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Abstract. We analyze the security of an interactive identification scheme. The scheme
is the obvious extension of the original square root scheme of Goldwasser, Micali, and
Rackoff to 2mth roots. This scheme is quite practical, especially in terms of storage
and communication complexity. Although this scheme is certainly not new, its security
was apparently not fully understood. We prove that this scheme is secure if factoring
integers is hard, even against active attacks where the adversary is first allowed to pose
as a verifier before attempting impersonation.
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1. Introduction

An identification schemeis an interactive protocol in which one party,P (the prover),
tries to convince another party,V (the verifier), of its identity. Corresponding to its
public key,P has a secret key that allows it, and no one else, to convince the verifier of
its identity.

A typical application would be an identity card containing a microprocessor (a so-
called “smart card”); the secret key would be stored inside the memory of the micropro-
cessor, hidden from view. For example, one could easily imagine passports enhanced in
this way.

There are different notions of security for identification schemes. All such notions
share a common definition of what it means to “break” the scheme; namely, that an
adversary succeeds in an impersonation attempt (making the verifier accept with non-
negligible probability). Where these notions of security differ is the type of “attack” the
adversary is allowed to mount; that is, how the adversary is allowed to interact with the
system before an impersonation attempt.

∗ A preliminary version of this paper appeared in theProceedings of Eurocrypt ’96; this work was done
while the author was a Humboldt fellow at the University of Saarland, Germany.
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The weakest form of attack is apassive attack, where the adversary does not interact
with the system at all before attempting an impersonation; the only information the
adversary has is the public key of the prover.

The strongest form of attack is anactive attack, where the adversary interacts withP,
perhaps several times, posing asV , but not necessarily followingV ’s protocol.

Active attacks are quite feasible in practice; for example, in the passport example
above, a hostile government or corrupt border patrol may require that one’s passport be
“verified,” where the “verification device” actually interacts with the passport, extracting
information that allows a forged passport to be constructed.

There are also other attacks of intermediate severity. In aneavesdropping attack,
the adversary passively eavesdrops on the communication betweenP and a correct, or
honest,V ; in anhonest-verifier attack, the adversary plays the role ofV , and correctly
follows V ’s protocol. For all the identification schemes discussed or mentioned in this
paper, these attacks are equivalent to a passive attack, since the verifiers use only “public
coins” and the protocols are zero-knowledge against honest verifiers.

The main contribution of this paper is to analyze the security of an identification
scheme. The scheme is the obvious extension of the original zero-knowledge proof sys-
tem for square roots of Goldwasser et al. [8] to 2mth roots. This scheme is quite practical,
especially in terms of storage and communication complexity. Although this scheme is
certainly not new, its security was apparently not fully understood. We prove that—like
the square root scheme—this scheme is secure against active attacks if factoring integers
is hard.

1.1. The Square Root and2mth Root Schemes

We first recall the square root scheme. For a given security parameterk, a secret/public
key pair is generated as follows. A modulusn is constructed by multiplying two distinct,
randomly selected primes, both of binary lengthk; also, an elementa ∈ Z∗n is chosen at
random, and we setb = a2. The public key is(b,n), and the secret key isa.

Letm be a parameter such that 2m grows faster than any polynomial ink. The protocol
then repeats the followingm times:

1. P choosesr ∈ Z∗n at random, computesx = r 2, and sendsx to V .
2. V choosese∈ {0,1} at random, and sendse to P.
3. P computesy = r · ae and sendsy to V ; V accepts ify2 = x · be, and rejects

otherwise.

Upon termination,V accepts if it accepted at every iteration, and otherwise rejects.
The analysis of Goldwasser et al. imply that the square root scheme is secure against

active attacks if factoring is hard.
We consider the following variant, which might be called the “2mth root scheme.” For

security parameterk, a secret/public key pair is generated as follows. A modulusn is
chosen as in the square root scheme. Also, an elementa ∈ Z∗n is chosen at random, and
we setb = aq, whereq = 2m, andm is a parameter such that 2m grows faster than
any polynomial ink (we also assume throughout this paper thatm= O(k)). The public
key is (b,n), and the secret key isa. We view the valuem as an implicit parameter
(alternatively, one can make it a part of the public key).
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The protocol then executes the following—just once:

1. P choosesr ∈ Z∗n at random, computesx = r q, and sendsx to V .
2. V choosese∈ {0, . . . ,q − 1} at random, and sendse to P.
3. P computesy = r · ae and sendsy to V ; V accepts ifyq = x · be, and rejects

otherwise.

