alllauc &llall aeala
sidillg aglell

King Abdullah University of
Science and Technology

(@

On the secrecy capacity of the wiretap channel
with imperfect main channel estimation

ltem Type Article
Authors Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim
Citation Rezki, Z., Khisti, A., & Alouini, M.-S. (2014). On the Secrecy

Capacity of the Wiretap Channel With Imperfect Main Channel
Estimation. IEEE Transactions on Communications, 62(10), 3652-
3664. doi:10.1109/tcomm.2014.2356482

Eprint version Pre-print

DOI 10.1109/TCOMM.2014.2356482

Publisher Institute of Electrical and Electronics Engineers (IEEE)
Journal IEEE Transactions on Communications

Rights (c) 2014 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale

or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.; This file is an open
access version redistributed from: http://www.comm.utoronto.ca/
%7Eakhisti/rezki-tcom.pdf.pdf

Download date 10/08/2022 02:37:26

Link to Item http://hdl.handle.net/10754/563780



http://dx.doi.org/10.1109/TCOMM.2014.2356482
http://hdl.handle.net/10754/563780

On the Secrecy Capacity of the Wiretap Channel
with Imperfect Main Channel Estimation

Zouheir Rezki, Senior Member, |IEEE, and Ashish Khisti,Senior Member, |EEE, and Mohamed-Slim
Alouini, Fellow, |EEE,

Abstract—We study the secrecy capacity of fast fading channels
under imperfect main channel (between the transmitter and
the legitimate receiver) estimation at the transmitter. Lower
and upper bounds on the ergodic secrecy capacity are derived
for a class of independent identically distributed (i.i.d) fading
channels. The achievable rate follows from a standard wiretp
code in which a simple on-f power control is employed along
with a Gaussian input. The upper bound is obtained using an
appropriate correlation scheme of the main and the eavesdmper
channels, and is the best known upper bound so far. The upper
and the lower bounds coincide with recently derived ones inase
of perfect main CSI. Furthermore, the upper bound is tight in

Gaussian wiretap channel with additive noise [2]. Later on,
Csiszar generalized Wyner's wiretap channel by consideri

a non-degraded broadcast channel with confidential message
[3].

In terms of designing practical codes, secrecy-achieving
codes have been proposed for some specific wiretap channels
in e.g., [4], [5]- While the latter construction was basedawm-
density parity check (LDPC) codes, there has been recently a
increasing #ort toward explicit construction based on polar
codes, e.g. [6]-[9], to cite only few. Constructions based o

case of no main CSI, where the secrecy capacity is equal tolattices are also proposed in e.g., [10], [11], whereastajire

zero. Asymptotic analysis at high and low signal-to-noise atio
(SNR) are also given. At high SNR, we show that the capacity is
bounded by providing upper and lower bounds that depend on
the channel estimation error. At low SNR, however, we provehat
the secrecy capacity is asymptotically equal to the capagitof the
main channel as if there were no secrecy constraint. Numerat
results are provided for independent identically distributed (i.i.d.)
Rayleigh fading channels.

Index Terms—Secrecy capacity, imperfect channel estimation,
noisy CSI, on-df signaling, fading channels, low SNR, high SNR.

|. INTRODUCTION

codes based on explicit extractors are presented in [12].
Motivated by these positive previous results, many other
authors have recently addressed the impact of fading onmesecu
communications. Intuitively, fading generally increasbe
randomness of the channel input and it is therefore not sur-
prising that fading may help improve communication segurit
Indeed, it has been shown in, e.g., [13]-[15] that in a quasi-
static fading channel and in contrast to the Gaussian channe
secure communication is possible even if the average signal
to-noise ratio (SNR) of the main channel is less than that
of the wire-tapper (or one of the wire-tappers in a multiple
eavesdroppers case as discussed in [16]). Moreover, ifla hig

The wiretap channel, in which a source communicates Wig\e| of outage is to be tolerated, then the outage secreey ra
a receiver through a discrete, memoryless channel (DMgj the fading channel can even be higher than the secrecy
and a wire-tapper observes the output of this channel \igpacity of the Gaussian wiretap channel for similar averag
another DMC, has been introduced by Wyner [1]. In thigNR |evels. The fect of fading on secure communication for
seminal work, it has been shown that if the capacity of thgngle-antenna wiretap and broadcast channels has also bee
main channel (the channel between the transmitter and tfdied in [17]-[19] where the secrecy-capacity along with
legitimate receiver) is greater than the capacity of theewirthe optimal power allocation aymt rate-adaptation strategies
tapper, then there exists an encoding-decoding scheme sgelhe source have been derived unddfedent channel state
that reliable communication that keeps the messages CqRtormation (CSI) assumptions. Most of the previous work,

pletely secret against eavesdropping is possible (wittioeit

either assume perfect CSI at all terminals, or perfect main

use of any encryption key). Leung-Yan-Cheong and Hellmats| at the transmitter (CSI-T).

have extended Wyner's work and characterized the secrecyThe secrecy-capacity of multiple-antenna wiretap channel
capacity and the achievable rate-equivocation region Her tyjth fixed channel gains has been studied in [20]-[24]. The
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effect of multiple antennas in enhancing the security caggbili

of a wireless link has also been addressed in [25], where
the main channel is known to all terminals, but only the
eavesdropper has access to its channel. The impact of mul-
tiple antennas on guaranteeing a certain level of sectinity,
terms of low probability of intercept and low probability of
detection constraints, has been addressed in [26]. Thetsecr
diversity-multiplexing tradefd of a multiple-antenna wiretap
channel has been investigated in [27]. Secure transmission
schemes based on sending an artificial noise to enhance the
eavesdropper equivocation are presented in, e.g., [28]-[3



