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On the Secrecy Capacity of the Wiretap Channel
with Imperfect Main Channel Estimation

Zouheir Rezki, Senior Member, IEEE, and Ashish Khisti,Senior Member, IEEE, and Mohamed-Slim
Alouini, Fellow, IEEE,

Abstract—We study the secrecy capacity of fast fading channels
under imperfect main channel (between the transmitter and
the legitimate receiver) estimation at the transmitter. Lower
and upper bounds on the ergodic secrecy capacity are derived
for a class of independent identically distributed (i.i.d.) fading
channels. The achievable rate follows from a standard wiretap
code in which a simple on-off power control is employed along
with a Gaussian input. The upper bound is obtained using an
appropriate correlation scheme of the main and the eavesdropper
channels, and is the best known upper bound so far. The upper
and the lower bounds coincide with recently derived ones in case
of perfect main CSI. Furthermore, the upper bound is tight in
case of no main CSI, where the secrecy capacity is equal to
zero. Asymptotic analysis at high and low signal-to-noise ratio
(SNR) are also given. At high SNR, we show that the capacity is
bounded by providing upper and lower bounds that depend on
the channel estimation error. At low SNR, however, we prove that
the secrecy capacity is asymptotically equal to the capacity of the
main channel as if there were no secrecy constraint. Numerical
results are provided for independent identically distributed (i.i.d.)
Rayleigh fading channels.

Index Terms—Secrecy capacity, imperfect channel estimation,
noisy CSI, on-off signaling, fading channels, low SNR, high SNR.

I. Introduction

The wiretap channel, in which a source communicates with
a receiver through a discrete, memoryless channel (DMC)
and a wire-tapper observes the output of this channel via
another DMC, has been introduced by Wyner [1]. In this
seminal work, it has been shown that if the capacity of the
main channel (the channel between the transmitter and the
legitimate receiver) is greater than the capacity of the wire-
tapper, then there exists an encoding-decoding scheme such
that reliable communication that keeps the messages com-
pletely secret against eavesdropping is possible (withoutthe
use of any encryption key). Leung-Yan-Cheong and Hellman
have extended Wyner’s work and characterized the secrecy-
capacity and the achievable rate-equivocation region for the
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Gaussian wiretap channel with additive noise [2]. Later on,
Csiszár generalized Wyner’s wiretap channel by considering
a non-degraded broadcast channel with confidential messages
[3].

In terms of designing practical codes, secrecy-achieving
codes have been proposed for some specific wiretap channels
in e.g., [4], [5]. While the latter construction was based onlow-
density parity check (LDPC) codes, there has been recently an
increasing effort toward explicit construction based on polar
codes, e.g. [6]–[9], to cite only few. Constructions based on
lattices are also proposed in e.g., [10], [11], whereas wiretap
codes based on explicit extractors are presented in [12].

Motivated by these positive previous results, many other
authors have recently addressed the impact of fading on secure
communications. Intuitively, fading generally increasesthe
randomness of the channel input and it is therefore not sur-
prising that fading may help improve communication security.
Indeed, it has been shown in, e.g., [13]–[15] that in a quasi-
static fading channel and in contrast to the Gaussian channel,
secure communication is possible even if the average signal-
to-noise ratio (SNR) of the main channel is less than that
of the wire-tapper (or one of the wire-tappers in a multiple
eavesdroppers case as discussed in [16]). Moreover, if a high
level of outage is to be tolerated, then the outage secrecy rate
of the fading channel can even be higher than the secrecy
capacity of the Gaussian wiretap channel for similar average
SNR levels. The effect of fading on secure communication for
single-antenna wiretap and broadcast channels has also been
studied in [17]–[19] where the secrecy-capacity along with
the optimal power allocation and/or rate-adaptation strategies
at the source have been derived under different channel state
information (CSI) assumptions. Most of the previous work,
either assume perfect CSI at all terminals, or perfect main
CSI at the transmitter (CSI-T).

The secrecy-capacity of multiple-antenna wiretap channels
with fixed channel gains has been studied in [20]–[24]. The
effect of multiple antennas in enhancing the security capability
of a wireless link has also been addressed in [25], where
the main channel is known to all terminals, but only the
eavesdropper has access to its channel. The impact of mul-
tiple antennas on guaranteeing a certain level of security,in
terms of low probability of intercept and low probability of
detection constraints, has been addressed in [26]. The secret
diversity-multiplexing tradeoff of a multiple-antenna wiretap
channel has been investigated in [27]. Secure transmission
schemes based on sending an artificial noise to enhance the
eavesdropper equivocation are presented in, e.g., [28]–[32].



Discussions on the effect of CSI estimation error on secrecy
are also presented in [33]–[39].

The ergodic secrecy capacity of the wiretap channel is
known when the main CSI is perfect at the transmitter, but
for a sufficiently large coherence period [17]. To the best of
our knowledge, the secrecy capacity in a fast fading scenario
where the channel gains change from one symbol to the next,
is only known when the transmitter is aware perfectly of both
the main and the eavesdropper CSI [18]. It is still not known,if
the eavesdropper CSI is not available, even with perfect main
CSI at the transmitter. However, upper and lower bounds have
been reported in [25]. Independently and concurrently withthe
conference version of this paper [40], an achievable rate has
also been derived in [41] (see also [42]). In this paper, we study
the secrecy capacity of fast fading channels under imperfect
main channel estimation at the transmitter. More precisely, we
assume that the main and the eavesdropper channels are inde-
pendent identically distributed (i.i.d.), ergodic and stationary
processes, with continuous and bounded probability density
functions (PDF). Furthermore, we assume that the transmitter,
in addition to the statistics of both channels, is also provided
with an estimated value of the instantaneous main channel
gain. The legitimate receiver is aware of its instantaneous
channel gain along with the conditional received average SNR
(defined formally later), whereas the eavesdropper’s receiver,
in addition to its instantaneous channel gain, is aware of what
CSI the transmitter and the legitimate receiver have.

In the previous setting, we present upper and lower bounds
on the secrecy capacity. The lower bound is obtained via
a standard wiretap code [2], [3] (see also [15, Chap. 3]).
The upper bound, which is our main contribution, follows by
properly correlating the main and the eavesdropper channel
gains. The upper bound depends on the main CSI-T estimation
error and as shown numerically, it improves upon the upper
bound corresponding to perfect main CSI-T. Furthermore, the
upper and the lower bounds coincide with the ones derived in
[25] in case of perfect main CSI. In addition, the upper bound
is tight in case of no main CSI, where the secrecy capacity
is equal to zero. Moreover, we provide asymptotic analysis
in cases of perfect and no main CSI, together with results at
high SNR and at low SNR. In the high-SNR regime, we show
that the capacity is bounded. In the low-SNR regime, we find
that the capacity is asymptotically equal to that of the main
channel as if there were no eavesdropper, thus establishingthe
tightness of our bounds in this regime too.

We note that our model is different from Gopala et al.’s
[17]. While [17] considers a block fading model where the
coherence blocks are large enough to guarantee reliabilityin
each of them, our focus is on a fast fading model. Recall
that in fast fading channels, the coherence blocks are not
necessarily large and thus even with perfect main channel
state information (CSI) at the transmitter, reliability isnot
guaranteed in every coherence block. As a consequence, the
achievability scheme in [17] is not applicable to our setting,
even with perfect main CSI-T. It is evidently not applicable
with a noisy CSI-T. Note that, in block fading channels
and with perfect main CSI-T only (without the need of the
eavesdropper CSI-T), the secrecy capacity is known [17]. In

fast fading, however, provided that the eavesdropper CSI is
not available at the transmitter, the secrecy capacity is still
not known, even with perfect main CSI-T.