Clearly, the 2mth root scheme is fairly efficient, and is vastly superior to the square
root scheme in terms of communication complexity.

Our main result is to show that the 2mth root scheme is secure against active attacks
if factoring is hard. Our proof will require that the prime factors ofn are both equal to 3
mod 4 (so thatn is a so-called “Blum integer”).

This restriction to Blum integers is not really a serious restriction. Indeed, if an adver-
sary can break our scheme, this implies an efficient algorithm that factors a nonnegligible
fraction of Blum integers. However, Blum integers make up a nonnegligible fraction of
all integers that are the product of two primes of equal binary length. Nevertheless, one
can ask if this restriction is absolutely necessary. Schnorr [19] has examined extensions
to our results for non-Blum integers; however, the proof in [19] contains a substantial
gap, which is addressed in [20].

1.2. The Feige/Fiat/Shamir Scheme

In the Feige/Fiat/Shamir (FFS) scheme [4], a modulusn is chosen as in the square root
scheme. There are two parameterss andm, chosen so that 2sm grows faster than any
polynomial ink. A private key consists of a lista1, . . . ,as of randomly chosen elements
of Z∗n; the corresponding public key consists ofb1, . . . ,bs ∈ Z∗n, wherebi = a2

i for
1≤ i ≤ s.

The protocol then executes the following stepsm timesin parallel:

1. P choosesr ∈ Z∗n at random, computesx = r q, and sendsx to V .
2. V choosese1, . . . ,es ∈ {0, . . . ,q − 1} at random, and sendse1, . . . ,es to P.
3. P computesy = rae1

1 · · ·aes
s and sendsy to V ; V accepts ifyq = xbe1

1 · · ·bes
s , and

otherwise rejects.

Feige et al. prove that this scheme is secure against active attacks if factoring is hard.
Actually, the above scheme is a somewhat simplified version of the FFS scheme, and

is closely related to the scheme proposed earlier by Fiat and Shamir [5]. Settingm= 1,
one obtains a parallel version of the square root scheme, which appeared earlier in a
slightly different context in [6]. Ohta and Okamoto [15] discuss variants of the FFS
scheme.

Compared with the FFS scheme, the 2mth root scheme has much smaller space and
communication complexities, which makes the 2mth root scheme much more attractive
in many practical situations, such as smart card implementations.

1.3. The Ong/Schnorr Scheme

In the Ong/Schnorr (OS) scheme [17], the modulusn is chosen precisely as in the
square root and FFS schemes. There are two parameterss andm, chosen so that 2sm

grows faster than any polynomial ink. Setq = 2m. A private key consists of a list
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a1, . . . ,as of randomly chosen elements ofZ∗n; the corresponding public key consists of
b1, . . . ,bs ∈ Z∗n, wherebi = aq

i for 1≤ i ≤ s.
The protocol then executes the following just once:

1. P choosesr ∈ Z∗n at random, computesx = r q, and sendsx to V .
2. V choosese1, . . . ,es ∈ {0, . . . ,q − 1} at random, and sendse1, . . . ,es to P.
3. P computesy = rae1

1 · · ·aes
s and sendsy to V ; V accepts ifyq = xbe1

1 · · ·bes
s , and

otherwise rejects.

Settings= 1, one obtains the 2mth root scheme.
Ong and Schnorr give a security analysis against passive attacks only; moreover, the

hardness assumption is somewhat contrived. Jakobsson [13] has shown that this scheme
is secure against passive attacks if factoring is hard.

Our proof technique also extends to the OS scheme (again, assumingn is a Blum
integer).

1.4. The Guillou/Quisquarter Scheme

The Guillou/Quisquarter (GQ) scheme [12], [11] is the same as the 2mth root scheme,
except that 2m is replaced by anm-bit prime number. It is only known to be secure against
passiveattacks, provided that RSA-inversion is hard (a possibly stronger assumption than
the hardness of factoring). Guillou [10] analyzes a variant of the 2mth roots scheme where
n is the product of two primes, one congruent to 3 mod 8 and the other congruent to 7
mod 8, andb = 4. Guillou shows that this scheme is secure against passive attacks if
factoring is hard. The same ideas have been discussed by Micali [14].

1.5. Other Schemes

Other identification schemes are based on the hardness of the discrete logarithm problem.
The scheme of Schnorr [18] is only known to be secure againstpassiveattacks, provided
the discrete logarithm problem in (a subgroup of)Z∗p, wherep is prime, is hard. Brickell
and McCurley [3] give a variant of Schnorr’s scheme, and give a security analysis against
active attacks; however, the hardness assumption is quite unnatural.