Discussions on thefiect of CSI estimation error on secrecyfast fading, however, provided that the eavesdropper CSI is
are also presented in [33]-[39]. not available at the transmitter, the secrecy capacityills st
The ergodic secrecy capacity of the wiretap channel ot known, even with perfect main CSI-T.
known when the main CSI is perfect at the transmitter, but Contrasted with [41] which considers that CSI-T is a
for a suficiently large coherence period [17]. To the best afeterministic function of the exact CSI, our work deals with
our knowledge, the secrecy capacity in a fast fading scenatie setting where the CSI-T is a noisy version of the true CSI.
where the channel gains change from one symbol to the ndxtirthermore, Theorem 1 below provides a converse which is
is only known when the transmitter is aware perfectly of botbur main contribution, whereas there is no explicit congers
the main and the eavesdropper CSI [18]. Itis still not knaifvn, in [41]. Additionally, there is no asymptotic analysis inl]4
the eavesdropper CSl is not available, even with perfechmavhereas our framework formally studies the high-SNR and
CSI at the transmitter. However, upper and lower bounds habve low-SNR regimes.
been reported in [25]. Independently and concurrently with
conference version of this paper [40], an achievable rage ha The organization of this paper is as follows. Section Il
also been derived in [41] (see also [42]). In this paper, wdyst introduces our system model, followed by our main result
the secrecy capacity of fast fading channels under impierfedong with its proof in Section Ill. In Section IV, an asympto
main channel estimation at the transmitter. More precisedy analysis is presented. Section V contains a summary of our
assume that the main and the eavesdropper channels are inefa4lts when applied to Rayleigh fading channels which we
pendent identically distributed (i.i.d.), ergodic andtistaary use in order to provide numerical results in Section VI. Fna
processes, with continuous and bounded probability dens&ection VIl concludes the paper.
functions (PDF). Furthermore, we assume that the transmitt Notations: The expectation operation is denoted Bf].
in addition to the statistics of both channels, is also medi The symbol|x| is the modulus of the scalat, while [X]* =
with an estimated value of the instantaneous main chanmahx(0, x). The logarithms lo@x) is the natural logarithm
gain. The legitimate receiver is aware of its instantaneoo$ x. For a random variablex, =" designates the vector
channel gain along with the conditional received averag® SNx(1), ..., x(n)). when there is no ambiguity, we find it also
(defined formally later), whereas the eavesdropper’s vecei convenient to use; to designatex(i). We say thatf (x) 2 a(x)
in addition to its instantaneous channel gain, is aware aftwhf and only if lim % = 1. When it is clear from the context,
CSl the transmitter and the legitimate receiver have. LR .
In the previous setting, we present upper and lower boungs om_|t a in ~ for convenience. _The symbols and <
) . : are defined analogously. The functiofi§:) and F4(-) denote
on the secrecy capacity. The lower bound is obtained via o . . .
; e probability density function (pdf) and the cumulative
a standard wiretap code [2], [3] (see also [15, Chap. 3ﬁ’.' R . . .
o . o istribution function (cdf) of the random variabbe If x is
The upper bound, which is our main contribution, follows by ™. ; . . .
: . f]:lrcularly symmetric Gaussian random variable with mean
properly correlating the main and the eavesdropper chanrrlneand variancer2. then it is denoted as ~ CA’ (m 0_2)
gains. The upper bound depends on the main CSI-T estimation ' '
error and as shown numerically, it improves upon the upper
bound corresponding to perfect main CSI-T. Furthermore, th ) . . )
upper and the lower bounds coincide with the ones derived inWWe consider a discrete-time memoryless wiretap channel
[25] in case of perfect main CSI. In addition, the upper bourg@nsisting of a transmitter, a legitimate receiver and arega
is tight in case of no main CSI, where the secrecy capacfyoPper. Each terminal is equipped with a single antenne. Th
is equal to zero. Moreover, we provide asymptotic analys‘Pé“pUtS at both the legitimate destination and the eavepeio

Il. SystEm MobDEL

in cases of perfect and no main CSI, together with results &fttime periodi, i = 1,....n, are expressed, respectively by:
high SNR and at low SNR. In the high-SNR regime, we show y(i) = h(i) x(i) + w ()

that the capacity is bounded. In the low-SNR regime, we find {z(i) _ (i) x(i) + (i) (1)
that the capacity is asymptotically equal to that of the main B 2

channel as if there were no eavesdropper, thus establiiengwherex(i) € C is the transmitted signal, arfdi) € C, g(i) e C
tightness of our bounds in this regime too. are zero-mean and unit-variance channel gains that reygrese
We note that our model is fierent from Gopala et al.’s the main channel and the eavesdropper channel, respggtivel
[17]. While [17] considers a block fading model where thandvy(i) € C, v,(i) € C are zero-mean, unit-variance circularly
coherence blocks are large enough to guarantee reliabilitysymmetric white Gaussian noises. The channel ghiasdg
each of them, our focus is on a fast fading model. Recate assumed to be i.i.d., ergodic and stationary with bodinde
that in fast fading channels, the coherence blocks are mwtd continuous PDF's. While the transmitter is aware of both
necessarily large and thus even with perfect main chanhehlnd g statistics, it is not aware of the channel realization
state information (CSI) at the transmitter, reliability ot g(i) and is only provided with a noisy version &fi), say
guaranteed in every coherence block. As a consequence, htig~ CN (0, 1), such that the main channel estimation model
achievability scheme in [17] is not applicable to our seftin can be written as:
even with perfect main CSI-T. It is evidently not applicable . — . &
with a noisy CSI-T. Note that, in block fading channels h(i) = V1-a h(i) + Vo (). (2)
and with perfect main CSI-T only (without the need of thevhereh(i) ~ CA (0,1) is the estimation error and is the
eavesdropper CSI-T), the secrecy capacity is known [17]. émror variance ¢ € (0,1)). We assume thdi(i) and h(i) are



uncorrelated and thus independent. On the other hand, at th&heorem 1: The secrecy capacity of the discrete-time memo-
receiver sides, we assume that the legitimate receiveraseawryless channel described by (1), under imperfect main oblann
of both its instantaneous channel gi@) and its conditional estimation (2), is bounded as follows:

received average SNR (i) given by h(i) = |h()? (i),

wherew (i) = E[lx(i)l2 | ﬁilband the last expectation is over R <GCs<R, ©)
the conditional input distribution; whereas the eavespens whereR. andR, are given by:
receiver, in addition to its instantaneous channel retitina

it 2
g(i), is aware ofh(i), h(i) andh(i). Our motivation to reveal R = E. [Io (L(Tﬂhlz)] (6)
h(i) to the eavesdropper is driven by the fact that the latter InZ.igr?. lhiz=z 1+Po(7)lgl

may be able to track the feedback link between the legitimate 1+PM)VI—a h+ va hR\["
receiver and the transmitter, and thus it may retriéng R, = r;,‘(%xﬁ log 1+ P(h)|A12 - ()

exactly like at the source. As pointed out in [41], revealing b

h(i) to the eavesdropper also prevents the legitimate terminwhere Po(r) = =7 and wherer can be optimized to
to use the CSI as a source of randomness for key generatimaximizeR_.