Contrasted with [41] which considers that CSI-T is a
deterministic function of the exact CSI, our work deals with
the setting where the CSI-T is a noisy version of the true CSI.
Furthermore, Theorem 1 below provides a converse which is
our main contribution, whereas there is no explicit converse
in [41]. Additionally, there is no asymptotic analysis in [41],
whereas our framework formally studies the high-SNR and
the low-SNR regimes.

The organization of this paper is as follows. Section II
introduces our system model, followed by our main result
along with its proof in Section III. In Section IV, an asymptotic
analysis is presented. Section V contains a summary of our
results when applied to Rayleigh fading channels which we
use in order to provide numerical results in Section VI. Finally,
Section VII concludes the paper.

Notations: The expectation operation is denoted byE[·].
The symbol|x| is the modulus of the scalarx, while [x]+ =
max(0, x). The logarithms log(x) is the natural logarithm
of x. For a random variablex, xn designates the vector
(x(1), . . . , x(n)). when there is no ambiguity, we find it also
convenient to usexi to designatex(i). We say thatf (x)

a≈ g(x)
if and only if lim

x→a

f (x)
g(x) = 1. When it is clear from the context,

we omit a in
a≈ for convenience. The symbols& and .

are defined analogously. The functionsfx(·) and Fx(·) denote
the probability density function (pdf) and the cumulative
distribution function (cdf) of the random variablex. If x is
a circularly symmetric Gaussian random variable with mean
m and varianceσ2, then it is denoted asx ∼ CN

(

m, σ2
)

.

II. System Model

We consider a discrete-time memoryless wiretap channel
consisting of a transmitter, a legitimate receiver and an eaves-
dropper. Each terminal is equipped with a single antenna. The
outputs at both the legitimate destination and the eavesdropper,
at time periodi, i = 1, . . . , n, are expressed, respectively by:















y(i) = h(i) x(i) + vy(i)

z(i) = g(i) x(i) + vz(i),
(1)

wherex(i) ∈ C is the transmitted signal, andh(i) ∈ C, g(i) ∈ C

are zero-mean and unit-variance channel gains that represent
the main channel and the eavesdropper channel, respectively;
andvy(i) ∈ C, vz(i) ∈ C are zero-mean, unit-variance circularly
symmetric white Gaussian noises. The channel gainsh andg
are assumed to be i.i.d., ergodic and stationary with bounded
and continuous PDF’s. While the transmitter is aware of both
h and g statistics, it is not aware of the channel realization
g(i) and is only provided with a noisy version ofh(i), say
ĥ(i) ∼ CN (0, 1), such that the main channel estimation model
can be written as:

h(i) =
√

1− α ĥ(i) +
√
α h̃(i), (2)

where h̃(i) ∼ CN (0, 1) is the estimation error andα is the
error variance (α ∈ (0, 1)). We assume that̂h(i) and h̃(i) are



uncorrelated and thus independent. On the other hand, at the
receiver sides, we assume that the legitimate receiver is aware
of both its instantaneous channel gainh (i) and its conditional
received average SNR̄h (i) given by h̄ (i) = |h (i) |2 ω (i),
whereω (i) = E

[

|x (i) |2 | ĥi
]

and the last expectation is over
the conditional input distribution; whereas the eavesdropper’s
receiver, in addition to its instantaneous channel realizations
g(i), is aware ofĥ(i), h(i) and h̄ (i). Our motivation to reveal
ĥ(i) to the eavesdropper is driven by the fact that the latter
may be able to track the feedback link between the legitimate
receiver and the transmitter, and thus it may retrieveĥ(i)
exactly like at the source. As pointed out in [41], revealing
h(i) to the eavesdropper also prevents the legitimate terminals
to use the CSI as a source of randomness for key generation.
Finally, the channel input is constrained according to an
average power constraint:

1
n

n
∑

i=1

E
[

|xi|2
]

≤ Pavg.

We are interested in message transmission secrecy ca-
pacity of such a channel whenn → ∞. The level
of uncertainty about the messagew at the eavesdropper
is measured by the (normalized) leakage of information
that the eavesdropper gets about the message by observ-
ing its channel output, i.e.,1n I

(

w; zn, gn,hn, h̄n | ĥn
)

, where
1
n I

(

w; zn, gn,hn, h̄n | ĥn
)

denotes the mutual information be-

tweenw and
(

zn, gn, ĥn,hn, h̄n
)

. The eavesdropper is ignorant
about the message if:

lim
n→∞

1
n

I
(

w; zn, gn,hn, h̄n | ĥn
)

= 0. (3)

A rateR is an achievable secrecy rate if there exists a sequence
of

(

n, 2n R
)

codes, for which 2n R represents the number of
messages to be sent to the destination, such that (3) holds
true and lim

n→∞
Pe = 0, wherePe is the average error probability

defined by:

Pe =
1

2n R

2n R
∑

w0=1

Pr{w , ŵ | w = w0}, (4)

whereŵ is the output of the decoder at the intended receiver
as a result of observingyn. Furthermore, the secrecy capacity
is given by:Cs ≔ sup

R∈Rs

R, whereRs is the set of achievable

secrecy rates.
Remark 1: While our focus in this paper is on a weak

secrecy constraint since the secrecy constraint in (3) is nor-
malized by n, there exists a stronger secrecy measure that
defines the secrecy in term of a mutual information, i.e.,
lim
n→∞

I
(

w; zn, gn,hn, h̄n | ĥn
)

= 0. For references considering

the latter as well as other stronger notions of secrecy, please
see, e.g., [43]–[45].

III. Ergodic Capacity

In this section, our main result is presented in Theorem 1,
followed by the proof.

Theorem 1: The secrecy capacity of the discrete-time memo-
ryless channel described by (1), under imperfect main channel
estimation (2), is bounded as follows:

R− ≤ Cs ≤ R+, (5)

whereR− andR+ are given by:

R− = E
|h|2,|g|2,|ĥ|2≥τ

[

log

(

1+ P0 (τ) |h|2

1+ P0 (τ) |g|2

)]

(6)

R+ = max
P(ĥ)

E
ĥ,h̃













log













1+ P(ĥ)|
√

1− α ĥ +
√
α h̃|2

1+ P(ĥ)|h̃|2

























+

, (7)

where P0 (τ) = Pavg

1−F|ĥ|2 (τ) and whereτ can be optimized to
maximizeR−.

