# ON THE SECOND HANKEL DETERMINANT OF AREALLY MEAN $p$-VALENT FUNCTIONS 

BY

J. W. NOONAN( ${ }^{1}$ ) AND D. K. THOMAS


#### Abstract

In this paper we determine the growth rate of the second Hankel determinant of an areally mean $p$-valent function. This result both extends and unifies previously known results concerning this problem.


I. Introduction and statement of results. Let $f$ be regular in $\gamma=\{z:|z|$ $<1\}$, with $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. The $q$ th Hankel determinant of $f$ is defined for $q \geqslant 1$ by

$$
H_{q}(n)=\left|\begin{array}{ccc}
a_{n} & a_{n+1} \cdots \cdots & a_{n+q-1} \\
a_{n+1} & \cdots \cdots & \cdot \\
\cdot & & \\
\cdot & & \cdot \\
\cdot & & \cdot \\
a_{n+q-1} & \cdots \cdots & a_{n+2 q-2}
\end{array}\right| .
$$

If $n(\omega)$ is the number of roots in $\gamma$ of the equation $f(z)=\omega, f$ is said to be areally mean $p$-valent in $\gamma$ [1] if for all $R>0$,

$$
W(R, f)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{R} n\left(\rho e^{i \theta}\right) \rho d \rho d \theta \leqslant p R^{2} .
$$

As usual, $f$ is normalized so that $\max \left\{\left|a_{k}\right|: 0 \leqslant k \leqslant[p]\right\}=1$, and the class of normalized areally mean $p$-valent functions is denoted by $S_{p}$.

The problem of determining the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ when $f \in S_{p}$ is well known. Ch. Pommerenke [9] has shown that for $p \geqslant 1, H_{q}(n)=$ $O(1) n^{k \sqrt{q}-q / 2}$ where $k=16 p \sqrt{p}$. The present authors have shown [8] that if $q \geqslant 2$ and $p \geqslant 2(q-1)$, then $H_{q}(n)=O(1) n^{2 p q-q^{2}}$, where the exponent is best possible. For strictly univalent functions, Pommerenke [10] has shown that for $q \geqslant 2, H_{q}(n)=O(1) n^{-(1 / 2+\beta) q+3 / 2}$, where $\beta>1 / 4000$. In particular, $H_{2}(n)=O(1) n^{1 / 2-2 \beta}$. On the other hand, W. K. Hayman [4] has shown that $H_{2}(n)=o(1) n^{1 / 2}$ when $f \in S_{1}$, and that this is best possible.

It is clear that the known results concerning this problem are incomplete,
in the sense that given $q$, best possible growth rates for $H_{q}(n)$ are known only for certain values of $p$. In this paper we shall examine the behavior of $H_{2}(n)$ when $f \in S_{p}$. We prove

Theorem 1. Let $f \in S_{p}$. Then, as $n \rightarrow \infty$,

$$
H_{2}(n)=a_{n} a_{n+2}-a_{n+1}^{2}= \begin{cases}o(1) n^{-1}, & 0<p<1 / 4 \\ o(1) n^{2 p-3 / 2}, & 1 / 4<p<5 / 4 \\ O(1) n^{4 p-4}, & p>5 / 4\end{cases}
$$

If $p>5 / 4$ and $\lim _{r \rightarrow 1}(1-r)^{2 p} M(r, f)=0$, then $H_{2}(n)=o(1) n^{4 p-4}$.
In the opposite direction we have
Theorem 2. Given any positive sequence $\left\{\epsilon_{n}\right\}$ with $\lim _{n \rightarrow \infty} \epsilon_{\boldsymbol{n}}=0$, there exists $f \in S_{p}$ such that for infinitely many $n$,

$$
\left|H_{2}(n)\right|> \begin{cases}\epsilon_{n} n^{-1}, & 0<p<1 / 4 \\ \epsilon_{n} n^{2 p-3 / 2}, & 1 / 4<p<5 / 4\end{cases}
$$

In addition, if $p>5 / 4$ and $f \in S_{p}$ satisfies $\alpha=\lim _{r \rightarrow 1}(1-r)^{2 p} M(r, f)>0$, then $\lim _{n \rightarrow \infty}\left|H_{2}(n)\right| / n^{4 p-4}=\alpha^{2}(2 p-1) / \Gamma(2 p)^{2}$.