Finally, the channel input is constrained according to an Proof:

average power constraint: « Achievable rate:
13 To prove thatR_ is achievable and following [46, Propo-
EZ E[lxilz] < Payg. sition3], we consider a new wiretap channel in which the
=1 input is amplified by \/P(h), whereP(-) is a time-invariant

We are interested in message transmission secrecy @aterministic function that satisfies the power constraihis
pacity of such a channel whem — . The level amplifier may be regarded as part of the channel with input

of uncertainty about the message at the eavesdroppert and outputsy andz such thaty'(i) = h'(i) t(i) + v (i) and

is measured by the (normalized) leakage of informatioq(j) = ¢ (i) t(i) + v,(i), where we defindv' (i) = /p(ﬁ(i)) h(i)
that the eavesdropper gets about the message by observ- —

ing its channel output, i.e 1 (w; =", g" h", A" | A7), where andg(i) = y/P(R()) g(i), for convenience. This new channel
L1 (w; 2", g", A", h" | h") denotes the mutual information be-has no CSI-T and input constraifit|[t;/?| = 1. By our CSl

tweenw and(z", g" AN o En)_ The eavesdropper is ignoramassumptions (cf. Section IlI), the legitimate receiver isa@v
about the mess’agé it of both the instantaneous channel ghiii) and its conditional

received average SNR, sd/(i), which can be computed as
r!mo %— [ (W; zn’gn,hn’ ’,_Ln | iln) - 0. (3) follows: . o
ArateRis an achievable secrecy rate if there exists a sequence var(y'(i) | t(i), by (i)
of (n,2"R) codes, for which 2} represents the number of — W (i) ©)
messages to be sent to the destination, such that (3) holds B P(ﬁ(i))lh(i)lz (10)
true andn limPe = 0, whereP is the average error probability B o
defined by: Knowing both h(i) and h'(i), the legitimate receiver can
constructh’(i) and thus has perfect main CSI. Applying the

: 2 . 3 result in [3] to the new channel and choositigas an i.i.d.
Pe= oir Zl Priw # W|w = Wo}, 4) sequence with(i) ~ CAY (0, 1), we get that
Wo=
wherew is the output of the decoder at the intended receiver Re=1(ty.h ? -1(tZ.9 ), (11)
as a result of observing". Furthermore, the secrecy capacity =Gy ) -1G219g) ) (12)
is given by:Cs := sup R, whereRs is the set of achievable = E [log(1+ P(h) In?) - log(1+ P(h) Ig?)]. (13)
ReRs hhg

secrecy rates.

Remark 1: While our focus in this paper is on a wea
secrecy constraint since the secrecy constraint in (3) is n
malized byn, there exists a stronger secrecy measure A

kis achievable. The rate in (13) can then be maximized over all
8owerfunctionsP(-) such thate [P(h)] < Payg. For simplicity,
on-df power scheme is adopted, i.e.,

defines the secrecy in term of a mutual information, i.e., . P() IR > 7

i A ideri (i) = 4P (@ 2 14
lim | (w; 2", g", A", h" | k") = 0. For references considering (h) = 0 otherwise (14)
the latter as well as other stronger notions of secrecysplea . ) )

see, e.g., [43]-[45]. which when applied to (13) yields (6). To complete the proof,

the secrecy ratB_ is maximized over all positive values, and
the optimumrg is obtained by dferentiating (6) with respect
1. Ercopic CapraciTy to 7. That is, 7o is a solution of

Py (7o) Ihf? } _ | Py(r)lg?
1+ Po(r0) 2| 192 1+ Po (7o) |gf?

In this section, our main result is presented in Theorem 1,
followed by the proof.

} (1~ Fige (0))

h2,[2>7



— T (TO)( E [Iog(1+ Po (7o) |h|2) | A2 = TO] in (17) and thus has equal secrecy capacity as the enhanced

thi2/1hj2 wiretap channel.
2 Step 3
—‘Ez[log(l +Po (7o) |9l )]) =0, (15) For the enhanced wiretap channel, we note that substitgting
) _ o . by A" preserves the marginal (18) and (19). This is formalized

whereP, (7) is the derivative ofP () with respect tor. by Lemma 1.

« Upper bound Lemma 1: Consider a wiretap channel defined by:
We recall that in our setting, at time instanthe transmitter N (Y vl ;
has CSIh;, whereas the legitimate receiver knm@:ﬁ,hi) {y(.l)_ P(_I) X(_I)+Vy(_|) (20)

) s Z(i) = h(i) x(i) + v4(i),
and the eavesdropper’s receiver kn \g,shi,hi,hi). Next, we _ B
prove the converse by following three main steps: with similar CSI as the wiretap channel (1), error probapili
. Step 1: We consider an enhanced wiretap channel W‘t@ and secrecy constraint defined bywh%‘d (W; 2" h'| hn) -

n—
higher secrecy capacity than the original channel. 0. Then the secrecy capacity of this channel and that of the
. Step 2: We clearly specify the distributions upon whic§nhanced channel described above are equal. _
the secrecy and reliability conditions for the enhanced Proof: To prove Lemma 1, we only need to verify that
channel depend. Pan gn inanw = Pan in ingnw SINCE Pyn o fyn fin 4 1S the same
. Step 3: We show that substituting” by A" in the for both channels.

enhanc.ed channel does not change the secrecy capacity. Pen fn iun nw = PwPzn 0 fn g (21)
. Step 4. We construct a new wiretap channel where B K o (22)
the above distributions are the same and whegteis = PwPhn zoyw Pan o fun,on
substituted byh" (thus the secrecy capacity of the newly = PwPa Paniw un Pn frw o aen (23)
constructed wiretap channel is equal to that of the en- = PwPh Panivn P in on Panwin anon (24)
hanced channel), but where the noises of the main channel _ . . . 25
: PwPhn Peznw, fon Pn Pznjzzn fns (25)
and the eavesdropper’s channel are correlated such that R
the new wiretap channel is degraded. where (23) follows because and h" are independent and
. Step 5: We upper-bound the secrecy capacity of the né@db) holds true due to our CSI assumption and the fact
wiretap channel, thereby proving the converse. that " and A" are independent, thus" and (w, A", z") are
Step independent. Comparing the right hand side (RHS) of (18)