Proof:

• Achievable rate:
To prove thatR− is achievable and following [46, Propo-
sition3], we consider a new wiretap channel in which the

input is amplified by
√

P
(

ĥ
)

, whereP(·) is a time-invariant
deterministic function that satisfies the power constraint. This
amplifier may be regarded as part of the channel with input
t and outputsy′ and z′ such that:y′(i) = h′(i) t(i) + vy(i) and

z′(i) = g′(i) t(i) + vz(i), where we defineh′(i) =
√

P
(

ĥ(i)
)

h(i)

andg′(i) =
√

P
(

ĥ(i)
)

g(i), for convenience. This new channel

has no CSI-T and input constraintE
[

|ti|2
]

= 1. By our CSI
assumptions (cf. Section II), the legitimate receiver is aware
of both the instantaneous channel gainh (i) and its conditional
received average SNR, saȳh′(i), which can be computed as
follows:

h̄′(i) = E

[

|E [

y′(i) | t(i), h′(i)] |2

var(y′(i) | t(i), h′(i)) | h
′(i)

]

(8)

= |h′(i)|2 (9)

= P
(

ĥ(i)
)

|h(i)|2. (10)

Knowing both h(i) and h̄′(i), the legitimate receiver can
constructh′(i) and thus has perfect main CSI. Applying the
result in [3] to the new channel and choosingtn as an i.i.d.
sequence witht(i) ∼ CN (0, 1), we get that

Rs = I
(

t; y′, h′
) − I(t; z′, g′) (11)

= I
(

t; y′ | h′) − I(t; z′ | g′) (12)

= E
h,ĥ,g

[

log
(

1+ P
(

ĥ
)

|h|2
)

− log
(

1+ P
(

ĥ
)

|g|2
)]

, (13)

is achievable. The rate in (13) can then be maximized over all
power functionsP(·) such thatE

[

P
(

ĥ
)]

≤ Pavg. For simplicity,
an on-off power scheme is adopted, i.e.,

P(ĥ) =















P0 (τ)
∣

∣

∣ĥ
∣

∣

∣

2 ≥ τ
0 otherwise,

(14)

which when applied to (13) yields (6). To complete the proof,
the secrecy rateR− is maximized over all positiveτ values, and
the optimumτ0 is obtained by differentiating (6) with respect
to τ. That is,τ0 is a solution of

E
|h|2,|ĥ|2≥τ













P
′

0 (τ0) |h|2

1+ P0 (τ0) |h|2













− E
|g|2













P
′

0 (τ0) |g|2

1+ P0 (τ0) |g|2













(

1− F|ĥ|2 (τ0)
)



− f|ĥ|2 (τ0)

(

E
|h|2||ĥ|2

[

log
(

1+ P0 (τ0) |h|2
)

| |ĥ|2 = τ0
]

−E
|g|2

[

log
(

1+ P0 (τ0) |g|2
)]

)

= 0, (15)

whereP
′

0 (τ) is the derivative ofP0 (τ) with respect toτ.

• Upper bound

We recall that in our setting, at time instanti, the transmitter
has CSI ĥi, whereas the legitimate receiver knows

(

hi, h̄i

)

and the eavesdropper’s receiver knows
(

gi, ĥi, hi, h̄i

)

. Next, we
prove the converse by following three main steps:

• Step 1: We consider an enhanced wiretap channel with
higher secrecy capacity than the original channel.

• Step 2: We clearly specify the distributions upon which
the secrecy and reliability conditions for the enhanced
channel depend.

• Step 3: We show that substitutinggn by h̃n in the
enhanced channel does not change the secrecy capacity.

• Step 4: We construct a new wiretap channel where
the above distributions are the same and wheregn is
substituted bỹhn (thus the secrecy capacity of the newly
constructed wiretap channel is equal to that of the en-
hanced channel), but where the noises of the main channel
and the eavesdropper’s channel are correlated such that
the new wiretap channel is degraded.

• Step 5: We upper-bound the secrecy capacity of the new
wiretap channel, thereby proving the converse.

Step 1:
The enhanced channel is a fading wiretap channel similar to
the one given by (1), where the main CSI-T is given by (2),
but where the eavesdropper is not aware ofhn and h̄n. That
is, the secrecy constraint of the enhanced channel is defined
by:

lim
n→∞

1
n

I
(

w; zn, gn | ĥn
)

= 0. (16)

Clearly, the secrecy capacity of the enhanced channel is at
least equal to that of the original one.
Step 2:
Suppose that a rateR is achievable on the enhanced channel.
Then, there exists a sequence of

(

n, 2n R, δn

)

codes, such that:














1
n H

(

w | ĥn
)

− 1
n H

(

w | zn, gn, ĥn
)

≤ δn

Pe ≤ δn,
(17)

for a sequenceδn, with δn → 0 as n → ∞. The secrecy
condition in (17) depends on the joint distributionpzn,gn,ĥn,xn,w
which in regard of the fact that the eavesdropper’s channel is
not known at the transmitter and thusgn is independent of
(

w, ĥn,xn
)

, can be written as:

pzn,gn,ĥn,xn,w = pw pxn|w,ĥn pĥn pgn pzn |xn,gn . (18)

Similarly, the reliability condition in (17) depends on thejoint
distribution pyn,hn,ĥn,h̄n,xn,w which itself decomposes into:

pyn,hn,ĥn,h̄n,xn,w = pw pxn|w,ĥn pĥn phn |ĥn pyn |xn,hn . (19)

Any new wiretap channel that preserves the distributions (18)
and (19) satisfies the secrecy and the reliability constraints

in (17) and thus has equal secrecy capacity as the enhanced
wiretap channel.
Step 3:
For the enhanced wiretap channel, we note that substitutinggn

by h̃n preserves the marginal (18) and (19). This is formalized
by Lemma 1.

Lemma 1: Consider a wiretap channel defined by:














y(i) = h(i) x(i) + vy(i)

z(i) = h̃(i) x(i) + vz(i),
(20)

with similar CSI as the wiretap channel (1), error probability
(4) and secrecy constraint defined by lim

n→∞
1
n I

(

w; zn, h̃n | ĥn
)

=

0. Then the secrecy capacity of this channel and that of the
enhanced channel described above are equal.

Proof: To prove Lemma 1, we only need to verify that
pzn,gn,ĥn,xn,w = pzn,h̃n,ĥn,xn,w since pyn,hn,ĥn,h̄n,xn,w is the same
for both channels.

pzn,h̃n,ĥn,xn,w = pw pzn,h̃n,ĥn,xn|w (21)

= pw pĥn,xn|w pzn,h̃n|w,ĥn,xn (22)

= pw pĥn pxn |w,ĥn pzn,h̃n |w,ĥn,xn (23)

= pw pĥn pxn |w,ĥn ph̃n |w,ĥn,xn pzn |w,ĥn,xn,h̃n (24)

= pw pĥn pxn |w,ĥn ph̃n pzn|xn,h̃n , (25)

where (23) follows becausew and ĥn are independent and
(25) holds true due to our CSI assumption and the fact
that h̃n and ĥn are independent, thus̃hn and

(

w, ĥn,xn
)

are
independent. Comparing the right hand side (RHS) of (18)
and (25), we note thatpgn = ph̃n since bothg and h̃ are
CN (0, 1). Moreover, sincez | x, g follows a CN (xg, 1) and
sincez | x, h̃ follows aCN

(

xh̃, 1
)

, then pzn |xn,gn and pzn |xn,h̃n

are statistically equivalent. Hence, the RHS of (18) and (25)
are equal and so arepzn,gn,ĥn,xn,w and pzn,h̃n,ĥn,xn,w.