Theorem 2 shows that the results of Theorem 1 are best possible, and also that when $p>5 / 4, O(1)$ cannot in general be replaced by $o(1)$. These results essentially solve Problem 6.14' of [2] when $q=2$.
II. Preliminary results. With $f(z)=\Sigma_{n=0}^{\infty} a_{n} z^{n}$ and $y$ any complex number, we set $\Delta_{0}(n+2, y, f)=a_{n+2}, \Delta_{1}(n+1, y, f)=a_{n+1}-y a_{n+2}$, and $\Delta_{2}(n, y, f)=a_{n}-2 y a_{n+1}+y^{2} a_{n+2}$, so that

$$
\begin{equation*}
H_{2}(n)=\Delta_{2}(n, y, f) \Delta_{0}(n+2, y, f)-\Delta_{1}(n+1, y, f)^{2} \tag{2.1}
\end{equation*}
$$

We shall estimate the various terms in (2.1) by combining two methods due originally to W. K. Hayman [3] , [4]. For the sake of brevity, we shall refer to the existing literature whenever possible.

If $z_{1} \in \gamma$ and $z=\rho e^{i \theta}$, Cauchy's theorem gives that

$$
\left|\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)\right| \leqslant \frac{1}{2 \pi \rho^{n+1}} \int_{0}^{2 \pi}\left|z-z_{1}\right|^{2}\left|f^{\prime}(z)\right| d \theta
$$

and upon integrating from $\rho=1-3 / n$ to $\rho=1-2 / n$, we find that

$$
\begin{equation*}
\frac{\left|\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)\right|}{n}=O(1) \int_{0}^{2 \pi} \int_{1-3 / n}^{1-2 / n}\left|z-z_{1}\right|^{2}\left|f^{\prime}(z)\right| \rho d \rho d \theta \tag{2.2}
\end{equation*}
$$

Henceforth we assume that $n$ is fixed and that $z_{1}$ has been chosen so that
$\left|z_{1}\right|=n /(n+1),\left|f\left(z_{1}\right)\right|=M(n /(n+1), f)$. We also set $M_{1}=\left|f\left(z_{1}\right)\right|, M_{k}=$ $e^{1-k} M_{1}, k \geqslant 1$.

Technical considerations dictate that we now proceed in two similar yet different ways. We first divide $E=\{z: 1-3 / n \leqslant \rho \leqslant 1-2 / n\}$ into disjoint subsets $E_{k}=\left\{z \in E: M_{k+1} \leqslant|f(z)|<M_{k}\right\}$. Upon using the techniques of [3] (see also [8, p. 508]) we conclude that

$$
\begin{equation*}
\frac{\left|\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)\right|}{n}=O(1) \sum_{k=1}^{\infty}\left\{\int_{0}^{2 \pi} \int_{1-3 / n}^{1-2 / n}\left|z-z_{1}\right|^{4} G_{k}(|f(z)|) \rho d \rho d \theta\right\}, \tag{2.3}
\end{equation*}
$$

where $G_{k}(R)=M_{k}^{2} R^{2} /\left(M_{k}^{2}+R^{2}\right)$.
Following Hayman [4], we now introduce a slightly different method. Choosing $\lambda>2$, applying the Schwarz inequality to (2.2), and noting that

$$
\int_{0}^{2 \pi} \int_{1-3 / n}^{1-2 / n}\left|f^{\prime}(z)\right|^{2}\left(1+|f(z)|^{\lambda}\right)^{-1} \rho d \rho d \theta \leqslant A(\lambda)
$$

(see [4, p. 81]), we deduce that

$$
\begin{align*}
& \frac{\left|\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)\right|}{n} \\
& \quad \leqslant A(\lambda)\left\{n^{-1 / 2}+\left(\int_{0}^{2 \pi} \int_{1-3 / n}^{1-2 / n}\left|z-z_{1}\right|^{4}|f(z)|^{\lambda} \rho d \rho d \theta\right)^{1 / 2}\right\} \tag{2.4}
\end{align*}
$$

(As usual, $A_{1}, A_{2}, \ldots$ denote absolute constants, while $A(x, y, \ldots)$ denotes a constant depending only on $x, y, \ldots$.)