The enhanced channel is a fading wiretap channel similar@8d (25), we note thaps: = pj. since bothg and h are
the one given by (1), where the main CSI-T is given by (2N (0, 1). Moreover, since | x g follows a CN (xg,1) and

but where the eavesdropper is not awarehbfand k. That Sincez| x hfollows aCA (xh, 1)' then pasangn aNd Ponign fn

is, the secrecy constraint of the enhanced channel is defifég Statistically equivalent. Hence, the RHS of (18) and (25
by: are equal and SO amg,n yn jn enyw AN P fin fn e e [ |

1 _ A

M;L n I (W' 29" | hn) =0. (16) Next, we construct a new wiretap channel which satisfies
§) and (19) and wherg" is substituted byh".

i

X

Clearly, the secrecy capacity of the enhanced channel is(S Lo 4

least | to that of the original . . . . . .
cast equal fo that ot the original one Following [18], the new wiretap channel is a fading wiretap

Step 2 hannel similar to the enhanced lso similar to th
Suppose that a rate is achievable on the enhanced channet,'annet simriar fo the enhanced one (also similar to the

: nR . original one, but with secrecy constraint defined by (16))
Then, there exists a sequence(of2"R, 6,) codes, such that: whereg™ is substituted by" and where the noises, andv,
1y (W| ,?Ln) _ 1y (W| 2N g ,th) <6, are correlated. More specifically, the new channel is defined
; <5 " N (17) as follows:
e =Uns

for a sequence,, with 6 —» 0 asn — co. The secrecy if (h(i),ﬁ(i)) €A,

condition in (17) depends on the joint distributipgh ;o jn 0

y(0) = h(i) x(i) + (i)
2(7) = S (M) X() + w(i)) + V(D).

which in regard of the fact that the eavesdropper’s charmelaind (26)
not known at the transmitter and thg$ is independent of .
o . . . _ 1 * 1 ™ e . . [y
(W, h", mn), can be written as: {y(_l) = F:W-(h(l) x.(|) + vz(|)) + V(i) i (h(i),ﬁ(i)) ¢ 7
Porgrinnn = PoPanwioPioPyrPanangr. (18) () =0+, (27)
Similarly, the reliability condition in (17) depends on tjuint where A = {(h(i),ﬁ(i)) : h(@i)| > |F1(i)|} and Vy(i) ~
distribution p,n j,0 jn n 0y Which itself decomposes into:  con/ (0 1- :E(i);) and v (i) ~ CN(O 1- LEQIE) Note that the
k3 k3 k3 k) i 9 I 9 |

channel defined by (26)-(27) satisfies b())th (18) and (19) and
hence any secrecy rate achieved on the enhanced channel is
Any new wiretap channel that preserves the distributio®3 (1also achieved on the new one. Furthermore, the new channel is
and (19) satisfies the secrecy and the reliability congsaimphysically degraded, i.ex(i) — y(i) — Z(i) if (h(i),ﬁ(i)) € A

Pyn honfun b anw = PwPgow, fn Pin Projin Pyoian. ho- (19)



. . N o = _ 1+ h)*P; (A oA
g?ng(é) - A =YOT (h(l)’h(l)) B = E|E||lo [1+ |h|2 PI( |)] Il?, hyf?, hi” (41)
We now upper bound the secrecy rate of the new channel. as - +Ihi '( ) N
follows: 1+ E[In2 Py (B) I, IR, ﬁi]”
< E||log — (42)
R = H(w| A 29) |2+ E[Re P (R) | 2 e,
pnog N7 T 2 AP
= H(w| 2R h”) w1 (w; 2", R AN (29) _lliog 1+ |t‘| E|P (h)'h'] 43)
< H(w|z" A" A" + ns, (30) |1+ e E[p (A1) |
< | (W‘ y", h", i_zn|z” R", ﬁ“) +n (6n +6;]) (31) ) E»ilo 1+ | (ﬁi) " )
< |(:I: y", h", h”lz h", h”)+n6n (32) B | g 1+ A2 (ﬁl)
= (;cn y"| 2" R0, A" R, hn) +ne (33) 1 (1+ P (ﬁ)]H
n = E||log| ————= (45)
= > {h(yi|z" R A" RN ARy |\ 1+ A2 (h)
= NEnoen Th FEp where (42) follows from Jensen’s inequality since the fiorct
~h(y|="R" AN AN ANy 2" 4 ey G4 [Iog(ﬁgi)r is concave for any positiva andb; where
n ~ ~.
- (43) follows because conditioned dn@ h' is independent of
= ;{h(y. 2, b B, h"h') Ihi|? and|hi|? due to the fact that the falldinﬂg procebs is i.i.d.;
h( _ X.)} tne, (35) where we have defingd (hi) in (44) asy; (hi) = E[Pi (hi) ' hi].
n Since the fading processéls}, {ﬁi} and{ﬁi are ergodic and
= Z| (Xa;yi |zi,ﬁi,ﬁi,hi,ﬁi) +Ne (36) stationary, then they have a stationary first-order distian
i1 and thus the expectation in (44) does not depend on their time
n o s indexi which yields (45). Combining (40) and (45), we obtain:
= > [roewl ALY =1 (2] R R+ ne (37) , .
= 19 L+ Ihi i (R)
n o o Re < =) El|log | [+6n  (46)
= > [n(w|A.hh)-h(z R A e (38) n 1+ 2 i (B)
s Il 1+|h|212 T (M
(R h h)=h(z b AN < E||l 1) 47
@ 2y, o) -lal ) e i e R
: L+ 1P (ﬁi)] ) 1+ 2 ( ) ’
= |Og — A~ + Nen, (40) — 7#
ezl | o ) |

where (30) follows from the secrecy constraint (17) and fro?{’{here (4;) fol:jov¥s a:jgaln by_J(lansens megualltt)y and where
substltutmgg” by h", and (31) follows from Fano’s inequality, ( ) in (48) is define aﬂ( ) Z “'( ) The above upper

with 6, — 0 asn — co. For convenience, we have definethound is tight if z; (ﬁ) is mdependent of. Lettingn — o

& = Gn + 6y after E?’l)n Ir:]equahty (32) is true because giveRy maximizing over all power policids (1)} that satisfy the
A", w— " —> ( ,h" h ) forms a Markov chain, Whereaspower constraint, we establish that

(33) holds since give", =" is independent o(hn h”) In ~

order to justify (37), we used the fact that the new channel 1+ |h|2,u(h)

is physically degraded and thuls(x| y.|z| h.,h h.,h) = 1+|F]|2,U(F])
That is, the following upper bound holds true:

[ (x.,y.|h,h.,h)— I (x.,z.|h.,h)] . Since givenh; and h;,
the variance of; is equal to & b P; (A'), whereP; (h') =