Okamoto [16] gives modifications of the GQ and Schnorr schemes which are proved
secure, even against active attacks, under the same intractability assumptions of the cor-
responding original schemes. These schemes, however, are somewhat more complicated
and less efficient than the original schemes.

1.6. Identification Schemes versus Signatures

As was noted by Fiat and Shamir [5], three-round identification schemes such as those
described above can be “collapsed” into signature schemes by making the verifier’s
random challenge equal to the output of a hash function applied to the concatenation
of the message to be signed and the first message sent by the prover. Such heuristic
arguments can be made in a somewhat disciplined manner by viewing the hash function
as a “random oracle,” as suggested by Bellare and Rogaway [2]. To make this heuristic
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argument go through, it suffices to prove that the original identification schemes are
secure only against honest-verifier attacks.

Indeed, the results of Jakobsson mentioned above already imply that the 2mth root
scheme is secure against honest-verifier attacks, and thus as a signature scheme in the
ideal hash function model (all this assuming that factoring is hard).

1.7. Proof techniques

One approach to show that an identification scheme is secure is to show that it is a
zero-knowledge proof of knowledge. This approach is not at all applicable to proving
the security of the 2mth scheme, as we now explain.

Our proof of security does not show that the 2mth scheme is zero-knowledge (in the
sense of [8]). Indeed, the results of Goldreich and Krawczyk [7], together with the result
of Jakobsson, imply that there is no “black box” zero-knowledge simulator, assuming
factoring is hard. The argument for this is as follows: the results in [7] essentially say
that any efficient black box simulator for a three round, public coin proof system can be
turned into a prover that succeeds with nonnegligible probability. Their theorem is stated
somewhat differently (since they are concerned with proofs of language recognition,
rather than proofs of knowledge), but their argument is easily adapted. Then Jakobsson’s
result implies such a prover can be used to factor.

We should point out that there are a number of techniques, based on commitment
schemes, for transforming an honest-verifier zero-knowledge protocol into a zero-
knowledge protocol. These transformations increase the computation cost of the proto-
col, and can also require additional complexity assumptions to obtain a proof of security.
While one could apply these transformations to the 2mth root scheme, our results imply
that this is unnecessary.

It is perhaps also interesting to note that the 2mth root scheme is provably not a proof
of knowledge (in the sense of [4]), assuming factoring is hard. Indeed, any knowledge
extractor could be used as follows to take square roots modulon (which is, of course,
equivalent to factoringn). Given a random squarec ∈ Z∗n, we construct a proverP′

with public key(c2m−1
,n). ProverP′ can makeV accept with probability 1/2, sinceP′

can respond correctly to all even challengese; the knowledge extractor would hence be
obliged to compute, by interacting withP′, a square root ofc.

As a technical aside, we note that there are several different notions of a “proof of
knowledge” in the literature (as discussed in [1]), but in the case where a prover succeeds
as above with probability 1/2, these notions are in fact all equivalent.

As we shall see, this apparent lack of “knowledge soundness” is not really a problem
at all. In fact, this property is crucial to our proof of security, whose main technical
innovation is an “approximate witness” technique that exploits this property.

The intuition of the proof is as follows. We want to use an adversary that breaks the
system to factor a numbern, which we do as follows. We choose a very small valuel
(the correct value depends on the exact probability with which the adversary breaks the
system). Then we generate a public key(b,n), whereb = ã2m−l

andã ∈ Z∗n is chosen at
random. Although to the adversary this looks like a real public key, we do not actually
hold a corresponding private key, just an “approximate” private key, or witnessã—the
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smallerl is, the better the approximation. The trick then is to show that

(1) despite having just an approximate witness, we can nevertheless efficiently sim-
ulate the adversary’s view as it would be if it interacted with a prover with a real
witness;

(2) if the adversary can subsequently pretend to be a prover and make a verifier accept,
then we can extract another approximate witness that is at least as good as the one
we started with; and

(3) with these two different approximate witnesses, we can factorn.

1.8. Organization of the Paper

The rest of the paper is organized as follows: in Section 2 we formally state our definition
of security; in Section 3 we give a proof of security for the 2mth root scheme; in Section 4
we make some concluding remarks, including a discussion of several minor extensions
of our results.

