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ON THE SECOND HANKEL DETERMINANT OF LOGARITHMIC

COEFFICIENTS FOR CERTAIN UNIVALENT FUNCTIONS

VASUDEAVARAO ALLU, VIBHUTI ARORA, AND AMAL SHAJI

Abstract. In this paper, we investigate the sharp bounds of the second Hankel deter-
minant of Logarithmic coefficients for the starlike and convex functions with respect to
symmetric points in the open unit disk.

1. Introduction

Let H denote the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1}.
Then H is a locally convex topological vector space endowed with the topology of uniform
convergence over compact subsets of D. Let A denote the class of functions f ∈ H such
that f(0) = 0 and f ′(0) = 1. A function f is said to be univalent in a domain Ω ⊆ C,
if it is one-to-one in Ω. Let S denote the subclass of A consisting of functions which are
univalent (i.e., one-to-one) in D. If f ∈ S then it has the following series representation

(1.1) f(z) = z +

∞
∑

n=2

anz
n, z ∈ D.

A function f ∈ S belongs to the class S∗, called starlike function, if f(D) is a starlike
domain with respect to the origin. Moreover, a function f ∈ S is called convex function
if f(D) is a starlike domain with respect to each point. The class of such functions is
denoted by C.

In [19], Sakaguchi introduced the class of functions that are starlike with respect to
symmetric points. A function f ∈ A is said to be starlike with respect to symmetric
points if for any r close to 1, r < 1, and any z0 on the circle |z| = r, the angular velocity
of f(z) about the point f(−z0) is positive at z0 as z traverses the circle |z| = r in the
positive direction, i.e.,

Re

(

z0f
′(z0)

f(z0)− f(−z0)

)

> 0, |z0| = r.

Denote by S∗

S the class of all functions in S which are starlike with respect to symmetric
points and, functions f in the class S∗

S is characterized by

Re

(

zf ′(z)

f(z)− f(−z)

)

> 0, z ∈ D.
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It is known that the functions in S∗

S are close-to-convex and hence are univalent (see [19]).
Note that the class of functions starlike with respect to symmetric points obviously
includes the classes of convex functions and odd starlike functions with respect to the
origin. The notion of starlike functions with respect to N -symmetric points has been stud-
ied in [19]. In 2002, Nezhmetdinov and Ponnusamy [14] proved that S∗

S * S∗ and S∗ * S∗

S.

In 1977, Das and Singh [7] defined the class of convex functions with respect to sym-
metric points. A function f ∈ A is said to be convex with respect to symmetric points if,
and only if,

Re

(

(zf ′(z))′

(f(z)− f(−z))′

)

> 0, z ∈ D.

The Logarithmic coefficients γn of f ∈ S are defined by,

(1.2) Ff (z) := log
f(z)

z
= 2

∞
∑

n=1

γnz
n, z ∈ D.

The logarithmic coefficients γn play a central role in the theory of univalent functions.
A very few exact upper bounds for γn seem to have been established. The significance
of this problem in the context of Bieberbach conjecture was pointed by Milin [13] in his
conjecture. Milin [13] conjectured that for f ∈ S and n ≥ 2,

n
∑

m=1

m
∑

k=1

(

k|γk|
2 −

1

k

)

≤ 0,

which led De Branges, by proving this conjecture, to the proof of Bieberbach conjecture [5].
For the Koebe function k(z) = z/(1−z)2, the logarithmic coefficients are γn = 1/n. Since
the Koebe function k plays the role of extremal function for most of the extremal problems
in the class S, it is expected that |γn| ≤ 1/n holds for functions in S. But this is not
true in general, even in order of magnitude. Indeed, there exists a bounded function f
in the class S with logarithmic coefficients γn 6= O(n−0.83) (see [8, Theorem 8.4]). By
differentiating (1.2) and the equating coefficients we obtain

(1.3)

γ1 =
1

2
a2,

γ2 =
1

2
(a3 −

1

2
a22),

γ3 =
1

2
(a4 − a2a3 +

1

3
a32).

If f ∈ S, it is easy to see that |γ1| ≤ 1, because |a2| ≤ 2. Using the Fekete-Szegö
inequality [8, Theorem 3.8] for functions in S in (1.4), we obtain the sharp estimate

|γ2| ≤
1

2

(

1 + 2e−2
)

= 0.635 . . . .
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For n ≥ 3, the problem seems much harder, and no significant bound for |γn| when f ∈ S
appear to be known. In 2017, Ali and Allu [1] obtained the initial logarithmic coefficients
bounds for close-to-convex functions. In 2020, Ponnusamy et al. [17] computed the sharp
estimates for the initial three logarithmic coefficients for a subclass of S∗. The problem
of computing the bound of the logarithmic coefficients is also considered in [6, 18, 21] for
several subclasses of close to convex functions. In 2021, Zaprawa [22] obtained the sharp
bounds of the initial logarithmic coefficients |γn| for functions in the classes S∗

S and KS.