1+ P(h)Ih? 0

g{ihp( )|h|2]} . (50)

+

Re < max E |lo

9
E[1(n)]<Pag h.oh (49)

E[lxi|2|ﬁ‘], since giver(ﬁi,fzi), the variance of; is equal to

1+hi2P; (ﬁi), and since the input distribution that maximizes Cs < E[Pg])?;(Pavg hEﬁ lo
(39) is Gaussian [22], [23], [25], [47], then (40) holds true

Hence, it only remains to prove that the above upper bouhibte that the obtained upper bound, being an upper bound on
is maximized by a power allocatio; (h') = ﬂ(hi), a time- the enhanced channel, is also an upper bound on the original

invariant function offy only. To do this, we have: channel which yields the result in (7). ]

It is worth mentioning that the upper bound has the fol-
lowing interpretation. In order to increase the informatio
leakage, the eavesdropper “sticks” to the component of the

+




main channel that is unknown to the transmitter. Note alab ttpossible to obtain the following necessary optimality dtind
the lower and the upper bounds on the secrecy capacity in (3 the Karush—-Kuhn—Tucker (KKT) condition:
coincide with those derived in [25, Theorem 4], for i.i.ddifiag 2 2
channels under perfect main CSI. Although the lower and the _ "~ g _ } =
upper bounds do not generally coincide, they provide, to the Ih21h g2 (1+ P(h)|h|2) (1 + P(h)|g|2)

where 1 is the Lagrange multiplier corresponding to the

best of our knowledge, the best available characterizaifon
the secrecy capacity over i.i.d. fading channels that amouaverage power constraint. Define the functigf) as the
LHS of (57), i.e., f(p) = Ine g ] Then,

(57)

for imperfect main channel estimation at the transmittexteN
also that sinc&, in (7) is concave irP(ﬁ) the maximum can \h|Z|E|9\2 [(1+P(h)|h\2)(l+P(h)\g|2)

be found by deriving the optimum power profiR(h) using following similar lines as [41, Lemma 5], one can show that if
the Lagrange approach. Indeed, the corresponding Lagmanghere existshy, such thate [lhl2 191 | hO] > 0, i.e., such that

can be written as: (1-a) (o2 - 1) > 0, then using the entire available power is
1+ P(ﬁ)l Vicah+ N A2 o optimal, and the powep(ﬁ) defined by:
lo — A
H g( 1+ P(h)Ih2 H ” o) = {fﬁl () fo<a<(@-a)(h?-1)

ﬁ 0 els (58)
1 (E[P0] - Pus). 1 )

is a power allocation under power constraml) = [p(h)]

where 2 > 0 is the Lagrange multiplier corresponding to]_
i L z . he fact thath ~ CN (0, 1) ensures that there eX|sIha such
the average power constramt.ffﬁrennatmg[(P(h),/l) with that (1 — o) (Iholz 1) > 0. Hence, the subsequent achievable

respect toP(h) yields the following necessary andfBaient yate resulting from the above procedure verBug curve can

condition for optimality: be obtained by varying.

N " -
LA [NEA H|og(1+ P v1- @ EH va h H ﬁD_,l =0. Remark 3: While the achievable rat® has been proven
9 P(h) hih 1+ P(h)lh? under weak secrecy constraint, it is worthwhile noting that

. (52) same rate is achievable under the variational distanceghwhi
For convenience, leh = p€° with / € [0, ) andé € [-n.7], s a stronger secrecy metric, as shown in [41]. Note that our

and let us define the regiddy by: converse holds true under the variational distance metric.
D; = F1=,5e"~’ | < f? _ (53) IV. Asymproric ANALYSIS
po(a—e) It is of interest to use Theorem 1 in order to obtain

3 N . _ useful insight in some interesting asymptotic cases. Below
wherep e [0,00) and 6 € [-x, 7] and po(-) is the function we analyze the secrecy capacity at high SNRR,{ — o) and

defined on {27, 2x] by: at low SNR Paq — 0), together with the perfect main CSI
(¢ — 0) and no main CSl — 1).
\/(1 — a)(acos(t)? - a + 1) - va(T-a)cos(t)
po(t) = . . .
- A. High-S\R Regime
l-a (54) g S|

Our result is summarized in Corollary 1.

Then, th timal file is th uti f the follogi ) .
en, the optima! Power protiie Is the solution ot the Tollag! Corollary 1: At high SNR, the secrecy capaci®? is

optimality condition:

bounded by:
[VI=ah+vah?  Jh? }_ﬂ_ R°<CY <R, (59)
Reop |1+ P(A) VI—a h+ va 2 1+ P(h)h? _ whereR® andR> are given by:
If for a particular value ofh, there is no positive solution R — £ [Io (‘h 2)} (60)
P(h) for (55), then the instantaneous power is set to zero, T h2jgRheer g
e, P(R) = 0. |NT=ah+ vaf*)[
R? = E |log — , (61)
Remark 2: The achievable rate in Theorem 1 can be R ‘h|

immediately improved by optimizing the raR in (13) over and wherer is optimized to maximizéR_.
all power policies that satisfy the power constraint. Irntlee Proof:

departing from (13), one expect a better rate by solving: . Asymptotic achievable rate

o £8P 1) o) . By o 3t 0= £, on(i50)]

(56) achievable, for any > 0. ASP — oo, we have.
Note that the objective function in (56) is not convex. Nev- 1+ Po(7) |h)?
ertheless, developing the Lagrangian exactly as in (51 it I|m R (T)_,l'_r,rlo Ihe. \glIZE\h\2>-r 1+ Po (1) g2 (62)



_ E [“m g(1+ Po (T)Ihlz)} (63) there is no secrecy constraint. Hence, the low-SNR analysis
I2,Igi?.|F2>7 1+Po(7)1g? reveals the potential capacity gain provided by partial @S|
h[2 the transmitter for any non-null channel estimation qyailie.,
h
:|h\2 - |g? any « € [0,1). Our result can be stateg as follows.
Theorem 2: Assume that the fadink, h andg in (1) and (1)
where (63) follows from the Dominant Convergence Theorerﬂave all an infinite support. Let € [0, 1). LetCp gpavg, a) be
since for anyPay value, the capacity of the main channel giveny(y) = h(i) x(i) +v(i),