Next, we construct a new wiretap channel which satisfies
(18) and (19) and wheregn is substituted bỹhn.
Step 4:
Following [18], the new wiretap channel is a fading wiretap
channel similar to the enhanced one (also similar to the
original one, but with secrecy constraint defined by (16))
wheregn is substituted bỹhn and where the noisesvy andvz

are correlated. More specifically, the new channel is defined
as follows:














y(i) = h(i) x(i) + vy(i)

z(i) = h̃(i)h∗(i)
|h(i)|2

(

h(i) x(i) + vy(i)
)

+ v
′

z(i),
if

(

h(i), h̃(i)
)

∈ Ai,

(26)
and














y(i) = h(i)h̃∗(i)
|h̃(i)|2

(

h̃(i) x(i) + vz(i)
)

+ v
′

y(i)

z(i) = h̃(i) x(i) + vz(i),
if

(

h(i), h̃(i)
)

< Ai,

(27)
where Ai =

{(

h(i), h̃(i)
)

: |h(i)| > |h̃(i)|
}

and v
′

z(i) ∼
CN

(

0, 1− |h̃(i)|2
|h(i)|2

)

and v
′
y(i) ∼ CN

(

0, 1− |h(i)|2
|h̃(i)|2

)

. Note that the
channel defined by (26)-(27) satisfies both (18) and (19) and
hence any secrecy rate achieved on the enhanced channel is
also achieved on the new one. Furthermore, the new channel is
physically degraded, i.e.,x(i)→ y(i)→ z(i) if

(

h(i), h̃(i)
)

∈ Ai



and x(i)→ z(i)→ y(i) if
(

h(i), h̃(i)
)

< Ai.
Step 5:
We now upper bound the secrecy rate of the new channel. as
follows:

n R = H
(

w | ĥn
)

(28)

= H
(

w | zn, h̃n, ĥn
)

+ I
(

w; zn, h̃n | ĥn
)

(29)

≤ H
(

w | zn, h̃n, ĥn
)

+ nδn (30)

≤ I
(

w;yn,hn, h̄n
∣

∣

∣zn, h̃n, ĥn
)

+ n
(

δn + δ
′

n

)

(31)

≤ I
(

xn;yn,hn, h̄n
∣

∣

∣zn, h̃n, ĥn
)

+ n ǫn (32)

= I
(

xn;yn
∣

∣

∣ zn, h̃n, ĥn,hn, h̄n
)

+ n ǫn (33)

=

n
∑

i=1

{

h
(

yi

∣

∣

∣zn, h̃n, ĥn,hn, h̄n,yi−1
)

−h
(

yi

∣

∣

∣zn, h̃n, ĥn,hn, h̄n,yi−1,xn
)}

+ n ǫn (34)

≤
n

∑

i=1

{

h
(

yi

∣

∣

∣ zi, h̃i, ĥ
i, hi, h̄i

)

−h
(

yi

∣

∣

∣ zi, h̃i, ĥ
i, hi, h̄i, xi

)}

+ n ǫn (35)

=

n
∑

i=1

I
(

xi; yi

∣

∣

∣ zi, h̃i, ĥ
i, hi, h̄i

)

+ n ǫn (36)

=

n
∑

i=1

[

I
(

xi; yi

∣

∣

∣ ĥi, hi, h̄i

)

− I
(

xi; zi

∣

∣

∣ h̃i, ĥ
i
)]+
+ n ǫn (37)

=

n
∑

i=1

[

h
(

yi

∣

∣

∣ ĥi, hi, h̄i

)

− h
(

zi

∣

∣

∣ h̃i, ĥ
i
)]+
+ n ǫn (38)

≤
n

∑

i=1

max
p(x(i)|ĥi)

[

h
(

yi

∣

∣

∣ ĥi, hi, h̄i

)

− h
(

zi

∣

∣

∣ h̃i, ĥ
i
)]+
+ n ǫn(39)

=

n
∑

i=1

E



































log

















1+ |hi|2 Pi

(

ĥi
)

1+ |h̃i|2 Pi

(

ĥi
)

































+
















+ n ǫn, (40)

where (30) follows from the secrecy constraint (17) and from
substitutinggn by h̃n, and (31) follows from Fano’s inequality,
with δ

′

n → 0 as n → ∞. For convenience, we have defined
ǫn = δn + δ

′

n after (31). Inequality (32) is true because given
ĥn, w → xn →

(

yn,hn, ĥn
)

forms a Markov chain, whereas

(33) holds since given̂hn, xn is independent of
(

hn, h̄n
)

. In
order to justify (37), we used the fact that the new channel
is physically degraded and thusI

(

xi; yi

∣

∣

∣ zi, h̃i, ĥ
i, hi, h̄i

)

=
[

I
(

xi; yi

∣

∣

∣ ĥi, hi, h̄i

)

− I
(

xi; zi

∣

∣

∣ h̃i, ĥ
i
)]+

. Since givenhi and h̄i,

the variance ofyi is equal to 1+ |hi|2 Pi

(

ĥi
)

, wherePi

(

ĥi
)

=

E
[

|xi|2
∣

∣

∣ ĥi
]

, since given
(

h̃i, ĥ
i
)

, the variance ofzi is equal to

1+ |h̃i|2 Pi

(

ĥi
)

, and since the input distribution that maximizes
(39) is Gaussian [22], [23], [25], [47], then (40) holds true.
Hence, it only remains to prove that the above upper bound
is maximized by a power allocationPi

(

ĥi
)

= µ
(

ĥi

)

, a time-
invariant function ofĥi only. To do this, we have:
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ĥi
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= E
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ĥi
)

1+ |h̃i|2 Pi
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ĥi
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+
∣

∣

∣
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∣

|hi|2, |h̃i|2, ĥi





































(41)

≤ E
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[

|hi|2 Pi
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ĥi
)
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∣
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∣

|hi|2, |h̃i|2, ĥi

]

1+ E
[

|h̃i|2 Pi
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ĥi
)
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∣

∣
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[
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ĥi
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∣

∣

ĥi

]

1+ |h̃i|2 E
[

Pi

(

ĥi
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∣

∣

∣

∣

ĥi
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(
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1+ |h|2µi
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1+ |h̃|2 µi
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(45)

where (42) follows from Jensen’s inequality since the function
x 7→

[

log
(

1+a x
1+b x

)]+
is concave for any positivea andb; where

(43) follows because conditioned onĥi, ĥi is independent of
|hi|2 and|h̃i|2 due to the fact that the fading process{hi} is i.i.d.;
where we have definedµi

(

ĥi

)

in (44) asµi

(

ĥi

)

= E
[

Pi

(

ĥi
)

∣

∣

∣

∣

ĥi

]

.

Since the fading processes{hi},
{

ĥi

}

and
{

h̃i

}

are ergodic and
stationary, then they have a stationary first-order distribution
and thus the expectation in (44) does not depend on their time
indexi which yields (45). Combining (40) and (45), we obtain:

Re ≤ 1
n

n
∑

i=1
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1+ |h|2 µi

(
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1+ |h̃|2 µi
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+ δn (46)

≤ E
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1+ |h|2 1
n
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i=1
µi

(

ĥ
)

1+ |h̃|2 1
n

∑n

i=1
µi

(

ĥ
)
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+ δn (47)

= E



































log

















1+ |h|2 µ
(

ĥ
)

1+ |h̃|2 µ
(

ĥ
)

































+
















+ δn (48)

where (47) follows again by Jensen’s inequality and where
µ
(

ĥ
)

in (48) is defined asµ
(

ĥ
)

= 1
n

∑n

i=1
µi

(

ĥ
)

. The above upper

bound is tight ifµi

(

ĥ
)

is independent ofi. Letting n → ∞
and maximizing over all power policies

{

µ
(

ĥ
)}

that satisfy the
power constraint, we establish that

Re ≤ max
E[µ(ĥ)]≤Pavg

E
h,g,ĥ

















log

















1+ |h|2 µ
(

ĥ
)

1+ |h̃|2 µ
(

ĥ
)

































+

. (49)

That is, the following upper bound holds true:

Cs ≤ max
E[P(ĥ)]≤Pavg

E
h,g,ĥ

















log

















1+ P
(

ĥ
)

|h|2

1+ P
(

ĥ
)

|h̃|2

































+

. (50)

Note that the obtained upper bound, being an upper bound on
the enhanced channel, is also an upper bound on the original
channel which yields the result in (7).

