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ABSTRACT
The compressed sensing (CS) paradigm unifies sensing

and compression of sparse signals in a simple linear mea-
surement step. Reconstruction of the signal from the CS
measurements relies on the knowledge of the measurement
matrix used for sensing. Generation of the pseudo-random
sensing matrix utilizing a cryptographic key, offers a nat-
ural method for encrypting the signal during CS. This CS
based encryption has the inherent advantage that encryption
occurs implicitly in the sensing process – without requiring
additional computation. Additionally, the robustness of re-
covery from compressed sensing, allows a new form of “ro-
bust encryption” for multimedia data, wherein the signal is
recoverable with high fidelity despite the introduction of ad-
ditive noise in the encrypted data.

In this paper, we examine the security and robustness of
this CS based encryption method. The security implications
are investigated by considering brute force and structured
attacks. Robustness is characterized empirically. Our anal-
ysis and results indicate that the computational complexity
of these attacks renders them infeasible in practice. In ad-
dition, the CS based encryption is found to have fair robust-
ness against additive noise, making it a promising “robust
encryption” technique for multimedia.

1. INTRODUCTION

Digital multimedia signals often need to be transmitted
through a channel or a network. Prior to transmission, it
is desirable to compress the multimedia signal for efficient
usage of storage resources and/or bandwidth of the commu-
nication channels. This compression step is performed either
in a lossy or lossless way depending on the needs of the re-
ceiver. In addition, when the content of the media is private,
security of the transmission must be considered. Typically,
encryption of the compressed multimedia is performed fol-
lowing the compression. This step is performed either by
conventional cryptographic algorithms or some custom de-
sign joint compression and encryption schemes [1].

The recently proposed compressed sensing (CS) frame-
work [2] is known to unify sampling and compression in
order to reduce the data acquisition and computational load
at sensors, at the cost of increased computation at the in-
tended receiver. Compressive sampling relies on the sparse-
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ness of the signal and gathers linear measurements y = Ax
of a sparse signal x, where size of y is a small fraction of
the samples needed for Nyquist sampling. A is the linear
transform which carries certain regularities. The receiver ob-
tains the linear measurements y and reconstructs the image
by solving an optimization problem.

Compressed sensing also provides nice encryption prop-
erties. The measurements y are a function of sensing matrix
A. This matrix has pseudo-random entries that can be gener-
ated by using a cryptographic key shared between the sender
and receiver. Since the receiver has to know this information
in order to formulate the optimization problem and to recon-
struct the signal, the CS measurements can be considered as
an encrypted representation of the original signal. This idea
has been briefly mentioned in the literature [3] but has not
been addressed in detail.

In this paper we investigate the security of CS based en-
cryption methods. The security of the encryption method re-
lies on the fact that the sensing matrix A is not known to an
attacker that does not have the pseudo-random key used to
generate A. We therefore consider attacks aimed at estimat-
ing this matrix either based on brute force search or utilizing
the symmetry and structure of the CS setup. In addition, we
note that CS based encryption also represents a new type of
“robust encryption” that is tolerant to additive noise in the
CS based measurements that form the encrypted data and
empirically characterize this robustness. Our results indi-
cate that the CS based encryption is computationally secure
against the investigated attacks, i.e., in order to be successful
with high probability the computational requirements render
the attacks infeasible.

This paper is organized as follows: Section 2 gives some
brief information about compressed sensing. Section 3 ex-
plains the notion of encryption by linear measurement ma-
trix. Section 4 mentions possible attack scenarios and their
complexity. In Section 5 experimental results are given. Fi-
nally Section 6 concludes the paper.

2. COMPRESSIVE SAMPLING BASICS

Compressive sampling considers the problem of recovering
an object x ∈ R

n×1 from its linear measurements y = Ax
where A ∈ R

m×n is a transform matrix. The transform ma-
trix has fewer rows than columns, i.e., m < n. This system of
equations has infinitely many solutions. When the signal x
is known to be sparse, to recover x, an optimization problem
can be cast as:
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Figure 1: Flow diagram of a conventional sampling, compression and encryption scheme.
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Figure 2: Flow diagram of compressive sampling for unified sampling, compression and encryption.

(P0) min
x

‖x‖0 subject to Ax = y (1)

where ‖x‖0 = ∑ χ(xi), where

χ(t) =
{

0 t = 0
1 otherwise (2)

This problem is a non-convex optimization problem and
a solution requires an exhaustive search over the solution
space, which is computationally infeasible for most prob-
lems of interest. Alternatively, the problem can be solved by
greedy algorithms such as orthogonal matching pursuit [4],
which however is not guaranteed to achieve the optimum.