P—oo

| 1+ Py (1) |h)? | |hj2 with CSI-T h; as described by (2) and with CSI-(ih.,h.)
09\ 15 Po (1) g2 < |log 192’ at time instanti, and with average power constraiRbyg.
Then the secrecy capacity of the wiretap channel given by
for any |h|> > 0 and|g®> > 0, and (1) satisfies:
0og m < 00 Payg—0
Ihi.Igi2 2> 912 ’ Cs(Pag:@) = Cn(Pag, ) (67)
since f, is continuous an bounde(iifollog(x)dx| - 1 and Proof: Since the capacity without secrecy constraint

] oo . cannot be smaller than the one under secrecy constraint,
|h‘2,ﬁzz.‘.[|h|2] 2. |h|z[|h| ] < oo; then the limit in (62) exists the converse part of Theorem 2 is immediate. To prove
and we can insert the limit inside the expectations in (68). The achievability part, let us first consider the main channe
complete this part of the prooR- (r) is maximized over all as described in Theorem 2. For this channel, let us define
7 > 0 and the optimum value is achievedtthat satisfies the maximum channel gai® by [48]: G = sup EEV‘“X‘;'

the necessary optimality condition given by:
fire (To)( £ [log(In°) 11® =To]_|§2[|09(|g|z)]) =0. (64) thenG = sup E[In|A] = sup[(1- ) " +a]. Since by

assumption of Theorem % has an infinite support, then
« Asymptotic upper bound . . . S
y p_ PP < a G = . Now, Let us consider the conditional input distribution
For convenience, ldt B® the RHS of (5) Wher@(h) = Pavg

It can be verified that because the transmltter has h:SI

- R I defined by
a constant power policy independently lnfThe later partic- A
ular choice provides a lower bound & and thus: x| 1) = §(x— vPo) if A2 >, (68)
lim R, > lim UB™ e 160 otherwise

Payg— 0 Payg— 0

[ [1+ Pagl VI—a h+ va Fllzﬂ+ where () is the Dirac delta function, wherBy = 1 E‘z(v)
= |im log

Pag—% A 1+ pavg|ﬁ|2 and wherev = v(Payg) is a threshold that needs to be
determined. Clearly, the input distribution (68) satisftbe
[V1- ah+\/_h|2)] =
=E {| ( , (65) power constraint since:
hh |hj2
oo
where (65) holds by a similar reasoning than the one usedF_tP)q ] f X2 £, (X) dx (69)
obtain (63). On the other hand, for aﬁ)(h) > 0, the following ©
upper bound orR, holds true: ) - f X2 (Fire ()6 (%) + (1= Fiie () 8 (x = VPo)jay
Vi—ah hI2 -
R, <max E Iog(| < ~: va hi )] =(1- Fjpe ) Po (71)
P(h) R Ly =Pavg. (72)
_E |\/1 a h+ va h2\[" 66
i Ih|2 (66) Furthermore, we verify that:
Applying the I|m|t on both sides of (66) completes the proof . |E[X]I?
of our asymptotic upper bound. n Panso E[X?] paig”lo(l ~ Fe () (73)
Clearly, Corollary 1 states that the secrecy capacity is\ded E[Ihlzlxlz]
at high SNR confirming that the secret multiplexing gain - [h] (74)
is equal to zero, regardless of the main channel estimation Pag—0 E[Ix?] Pag—0 |2 2, )
quality. [7 the (0 dt
= lim o+ @-a) 2T T (75
Pag—0 ( ) 1- Flh\z( ) ( )

B. Low-S\NR Regime

While the high-SNR analysis provides somehow a negauwsherelhl[m in (74) is the conditional random variable defined
result in the sense that the capacity is bounded no mathyr|h|2 |h|2 | A2 > v. Now, choosing’ such that the limit
how Paq increases, we show that at low SNR, and foh (73) is equal to zero and the limit in (74) is equal G
fading channels with infinite support, the secrecy capaisity
asymptotically equal to the capacity of the main channef as i 'Please see our formal definition of the notatierat the end of Section I.



ensures that the input distribution in (68) is first-ordetimpl  where RP®™ and R**"™** are given by:
in the sense of [48, Theorem 4]. That is,

1+ Pag€ |2
REerfect: E [IOQ(L (86)
Crn (Pavg: @) ~ E [log (1 + Ih? x%)] (76) e>roig?] - \ 1+ Payg€” gl
f : o : : erfect 1+ P(h)|h|2 !
The secrecy rate achieved by the above input distribution is R =max E llog(——= 5 —]|| - (87)
given by: P()  |n? g2 1+ P(h)gl
y:
and whererg is a solution of:
R = E [log(1+h?x?)| - E [log(1+Ig?Ix?)]. (77) , ,
IhZ.x l0Z.x Pag€” Nl £ _Pawe’ld (1 E o ))
As Payg — O, the first term in (77) is much larger than the |n2>r[ 1+ Pé“,geflhl2 l9?] 1+ P,,,“,geflgl2 A £
second one as shown below: [ ( 2)]
212 ~fi2 (1) (Iog (1+ Pr€”) — E|log(1+ Pe g ) =0. (88)
E [Iog(1+ |g|2|x|2)] ng.x[log(H'g‘ )l loi?
R [+ £ . Pavg .
lim = lim ———>=_——(78) Proof:
oo™ Ihl\;x [log(L-+ ZX2)]  Pag0 & [og(1h2h)] « No Main CSI
Pas In this case, we have = 1, i.e.,h =handP(h) = P. The
'09[1+@Ez[|9\2] Pavg] upper bound in (5) is equal to zero, and so is the secrecy
. Pa capacity.
< | — (79
- Paignlo ‘hllgx[log(lﬂh\?\xlz)] (79) « Perfect Main CSI
Pag In this case, we have = 0, i.e.,h = h and P(ﬁ) = P(h).
E [lo?| Sinceg is independent ok, then (i, g') = (h,g) is a valid
_ 9 (80) choice that is when applied to (50) provides the upper bound
~0 G (81) in Corollary 2. The lower bound follows by specializing the

result in Theorem 1 to the case whdre: h. [ |

where (79) is due to the Jensen’s inequality and the indepenRemark 5: In case of no main CSI, the secrecy capacity is
dence ofx and g, and (80) follows because the inputis Nnot zero solely because of the unavailability of the main-CSI

first-order optimal. HenceR_ is asymptotically equal to T, but also because the main and the eavesdropper channels
A have identical statistics. Should the main channel be ttbihe
R ~ ‘hEX[|09(1+ Ihi? 1x2)]. (82)  the eavesdropper channel on average, one may still be able to