For q, n ∈ N, the Hankel determinant Hq,n(f) of Taylor’s coefficients of function f ∈ A
of the form (1.1) is defined by

Hq,n(f) =

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

. . .
...

an+q−1 an+q · · · an+2(q−1)

∣

∣

∣

∣

∣

∣

∣

∣

.

The Hankel determinant for various order is also studied recently by several authors
in different contexts; for instance see [3, 15, 16, 20]. One can easily observe that the
Fekete-Szegö functional is the second Hankel determinant H2,1(f). Fekete-Szegö then
further generalized the estimate |a3 − µa22| with µ real for f ∈ S [8, Theorem 3.8].

Identifying the widespread applications of logarithmic coefficients, recently, Kowalczyk
and Lecko [12] together proposed the study of the Hankel determinant whose entries are
logarithmic coefficients of f ∈ S, which is given by

Hq,n(Ff/2) =

∣

∣

∣

∣

∣

∣

∣

∣

γn γn+1 · · · γn+q−1

γn+1 γn+2 · · · γn+q

...
...

. . .
...

γn+q−1 γn+q · · · γn+2(q−1)

∣

∣

∣

∣

∣

∣

∣

∣

.

Kowalczyk and Lecko [12] obtained the sharp bound of second Hankel determinant of
Ff/2, i.e., H2,1(Ff/2) for starlike and convex functions. The problem of computing the
sharp bounds of H2,1(Ff/2) has been considered in [4] for various subclasses of S.

Suppose that f ∈ S given by (1.1). Then the second Hankel determinant of Ff/2 by
using (1.3), is given by

(1.4) H2,1(Ff/2) = γ1γ3 − γ2
2 = a2a4 − a23 +

1

12
a42.

In this paper, we calculate the sharp bounds for H2,1(Ff/2) for functinos in the classes
S∗

S and KS. We also provide examples of functions to illustrate these results.
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2. Main Results

Let B0 denote the class of analytic functions w : D → D such that w(0) = 0. Functions
in B0 are known as Schwarz functions. A function w ∈ B0 can be written as a power series

w(z) =
∞
∑

n=1

cnz
n.

For two functions f and g that are analytic in a domain D, we say that the function f is
subordinate to g in D and written as f(z) ≺ g(z) if there exists a Schwarz function w ∈ B0

such that
f(z) = g(w(z)), z ∈ D.

In particular, if the function g is univalent in D, then f ≺ g if, and only if, f(0) = g(0)
and f(D) ⊆ g(D).

To prove our results, we need the following lemma for Schwarz functions.

Lemma 2.1. [9] Let w(z) = c1z + c2z
2 + · · · be a Schwarz function. Then

|c1| ≤ 1, |c2| ≤ 1− |c1|
2, and |c3| ≤ 1− |c1|

2 −
|c2|

2

1 + |c1|
.

We obtain the following sharp bound for H2,1(Ff/2) for functions in the class S∗

S.

Theorem 2.2. Let f ∈ S∗

S. Then

|H2,1(Ff/2)| ≤
1

4
.

The inequality is sharp.

Proof. Let f ∈ S∗

S be of the form (1.1). Then by the definition of subordination there
exists a Schwarz function w(z) =

∑

∞

n=1 cnz
n such that

(2.1)
2zf ′(z)

f(z)− f(−z)
=

1 + w(z)

1− w(z)
.

By comparing the coefficients on both sides of (2.1) yields

(2.2)

a2 = c1,

a3 = c2 + c21,

a4 =
1

2

(

c3 + 3c1c2 + 2c31
)

.

By substituting the above expression for a2, a3, and a4 in (1.4) and then further simplifi-
cation gives

(2.3)

H2,1(Ff/2) = γ1γ3 − γ2
2

= a2a4 − a23 +
1

12
a42

=
1

48

(

c41 + 6c1c3 − 12c22 − 6c21c2
)

.
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From (2.3) and Lemma 2.1, we obtain

(2.4) 48|H2,1(Ff/2)| ≤ |c1|
4 + 6|c1|

(

1− |c1|
2 −

|c2|
2

1 + |c1|

)

+ 6|c1|
2|c2|+ 12|c2|

2.

Now writing x = |c1| and y = |c2| in (2.4), we obtain

(2.5) 48|H2,1(Ff/2)| ≤ F (x, y),

where

F (x, y) = x4 + 6x

(

1− x2 −
y2

1 + x

)

+ 6x2y + 12y2.

In view of Lemma 2.1, the region of variability of a pair (x, y) coincides with the set

Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2}.

Therefore, we need to find the maximum value of F (x, y) over the region Ω. The critical
points of F satisfies the conditions

∂F

∂x
= 4x3 − 18x2 + 12xy −

6y2

(1 + x)2
+ 6 = 0

∂F

∂y
= x2 + x3 + 4y + 2xy = 0,

which has no solution in the interior of Ω. Hence the function F (x, y) cannot have a
maximum in the interior of Ω. Since F is continuous on a compact set Ω, the maximum
of F attains boundary of Ω. On the boundary of Ω, we have

F (x, 0) = x4 − 6x3 + 6x ≤ 2.4378 for 0 ≤ x ≤ 1,

F (0, y) = 12y2 ≤ 12 for 0 ≤ y ≤ 1,

and

F (x, 1− x2) = x4 − 12x2 + 12 ≤ 12 for 0 ≤ x ≤ 1.