If the measurement matrix A satisfies the restricted isom-
etry property (RIP) an alternative convex formulation whose
solution is identical to the solution for the problem (P0) can
be obtained as [5]:

(P1) min
x

‖x‖1 subject to Ax = y (3)

where ‖x‖1 = ∑i |xi| denotes the �1 norm of the vector x.
The �1 term penalizes the small components in x and pushes
them close to zero. The convexity of the problem (P1) al-
lows for a number of effective, globally convergent solu-
tion techniques. Various computational methods have been
proposed to solve the problems of this form, including but

not limited to conjugate gradient (CG) methods [6], path-
following methods [7], bound optimization methods, gra-
dient projection algorithms, interior point methods [8] and
preconditioned conjugate gradient methods [9].

In the presence of noise on measurements, a similar
problem can be formulated as [10]:

(P2) min
x

‖x‖1 subject to ‖Ax− y‖2 ≤ δ (4)

where δ represents the expected noise power in the obser-
vations. This formulation provides a stable recovery of the
original signal value i.e. if the matrix A satisfies RIP, the er-
ror in solution to the (4) is bounded by a term proportional
to the noise variance.

3. ROBUST ENCRYPTION VIA COMPRESSED
SAMPLING

Conventionally, real life signals are sampled conforming the
Nyquist sampling rule. The data is then compressed to re-
duce the data size and encrypted for security. The encrypted
data usually goes through a channel and is decrypted by the
intended user. Both the sender and recipient share a secret
key. Figure 1 illustrates the conventional sampling, com-
pression and encryption schemes in a flow diagram.

Compressive sampling, on the other hand, unifies the
sampling, compression, and encryption steps as illustrated
in Fig. 2. Compressive samples are gathered by the sensor
and delivered to the recipient throughout the channel. An
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estimate of the desired signal is then reconstructed by the
receiver, utilizing these samples. The linear measurement
matrix A should be available to the receiver side in order to
recover the signal. Without the knowledge of A the gathered
samples appear encrypted to anyone eavesdropping on the
channel [3]. This encryption comes naturally and require no
additional cost.

Compressive samples are proven to be robust against
some level of noise. This noise can be either due to quanti-
zation or due to a noisy channel. The signal can still be re-
constructed with some degradation that depends on the noise
level. This provides the notion of robust encryption where
the encrypted signal is robust against noise. This is an un-
usual property of encryption which is uncommon in conven-
tional encryption schemes, where even minute changes can
cause the loss of all the information.

The concept of robust encryption is in harmony with the
nature of multimedia files. Multimedia files carry a consider-
able amount of perceptual redundancy and a human observer
will tolerate some amount of degradation. From a security
point of view, this brings two advantages. The intruder lis-
tening on the channel cannot decrypt the message. And even
if he tries to block the communication with the addition of
noise, the samples will be resilient against the attack up to a
certain level.

4. ATTACKS ON COMPRESSED SENSING BASED
ENCRYPTION

In this section, we consider two possible attacks on com-
pressed sensing based encryption schemes for sparse sig-
nals: firstly a brute force attack through a search for the mea-
surement matrix A and by a more informed signal processing
attack that exploits the symmetry and sparsity structure in-
herent in compressed sensing.

4.1 Brute Force Attack
An immediate attack on the compressive sampling based en-
cryption scheme would be guessing the linear measurement
matrix A. The eavesdropper could directly try to do this by
performing an exhaustive search over a “grid” of values for
A. The step size of this grid is critical since too large a step
size may cause the search to miss the correct value and too
small a grid size will increase the computational burden un-
necessarily.

The step size can be empirically determined by disrupt-
ing the measurement matrix A and determining the quality
of the signal for that predetermined noise level. The corre-
sponding noise level for acceptable quality level will provide
us a confidence interval for the estimation of a optimum step
size for a grid search.

The computational cost of reconstructing the signal is
high. The best optimization algorithm as of now requires
a computational cost in the order of O(N1.2) [8]. This cost
accompanied with a random search will already make the
search too expensive. However, it is important to show that

a large step size does not suffice for the attack, which would
make the whole encryption scheme trivially insecure.