The estimate (2.3) will be used when $p>5 / 4$, and (2.4) will be used when $1 / 4<p<5 / 4$.
III. Estimate for (2.4). Applying [6, Lemma 2] and [4, Lemma 3] to $\int_{0}^{2 \pi}\left|\rho e^{i \theta}-z_{1}\right|^{4}\left|f\left(\rho e^{i \theta}\right)\right|^{\lambda} d \theta$, we find that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\rho e^{i \theta}-z_{1}\right|^{4}\left|f\left(\rho e^{i \theta}\right)\right|^{\lambda} d \theta \leqslant A(p, \lambda)+A_{1}\left(J_{1}(\rho)+J_{2}(\rho)\right), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
J_{1}(\rho) & =\int_{1 / 2}^{\rho} \int_{0}^{2 \pi}\left|r e^{i \theta}-z_{1}\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda} r \log \rho / r d \theta d r \\
J_{2}(\rho) & =\left.\int_{1 / 2}^{\rho} \int_{0}^{2 \pi}\left|r e^{i \theta}-z_{1}\right|^{4}| |^{\prime}\left(r e^{i \theta}\right)\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda-2} r \log \rho / r d \theta d r
\end{aligned}
$$

The essential part of our proof consists of deriving appropriate estimates for $J_{1}(\rho)$ and $J_{2}(\rho)$. We begin with $J_{2}(\rho)$.

Lemma 1. Let $f \in S_{p}, \lambda>2, k$ a positive integer. Then for any a satisfying $0<a \leqslant k$, we have

$$
\begin{aligned}
& \int_{1 / 2}^{\rho} \int_{0}^{2 \pi}\left|r e^{i \theta}-z_{1}\right|^{2 k}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda-2} r \log \rho / r d \theta d r \\
& \leqslant A(p, \lambda, a) \begin{cases}\left(\frac{n^{2 p}}{M_{1}}\right)^{a^{2} / 2 p} & \text { if } 1<2 p \lambda<2 a+1, \\
\left(\frac{n^{2 p}}{M_{1}}\right)^{a^{2} / 2 p} \min \left\{M_{1},(1-\rho)^{-2 p}\right\}(2 p \lambda-2 a-1) / 2 p\end{cases} \\
& \text { if } 2 p \lambda>2 a+1
\end{aligned}
$$

Proof. Divide the range of integration into subsets $F_{j}=\left\{r e^{i \theta}: 1 / 2 \leqslant\right.$ $\left.r<\rho, M_{j+1} \leqslant\left|f\left(r e^{i \theta}\right)\right|<M_{j}\right\}$; also note that $\log \rho / r<2(1-r)$. Following Hayman [4], we suppose that $M_{j+1} \geqslant M(1 / 2, f)$ for at least one value of $j$. (The opposite case is trivial.) Since $0<a \leqslant k$, $\left|r e^{i \theta}-z_{1}\right|^{2 k} \leqslant A\left|r e^{i \theta}-z_{1}\right|^{2 a}$, and so [ 5 , Theorem 1]

$$
\left|r e^{i \theta}-z_{1}\right|^{2 k} \leqslant A(p, a)\left(n^{2 p} / M_{1}\right)^{a^{2} / 2 p}(1-r)^{-1}\left|f\left(r e^{i \theta}\right)\right|^{(-2 a-1) / 2 p}
$$

Therefore

$$
\begin{gathered}
\iint_{F_{j}}\left|r e^{i \theta}-z_{1}\right|^{2 k}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda-2} \log \rho / r d \theta d r \\
\leqslant A(p, a)\left(\frac{n^{2 p}}{M_{1}}\right)^{a^{2} / 2 p} M_{j}^{-\epsilon}
\end{gathered}
$$

where $\epsilon=-\lambda+(2 a+1) / 2 p$.
If $\epsilon>0$ (i.e. $2 p \lambda<2 a+1$ ), we choose constants $b$ and $A(p)$ with $0<$ $b \leqslant M(1 / 2, f) \leqslant A(p)$, we define $j_{0}=j_{0}(n)=\max \left\{j: M_{j+1} \geqslant M(1 / 2, f)\right\}$, and we conclude that $b \leqslant M_{j_{0}+1} \leqslant A(p)$. With $F^{\prime \prime}=\left\{r e^{i \theta}:\left|f\left(r e^{i \theta}\right)\right| \leqslant M_{j_{0}+1}\right\}$, it follows easily from the definition of the class $S_{p}$ that

$$
\iint_{F^{i \prime}}| | e^{i \theta}-\left.z_{1}\right|^{2 k}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda-2} \log \rho / r d r d \theta \leqslant A(p, \lambda, k)
$$

The above remarks therefore imply

$$
\begin{aligned}
& \int_{1 / 2}^{\rho} \int_{0}^{2 \pi}\left|r e^{i \theta}-z_{1}\right|^{2 k}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda-2} r \log \rho / r d \theta d r \\
&=\iint_{F^{\prime \prime}}+\sum_{j=1}^{j_{0}} \iint_{F_{j}} \\
& \leqslant A(p, \lambda, k)+A(p, a)\left(\frac{n^{2 p}}{M_{1}}\right)^{a^{2} / 2 p} \sum_{j=1}^{j_{0}} M_{j}^{-\epsilon}
\end{aligned}
$$