Thus combining all the above cases we obtain

max
(x,y)∈Ω

F (x, y) = 12

and hence from (2.5) we have

(2.6) |H2,1(Ff/2)| ≤
1

4
.

To prove the equality in (2.6), we consider the function

f1(z) =
z

1− z2
= z + z3 + z5 + · · · , z ∈ D.

A simple computation shows that f1 belongs to the class S∗

S and |H2,1(Ff1/2)| = 1/4 and
hence equality holds in (2.6). This completes the proof. �

Here we provide an example that associates to Theorem 2.2.
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Example 2.3. Consider the function

f2(z) =
z

1− z
= z + z2 + z3 + · · ·

It is easy to see that the function f belongs to the class S∗

S. It is easy to see that

|H2,1(Ff2/2)| =
1

12
≤

1

4
.

In the following result, we estimate the sharp bound for H2,1(Ff/2) for functions in the
class KS.

Theorem 2.4. Let f ∈ KS be of the form (1.1). Then

|H2,1(Ff/2)| ≤
1

36
.

The inequality is sharp.

Proof. Let f(z) = z+
∑

∞

n=2 anz
n be a function in KS, then there exists a Schwarz function

w(z) =
∑

∞

n=1 cnz
n such that

(2.7)
2(zf ′(z))′

(f(z)− f(−z))′
=

1 + w(z)

1− w(z)
.

First note that by equating coefficients in (2.7) we have,

(2.8)

a2 =
1

2
c1,

a3 =
1

3

(

c2 + c21
)

,

a4 =
1

8

(

c3 + 3c1c2 + 2c31
)

.

A simple computation using (1.4) gives,

(2.9) H2,1(Ff/2) =
1

2304

(

11c41 + 36c1

(

1− c21 −
c22

1 + c1

)

+ 20c21c2 + 64c22

)

.

Following the same method as used in the proof of Theorem 2.2, we obtain
(2.10)

|H2,1(Ff/2)| ≤
1

2304

(

11|c1|
4 + 36|c1|

(

1− |c1|
2 −

|c2|
2

1 + |c1|

)

+ 20|c1|
2|c2|+ 64|c2|

2

)

,

where
0 ≤ |c1| ≤ 1 and 0 ≤ |c2| ≤ 1− |c1|

2.

Now by replacing |c1| by x and |c2| by y in (2.10) gives

(2.11) 2304|H2,1(Ff/2)| ≤ G(x, y),

where

G(x, y) = 11x4 + 36x

(

1− x2 −
y2

1 + x

)

+ 20x2y + 64y2.
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In view of Lemma 2.1, the region of variability of a pair (x, y) coincides with the set

Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2}.

Thus we need to find the maximum value of G(x, y) over the region Ω. The critical points
of G satisfies the conditions

∂G

∂x
= 44x3 − 108x2 + 40xy −

36y2

(1 + x)2
+ 36 = 0,

and
∂G

∂y
= 5x2 + 5x3 + 32y + 14xy = 0,

which has no solution in the interior of Ω. By using the elementary calculus, we can show
that the maximum of G(x, y) should exists on the boundary of Ω. It is easy to see that
on the boundary line x = 0 and 0 ≤ y ≤ 1, we have G(0, y) = 64y2 and its maximum
on this line is equal to 64. Similarly, on the boundary line y = 0 and 0 ≤ x ≤ 1, we
have G(x, 0) = 11x4 − 36x3 +36x and its maximum on this line is 15.512. Finally, on the
boundary curve y = 1− x2 and 0 ≤ x ≤ 1, we have G(x, 1− x2) = 19x4 − 72x2 + 64 and
its maximum on this curve is 64. Thus, combining all the above cases yields

max
(x,y)∈Ω

G(x, y) = 64

and hence from (2.11) we obtain

(2.12) |H2,1(Ff/2)| ≤
1

36
.

For the sharpness of the inequality (2.12) we consider the function

f3(z) =
1

2
log

1 + z

1− z
= z +

z3

3
+

z5

5
+ · · ·

which belongs to the class KS. A simple computation shows that |H2,1(Ff3/2)| = 1/36
and hence the inequality in (2.12) is sharp. This completes the proof. �

In the following example we construct a function that agree with Theorem 2.4.

Example 2.5. Consider the function

f4(z) = − log(1− z) = z +
z2

2
+

z3

3
+ · · · .

A simple compuation shows that

Re

(

(zf ′

4(z))
′

(f4(z)− f4(−z))′

)

=
1

2
Re

(

1 + z

1− z

)

> 0.

and hence the function f4 ∈ KS. It is easy to see that

|H2,1(Ff/2)| =
11

576
≤

1

36
.
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