4.2 Attack Based on Symmetry and Sparsity Structure
Given the measurements y, an attacker’s goal is to estimate
an m×n matrix A and a n×1 sparse signal x with t nonzero
coefficients such that Ax = y. We note that this problem is
clearly degenerate1 and allows for multiple solutions. In
order to see this note that if we identically permute the
columns of A and the coefficients of x we obtain the same
measurements vector y. Mathematically the (original) mea-
surements can be expressed as:

yi =
n

∑
j=1

(ai jx j) i = 1, . . .m (5)

if π denotes a permutation of integers [1, . . .n] we have

yi =
n

∑
j=1

aiπ( j)xπ( j) i = 1, . . .m (6)

Thus the measurements y are also consistent with the alter-
nate matrix A′ and sparse signal x′(again with t nonzero co-
efficients), where the (i j)th element of A′ is aiπ( j) and jth

element of x′ is xπ( j). In particular, we note that without loss
of generality, we can assume that the t leading coefficients
of x′ are nonzero. Consequently, an eavesdropper wishing
to attack the compressed sensing based encryption, may de-
compose his attack in two phases: First estimate the t leading
columns of A′, viz. At = [a′1a′2 . . .a′t ], and the corresponding
coefficients xt = [x′1x′2 . . .x′t ] such that2

Atxt = y (7)

where a′i’s denotes the ith column of A′. Once such a com-
bination is found, assuming the problem has no additional
degeneracy, the attacker is faced with challenge of determin-
ing the permutation π(). Since (n− t) of the coefficients in
x are zero, a brute force search for this permutation requires
C(n, t)× t! possible arrangements.

Note that (7) represents a overdetermined system of m
equations in t variables. The least squared solution to this
overdetermined system is given by [11]

x∗t = (At)#y (8)

where B# denotes the Moore-Penrose pseudo inverse of the
matrix B. The corresponding least squares residual is given
by

ρ = ||Atx∗t || = ||(I −At(At)#)y|| = ||P⊥
At

y|| (9)

1Though for multimedia signals the attacker may have additional
methods for choosing multiple solutions, e.g a semantically meaningful
signal.

2We have the reasonable assumption the attacker can estimate t.
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where P⊥
At

is the orthogonal projection matrix that projects
onto the orthogonal complement of the columns of At .

Now let At = Q1R denote the QR decomposition of
the matrix At , where Q1 is m× t matrix with orthonormal
columns,and R is a t× t nonsingular upper triangular matrix.
Let Q2 be any m× (m− t) matrix with orthonormal columns
such that [Q1Q2] forms an orthonormal basis for R

m. Then
in terms of this decomposition P⊥

At
= Q2QT

2 and using the or-
thonormality of the columns of Q2, the residual is obtained
as:

ρ = ||QT
2 y||2 =

m−t

∑
i=1

(q(2)T
i y)2 (10)

where q(2)
i denotes the ith column of the matrix Q2. It fol-

lows that the residual ρ is zero, equivalently the system of
equations (8) is consistent, if and only if, the orthonormal
vectors {q(2)

i }t
i=1 are orthogonal to the vector measurements

y.
Using the above result we can now fully characterize

the complexity of the attacker’s task. The m× 1 measure-
ment vector y defines an (m−1) dimensional space orthog-
onal to y, in which the attacker must choose (m − t) or-
thonormal vectors to define Q2. For the orthogonal com-
plement of the column space of Q2 an orthonormal basis set
Q1 = [q(1)

1 . . .q(1)
t ] can be obtained (for any given) Q2

3. The
attacker must then select a nonsingular t × t upper triangu-
lar matrix R. The combination defines a consistent system
of equations, Atxt = y, where At = QR for which a solu-
tion xt may be obtained. Once the solution xt is available,
the attacker must investigate (by other means) all possible
C(n, t)× t! rearrangements of the terms in xt into an n× 1
vector in which other (n− t) entries are zero.

The combinatorial expressions above indicate that the
complexity of this structured attack is too high to be prac-
tical. However assuming that the elements other than R are
known to the attacker, we can then characterize the difficulty
of the (remaining) task. In a manner similar to Section 4.1 by
determining the acceptable tolerance up to which the matrix
R must be known for obtaining an acceptable approximation
for xt . This can be analytically estimated from known results
in matrix perturbation theory [12, pp. 125]. In particular, if
κ(R) = ||R||||R−1|| is the condition number4 of the matrix R,
and κ(R)||E||F/||R||F < 1 we have

||x̃− xt ||/||xt || ≤ κ(R)||E||F/||R||F
1−κ(R)||E||F/||R||F (11)

where ||E||F denotes5 the perturbation on R and x̃t denotes
the resulting perturbed value of xt . We explore this bound
against empirical estimates as shown in Section 5.2.