Since $\epsilon>0, \Sigma_{j=1} M_{j}^{-\epsilon} \leqslant b^{-\epsilon} \Sigma_{j=1}^{\infty} e^{-\epsilon}{ }_{j}<\infty$, and the lemma follows.
If $\epsilon<0$ (i.e. $2 p \lambda>2 a+1$ ), we divide the range of integration into subsets $E_{j}=\left\{r e^{i \theta}: 1 / 2 \leqslant r<\rho, N_{j+1} \leqslant\left|f\left(r e^{i \theta}\right)\right|<N_{j}\right\}$, where $N_{1}=$ $\min \left\{M_{1}, A(p)(1-\rho)^{-2 p}\right\}, N_{j}=e^{1-j} N_{1}$. As above, we conclude that

$$
\begin{aligned}
\iint_{E_{j}} \mid r e^{i \theta} & -\left.z_{1}\right|^{2 k}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda-2} \log \rho / r d r d \theta \\
& \leqslant A(p, a, \lambda)\left(n^{2 p} \mid M_{1}\right)^{a^{2} / 2 p} N_{j}^{-\epsilon}
\end{aligned}
$$

Upon summing from $j=1$ to $\infty$ and using the fact that

$$
\sum_{j=1}^{\infty} N_{j}^{-\epsilon} \leqslant A(p, \lambda, a) N_{1}^{-\epsilon}
$$

we arrive at the conclusion of the lemma.
We now estimate $J_{1}(\rho)$.
Lemma 2. Let $f \in S_{p}, \lambda>2$, and $0<\alpha \leqslant 1$. Suppose that $1<2 p \lambda<$ $2 \alpha+3$ and $2 p \lambda \neq 2 \alpha+1,2 p \lambda \neq 3$. Then $J_{1}(\rho) \leqslant A(p, \alpha, \lambda)\left(n^{2 p} / M_{1}\right)^{\alpha^{2} / 2 p}$.

Proof. Using [6, Lemma 2] and [4, Lemma 3], we see that

$$
K(r) \leqslant A_{1}+16 K_{1}(r)+4 \lambda^{2} K_{2}(r)
$$

where

$$
\begin{aligned}
K(r) & =\int_{0}^{2 \pi}\left|r e^{i \theta}-z_{1}\right|^{2}\left|f\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \\
K_{1}(r) & =\int_{1 / 2}^{r} \int_{0}^{2 \pi}\left|f\left(t e^{i \theta}\right)\right|^{\lambda}(1-t) d \theta d t \\
K_{2}(r) & =\int_{1 / 2}^{r} \int_{0}^{2 \pi}\left|t e^{i \theta}-z_{1}\right|^{2}\left|f\left(t e^{i \theta}\right)\right|^{\lambda-2}\left|f^{\prime}\left(t e^{i \theta}\right)\right|^{2}(1-t) d \theta d t
\end{aligned}
$$

From Lemma 1 (with $k=1$ ), we find that

$$
K_{2}(r) \leqslant A(p, \lambda, \alpha)\left\{\begin{array}{l}
\left(n^{2 p} / M_{1}\right)^{\alpha^{2} / 2 p}, \quad \text { if } 1<2 p \lambda<2 \alpha+1, \\
\left(n^{2 p} / M_{1}\right)^{\alpha^{2} / 2 p} \min \left\{M_{1},(1-r)^{-2 p}\right\}^{(2 p \lambda-2 \alpha-1) / 2 p} \\
\text { if } 2 p \lambda>2 \alpha+1
\end{array}\right.
$$

Also, from [1, Theorem 3.2], we have $\int_{0}^{2 \pi}\left|f\left(t e^{i \theta}\right)\right|^{\lambda} d \theta \leqslant A(p, \lambda)(1-t)^{1-2 p \lambda}$, provided $2 p \lambda>1$. Thus

$$
K_{1}(r) \leqslant A(p, \lambda) \begin{cases}1, & \text { if } 1<2 p \lambda<3 \\ (1-r)^{3-2 p}, & \text { if } 2 p \lambda>3\end{cases}
$$

Hence

$$
K(r) \leqslant A(p, \lambda, \alpha)\left(\frac{n^{2 p}}{M_{1}}\right)^{\alpha^{2} / 2 p}\left\{\begin{aligned}
& 1, \text { if } 1<2 p \lambda<2 \alpha+1 \\
&(1-r)^{1+2 \alpha-2 p \lambda}, \text { if } 2 \alpha+1<2 p \lambda<3 \\
& \text { or } 2 p \lambda>3
\end{aligned}\right.
$$