It is worth mentioning that the upper bound has the fol-
lowing interpretation. In order to increase the information
leakage, the eavesdropper “sticks” to the component of the



main channel that is unknown to the transmitter. Note also that
the lower and the upper bounds on the secrecy capacity in (5)
coincide with those derived in [25, Theorem 4], for i.i.d. fading
channels under perfect main CSI. Although the lower and the
upper bounds do not generally coincide, they provide, to the
best of our knowledge, the best available characterizationof
the secrecy capacity over i.i.d. fading channels that accounts
for imperfect main channel estimation at the transmitter. Note
also that sinceR+ in (7) is concave inP

(

ĥ
)

, the maximum can
be found by deriving the optimum power profileP(ĥ) using
the Lagrange approach. Indeed, the corresponding Lagrangian
can be written as:

L
(

P
(

ĥ
)

, λ
)

= E
ĥ















E
h̃ | ĥ



























log













1+ P(ĥ)|
√

1− α ĥ +
√
α h̃|2

1+ P(ĥ)|h̃|2

























+
∣

∣

∣

∣

∣

∣

∣

ĥ





























−λ
(

E
ĥ

[

P(ĥ)
]

− Pavg

)

, (51)

where λ ≥ 0 is the Lagrange multiplier corresponding to
the average power constraint. DifferentiatingL

(

P
(

ĥ
)

, λ
)

with

respect toP
(

ĥ
)

yields the following necessary and sufficient
condition for optimality:

∂

∂ P
(

ĥ
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h̃ | ĥ



























log













1+ P(ĥ)|
√

1− α ĥ +
√
α h̃|2

1+ P(ĥ)|h̃|2

























+
∣

∣

∣

∣

∣

∣

∣

ĥ





























−λ = 0.

(52)
For convenience, let̂h = ρ̂eiθ̂ with ρ̂ ∈ [0,∞) and θ̂ ∈ [−π, π],
and let us define the regionDĥ by:

Dĥ =



















h̃ = ρ̃eiθ̃ | ρ̃ ≤ ρ̂

ρ0

(

θ̂ − θ̃
)



















, (53)

where ρ̃ ∈ [0,∞) and θ̃ ∈ [−π, π] and ρ0(·) is the function
defined on [−2π, 2π] by:

ρ0 (t) =

√

(1− α)
(

α cos(t)2 − α + 1
)

−
√
α (1− α) cos(t)

1− α .

(54)
Then, the optimal power profile is the solution of the following
optimality condition:

E
h̃ ∈Dĥ













|
√

1− α ĥ +
√
α h̃|2

1+ P(ĥ)|
√

1− α ĥ +
√
α h̃|2

− |h̃|2

1+ P(ĥ)|h̃|2













− λ = 0.

(55)
If for a particular value ofĥ, there is no positive solution
P

(

ĥ
)

for (55), then the instantaneous power is set to zero,

i.e., P
(

ĥ
)

= 0.

Remark 2: The achievable rate in Theorem 1 can be
immediately improved by optimizing the rateRs in (13) over
all power policies that satisfy the power constraint. Indeed,
departing from (13), one expect a better rate by solving:

max
E[P(ĥ)]≤Pavg

E
h,ĥ,g

[

log
(

1+ P
(

ĥ
)

|h|2
)

− log
(

1+ P
(

ĥ
)

|g|2
)]

.

(56)
Note that the objective function in (56) is not convex. Nev-
ertheless, developing the Lagrangian exactly as in (51), itis

possible to obtain the following necessary optimality condition
via the Karush–Kuhn–Tucker (KKT) condition:

E
|h|2|ĥ,|g|2

















|h|2 − |g|2
(

1+ P(ĥ)|h|2
) (

1+ P(ĥ)|g|2
)

















= λ, (57)

where λ is the Lagrange multiplier corresponding to the
average power constraint. Define the functionfĥ(·) as the

LHS of (57), i.e., fĥ(p) = E
|h|2|ĥ,|g|2

[

|h|2−|g|2

(1+P(ĥ)|h|2)(1+P(ĥ)|g|2)

]

. Then,

following similar lines as [41, Lemma 5], one can show that if
there existŝh0, such thatE

[

|h|2 − |g|2 | ĥ0

]

> 0, i.e., such that

(1− α)
(

|ĥ0|2 − 1
)

> 0, then using the entire available power is
optimal, and the powerp(ĥ) defined by:

p(ĥ) =















f −1
ĥ

(λ) if 0 ≤ λ ≤ (1− α)
(

|ĥ|2 − 1
)

0 else,
(58)

is a power allocation under power constraintP (λ) = E
ĥ

[

p(ĥ)
]

.

The fact thatĥ ∼ CN (0, 1) ensures that there existsĥ0, such
that (1− α)

(

|ĥ0|2 − 1
)

> 0. Hence, the subsequent achievable
rate resulting from the above procedure versusPavg curve can
be obtained by varyingλ.

Remark 3: While the achievable rateR− has been proven
under weak secrecy constraint, it is worthwhile noting thatthe
same rate is achievable under the variational distance, which
is a stronger secrecy metric, as shown in [41]. Note that our
converse holds true under the variational distance metric.

IV. A symptotic Analysis

It is of interest to use Theorem 1 in order to obtain
useful insight in some interesting asymptotic cases. Below,
we analyze the secrecy capacity at high SNR (Pavg → ∞) and
at low SNR (Pavg → 0), together with the perfect main CSI
(α→ 0) and no main CSI (α→ 1).

A. High-SNR Regime

Our result is summarized in Corollary 1.
Corollary 1: At high SNR, the secrecy capacityC∞s is

bounded by:
R∞− ≤ C∞s ≤ R∞+ , (59)

whereR∞− andR∞+ are given by:

R∞− = E
|h|2,|g|2,|ĥ|2≥τ

[

log

(
∣

∣

∣

∣

∣

h
g

∣

∣

∣

∣

∣

2)]

(60)

R∞+ = E
h̃,ĥ



















log
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∣

∣
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1− αĥ +

√
αh̃
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∣

∣

2

∣

∣

∣h̃
∣

∣

∣

2





































+

, (61)

and whereτ is optimized to maximizeR−.
Proof:

• Asymptotic achievable rate

By Theorem 1, the rateR− (τ) = E
|h|2,|g|2,|ĥ|2≥τ

[

log
(

1+P0(τ)|h|2
1+P0(τ)|g|2

)]

is

achievable, for anyτ ≥ 0. As P→ ∞, we have:

lim
P→∞

R− (τ)= lim
P→∞

E
|h|2,|g|2,|ĥ|2≥τ

[

log

(

1+ P0 (τ) |h|2

1+ P0 (τ) |g|2

)]

(62)



= E
|h|2,|g|2,|ĥ|2≥τ

[

lim
P→∞

log

(

1+ P0 (τ) |h|2

1+ P0 (τ) |g|2

)]

(63)

= E
|h|2,|g|2,|ĥ|2≥τ

[

log

(

|h|2

|g|2

)]

,

where (63) follows from the Dominant Convergence Theorem,
since for anyPavg value,

∣

∣

∣

∣

∣

∣

log

(

1+ P0 (τ) |h|2

1+ P0 (τ) |g|2

)
∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

log

(

|h|2

|g|2

)
∣

∣

∣

∣

∣

∣

,

for any |h|2 ≥ 0 and |g|2 ≥ 0, and

E
|h|2,|g|2,|ĥ|2≥τ

[
∣

∣

∣

∣

∣

∣

log

(

|h|2

|g|2

)
∣

∣

∣

∣

∣

∣

]