2. Definition of Security

In this section we formally state our definition of a secure identification scheme, which
is essentially that of [4]. For conciseness and clarity, we adopt the notation of [9] for
expressing the probability of various events. IfS is a probability space, then [S] denotes
the set of elements in this space that occur with nonzero probability. For probability
spacesS1, S2, . . ., the notation

Pr[p(x1, x2, . . .) | x1← S1; x2← S2; . . .]

denotes the probability that the relationp(x1, x2, . . . ) holds when eachxi is chosen, in
the given order, from the corresponding probability spaceSi .

A probabilistic algorithmA on a specific inputx produces an output string according
to some probability distribution. We denote byA(x) the probability space of output
strings.

Generally, anidentification scheme(G, P,V) consists of a probabilistic, polynomial-
time algorithmG, and two probabilistic, polynomial-time, interactive algorithmsP and
V with the following properties:

1. The algorithmG is a key-generation algorithm. It takes as input a string of the
form 1k (i.e.,k written in unary), and outputs a pair of strings(S, I ). k is called the
security parameter, S is called asecret key, andI is called apublic key.

2. P receives as input the pair(S, I ) andV receives as inputI . After an interactive
execution ofP and V , V outputs a 1 (indicating “accept”) or a 0 (indicating
“reject”). For a givenS and I , the output ofV at the end of this interaction is of
course a probability space and is denoted by(P(S, I ),V(I )).

3. A legitimate prover should always be able to succeed in making the verifier ac-
cept. Formally, for allk and for all(S, I ) ∈ [G(1k)], (P(S, I ),V(I )) = 1 with
probability 1.
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An adversary(P′,V ′) is a pair of probabilistic, polynomial-time, interactive algo-
rithms. For a given secret/public key pair(S, I ), we denote by(P(S, I ),V ′(I )) the
stringh output byV ′ (on inputI ) after interacting withP (on input(S, I )) some number
of times. Note that these interactions are performed sequentially. Again, for a givenS
and I , (P(S, I ),V ′(I )) is a probability space. The stringh (a “help string”) is used as
input to P′, which attempts to makeV (on inputI ) accept. We denote by(P′(h),V(I ))
the output ofV after interacting withP′(h).

Definition 1. An identification scheme(G, P,V) is secure against active attacksif,
for all adversaries(P′,V ′), for all constantsc > 0, and for all sufficiently largek,

Pr[s= 1 | (S, I )← G(1k); h← (P(S, I ),V ′(I )); s← (P′(h),V(I ))] < k−c.

3. Security of the2mth Root Scheme

Our proof of security is based on the assumption that factoring is hard. We make this
assumption precise.

Fork ≥ 5, let Hk be the probability space consisting the uniform distribution over all
integersn of the formn = p1 · p2, wherep1 andp2 are distinct primes of binary length
k, andp1 ≡ p2 ≡ 3 (mod 4).

TheFactoring Intractability Assumption (FIA) is the following assertion:

for all probabilistic algorithms A that run in expected polynomial time, for
all c > 0, and for all sufficiently large k,

Pr[x is a nontrivial factor ofn | n← Hk; x← A(n)] < k−c.

We shall prove:

Theorem 1. Under the FIA, the2mth root scheme is secure against active attacks.

To prove this theorem, we show that any adversary that succeeds in an impersonation
attempt with nonnegligible probability can be converted into a probabilistic, polynomial-
time factoring algorithm that succeeds with nonnegligible probability. This is Lemma 1
below.

Let (P′,V ′) be such an adversary. For this adversary, there exist polynomialsTi (k),
Ni (k), Tol(k), andTp(k) as follows.

• Ti (k) is a bound on the time required forV ′ to run the protocol once withP, and
includes the computation time ofP.
• Ni (k) is a bound on the number of timesV ′ runs the protocol withP.
• Tol(k) is a bound on the “off-line” time forV ′; i.e., all time spent byV ′ other than

running the protocol withP.
• Tp(k) is a bound on the running-time ofP′ andV .

For a given public key(b,n) and “help string”h, let

ε(h,b,n) = Pr[(P′(h),V(b,n)) = 1],
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where this probability is taken over the coin tosses ofP′ andV . Because the adversary
breaks the system with nonnegligible probability, there exist polynomialsQ1(k) and
Q2(k) and an infinite setK ⊂ Z>0 such that, for allk ∈ K ,

Pr[ε(h,b,n)≥Q2(k)
−1 |(a, (b,n))←G(1k); h←(P(a, (b,n)),V ′(b,n))]≥Q1(k)

−1.

