one value of/.

(The opposite case is trivial.) Since 0 < a < k, \rew - zx \2k < A\reie - zx \2a,

and so [5, Theorem 1]

|re/ô -z, |2* <A(p, aXn2plMx)a2l2p(l-r)-1\f(reie)\(~2a-i)/2p.

Therefore

ff\-J0 -~  \1k\f'{,J6\\2\f(,J6\\\-2
Fi

\reie - z, |2,c|/'(re/e)|2|/(rei9)r-2log p/rdOdr

(n2p \fl2/2p      ,=

where e = - X + (2a + l)/2p.

If e > 0 (i.e. 2p X < 2a + 1), we choose constants b and A(p) with 0 <

A <M(l/2,f) <A(p), we define jQ =j0(n) = max{/: Mj+X >M(l/2,f)}, and

we conclude that A <M¡ +x <A(p). With F" = {reie: \f(reie)\ <M¡o+x}, it

follows easily from the definition of the class S  that

Sf\reie -zx\2k\f'(reie)\2\f(reiB)\*-2logp/rdrde <A(p, X, k).
F*

The above remarks therefore imply

J1/2.C|re'0 " zi l"l/Vö)l2\f(reie)\x-2r log plrd8dr

F*        /=!    Ff

(„2p \a2/2p  /o
W)      t,M7e-
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THE SECOND HANKEL DETERMINANT 341

Since e>0, Zj=xMJe <b~e2jLxé~ti<00,and the lemma follows.

If e < 0 (i.e. 2pX > 2a + 1), we divide the range of integration into subsets

Ej = {re16: 1/2 <r <p, TV/+1 < \f(rei6)\<Nf}, where TV, =

min{Mj, A(p)(l - p)~~2p}, Nf = ex~,Nx. As above, we conclude that

ff\reie -zx |2k|/Ve)l2l/(^'9)lx-2log plr drdd
Ei

<A(p,a,X)(n2pIMxf2l2pNJf.

Upon summing from / = 1 to °° and using the fact that

ZNj-e<A(p,X,a)Nxe,
i=t

we arrive at the conclusion of the lemma.

We now estimate Jx (p).

Lemma 2. Let fESp, X> 2,and 0 <a< 1. Suppose that I <2pX<

2a+ 3 and 2pX ± 2a + 1, 2pX # 3.  77ien Jx(p) <A(p, a, X) (n2pIMx)a2l2p.

Proof.   Using [6, Lemma 2] and [4, Lemma 3], we see that

K(r) <AX + l6Kx(r) + 4X2K2(r),

where

K(r) = ¡2o\reie-zx\2\f(reie)Ne,

Ki® = /1/2/r lAte")^! - t)d6 dt,

K2(r) =frxl2fô\teie -zx\2\f(teie)\x-2\f'(teie)\2(l -t)dOdt.

From Lemma 1 (with ft = 1), we find that

i(n2pIMx)a2l2p,   ifl<2pX<2a + l,

(n2plMx)a2l2pmm{Mx, (1 - r)-2P}(2p\-2a-i)/2P >

if 2pX>2a+ 1.

Also, from [1, Theorem 3.2], we have fln\f(tete)\xd6 <A(p, X)(l - r),_2p\

provided 2pX> 1. Thus

!1, ifl<2pX<3,
(l-r)3-2P,   if2pX>3.

Hence
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342 J. W. NOONAN AND D. K. THOMAS

K<r)<A(p..'•^(^J2p \a ¡2p
1, if 1 <2pX<2a + l,

(1_r)l + 2a-2p\)    if2a+i<2pX<3

or 2pX > 3.

Since Jx(p) — f1,2K(r)log p/rdr, the lemma now follows immediately.

We can now estimate A2(n, zx, zf'). Choose a such that 0 < a < 2, and

put a = a/2. Then Lemmas 1 and 2 imply that

(3.2) Jx(p)+J2(p)<A(p, X, a)(n2plMx)a '2p

provided 1 < 2pX < 2a + 1, 2pX # a + 1, 2pX ¥= 3. Upon combining (2.4),

(3.1), and (3.2), we find that

(3.3)

lA2(n, zx, zf')\ j _ ^^1/«2pV2/4,'i f1"2/" , Î
-<¿<X)j„ ll2+A(p,a,X)[—)        j .Ls/li *|

<¿(p,a, ^)n-il2(jPJ

1/2

,2p\«  /4p

for any a such that 0 < a < 2, 1 < 2pX < 2a + 1, 2pX ¥= a + 1, 2pX =¿ 3.