< ∞,

since fg is continuous an bounded,
∣

∣

∣

∣

∫ 1

0
log(x) dx

∣

∣

∣

∣

= 1 and

E
|h|2,|ĥ|2≥τ

[

|h|2
]

≤ E
|h|2,|ĥ|2

[

|h|2
]

< ∞; then the limit in (62) exists

and we can insert the limit inside the expectations in (62). To
complete this part of the proof,R− (τ) is maximized over all
τ ≥ 0 and the optimum value is achieved atτ0 that satisfies
the necessary optimality condition given by:

f|ĥ|2 (τ0)

(

E
|h|2 | |ĥ|2

[

log
(

|h|2
)

| |ĥ|2 = τ0
]

− E
|g|2

[

log
(

|g|2
)]

)

= 0. (64)

• Asymptotic upper bound

For convenience, letUBcst the RHS of (5) whereP
(

ĥ
)

= Pavg,
a constant power policy independently ofĥ. The later partic-
ular choice provides a lower bound onR+ and thus:

lim
Pavg→∞

R+ ≥ lim
Pavg→∞

UBcst

= lim
Pavg→∞

E
ĥ,h̃















log
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√

1− α ĥ +
√
α h̃|2

1+ Pavg|h̃|2
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= E
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+

, (65)

where (65) holds by a similar reasoning than the one used to
obtain (63). On the other hand, for anyP

(

ĥ
)

≥ 0, the following
upper bound onR+ holds true:

R+ ≤ max
P(ĥ)

E
ĥ,h̃













log
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1− α ĥ +
√
α h̃|2

|h̃|2

























+

= E
ĥ,h̃













log
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1− α ĥ +
√
α h̃|2

|h̃|2

























+

. (66)

Applying the limit on both sides of (66) completes the proof
of our asymptotic upper bound.
Clearly, Corollary 1 states that the secrecy capacity is bounded
at high SNR confirming that the secret multiplexing gain
is equal to zero, regardless of the main channel estimation
quality.

B. Low-SNR Regime

While the high-SNR analysis provides somehow a negative
result in the sense that the capacity is bounded no matter
how Pavg increases, we show that at low SNR, and for
fading channels with infinite support, the secrecy capacityis
asymptotically equal to the capacity of the main channel as if

there is no secrecy constraint. Hence, the low-SNR analysis
reveals the potential capacity gain provided by partial CSIat
the transmitter for any non-null channel estimation quality, i.e.,
anyα ∈ [0, 1). Our result can be stated as follows.

Theorem 2: Assume that the fadingh, ĥ andg in (1) and (1)
have all an infinite support. Letα ∈ [0, 1). Let Cm

(

Pavg, α
)

be
the capacity of the main channel given byy(i) = h(i) x(i)+v(i),
with CSI-T ĥi as described by (2) and with CSI-R

(

hi, h̄i

)

at time instanti, and with average power constraintPavg.
Then the secrecy capacity of the wiretap channel given by
(1) satisfies:1

Cs

(

Pavg, α
) Pavg→0
≈ Cm

(

Pavg, α
)

(67)

Proof: Since the capacity without secrecy constraint
cannot be smaller than the one under secrecy constraint,
the converse part of Theorem 2 is immediate. To prove
the achievability part, let us first consider the main channel
as described in Theorem 2. For this channel, let us define
the maximum channel gainG by [48]: G = sup

p(x)

E[γh |x|2]
E[ |x|2] .

It can be verified that because the transmitter has CSIĥ,
then G = sup

|ĥ|2
E
[

|h|2 | ĥ
]

= sup
|ĥ|2

[

(1− α) |ĥ|2 + α
]

. Since by

assumption of Theorem 2,̂h has an infinite support, then
G = ∞. Now, Let us consider the conditional input distribution
defined by

fx | |ĥ|2(x | |ĥ|2) =















δ
(

x −
√

P0

)

if |ĥ|2 ≥ ν,
δ(x) otherwise,

(68)

where δ(·) is the Dirac delta function, whereP0 =
Pavg

1−F|ĥ|2 (ν)

and whereν = ν
(

Pavg

)

is a threshold that needs to be
determined. Clearly, the input distribution (68) satisfiesthe
power constraint since:

E
[

|x|2
]

=

∫ +∞

−∞
|x|2 fx (x) dx (69)

=

∫ +∞

−∞
|x|2

(

F|ĥ|2 (ν) δ (x) +
(

1− F|ĥ|2 (ν)
)

δ
(

x −
√

P0

))

dx(70)

=
(

1− F|ĥ|2 (ν)
)

P0 (71)

=Pavg. (72)

Furthermore, we verify that:

lim
Pavg→0

|E[x]|2

E
[|x|2] = lim

Pavg→0

(

1− F|ĥ|2 (ν)
)

(73)

lim
Pavg→0

E
[

|h|2|x|2
]

E
[|x|2]

= lim
Pavg→0

E
|h|2 |ĥ|2[ν,∞)

[h] (74)

= lim
Pavg→0

















α + (1− α)

∫ ∞
ν

t f|ĥ|2 (t) dt

1− F|ĥ|2 (ν)

















, (75)

where|ĥ|2[ν,∞) in (74) is the conditional random variable defined
by |ĥ|2[ν,∞) = |ĥ|2 | |ĥ|2 ≥ ν. Now, choosingν such that the limit
in (73) is equal to zero and the limit in (74) is equal toG

1Please see our formal definition of the notation≈ at the end of Section I.



ensures that the input distribution in (68) is first-order optimal
in the sense of [48, Theorem 4]. That is,

Cm

(

Pavg, α
)

≈ E
|h|2,x

[

log
(

1+ |h|2 |x|2
)]

. (76)

The secrecy rate achieved by the above input distribution is
given by:

R− = E
|h|2,x

[

log
(

1+ |h|2 |x|2
)]

− E
|g|2,x

[

log
(

1+ |g|2 |x|2
)]

. (77)

As Pavg → 0, the first term in (77) is much larger than the
second one as shown below:

lim
Pavg→0

E
|g|2,x

[

log
(

1+ |g|2 |x|2
)]

E
|h|2,x

[

log
(

1+ |h|2 |x|2)]
= lim

Pavg→0

E
|g|2,x

[ log(1+|g|2 |x|2)]
Pavg

E
|h|2,x

[ log(1+|h|2 |x|2)]
Pavg

(78)

≤ lim
Pavg→0

log












1+ E
|g|2

[ |g|2] Pavg













Pavg

E
|h|2,x

[ log(1+|h|2 |x|2)]
Pavg

(79)

=

E
|g|2

[

|g|2
]

G
(80)

= 0, (81)

where (79) is due to the Jensen’s inequality and the indepen-
dence ofx and g, and (80) follows because the inputx is
first-order optimal. Hence,R− is asymptotically equal to

R− ≈ E
|h|2,x

[

log
(

1+ |h|2 |x|2
)]

. (82)

The rate on the RHS of (82) is asymptotically equal to the
capacity of the main channel and hence is the best rate one
can achieve.

We emphasize that although in the low-SNR regime, the
secrecy capacity is asymptotically equal to the capacity of
the main channel as if there is no secrecy constraint, one still
needs a wiretap code to guarantee secrecy.

Remark 4: Since the upper boundR+ cannot be higher than
the capacity of the main channelCm, then a direct application
of Theorem 2 establishes that our bounds match at low SNR.
That is, R−

(

Pavg, α
) Pavg→0
≈ R+

(

Pavg, α
)

, for any α ∈ [0, 1),
including the perfect main CSI-T (α = 0) treated in [25].