Since $J_{1}(\rho)=\int_{1 / 2}^{\rho} K(r) \log \rho / r d r$, the lemuna now follows immediately.
We can now estimate $\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)$. Choose $a$ such that $0<a \leqslant 2$, and put $\alpha=a / 2$. Then Lemmas 1 and 2 imply that

$$
\begin{equation*}
J_{1}(\rho)+J_{2}(\rho) \leqslant A(p, \lambda, a)\left(n^{2 p} / M_{1}\right)^{a^{2} / 2 p} \tag{3.2}
\end{equation*}
$$

provided $1<2 p \lambda<2 a+1,2 p \lambda \neq a+1,2 p \lambda \neq 3$. Upon combining (2.4), (3.1), and (3.2), we find that

$$
\begin{align*}
\frac{\left|\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)\right|}{n} & \leqslant A(\lambda)\left\{n^{-1 / 2}+A(p, a, \lambda)\left(\frac{n^{2 p}}{M_{1}}\right)^{a^{2} / 4 p}\left\{\int_{1-3 / n}^{1-2 / n} d \rho\right\}^{1 / 2}\right\}  \tag{3.3}\\
& \leqslant A(p, a, \lambda) n^{-1 / 2}\left(\frac{n^{2 p}}{M_{1}}\right)^{a^{2} / 4 p}
\end{align*}
$$

for any $a$ such that $0<a \leqslant 2,1<2 p \lambda<2 a+1,2 p \lambda \neq a+1,2 p \lambda \neq 3$.
IV. Proof of Theorem 1 when $0<p<1 / 4$ or $1 / 4<p<5 / 4$. If $0<p$ $<1 / 4$, then [11] $a_{n}=o(1) n^{-1 / 2}$, and so trivially $H_{2}(n)=o(1) n^{-1}$. Now suppose $1 / 4<p<5 / 4$. We first note that for $p>1 / 4$,

$$
\begin{equation*}
\left|a_{n}\right| \leqslant A(p) n^{-1 / 2} M_{1}^{1-1 / 4 p}, \tag{4.1}
\end{equation*}
$$

a result proved exactly as in [4] in the case $p=1$. Also, with $z_{1}=e^{i \theta} n_{n /(n+1)}$, we have

$$
\Delta_{2}\left(n, e^{i \theta_{n}}, f\right)=n^{-1} \Delta_{2}\left(n, z_{1}, z f^{\prime}\right)+(n+1)^{-2} e^{2 i \theta_{n}} a_{n+2}
$$

Combining this with (3.3), (4.1), and the fact that $1 / 4<p<5 / 4$, we see that

$$
\begin{equation*}
\Delta_{2}\left(n, e^{i \theta_{n}}, f\right) \leqslant A(p, a, \lambda) n^{-1 / 2}\left(n^{2 p} / M_{1}\right)^{a^{2} / 4 p} \tag{4.2}
\end{equation*}
$$

with $a$ as before.
We now prove that $H_{2}(n)=o(1) n^{2 p-3 / 2}$ when $1 / 4<p<5 / 4$. It follows from (4.1) and (4.2) that

$$
\Delta_{2}\left(n, e^{i \theta n}, f\right) \Delta_{0}\left(n+2, e^{i \theta n}, f\right) \leqslant A(p, a, \lambda) n^{2 p-3 / 2}\left(n^{2 p} / M_{1}\right)^{\delta}
$$

where $\delta=\left(a^{2}+1-4 p\right) / 4 p$. Choose $a=(2 p \lambda-1) / 2+\epsilon$, where $\lambda>2$ and $\epsilon>0$ are chosen such that all previous restrictions involving $a$ are satisfied, and also such that $\delta<0$. (Elementary computations verify that such a choice
is possible; the fact that $1 / 4<p<5 / 4$ is essential here.)
We next note [6] that

$$
\left|\Delta_{1}\left(n+1, e^{i \theta_{n}}, f\right)\right| \leqslant A(p, \lambda) \begin{cases}n^{2 p-2 \sqrt{p}}, & 1 / 4<p<1  \tag{4.3}\\ n^{2 p-2}, & p \geqslant 1\end{cases}
$$

and so

$$
\left|\Delta_{1}\left(n+1, e^{i \theta_{n}}, f\right)\right|^{2}=o(1) n^{2 p-3 / 2}
$$

where again we have used $1 / 4<p<5 / 4$. We thus conclude from (2.1) and the above remarks that

$$
\left|H_{2}(n)\right| / n^{2 p-3 / 2} \leqslant A(p)\left(M_{1} / n^{2 p}\right)^{-\delta}+o(1)
$$