) ) achieve a positive secrecy rate, even without main CSI-T.
The rate on the RHS of (82) is asymptotically equal to the

capacity of the main channel and hence is the best rate one

can achieve. [ | In thi i v th its derived in th .
We emphasize that although in the low-SNR regime, the n this section, we apply he results derivea in the previous

o . . ctions to i.i.d. Rayleigh fading channels. That is, thenma
secrecy capacity is asymptotically equal to the capacity %ﬁannelh and the eavesdropper chanrglare circularly

the main channel as if there is no secrecy constraint, olle s . . . !

needs a wiretap code to guarantee secrecy. symmetric complex Gaussian Wlth_me_an zero and_ variance
one, and so aré and h. In our derivations summarized in

Table I, we have used the fact thit2, [hj2 and |g? are

all exponentially distributed with common pdfy(x) = €%,

ere the subscripK is any of the r.v.Jhj, |2 and |g2
avg— dditi ly, th diti I rvihi2 | h h PDF gi by:
That is, R_(Pavg,a) 9 R+(Pavg,a), for any e € [0.1), itionally, the conditional r.vjh|= | as a given by

including the perfect main CSI-Ta(= 0) treated in [25]. ) - —
f\hlz\ﬁ(|h|2 | h) = éeiw |0 2 uixw , (89)

C. Perfect And No Main CS Extremes herelo() is th dified B y )  the first Kind

- . wherelo(+) is the modified Bessel function of the first kind.

When specialized to the no main CSI case, the lower a ﬁjso, if 9 andd are uniformly distributed betweer+, 7], then
the upper bounds in Theorem 1 coincide, providing a trivi

secrecy capacity. On the other hand, in case of perfect mair? PDF oft = (9_ 9) 1S

CSI, thef ug_per l;ound Icoir(ljcidehs with the s_ecre:c:y capa;:‘;y of a ﬁ (r+6) -21<6<0

wiretap fading channel under the assumption of asymptbtica 9

long coherence intervals derived in [17, Theorem 2]. Ounltes fo(0) = (2n)? (2r-6) 0<o<2n (90)
is formalized in Corollary 2. 0 elsewhere

Corollary 2: In Case of no main CSlI, the secrecy capacitgimijarly, if 5 andg are Rayleigh distributed, with distribution

Cs is equal to zeroCs = 0; whereas, in case of perfect maing, 5y — 2567 = £, (5), then their rati = 5/ has the PDF:
CSl, the lower and the upper bounds in (5) reduce to: p ) =25 5 ). F=pip

V. APPLICATION: L.1.D. RayLEIGH FADING CHANNELS

Remark 4: Since the upper bourid, cannot be higher than
the capacity of the main chann@l,, then a direct application
of Theorem 2 establishes that our bounds match at low S

2p
RgerfectS Cs < REerfecE (85) fp (o) = 1 +,02)2’ (91)



for p > 0. Finally, for a Rayleigh fading channel, we have: VI. NumericAL ResuLTs

Po(r) = Py (1) = Pag€™. In Tab. I, E(X) = [ Sdtis the ~n this section, numerical results are provided for i.i.d.
exponential integral function and~ 0.577216 is the Euler's Rayleigh fading channels. Figure 1 depicts the lower and the
constant, whereas LHS stands for left hand side. upper bounds in Theorem 1 in nats per channel use (npcu)

versus P,y designated as SNR, for fierent main channel

In order to illustrate the result at low SNR, we note that f%stimation error variances. Also shown in F|g 1 are the
the main channel as described by Theorem 2, we cannot aplﬁ’i@h-SNR bounds given by (59) along with the corresponding
directly the low-SNR characterization in [49] since therghe pounds to perfect and no-main CSI extremes given by (85). As
authors assume that the receiver knows Botdndh. Never- can be seen in Fig. 1, the secrecy rate is strictly positiesev
theless, by considering= log(Payg) - 210g |09(ﬁ) in (68), for a poor main channel estimation quality £ 0.9). Although
one can verify that the limits in (73) and (74) are equal to @ arthere is a gap between the lower and the upper bounds for all
oo, respectively; and thus the input distribution given by)(68« € [0, 1), this gap is bounded for all SNR values.
with such a choice of is first-order optimal. Furthermore, Figure 2 assesses the rate loss incurred by the proposed
applied to the main channel, this input distribution achiea on-of power scheme, compared to the one obtained from

rate Ry, equal to: KKT condition in Remark 2, forr = 0.5. As can be seen in
2, 2 Fig. 2, the procedure described in Remark 2, albeit complex
Rm = |h|\§,x [Iog (1+ I 1] )] (92)  and time-consuming, does not provide a substantial gain, in
co P co the setting considered in our paper. Indeed, the rate asthiev
- Prob{lhl = V} ‘hgﬁ‘z[log(br A PO) [ 1hi* 2 V] (93) by the proposed on#b power policy and the one resulting
- P 212 from the KKT condition are very close for all the SNR range
- Prob{lhl = V} Po‘h|2E‘ﬁ‘2 [|hl [ Ihi* > V] (94) displayed. This observation holds true foffdient values of
= Payg E [(1- ) N +a |17 > v (95) @ _ :
A2 Figure 3 depicts the bounds versasfor different SNR
=(1-0a) Pag E [|ﬁ|2 [ A2 > V] + @ Payg (96) values. The bounds match far = 1, confirming that the
Ih2 secrecy capacity in case of no main CSl is equal to zero.
> (1- @) Pagv+a Pag (97) In Fig. 4, the optimal values afy versus SNR is displayed.
~ (1- @) Pagv (98) The curvesin Fig. 4 have been obtained by solving the neces-
1 sary condition (43) or its high-SNR version (88). Intenagly,
~ (1-a) Pag Iog(P ) (99) at high SNR, and for a given channel estimation eerprrg
avg

converges to a fixed value, sa§ (@), which suggests that at
where (94) follows using the fact that 16+ x) * x when high SNR, if the transmitter is provided this value, it would

x — 0 along with the fact thaPg = m which converges be able to achieve the same secrecy rate without the need of
to 0 asPayg — 0; (95) holds true since giveﬁn the mean ofh|2 h. Note also. that_ for a given SNR valug, decreases with the

is equal to(1 — @) |2 +a; and (98) is true becauseconverges Channel estimation quality. _

t0 00 asPayg — 0. The RHS of (99) is the asymptotic capacity " F19- 5 and Fig. 6, we present results in the low-SNR
of an enhanced main channel where the transmitter still knowy'9'™M€ for an estimation error equal to = 0.5 and for

h, but the receiver now knOV\($’1i,hi,ﬁi). The capacity of this (h€ perfect CSI-T ¢ = 0) case, respectively. In addition

enhanced channel —an upper bound on the capacity of our mi@rf€ upper and the lower bounds, we have also depicted
channel— is asymptotically equal (@ — a) Pag lo L) as the capacity of the main channel with noisy CSI-T along
ymp y € ag 1095, with the asymptotic expression given by (100). The curve

it has been shown in [49]. We conclude that the asymptofig responding to the capacity of the main channel has been
capacity of the main channel described in Theorem 2 at IQy)iqined by evaluation of [46]:

SNR for Rayleigh fading channels is given by: -
yieh eeng Hen Dy Cn=maxE[log(1+y(R) h?)],  (102)
Y

1
Cr(Pavg. @) ~ (1= @) Pavg '09(%)' (100)  \yhere the expectation is with respect to the joint distidut
of |hj2 and h and where the maximization is over all power
policies that satisfy the power constraint. In Fig. 5, Weenot
that as SNR decreases, our bounds asymptotically match in
) (101) agreement with our discussion in Section IV. Both bounds get
closer to the capacity of the main channel (without secrecy
Note that to establish (100), we have utilized an enhancgghstraint) although the convergence seems slow, and one
main channel so that known results at low SNR [49] can R&pects the three curves to match at SNR values below -40 dB.

exploited in our proof. Our result however, is applicabléfte  The Jow-SNR characterization in [49] seems slightly opéitici
main channel as described in Theorem 2 where the recei%@ld is more accurate for strictly positive valueseof

knowsh; andh;, but noth;. This suggests that the (somehow

strong) assumption by which the receiver knows Hotndh VII. ConcrusioN

as required in [49] is apparently not fundamental in themegi  The secrecy capacity of i.i.d. fast fading channels, un-
of interest. der imperfect main channel estimation at the transmitter,

Applying Theorem 2, we immediately have:

1
CS (Pavg, CZ) = (1 - a) Pavg |Og ( Pavg



Table |
SUMMARY OF THE DERIVED RESULTS FOR L.I.D. RAYLEIGH FADING CHANNELS.

General i.i.d. i.i.d. Rayleigh
®) I Tofh oo 100 (1 Je 9ty (01 V) e P dgandh
- 1+P(H)((A-a)p? +ap?+2 Va(l-a)pp cos(d) . AN g~ A
) [k 0 log( PN P s ) ety () i
ke Tofh of =0 1+P0 30 Ry fineh (hl \/—) e " dgdnah
(15) ePo(70) g
I P _PO(_E)W__J) o7l (7_5) = 10g (1+ Po (7o) W fyya (h | \/—)
7
ro() (1-@)p?+ap?+2 Va(l-a)pp cos(f)
52 i (1+P(/3)([(11fu;>12p+;;>2+2 e Tpcos) 1+P(,>),J ) f5 () 29I - 1=0
(60) e (y + €0 (r0) - €0 Ei (2) + E (1270) + log (1 - @) 70))
(61) ﬁ o f% log((1- @) p? + @ + 2Va (T - a)p cos(6))f, (o) fo (6)
£Q
(64) Ei (5270) + log (ro) + log (1 - @) +y = 0
(86) e o (epﬁ (eTO E; (— + To) E; ( )) +log (1 + 7oE0 Pa\,g))
87) max 5 (log (1+hP(N) - e (E; () - Ei (h+ ﬁgﬁj))) eNdh
(88) %i; (epi\_vg ((1 e Pavg) E; (%) - € E (% + T)) — & Payglog (1 ey Pavgr)) =0
0'7.; -A-Perfect main CST secrecy capacity Ry |« = = = = .q‘_y ....... ;‘, ........ 022

5 maimn — - --Optimal rate, a=0.5 \
=%~ No main CSI secrecy capacity | o= |
—Achievable rate R~ | o e N 0.2L—On-off achivable rate, a=0.5
0.6[1 - - High-SNR achievable rate R™ pbigs :

-8-High-SNR upper bound Ry
& —4e— Upper houml R,
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Figure 1. Achievable rate and upper bound for i.i.d. Rayldaging channels,
with various main channel estimation errars Figure 2. On-& achievable rate and the one resulting from the KKT condition
versus SNR, forr = 0.5.

is addressed. Lower and upper bounds are derived forsimmple constant rate onffigpower scheme is enough to achieve
given channel estimation quality, and the gap between thesgositive secrecy rate. It is to be reminded that one can
bounds is characterized numerically. In addition, spemdakes enhance the later achievable secrecy rate by optimizing the
regarding perfect and no main CSI at the transmitter am@nsmit power with respect to the main channel estimation,
studied. Particularly, it is shown that that our bounds ciniea at the expense of increasing the system complexity.

with recently derived bounds for the i.i.d. fading channels Finally, we note that our upper bound relies on the eaves-
Furthermore, insightful asymptotic analyses at high SNB adropper’s channel having the same statistics as the main
at low SNR are provided. Perhaps surprising, it is found thaehannel estimation error. This leaves open the problem of
the secrecy capacity is equal to the capacity of the maitletermining a generic upper bound.

channel without secrecy constraint at asymptotically IoWRS

Our framework shows, for instance, that even a poor main ACKNOWLEDGMENT
channel estimator at the transmitter can help establisireec The authors would like to thank the editor Dr. Andrew
communication. This fact has also been demonstrated in €langaraj for volunteering his time to handle this paper and
[41], although in a slightly dferent setting. Furthermore, athe anonymous reviewers for their valuable comments that
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Figure 3. Achievable rate and upper bound for i.i.d. Rayldading channels
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Figure 5. Achievable rate, upper bound, capacity of the nchannel and

the

asymptotic expression given by (100) for i.i.d. Raylefgding channels,

with estimation errorr = 0.5.

Rrate (npcu)

=== Py 10g (1/Pavy)

-8 C,, with perfect CSI-TR, (a = 0)
—#=Upper bound, perfect main CSIT
— Achievable rate, perfect main CST

-20 -10
Rrate (dB)

Figure 4. Optimal on-f power parametety versus SNR for i.i.d. Rayleigh Figure 6. Achievable rate, upper bound, capacity of the nchmnnel and
fading channels and for various valuesaf

the

asymptotic expression given by (100) for i.i.d. Raylefgding channels,

with perfect CSI-T,a = 0.

have enhanced the technical quality and the lucidity of this
paper.
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