3Note that Q1 is defined by Q2, up to rotations and coordinate flips
4||.|| is the l2 norm of a matrix, i.e maximum singular value of the

matrix.
5||.||F denotes the Frobenious norm [11]
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Figure 3: Normalized perturbation power on measurement
matrix A vs PSNR of the reconstructed signal

5. EXPERIMENTAL RESULTS:

The experiments utilized randomly generated sparse signals
of length n = 1024 with t = 30 non-zero coefficients each
taking a value in {±1} randomly, where the locations of the
t nonzero coefficients among the n samples was also chosen
randomly.

We consider m = 256 measurements using a 256×1024
sensing matrix A that is formed by sampling iid entries from
the normal distribution with mean zero and unity variance.
Multiple experiments were conducted for different realiza-
tions of the signal and the results presented represent aver-
ages over these realizations.

5.1 Estimating the step size of a possible grid search
To estimate the grid size that needs to be utilized in order to
estimate the encoder matrix A by a brute force grid search,
we proceed as follows. We corrupt the entries in linear mea-
surement matrix A by iid Gaussian noise and reconstruct the
signal from the measurements by using this corrupted ver-
sion of linear measurement matrix Ã.

We examine the relation between the amount of per-
turbation on the linear measurement matrix versus recon-
structed signal quality in Fig. 3. The horizontal axis in Fig. 3
shows the level of normalized perturbation (nPERTA) power
on A in decibels (dBs). The normalized perturbation level in
dB is calculated as :

nPERTA = 10log10
||Ã−A||2F
||A||2F

(12)

where Ã is Ã = A + Z, Z is the random perturbation having
iid N (0,σ 2) entries. On the other hand, the vertical axis of
Fig. 3 shows the PSNR of the reconstructed signal associated
with Ã. The PSNR is calculated as follows:

PSNR = 10log10
1

1
n ||x̃− x||2 (13)
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Figure 4: Normalized perturbation power on upper triangu-
lar matrix R vs PSNR of the reconstructed signal(Analytical
and simulation results)

where x̃ is the signal recovered by CS recovery algo-
rithm [10] using the measurements y and assuming a mea-
surement matrix Ã.

Figure 3 reveals the linear relation between the perturba-
tion power and the reconstructed signal quality. The signal
quality reaches a floor around 0 dB nPERTA value indicat-
ing random signal reconstruction. For many image and sig-
nal processing applications, 40 dB signal quality indicates
an acceptable quality signal reconstruction. For the consid-
ered reconstruction problem, around −26dB perturbation of
reconstruction matrix provides a 40 dB PSNR signal. If the
attacker can guess the reconstruction matrix with perturba-
tion on A −26dB or less, he can reach an acceptable quality
signal. This is an important guideline for the choice of grid
size for the attackers.

For 40 dB signal quality, the standard deviation(σ ) of
perturbation corresponding each element of the A matrix is
0.15 × 10−4. The confidence interval for normal distribu-
tion with mean 0 and standard deviation 0.15 × 10−4 is (-
0.004,0.004) for a confidence interval of 99 percent. The es-
timated number of trials in order to be assured of achieving
a close enough reconstruction (40dB) with high probability
is approximately ( 1

0.008 )m×n = (125)mn which is clearly pro-
hibitive6.

5.2 Estimating the step size of a possible grid search
based on symmetry and sparsity structure
For the attack exploiting symmetry and sparsity described
in Section 4.2 we can use a methodology similar to that of
the preceding section in order to estimate the complexity of
grid search step or estimating R. We compare this against
the analytic estimates based on (11). We first apply a Q-R
decomposition on the matrix At = QR. We reconstruct the xt

6Note that the entries of A matrix can at most be 1 due to normaliza-
tion.

vector via the relation xt = R−1QT y. We perturb the matrix
R with Gaussian noise of different variances and obtain an
estimate of the sparse signal x through xt . The attack power
versus reconstructed signal quality is given in Fig.4 where
it is compared against the analytic (lower bound) estimates
from (11).