If $M_{1}=M(n /(n+1), f)=o(1) n^{2 p}$, then (since $\left.-\delta>0\right) H_{2}(n)=$ $o(1) n^{2 p-3 / 2}$. If $M_{1} \neq o(1) n^{2 p}$, it is well known [1] that $\lim _{r \rightarrow 1}(1-r)^{2 p} M(r, f)$ $>0$. From (3.1) and Lemmas 1 and 2 , it follows that with $\lambda>2$ fixed, $\int_{0}^{2 \pi}\left|\rho e^{i \theta}-z_{1}\right|^{4}\left|f\left(\rho e^{i \theta}\right)\right|^{\lambda} d \theta$ is uniformly bounded for $0<\rho<1$. We now use exactly the same technique as does Hayman [4, p. 90] to conclude that $\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)=o(1) n^{1 / 2}$, and then as above we deduce that

$$
H_{2}(n)=o(1) n^{2 p-3 / 2}
$$

This completes the proof of Theorem 1 in the case $1 / 4<p<5 / 4$.
V. Estimate for (2.3). We now assume $p>5 / 4$. Our method is essentially that of [8], the major difference being that since we are dealing with the specific case $q=2, p>5 / 4$, we can make more efficient use of the two-point modulus bound than was possible in [8]. In view of the technical nature of this modification, we shall merely indicate the sort of changes to be made in [8]. Verification of the complete details will be left to the interested reader.

Recalling that $G_{k}(R)=M_{k}^{2} R^{2} /\left(M_{k}^{2}+R^{2}\right)$, we see upon using [6, Lemma 2] and [4, Lemma 3] that

$$
\int_{0}^{2 \pi}\left|\rho e^{i \theta}-z_{1}\right|^{4} G_{k}\left(\left|f\left(\rho e^{i \theta}\right)\right|\right) d \theta
$$

can be estimated in terms of seven integrals (see [8, p. 511]), of which the most troublesome is

$$
\begin{equation*}
\int_{1 / 2}^{\rho}(1-t) \int_{0}^{2 \pi}\left|t e^{i \theta}-z_{1}\right|^{2} G_{k}\left(\left|f\left(t e^{i \theta}\right)\right|\right) d \theta t d t \tag{5.1}
\end{equation*}
$$

Reapplying [6, Lemma 2] and [4, Lemma 3], we can estimate the inner integral of (5.1) in terms of seven more integrals, the most troublesome being

$$
\begin{equation*}
\int_{1 / 2}^{t}\left(1-t_{1}\right) \int_{0}^{2 \pi}\left|t_{1} e^{i \theta}-z_{1}\right|^{2}\left|f^{\prime}\left(t_{1} e^{i \theta}\right)\right|^{2} \frac{M_{k}^{4}\left(M_{k}^{2}-R^{2}\right)}{\left(M_{k}^{2}+R^{2}\right)^{3}} d \theta t_{1} d t_{1} \tag{5.2}
\end{equation*}
$$

In order to estimate this integral we first replace the range of integration by $\Omega=\left\{t_{1} e^{i \theta}: 1 / 2 \leqslant t_{1}<t,\left|f\left(t_{1} e^{i \theta}\right)\right| \leqslant B_{1}\right\}$, where $B_{1}=$ $\min \left\{M_{k}, A(p)(1-t)^{-2 p}\right\}$. We now divide $\Omega$ into subsets $\Omega_{m}=\left\{t_{1} e^{i \theta} \in \Omega\right.$ : $\left.B_{m+1} \leqslant\left|f\left(t_{1} e^{i \theta}\right)\right|<B_{m}\right\}$, where $B_{m}=e^{1-m} B_{1}$. An application of the twopoint modulus bound (put $a=b=1$ in [5, Theorem 1]) allows us to conclude that integration over $\Omega_{m}$ contributes at most $A(p)\left(n^{2 p} / M_{1}\right)^{1 / 2 p} B_{m}^{(4 p-3) / 2 p}$, and upon summing from $m=1$ to $\infty$, we conclude that (5.2) is bounded above by $A(p)\left(n^{2 p} / M_{1}\right)^{1 / 2 p} \min \left\{M_{k}^{2-3 / 2 p},(1-t)^{3-4 p}\right\}$. Combining this estimate with the technique of [8, p. 517], we see that integration of (5.2) contributes at most $A(p) e^{-(4 p-5) k / 2 p}\left(n^{2 p} / M_{1}\right)^{1 / 2 p} M_{1}^{(4 p-5) / 2 p}$ to (5.1).