C. Perfect And No Main CSI Extremes

When specialized to the no main CSI case, the lower and
the upper bounds in Theorem 1 coincide, providing a trivial
secrecy capacity. On the other hand, in case of perfect main
CSI, the upper bound coincides with the secrecy capacity of a
wiretap fading channel under the assumption of asymptotically
long coherence intervals derived in [17, Theorem 2]. Our result
is formalized in Corollary 2.

Corollary 2: In Case of no main CSI, the secrecy capacity
Cs is equal to zero:Cs = 0; whereas, in case of perfect main
CSI, the lower and the upper bounds in (5) reduce to:

Rperfect
− ≤ Cs ≤ Rperfect

+ , (85)

whereRperfect
− andRperfect

+ are given by:

Rperfect
− = E

|h|2≥τ0,|g|2













log













1+ Pavgeτ |h|2

1+ Pavgeτ |g|2

























(86)

Rperfect
+ = max

P(h)
E
|h|2,|g|2

[

log

(

1+ P(h)|h|2

1+ P(h)|g|2

)]+

, (87)

and whereτ0 is a solution of:

E
|h|2≥τ













Pavgeτ |h|2

1+ Pavgeτ |h|2













− E
|g|2













Pavgeτ |g|2

1+ Pavgeτ |g|2













(

1− F|ĥ|2 (τ)
)

− f|h|2 (τ)

(

log(1+ Pτeτ) − E
|g|2

[

log
(

1+ Peτ |g|2
)]

)

= 0. (88)

Proof:
• No Main CSI

In this case, we haveα = 1, i.e., h = h̃ and P
(

ĥ
)

= P. The
upper bound in (5) is equal to zero, and so is the secrecy
capacity.
• Perfect Main CSI

In this case, we haveα = 0, i.e., h = ĥ and P
(

ĥ
)

= P (h).

Since g is independent ofx, then
(

h
′
, g
′)

= (h, g) is a valid
choice that is when applied to (50) provides the upper bound
in Corollary 2. The lower bound follows by specializing the
result in Theorem 1 to the case whereh = ĥ.

Remark 5: In case of no main CSI, the secrecy capacity is
not zero solely because of the unavailability of the main CSI-
T, but also because the main and the eavesdropper channels
have identical statistics. Should the main channel be better than
the eavesdropper channel on average, one may still be able to
achieve a positive secrecy rate, even without main CSI-T.

V. Application: i.i.d. Rayleigh Fading Channels

In this section, we apply the results derived in the previous
sections to i.i.d. Rayleigh fading channels. That is, the main
channel h and the eavesdropper channelg are circularly
symmetric complex Gaussian with mean zero and variance
one, and so arêh and h̃. In our derivations summarized in
Table I, we have used the fact that|h|2, |ĥ|2 and |g|2 are
all exponentially distributed with common pdf:fX(x) = e−x,
where the subscriptX is any of the r.v.|h|2, |ĥ|2 and |g|2.
Additionally, the conditional r.v.|h|2 | ĥ has a PDF given by:

f|h|2|ĥ(|h|2 | ĥ) =
1
α

e−
|h|2+(1−α)|ĥ|2

α I0





















2

√

(1− α)|ĥ|2|h|2
α2





















, (89)

where I0(·) is the modified Bessel function of the first kind.
Also, if θ̂ andθ̃ are uniformly distributed between [−π, π], then
the PDF ofθ =

(

θ̂ − θ̃
)

is:

fθ(θ) =



























1
(2π)2 (2π + θ) −2π ≤ θ < 0

1
(2π)2 (2π − θ) 0 ≤ θ < 2π

0 elsewhere.

(90)

Similarly, if ρ̂ andρ̃ are Rayleigh distributed, with distribution
fρ̂ (ρ̂) = 2 ρ̂ e−ρ̂

2
= fρ̃ (ρ̂), then their ratioρ = ρ̂/ρ̃ has the PDF:

fρ (ρ) =
2ρ

(

1+ ρ2
)2
, (91)



for ρ ≥ 0. Finally, for a Rayleigh fading channel, we have:
P0 (τ) = P

′

0 (τ) = Pavgeτ. In Tab. I, Ei (x) =
∫ ∞

x
e−t

t dt is the
exponential integral function andγ ≈ 0.577216 is the Euler’s
constant, whereas LHS stands for left hand side.

In order to illustrate the result at low SNR, we note that for
the main channel as described by Theorem 2, we cannot apply
directly the low-SNR characterization in [49] since therein, the
authors assume that the receiver knows bothĥ and h̃. Never-
theless, by consideringν = log

(

Pavg

)

− 2 log log
(

1
Pavg

)

in (68),
one can verify that the limits in (73) and (74) are equal to 0 and
∞, respectively; and thus the input distribution given by (68),
with such a choice ofν is first-order optimal. Furthermore,
applied to the main channel, this input distribution achieves a
rateRm equal to:

Rm = E
|h|2,x

[

log
(

1+ |h|2 |x|2
)]

(92)

= Prob
{

|ĥ|2 ≥ ν
}

E
|h|2,|ĥ|2

[

log
(

1+ |h|2 P0

)

| |ĥ|2 ≥ ν
]

(93)

≈ Prob
{

|ĥ|2 ≥ ν
}

P0 E
|h|2,|ĥ|2

[

|h|2 | |ĥ|2 ≥ ν
]

(94)

= Pavg E
|ĥ|2

[

(1− α) |ĥ|2 + α | |ĥ|2 ≥ ν
]

(95)

= (1− α) Pavg E
|ĥ|2

[

|ĥ|2 | |ĥ|2 ≥ ν
]

+ α Pavg (96)

≥ (1− α) Pavg ν + α Pavg (97)

≈ (1− α) Pavg ν (98)

≈ (1− α) Pavg log

(

1
Pavg

)

(99)

where (94) follows using the fact that log(1+ x) ≈ x when
x→ 0 along with the fact thatP0 =

1
log2(Pavg) which converges

to 0 asPavg → 0; (95) holds true since given̂h, the mean of|h|2
is equal to(1− α) |ĥ|2+α; and (98) is true becauseν converges
to∞ asPavg → 0. The RHS of (99) is the asymptotic capacity
of an enhanced main channel where the transmitter still knows
ĥ, but the receiver now knows

(

hi, h̄i, ĥi

)

. The capacity of this
enhanced channel –an upper bound on the capacity of our main

channel– is asymptotically equal to(1− α) Pavg log
(

1
Pavg

)

as

it has been shown in [49]. We conclude that the asymptotic
capacity of the main channel described in Theorem 2 at low
SNR for Rayleigh fading channels is given by:

Cm

(

Pavg, α
)

≈ (1− α) Pavg log

(

1
Pavg

)

. (100)

Applying Theorem 2, we immediately have:

Cs

(

Pavg, α
)

≈ (1− α) Pavg log

(

1
Pavg

)

. (101)

Note that to establish (100), we have utilized an enhanced
main channel so that known results at low SNR [49] can be
exploited in our proof. Our result however, is applicable tothe
main channel as described in Theorem 2 where the receiver
knowshi and h̄i, but not ĥi. This suggests that the (somehow
strong) assumption by which the receiver knows bothĥ and h̃
as required in [49] is apparently not fundamental in the regime
of interest.