Figure 4 reveals the relation between the perturbation
power on the upper triangular matrix R and the reconstructed
signal quality. Similar to the grid size prediction analysis
in the previous section, for 40 dB signal quality, the stan-
dard deviation (σ )of perturbation corresponding each ele-
ment of the A matrix is 0.12× 10−4. The confidence inter-
val for normal distribution with mean 0 and standard devi-
ation 0.12× 10−4 is (-0.002,0.002)for a confidence interval
of 99 percent. Similar to the 5.1 to reconstruct the signal
with a PSNR value close to 40dB with high probability num-
ber of trials needed is approximately (1/0.004)t2

= (250)t2
.

This result suggests that, although the attacker enjoys the re-
duced search space and by-passes the computation cost cor-
responding to the optimization problem, he needs to perform
the search on a finer grid, with half the step size compared
to the brute force attack. Furthermore as described in Sec-
tion 4.2 overall attack has much higher complexity.

5.3 Robustness of the encryption system
In this section, we consider the scenario where we do not
have the exact encrypted message in the form of the mea-
surements y. Instead we have the noisy ỹ version of the
measurements y. Thus, we examine the robustness of the
encryption system against this noise. This corresponds ex-
actly to the analysis of “stable recovery” for CS [10]. For
completeness, however, we include an empirical evaluation
here. Figure 5 illustrates the robustness of the encryption.
Horizontal axis is the noise power in the measurement vector
y which is given by the formula:

nPERTy = 10log10
||ỹ− y||2
||y||2 (14)

where ỹ is the noisy measurement vector. Vertical axis is
the normalized PSNR which is described by (13). We again
used the same parameters. Note that the PSNR of the recov-
ered signal remains above 40dB for noise perturbation power
under −30dB. Thus the system demonstrates fair robustness
against the noise.

6. CONCLUSION AND DISCUSSION

This paper examines the security and robustness of a com-
pressed sensing based encryption algorithm where a shared
key-based generation of the measurement matrix provides
the encryption. The tecnique is generic for signals which are
sparse or have sparse representations. The immediate attack
for such a scheme would be to estimate the linear measure-
ment matrix by a grid search. We consider the complexity
of brute force and structured approaches for the problem of
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Figure 5: Normalized perturbation power on measurement
vector y vs PSNR of the reconstructed signal

estimating the measurement matrix. The high computational
complexity of these approaches makes them practically in-
feasible. Compressed sensing therefore provides a “robust
encryption” method that is resilient to the attacks investi-
gated.

In our investigation we noted in Section 4.2 that from
the attacker perspective the problem of estimating a mea-
surement matrix is a degenerate one with multiple solutions.
The attacker must select among these by potentially exam-
ining the semantic meaningfulness of the recovered signal.
This renders the attack even harder. On the other hand, for
multimedia signals additional statistical information is often
available regarding the sparsity structure, which if incorpo-
rated can partly reduce the attacker’s complexity. Consid-
erations of both of these aspects would be useful in further
investigations of this problem.

A theoretical characterization of the impact of a pertur-
bation of the basis matrix A on the quality of the recovered
signal is also of interest and a subject of our ongoing inves-
tigation. In this setting, we anticipate that the error in vari-
ables framework utilized for set theoretic estimation [13] is
likely to provide relevant background.

In practical applications of CS based encryption, the ma-
trix A would normally be employed after normalization. For
instance, in our implementation the rows were normalized
to have a unit norm. It would be useful to incorporate this
knowledge in even more “informed attacks”, though it seems
that such an approach would not cause a significant compro-
mise in security.

We also note that we have not considered known plain-
text attacks in our work where both the signal x and the CS
measurements y are available to attacker (for a number of
signals). These attacks can be avoided by refraining from
reuse of a fixed A matrix, for instance by generating a se-
quence of matrices based on the key.

7. APPENDIX

7.1 Restricted Isometry Property:
We provide a brief introduction to the notion RIP [5, 10]. Let
AT be a submatrix of A formed by taking any T columns of
A, where T ≤ S; with S denoting an upper bound the sparsity
of the signal of interest x0.The S-restricted isometry constant
of A is then defined as the smallest value of δS which satis-
fies:

(1−δS)||c||2�2
≤ ||AT c||2�2

≤ (1+ δS)||c||2�2
(15)

for all T ≤ S and all coefficient sequences (c j) j∈T .
Observe that when AT is a matrix with orthonormal

columns, we get δS = 0. Thus δS represents how closely the
system of linear equations with coeffiecients given by AT for
T ≤ S behave as an orthonormal system.

The matrix A satisfies the RIP if:

δS + δ2S + δ3S < 1 (16)

and in this case the solution of the �1 minimization in prob-
lem (P1) recovers x0 [10].
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