PV.  Proof of Theorem 1 when 0 < p < 1/4 or 1/4 < p < 5/4.  If 0 < p

< 1/4, then [11] an - o(l)n~ll2, and so trivially 772(n) = o(l)n_1. Now

suppose 1/4 <p < 5/4. We first note that for p > 1/4,

(4.1) laJ^OK"1/2^-1/4",

a result proved exactly as in [4] in the case p = 1.  Also, with zx = e  "n/(n + 1),

we have

A2(n, éent f) = n-lA2(n, zx,zf) + (n + l/V'S,^-

Combining this with (3.3), (4.1), and the fact that 1/4 <p < 5/4, we see that

(4.2)
id

A2(n, e  n,f)<A(p, a, Xyi^V^IMJ" '4p

with a as before.

We now prove that 772(n) = o(l)n2p-3/2 when 1/4 < p < 5/4.  It follows

from (4.1) and (4.2) that

A2(n, eiBn, f)A0(n + 2, e19", f)<A(p, a, \yi2p-3l2(n2pIMxf,

where 5 = (a2 + 1 - 4p)/4p.   Choose a = (2pX - l)/2 + e, where X > 2 and

e > 0 are chosen such that all previous restrictions involving a are satisfied,

and also such that S < 0. (Elementary computations verify that such a choice
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THE SECOND HANKEL DETERMINANT 343

is possible; the fact that 1/4 < p < 5/4 is essential here.)

We next note [6] that

in2"-2^,      l/4<p<l,
(4.3)        14,(7!+ l,ew«,/)|<i4G>,X)<

(n2""2, p>l,

and so

|A1(n+l,e'9",/)|2=o(l)n2''-3/2,

where again we have used 1/4 <p < 5/4. We thus conclude from (2.1) and the

above remarks that

\H2(n)\ln2p-3'2 <A(p)(Mxln2p)~S + o(l).

lfMx =M(n/(n + l),f) = o(l)n2p, then (since-6> 0)772(n) =

o(l)n2p_3/2. IfM, *o(l>i2p, it is well known [1] thatlim^^l -r)2pM(r,f)

> 0. From (3.1) and Lemmas 1 and 2, it follows that with X > 2 fixed,

fln\pe'B -zx\4\f(peie)\xdd is uniformly bounded for 0 <p < 1. We now use

exactly the same technique as does Hayman [4, p. 90] to conclude that

A2(n, Zj, zf') = o(l)nxl2, and then as above we deduce that

H2(ri) = o(l)n2p~3l2.

This completes the proof of Theorem 1 in the case 1/4 < p < 5/4.

V. Estimate for (2.3). We now assume p > 5/4. Our method is essentially

that of [8], the major difference being that since we are dealing with the

specific case q = 2, p > 5/4, we can make more efficient use of the two-point

modulus bound than was possible in [8]. In view of the technical nature of

this modification, we shall merely indicate the sort of changes to be made in

[8]. Verification of the complete details will be left to the interested reader.

Recalling that Gk(R) = M^R2^^ + R2), we see upon using [6, Lemma

2] and [4, Lemma 3] that

/JV-ï,!4^!/^)!)*
can be estimated in terms of seven integrals (see [8, p. 511] ), of which the

most troublesome is

(5.1) JV1 -'O«" -*1\2Gk(nteiB)l)detdt.

Reapplying [6, Lemma 2] and [4, Lemma 3], we can estimate the inner integral

of (5.1) in terms of seven more integrals, the most troublesome being

C* r**     ,*        -,   ,     « , K(Mk~R2)
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344 J. W. NOONAN AND D. K. THOMAS

In order to estimate this integral we first replace the range of integration

byi2= {txew: 1/2 <f, < t, \ f(txei8)\ < Bx}, where Bx  =

min{Mk, A(p)(l - t)~2p}. We now divide fi into subsets fim = {f,e,e£ Í2:

Bm + X < \f(txé6)\ <Bm}, where 77m = e1-m5j. An application of the two-

point modulus bound (put a = A = 1 in [5, Theorem 1]) allows us to conclude

that integration over S2m contributes at most A(p)(n2pIMx)ll2pB%p-3V2p,

and upon summing from m = 1 to °°, we conclude that (5.2) is bounded above

by A(p)(n2p/Mx)ll2pmin{M2-3l2P, (1 - t)3~Ap}. Combining this estímate

with the technique of [8, p. 517], we see that integration of (5.2) contributes

at mo%t A(py^p-^kl2p(n2pIMxyi2pM[4p-sy>l2p to (5.1).