VI. Numerical Results

In this section, numerical results are provided for i.i.d.
Rayleigh fading channels. Figure 1 depicts the lower and the
upper bounds in Theorem 1 in nats per channel use (npcu)
versusPavg designated as SNR, for different main channel
estimation error variancesα. Also shown in Fig. 1 are the
high-SNR bounds given by (59) along with the corresponding
bounds to perfect and no-main CSI extremes given by (85). As
can be seen in Fig. 1, the secrecy rate is strictly positive even
for a poor main channel estimation quality (α = 0.9). Although
there is a gap between the lower and the upper bounds for all
α ∈ [0, 1), this gap is bounded for all SNR values.

Figure 2 assesses the rate loss incurred by the proposed
on-off power scheme, compared to the one obtained from
KKT condition in Remark 2, forα = 0.5. As can be seen in
Fig. 2, the procedure described in Remark 2, albeit complex
and time-consuming, does not provide a substantial gain, in
the setting considered in our paper. Indeed, the rate achieved
by the proposed on-off power policy and the one resulting
from the KKT condition are very close for all the SNR range
displayed. This observation holds true for different values of
α.

Figure 3 depicts the bounds versusα for different SNR
values. The bounds match forα = 1, confirming that the
secrecy capacity in case of no main CSI is equal to zero.

In Fig. 4, the optimal values ofτ0 versus SNR is displayed.
The curves in Fig. 4 have been obtained by solving the neces-
sary condition (43) or its high-SNR version (88). Interestingly,
at high SNR, and for a given channel estimation errorα, τ0
converges to a fixed value, sayτ∞0 (α), which suggests that at
high SNR, if the transmitter is provided this value, it would
be able to achieve the same secrecy rate without the need of
ĥ. Note also that for a given SNR value,τ0 decreases with the
channel estimation quality.

In Fig. 5 and Fig. 6, we present results in the low-SNR
regime for an estimation error equal toα = 0.5 and for
the perfect CSI-T (α = 0) case, respectively. In addition
to the upper and the lower bounds, we have also depicted
the capacity of the main channel with noisy CSI-T along
with the asymptotic expression given by (100). The curve
corresponding to the capacity of the main channel has been
obtained by evaluation of [46]:

Cm = max
γ

E
[

log
(

1+ γ
(

ĥ
)

|h|2
)]

, (102)

where the expectation is with respect to the joint distribution
of |h|2 and ĥ and where the maximization is over all power
policies that satisfy the power constraint. In Fig. 5, We note
that as SNR decreases, our bounds asymptotically match in
agreement with our discussion in Section IV. Both bounds get
closer to the capacity of the main channel (without secrecy
constraint) although the convergence seems slow, and one
expects the three curves to match at SNR values below -40 dB.
The low-SNR characterization in [49] seems slightly optimistic
and is more accurate for strictly positive values ofα.

VII. Conclusion

The secrecy capacity of i.i.d. fast fading channels, un-
der imperfect main channel estimation at the transmitter,



Table I
Summary of the Derived Results for i.i.d. Rayleigh Fading Channels.

General i.i.d. i.i.d. Rayleigh

(6)
∫ ∞

ĥ=τ0

∫ ∞
h=0

∫ ∞
g=0

log
(

1+P0(τ0)h
1+P0(τ0)g

)

e−g f|h|2|ĥ

(

h |
√

ĥ
)

e−ĥ dg dh dĥ

(7)
∫ ∞
ρ̂=0

∫ π

θ̃=−π

∫

ρ̂

ρ0(θ̃)
ρ̃=0 log

(

1+P(ρ̂)
(

(1−α)ρ̂2+αρ̃2+2
√
α(1−α)ρ̂ρ̃ cos(θ̃)

)

1+P(ρ̂)ρ̃2

)

fρ̃ (ρ̃) 1
2π fρ̂ (ρ̂) dρ̃ dθ̃ dρ̂

(15)

∫ ∞
ĥ=τ0

∫ ∞
h=0

∫ ∞
g=0

P0(τ0)h

(1+P0(τ0)h) f|h|2|ĥ

(

h |
√

ĥ
)

e−ĥ dg dh dĥ

= e−τ0



























1−
e

1
P0(τ0) Ei

(

1
P0(τ0)

)

P0(τ0)
− e

1
P0(τ0) Ei

(

1
P0(τ0)

)

+
∫ ∞

h=0 log (1+ P0 (τ0) h) f|h|2|ĥ

(

h |
√

ĥ
)

dh



























(52)
∫ π

θ̃=−π
∫

ρ̂

ρ0(θ̃)
ρ̃=0

(

(1−α)ρ̂2+αρ̃2+2
√
α(1−α)ρ̂ρ̃ cos(θ̃)

1+P(ρ̂)((1−α)ρ̂2+αρ̃2+2
√
α(1−α)ρ̂ρ̃ cos(θ̃)) −

ρ̃2

1+P(ρ̂)ρ̃2

)

fρ̃ (ρ̃) 1
2πdρ̃ dθ̃ − λ = 0

(60) e−τ0
(

γ + eτ0 Ei (τ0) − eτ0 Ei

(

τ0
α

)

+ Ei

(

1−α
α
τ0

)

+ log ((1− α) τ0)
)

(61)
∫ 2π
−2π

∫ ∞
ρ̂
ρ0(θ)

log
(

(1− α) ρ2 + α + 2
√
α (1− α)ρ cos(θ)

)

fρ (ρ) fθ (θ)

(64) Ei

(

1−α
α τ0

)

+ log (τ0) + log (1− α) + γ = 0

(86) e−τ0
(

e
e−τ0
Pavg

(

eτ0 Ei

(

e−τ0
Pavg
+ τ0

)

− Ei

(

e−τ0
Pavg

))

+ log
(

1+ τ0eτ0 Pavg

)

)

(87) max
P(h)

∫ ∞
0

(

log (1+ hP (h)) − e
1

P(h)
(

Ei

(

1
P(h)

)

− Ei

(

h + 1
P(h)

))

)

e−h dh

(88) e−2τ

Pavg

(

e
e−τ
Pavg

(

(

1+ eτPavg

)

Ei

(

e−τ
Pavg

)

− eτ Ei

(

e−τ
Pavg
+ τ
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− eτPavg log
(

1+ eτPavgτ
)

)

= 0
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Figure 1. Achievable rate and upper bound for i.i.d. Rayleigh fading channels,
with various main channel estimation errorsα.

is addressed. Lower and upper bounds are derived for a
given channel estimation quality, and the gap between these
bounds is characterized numerically. In addition, specialcases
regarding perfect and no main CSI at the transmitter are
studied. Particularly, it is shown that that our bounds coincide
with recently derived bounds for the i.i.d. fading channels.
Furthermore, insightful asymptotic analyses at high SNR and
at low SNR are provided. Perhaps surprising, it is found that
the secrecy capacity is equal to the capacity of the main
channel without secrecy constraint at asymptotically low SNR.

Our framework shows, for instance, that even a poor main
channel estimator at the transmitter can help establish secure
communication. This fact has also been demonstrated in e.g.
[41], although in a slightly different setting. Furthermore, a
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Figure 2. On-off achievable rate and the one resulting from the KKT condition
versus SNR, forα = 0.5.

simple constant rate on-off power scheme is enough to achieve
a positive secrecy rate. It is to be reminded that one can
enhance the later achievable secrecy rate by optimizing the
transmit power with respect to the main channel estimation,
at the expense of increasing the system complexity.

Finally, we note that our upper bound relies on the eaves-
dropper’s channel having the same statistics as the main
channel estimation error. This leaves open the problem of
determining a generic upper bound.
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