Lemma 1. Assume an adversary as above. Then there is a probabilistic factoring
algorithm A that runs in time

O((Ni (k)Ti (k)+ Tp(k))Q2(k)+ Tol(k))

such that, for all sufficiently large k∈ K ,

Pr[x is a nontrivial factor ofn | n← Hk; x← A(n)] ≥ Q1(k)
−1/4.

The special form of integersn ∈ [Hk] implies that the operation of squaring onZ∗n acts
as an automorphism on the subgroup(Z∗n)

2 of squares, which we shall exploit numerous
times.

We will need the following notation: letχ be the natural map fromZ∗n to Z∗n/(Z
∗
n)

2 ∼=
Z2×Z2. Note that, for randoma ∈ Z∗n, revealinga2 reveals no information aboutχ(a);
that is, the distributions ofa2 andχ(a) are independent.

We now describe and at the same time analyze our factoring algorithm. In all statements
concerning probabilities, the underlying probability space consists of the random choice
of the inputn and the coin tosses of the algorithm.

On inputn ∈ [Hk], the algorithm begins by computingl as the smallest nonnegative
integer with 2l ≥ Q2(k). We require that 0≤ l ≤ m − 1, which will hold for all
sufficiently largek, since we are assuming that 2m grows faster than any polynomial in
k.

The algorithm runs in three stages, as follows. In the first stage we generate a public
key (b,n) with a corresponding “approximate” private key, or witnessã ∈ Z∗n, where
b = ã2m−l

. In this stage we also simulate the view that the adversary would have if
it interacted with a proving holding a “real” witness. In the second stage we let the
adversary attempt to make a legitimate verifier accept, and use a “rewinding” argument
to extract another “approximate” witness that is at least as good as the one we started
with. In the third stage we use the two approximate witnesses, and a kind of witness
indistinguishability property, finally to factorn.

Stage 1. This stage takes as inputn, runs in expected time

O(Ni (k)Ti (k)Q2(k)+ Tol(k)),

and outputs(ã,b, h) whereã,b ∈ Z∗n with ã2m−l = b andh is a “help string.” Moreover,
we have:

(i) if k ∈ K , then Pr[ε(h,b,n) ≥ Q2(k)−1] ≥ Q1(k)−1;
(ii) the distribution ofχ(ã) is uniform and independent of that of(h,b,n).
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This stage runs as follows. We chooseã ∈ Z∗n at random and computeb = ã2m−l
.

Note that the distribution of(b,n) is independent ofχ(ã), and is the same as that of an
ordinary public key—this is because squaring permutes(Z∗n)

2, and sob should be, and
is, just a random square. We then simulate the interaction(P(·,b,n),V ′(b,n)). This is
complicated by the fact that we do not have at hand a valuea such thata2m = b, but
ratherã with ã2m−l = b.

We employ a variation of a zero-knowledge simulation technique introduced by Gold-
wasser et al. [8]. We replace the identification protocol with the following:

1′. P choosese′0 ∈ {0, . . . ,2l − 1} at random, choosesr ∈ Z∗n at random, computes
x = r 2m · b−e′0, and sendsx to V ′.

2′. V ′ computes a challengee∈ {0, . . . ,2m − 1} and sendse to P.
3′. P writese= e12l+e0. If e0 6= e′0, we go back to step 1′ (“undoing” the computation

of V ′). Otherwise,P computesy = r · ãe1 and sendsy to V ′.

When the adversary terminates, we output the stringh thatV ′ outputs, along with̃a
andb.

Notice that in step 1′, the distribution ofx is uniformly distributed in(Z∗n)
2, and its

distribution is independent of everything else in the adversary’s view up to that point, and
is also independent of the hidden variablee′0. Therefore, up to this point the simulation
is perfect, and moreover, the probability thate0 = e′0 is precisely 1/2l . Now if it happens
thate0 = e′0, then

y2m = (r ãe1)2
m = (xbe0)b2l e1 = xbe.

Also notice thatx leaks no information aboutχ(r ) or χ(ã), and from the equation
χ(y) = χ(r )χ(ã)e1, the distribution ofχ(y) is uniform and independent ofχ(ã). Thus,
the simulation of the adversary’s view is perfect through step 3′, and no information is
leaked aboutχ(ã). From the fact thate0 = e′0 with probability 1/2l , the expected value
of the total number of loop iterations is 2l Ni (k).

All of the claims made about Stage 1 should now be clear.