After re-examining the arguments of [8] in light of the changes suggested

above, we find that

/Jpe/e -zx\4Gk(\f(pei8)\)de<A(p)e-^p-^kl4p(n2pIMxfl2pn4p-s.

Summing these estimates (as required by (2.3)), we find that

\A2(n, zx, zf')\ /n2pV/4p   «.   *
(5.3) -2-J-<A(p)\K—)j        n2p'3.

The important point concerning this method is that if p > 5/4, the presence of

the convergence factor e~^Ap~5^kl2p allows us to sum from k = 1 to °° and

obtain (5.3).

VI. Proof of Theorem 1 when p > 5/4. The estimate (5.3) leads, in the

same manner as in the case 1/4 < p < 5/4, to the estimate

|A2(n, e'e», f)\<A(p)(n2plMx)*'4pn2p-3-

Upon combining this with (4.1), we find that

(6.1)    |A2(n, e/e", /)A0(n + 2, e,e», f)\ < A(pyi*p-\Mxln2p?p-sl*p.

From (4.3) we have |Aj(n + 1, e  ", /)|2 <A(p)n4p~4, and upon combining

this with (6.1) and (2.1), we conclude that 772(n) = 0(l)n4p-4, as required.

(Here we have used the facts p > 5/4 and Mx <A(p)n2p.)

If M(r, f) = o(l)(l - r)~2p, it is clear that o(l) replaces 0(1) in (6.1),

and from [7, Theorem 1] we have

Ai(n + l,e'9",/) = o(l)n2P-2    forp>l.

Thus772(n) = o(l)n4p-4.

If a = lim^., (1 - r)2pM(r, f) > 0, it follows from [7, Theorem 4] that

for p > 5/4,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE SECOND HANKEL DETERMINANT 345

m Ilm iawL.^»-i).
„--    „4P-4 r(2p)2

Thus 0(1) cannot in general be replaced by o(l) when p > 5/4.

VII. Examples when p < 5/4. Since (6.2) applies when p > 5/4, we see

that it remains only to prove the first statement of Theorem 2. Put f0(z) =

22pit(l -zT2p = 2-=(y4nz" and tfz) = K=2bnz"> where ÍMÍ is afly

sequence of nonnegative numbers with 2"_2èn < 1, 2~_2nô2 <p. In [7] it is

shown that if p > 1/2, the function /given by

f(z)=f0(z) + <p(z)= Z «/
n=0

is areally mean p-valent.

Suppose now that {e„} is as in Theorem 2, and choose {bn} such that

for some subsequence {nk},bn = bn +2=0,bn +1 = en n^1'2. Direct

calculation, in which we use the fact that an = A„ +bn, shows that

(7.1) H2(nk,f) = H2(nk,f0)-2Ank+xbnk+x-b2nk+x.

Since lim^jO - r)2pM(r, f0) > 0, it follows from (6.2) that

H2(nk, f0)
hm   -= 0,

"fc-~    nlp~312

where we have used strongly the fact that p < 5/4. Also, b2 + i/n2;p_3^2 =

</44'-1)/2>and

i4..6-.*i        22"
"* "k+!

tie.

0+0(1)),
2p-3/2 lX2p)

"k

since An ~ 22pnn2p~xlT(2p).  Theorem 2 (for p > 1/2) now follows immediate-

ly from these estimates and (7.1).

In order to prove Theorem 2 for 1/4 <p < 1/2, we use the same technique

as above, except that we are forced to alter the function / slightly. Given p with

1/4 < p < 1/2, construct FESpas follows (see [3], [4] ). Put g(z) = (1 - z)"x,

X = 2/cos pit, G(z) = g(z)2p + x, and F(z) = G(z) + ip(z), where ip is as before.

Clearly all we need do to prove Theorem 2 is to show that FES .

Note first that G maps y conformally into the sector

E = {co: |arg(co - x)l< P*}-

Put co = x + teie, so that |co|2 = t2 + x2 + 2xt cos 6. If co G E, it follows

from the definition of x that |co|2 > (t + 2)2, and so t < |co| - 2.
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346 J. W. NOONAN AND D. K. THOMAS

Set ER = E n {cj: M < R], and let A(R) be the area of ER. If R < \,

then ,4(7?) = 0, while if R > x, A(R)<pn(R - 2)2. The argument employed by

Hayman [3] now shows that FESp. As noted above, this proves Theorem 2

for 1/4 <p < 1/2. In conclusion, we note that the example given in [1, p. 49]

shows that Theorem 2 also holds for 0 < p < 1/4.
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