After re-examining the arguments of [8] in light of the changes suggested above, we find that

$$
\int_{0}^{2 \pi}\left|\rho e^{i \theta}-z_{1}\right|^{4} G_{k}\left(\left|f\left(\rho e^{i \theta}\right)\right|\right) d \theta \leqslant A(p) e^{-(4 p-5) k / 4 p}\left(n^{2 p} \mid M_{1}\right)^{4 / 2 p} n^{4 p-5}
$$

Summing these estimates (as required by (2.3)), we find that

$$
\begin{equation*}
\frac{\left|\Delta_{2}\left(n, z_{1}, z f^{\prime}\right)\right|}{n} \leqslant A(p)\left(\frac{n^{2 p}}{M_{1}}\right)^{4 / 4 p} n^{2 p-3} \tag{5.3}
\end{equation*}
$$

The important point concerning this method is that if $p>5 / 4$, the presence of the convergence factor $e^{-(4 p-5) k / 2 p}$ allows us to sum from $k=1$ to $\infty$ and obtain (5.3).
VI. Proof of Theorem 1 when $p>5 / 4$. The estimate (5.3) leads, in the same manner as in the case $1 / 4<p<5 / 4$, to the estimate

$$
\left|\Delta_{2}\left(n, e^{i \theta_{n}}, f\right)\right| \leqslant A(p)\left(n^{2 p} / M_{1}\right)^{4 / 4 p_{n}} n^{2 p-3}
$$

Upon combining this with (4.1), we find that

$$
\begin{equation*}
\left|\Delta_{2}\left(n, e^{i \theta_{n}}, f\right) \Delta_{0}\left(n+2, e^{i \theta_{n}}, f\right)\right| \leqslant A(p) n^{4 p-4}\left(M_{1} / n^{2 p}\right)^{4 p-5 / 4 p} \tag{6.1}
\end{equation*}
$$

From (4.3) we have $\left|\Delta_{1}\left(n+1, e^{i \theta_{n}}, f\right)\right|^{2} \leqslant A(p) n^{4 p-4}$, and upon combining this with (6.1) and (2.1), we conclude that $H_{2}(n)=O(1) n^{4 p-4}$, as required. (Here we have used the facts $p>5 / 4$ and $M_{1} \leqslant A(p) n^{2 p}$.)

If $M(r, f)=o(1)(1-r)^{-2 p}$, it is clear that $o(1)$ replaces $O(1)$ in (6.1), and from [7, Theorem 1] we have

$$
\Delta_{1}\left(n+1, e^{i \theta_{n}}, f\right)=o(1) n^{2 p-2} \quad \text { for } p>1
$$

Thus $H_{2}(n)=o(1) n^{4 p-4}$.
If $\alpha=\lim _{r \rightarrow 1}(1-r)^{2 p} M(r, f)>0$, it follows from [7, Theorem 4] that for $p>5 / 4$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|H_{2}(n)\right|}{n^{4 p-4}}=\frac{\alpha^{2}(2 p-1)}{\Gamma(2 p)^{2}} \tag{6.2}
\end{equation*}
$$

Thus $O(1)$ cannot in general be replaced by $o(1)$ when $p>5 / 4$.
VII. Examples when $p<5 / 4$. Since (6.2) applies when $p>5 / 4$, we see that it remains only to prove the first statement of Theorem 2. Put $f_{0}(z)=$ $2^{2 p} \pi(1-z)^{-2 p}=\Sigma_{n=0}^{\infty} A_{n} z^{n}$ and $\varphi(z)=\Sigma_{n=2}^{\infty} b_{n} z^{n}$, where $\left\{b_{n}\right\}_{2}^{\infty}$ is any sequence of nonnegative numbers with $\Sigma_{n=2}^{\infty} b_{n} \leqslant 1, \Sigma_{n=2}^{\infty} n b_{n}^{2} \leqslant p$. In [7] it is shown that if $p \geqslant 1 / 2$, the function $f$ given by

$$
f(z)=f_{0}(z)+\varphi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is areally mean $p$-valent.
Suppose now that $\left\{\epsilon_{n}\right\}$ is as in Theorem 2, and choose $\left\{b_{n}\right\}$ such that for some subsequence $\left\{n_{k}\right\}, b_{n_{k}}=b_{n_{k}+2}=0, b_{n_{k}+1}=\epsilon_{n_{k}} n_{k}^{-1 / 2}$. Direct calculation, in which we use the fact that $a_{n}=A_{n}+b_{n}$, shows that

$$
\begin{equation*}
H_{2}\left(n_{k}, f\right)=H_{2}\left(n_{k}, f_{0}\right)-2 A_{n_{k}+1} b_{n_{k}+1}-b_{n_{k}+1}^{2} \tag{7.1}
\end{equation*}
$$