Stage 2. This stage takes as inputh, b, and n from above, and runs in time
O(Tp(k)Q2(k)). It reports failure or success, and upon success outputsz ∈ Z∗n and
f ∈ {0, . . . ,2m − 1} such thatz2m = b f and f 6≡ 0 (mod 2l+1). The probability of
success, given thatε(h,b,n) ≥ Q2(k)−1, is at least 1/2.

Let ε = ε(h,b,n), and assumeε ≥ Q2(k)−1. Recall thatl was chosen above such
that 2l ≥ Q2(k).

Stage 2 repeats the following procedure seven times. Run(P′(h),V(b,n)) up to
dQ2(k)e times, or untilV accepts. IfV accepts, lety2m = xbe be the accepting con-
versation. Fixing the coin tosses ofP′, run the interaction again up tod4Q2(k)e times,
or until V accepts again with a challengee′ 6≡ e (mod 2l+1). If V accepts with such a
challenge, then we have another accepting conversation(y′)2

m = xbe′ . Upon finding two
such relations, and ordering them so thate> e′, we outputz= y/y′ and f = e− e′.

To analyze Stage 2, we use a slight variation of an argument in [4]. Consider the
Boolean matrixM whose rows are indexed by the coin toss stringω of P′ and whose
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columns are indexed by the challengese of V . M(ω,e) = 1 if and only if this choice of
ω ande causesV to accept.

Call a rowω in M heavyif the fraction of 1’s in the row is at least 3ε/4. Observe
that the fraction of 1’s in the matrix that lie in heavy rows is at least 1/4. This follows
from the following argument: ifM hasr rows andc columns, andr ′ rows are nonheavy,
then the total number of 1’s inM is rcε, of which less thanr ′c3ε/4 ≤ (3/4)rcε lie in
nonheavy rows.

Now consider a heavy rowω, and a challengeesuch thatM(ω,e) = 1. Since 2m−l−1

challengese′ satisfye′ ≡ e (mod 2l+1), the fraction of challengese′ with the property
that

M(ω,e′) = 1 and e′ 6≡ e (mod 2l+1)

is at least

3ε/4− 2−l−1 ≥ 3Q2(k)
−1/4− Q2(k)

−1/2= Q2(k)
−1/4.

To complete the analysis of this stage, we make use of the simple fact that if an exper-
iment that succeeds with probabilityθ is repeated at leastt times, then the probability
that all of the experiments fail is at most

(1− θ)t ≤ exp(−tθ).

Thus, if t ≥ 1/θ , the probability that at least one experiment succeeds is at least 1−
exp(−1).

Now, with probability at least(1− exp(−1)), we hit an accepting pair(w,e). When
this happens, the coin tosses ofP′ index a heavy row with probability 1/4. Conditioning
on the event that we are in a heavy row, we hit the desirede′ with probability at least
(1−exp(−1)). Thus, the probability that an individual execution of the above procedure
succeeds is at least

(1− exp(−1))× 1/4× (1− exp(−1)) = (1− exp(−1))2/4.

By a simple calculation, it follows that the probability that one of seven executions
succeeds is more than 1/2.

All the claims made for Stage 2 should now be clear.
Stage 3 of our factoring algorithm is executed only if Stage 2 succeeds.

Stage 3. This stage takes as inputn, the valueã from Stage 1, and the valuesz and f
from Stage 2. It runs in timeO(mk2). The probability that it outputs a nontrivial factor
of n, given that Stage 2 succeeded, is 1/2.

Recall that

ã2m−l = b, z2m = b f , and f 6≡ 0 (mod 2l+1).

Moreover,χ(ã) is uniformly distributed and independent of the distribution ofz.
This stage runs as follows. We writef = u2t , whereu is odd and 0≤ t ≤ l . Set

w = z2l−t
. We claim that with probability 1/2, gcd(ãu−w,n) is a nontrivial factor ofn.
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To see this, first note thatw2m−l+t = bu2t
, and hencew2m−l = bu (as squaring permutes

(Z∗n)
2). We have(ãu)2

m−l = bu and hence(ãu)2 = w2 (again, squaring permutes(Z∗n)
2).

However, sinceu is odd,χ(ãu) = χ(ã), and henceχ(ãu) is random and independent of
χ(w). It follows that, with probability 1/2, ãu 6= ±w, and when this happens gcd(ãu −
w,n) is a nontrivial factor ofn.

All the claims made for Stage 3 should now be clear.
It follows that, for sufficiently largek ∈ K , the overall success probability of our

factoring algorithm is at least

Q1(k)
−1× 1/2× 1/2= Q1(k)

−1/4.

That completes the description and analysis of our factoring algorithm, and the proof of
Lemma 1.

4. Concluding Remarks

We close with the some remarks about our proof of Theorem 1, and discuss several
generalizations.

4.1. Constructiveness of the Proof

Our proof of Theorem 1 is not constructive, since to build our factoring algorithm we
need not only descriptions of the adversary’s algorithms, but also the polynomialQ2(k).
To eliminateQ2(k), we can generatel at random, where we choose the valuel ≥ 1
with probability 2−l l−2, appropriately normed. It is straightforward to verify that we
can samplel from this distribution in expected constant time, given a source of random
bits. We then use 2l in place of Q2(k) throughout the factoring algorithm. With this
modification, the running time bound in Lemma 1 becomes

O(Ni (k)Ti (k)+ Tp(k)+ Tol(k)),

and the success probability in Lemma 1 is bounded from below by a constant times

1/(Q1(k)Q2(k)(log Q2(k))
2).

4.2. Efficiency of the Reduction

In comparison with the reduction from factoring to impersonating one obtains with the
FFS scheme, ours is less efficient, since our factoring algorithm has to repeat computa-
tions ofV ′ many times. Compensating for this is the fact that the computations that need
to be repeated are all “on-line,” and so presumably fast in most realistic attacks.

4.3. Parallel Execution of the Protocol

In our definitions and proofs of security, we do not allow the adversary to interact with
several instances of the same prover in parallel. Our proof breaks down in this case, as
the time required for the zero-knowledge simulation would grow exponentially in the
number of parallel instances. It would seem that in many practical situations, such an
attack is impossible to mount or at least easy to prevent. In contrast, the proof of security
of the FFS scheme remains valid in this context.
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4.4. Multiple Users

We have stated the protocols and definition of security from the point of view of a
single user. Consider a system consisting of many (but polynomial ink) users. Before
attempting an impersonation, we allow an adversary to interact arbitrarily with all users in
the system in an arbitrary fashion, interleaving communications between users arbitrarily.
We also allow an adversary to corrupt any users it wants, obtaining their private keys
upon demand. After this interaction, the adversary tries to impersonate a noncorrupted
user of its choice. Note that the adversary makes this choice dynamically; if the choice
were static, the analysis of the multiuser case would trivially reduce to the single-user
case.

To reduce factoring to impersonating in this case, we can use the obvious technique
of first picking a user at random and giving them the number we want to factor, and
generating ordinary key pairs for all other users. We then hope that the adversary picks
the user with our number.

As with the FFS scheme, all users can share the same modulusn in the 2mth root
scheme. However, to reduce factoring to impersonating in this case, we still have to pick
a user at random, and give this user an appropriate “approximate witness.” Again, the
other users get ordinary key pairs, and we have to hope that the adversary chooses to
impersonate our user. The reduction from factoring to impersonating is still polynomial
time, but somewhat less efficient than the reduction for the FFS scheme.

4.5. The OS Scheme

Our proof of security against active attacks easily extends to the OS scheme.
We recall the OS scheme described in the Introduction. In this scheme the modulusn

is chosen precisely as in the 2mth root scheme. There are two parameterss andm, chosen
so that 2sm grows faster than any polynomial ink. Setq = 2m. A private key consists
of a list a1, . . . ,as of randomly chosen elements ofZ∗n; the corresponding public key
consists ofb1, . . . ,bs ∈ Z∗n, wherebi = aq

i for 1≤ i ≤ s.
The protocol then runs as follows:

1. P choosesr ∈ Z∗n at random, computesx = r q, and sendsx to V .
2. V choosese1, . . . ,es ∈ {0, . . . ,q − 1} at random, and sendse1, . . . ,es to P.
3. P computesy = rae1

1 · · ·aes
s and sendsy to V ; V accepts ifyq = xbe1

1 · · ·bes
s , and

otherwise rejects.

In the analysis of this scheme, we further presume thatn is chosen as a Blum integer,
just as we did for the 2mth root scheme.

Theorem 2. Under the FIA, the OS scheme is secure against active attacks.

The proof is similar to that of Theorem 1; we sketch the differences. In the factoring
algorithm the valuel is chosen to be the least nonnegative integer such that 2s(l+1) ≥
2Q2(k). As before, we require that 0≤ l ≤ m − 1, which holds for all sufficiently
largek.

In Stage 1, for 1≤ i ≤ s, we choosẽai ∈ Z∗n at random, and computebi = ã2m−l

i .
Then we perform the same simulation as in Stage 1, except this time we have to guess



On the Security of a Practical Identification Scheme 259

the low-orderl bits of eachof the s challenges. This slows down the simulation by a
factor of 2sl < Q2(k).