Since $\lim _{r \rightarrow 1}(1-r)^{2 p} M\left(r, f_{0}\right)>0$, it follows from (6.2) that

$$
\lim _{n_{k} \rightarrow \infty} \frac{H_{2}\left(n_{k}, f_{0}\right)}{n_{k}^{2 p-3 / 2}}=0
$$

where we have used strongly the fact that $p<5 / 4$. Also, $b_{n_{k}+1}^{2} / n_{k}^{2 p-3 / 2}=$ $\epsilon_{n_{k}}^{2} / n_{k}^{(4 p-1) / 2}$, and

$$
\frac{A_{n_{k}} b_{n_{k}+1}}{n_{k}^{2 p-3 / 2}}=\frac{2^{2 p} \pi \epsilon_{n_{k}}}{\Gamma(2 p)}(1+o(1))
$$

since $A_{n} \sim 2^{2 p} \pi n^{2 p-1} / \Gamma(2 p)$. Theorem 2 (for $p \geqslant 1 / 2$ ) now follows immediately from these estimates and (7.1).

In order to prove Theorem 2 for $1 / 4<p<1 / 2$, we use the same technique as above, except that we are forced to alter the function $f$ slightly. Given $p$ with $1 / 4<p<1 / 2$, construct $F \in S_{p}$ as follows (see [3], [4]). Put $g(z)=(1-z)^{-1}$, $\chi=2 / \cos p \pi, G(z)=g(z)^{2 p}+\chi$, and $F(z)=G(z)+\varphi(z)$, where $\varphi$ is as before. Clearly all we need do to prove Theorem 2 is to show that $F \in S_{p}$.

Note first that $G$ maps $\gamma$ conformally into the sector

$$
E=\{\omega:|\arg (\omega-\chi)|<p \pi\} .
$$

Put $\omega=x+t e^{i \theta}$, so that $|\omega|^{2}=t^{2}+x^{2}+2 x t \cos \theta$. If $\omega \in E$, it follows from the definition of $\chi$ that $|\omega|^{2} \geqslant(t+2)^{2}$, and so $t \leqslant|\omega|-2$.

Set $E_{R}=E \cap\{\omega:|\omega| \leqslant R\}$, and let $A(R)$ be the area of $E_{R}$. If $R<\chi$, then $A(R)=0$, while if $R>\chi, A(R)<p \pi(R-2)^{2}$. The argument employed by Hayman [3] now shows that $F \in S_{p}$. As noted above, this proves Theorem 2 for $1 / 4<p<1 / 2$. In conclusion, we note that the example given in [1, p. 49] shows that Theorem 2 also holds for $0<p<1 / 4$.

## REFERENCES

1. W. K. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, Cambridge, 1958. MR 21 \#7302.
2. -, Research problems in function theory, Athlone Press, London, 1967. MR 36 \#359.
3. On successive coefficients of univalent functions, J. London Math. Soc. 38 (1963), 228-243. MR 26 \#6382.
4. On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc. (3) 18 (1968), 77-94. MR 36 \#2794.
5. K. W. Lucas, A two-point modulus bound for areally mean p-valent functions, J. London Math. Soc. 43 (1968), 487-494. MR 37 \#1587.
6.     - On successive coefficients of areally mean p-valent functions, J. London Math. Soc. 44 (1969), 631-642. MR 39 \#4379.
7. J. W. Noonan, Coefficient differences and Hankel determinants of areally mean pvalent functions, Proc. Amer. Math. Soc. 46 (1974), 29-37.
8. J. W. Noonan and D. K. Thomas, On the Hankel determinants of areally mean pvalent functions, Proc. London Math. Soc. (3) 25 (1972), 503-524. MR 46 \#5605.
9. Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 41 (1966), 111-122. MR 32 \#2575.
10. -On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. MR 35 \#6811.
11. —_U Ưber die Mittelwerte und Koeffizienten multivalenter Funktionen, Math. Ann. 145 (1961/62), 285-296. MR 24 \#A3282.

DEPARTMENT OF MATHEMATICS, HOLY CROSS COLLEGE, WORCESTER, MASSACHUSETTS 01610

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE OF SWANSEA, SWANSEA, GLAMORGAN, WALES