Stage 2 is easily modified so as to obtainz ∈ Z∗n and integersf1, . . . , fs such that
z2m =∏i b fi

i and not all fi are divisible by 2l+1.
In Stage 3, for 1≤ i ≤ s, write fi = ui 2ti . Also, let t = min{ti : 1 ≤ i ≤ s} ≤ l .

Then it is easy to see that, with probability 1/2,

gcd

(
z2l−t −

s∏
i=1

ãui 2ti −t

i ,n

)
is a nontrivial factor ofn.

One could modify the above factoring algorithm as follows. Choose an indexg ∈
{1, . . . , s} at random, select̃ag ∈ Z∗n at random, and computebg = ã2m−l

g . For i 6= g,
computeai andbi as specified in the protocol. With this modification, Stage 1 runs as
before, except we only have to guess the low-orderl bits of eg. Thus, the simulation is
slowed down by only a factor of 2l . In Stage 3 the probability of success is reduced to
1/(2s). In general, this seems like a worthwhile tradeoff.

References

[1] M. Bellare and O. Goldreich. On defining proofs of knowledge. InAdvances in Cryptology—Crypto ’92,
pages 390–420. LNCS 740. Springer-Verlag, Berlin, 1993.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In Proceedings of the First ACM Conference on Computer and Communications Security, pages 62–73,
1993.

[3] E. F. Brickell and K. S. McCurley. An interactive identification scheme based on discrete logarithms and
factoring.J. Cryptology, 5:29–39, 1992.

[4] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity.J. Cryptology, 1:77–94, 1988.
[5] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems.

In Advances in Cryptology—Crypto ’86, pages 186–194. LNCS 263. Springer-Verlag, Berlin, 1987.
[6] M. J. Fischer, S. Micali, and C. Rackoff. A secure protocol for the oblivious transfer.J. Cryptology,

9(3):191–195, 1996. Presented at Eurocrypt ’84, but not published in those proceedings.
[7] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof systems. InProceedings

of the17th ICALP, pages 268–282. LNCS 443. Springer-Verlag, Berlin, 1990.
[8] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.SIAM

J. Comput., 18:186–208, 1989.
[9] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-

message attacks.SIAM J. Comput., 17:281–308, 1988.
[10] L. Guillou. Collision-resistance and zero-knowledge techniques. Manuscript, 1990.
[11] L. Guillou and J. Quisquater. A practical zero-knowledge protocol fitted to security microprocesors

minimizing both transmission and memory. InAdvances in Cryptology—Eurocrypt ’88, pages 123–128.
LNCS 330. Springer-Verlag, Berlin, 1998.

[12] L. Guillou and J. Quisquater. A “paradoxical” identity-based signature scheme resulting from zero-
knowledge. InAdvances in Cryptology—Crypto ’88, pages 216–231. LNCS 403, Springer-Verlag, Berlin,
1990.

[13] M. Jakobsson. Reducing costs in identification protocols. Manuscript available at
http://www-cse.ucsd.edu/users/markus , 1992.

[14] S. Micali. An efficient digital signature algorithm provably secure as integer factorization. Manuscript,
1995.

[15] K. Ohta and T. Okamoto. A modification of the Fiat-Shamir Scheme. InAdvances in Cryptology—Crypto
’88, pages 232–243. LNCS 403. Springer-Verlag, Berlin, 1990.



260 V. Shoup

[16] T. Okamoto. Provably secure and practical identification schemes and corresponding signature schemes.
In Advances in Cryptology—Crypto ’92, pages 31–53. LNCS 740. Springer-Verlag, Berlin, 1993.

[17] H. Ong and C. Schnorr. Fast signature generation with a Fiat–Shamir-like scheme. InAdvances in
Cryptology—Eurocrypt ’90, pages 432–440. LNCS 473. Springer-Verlag, Berlin, 1991.

[18] C. Schnorr. Efficient signature generation by smart cards.J. Cryptology, 4:161–174, 1991.
[19] C. Schnorr. Security of 2t -root identification and signatures. InAdvances in Cryptology—Crypto ’96,

pages 143–156. LNCS 1109. Springer-Verlag, Berlin, 1996.
[20] C. Schnorr. Erratum: Security of 2t -root identification and signatures. InAdvances in Cryptology—Crypto

’97. LNCS 1294. Springer-Verlag, Berlin, 1997.


