On the Security of a Unified Countermeasure

Marc Joye

Thomson R\&D, Security Labs
marc.joye@thomson.net
FDTC 2008
Washington DC • August 10, 2008

This Talk

If not properly implemented, cryptosystems are susceptible to implementation attacks, including

- fault attacks, and
- side-channel attacks (SPA, DPA, ...)

Countermeasures

For elliptic curve cryptosystems:

- Blömer, Otto and Seifert (FDTC 2005)
- Baek and Vasyltsov (ISPEC 2007)
- fault coverage less than what was anticipated
- further security weaknesses

Shamir's Method

- Secure evaluation of $y=f(x) \bmod p$
- general description

$$
\begin{gathered}
z=f(x) \bmod p r \quad y_{r}=f(x) \bmod r \\
z \bmod r \stackrel{?}{=} y_{r} \xrightarrow[y y y]{l} \\
y=z \operatorname{mos} p
\end{gathered}
$$

images \& beyond

Elliptic Curves over \mathbb{F}_{p}

$$
E\left(\mathbb{F}_{p}\right)=\left\{y^{2}=x^{3}+a x+b\right\} \cup\{\boldsymbol{O}\}
$$

- Let $P=\left(x_{1}, y_{1}\right)$ and $\boldsymbol{Q}=\left(x_{2}, y_{2}\right)$
- Group law
$-\mathrm{P}+\mathrm{O}=\mathbf{O}+\mathrm{P}=\mathrm{P}$
- $-\boldsymbol{P}=\left(x_{1},-y_{1}\right)$
- $\boldsymbol{P}+\boldsymbol{Q}=\left(x_{3}, y_{3}\right)$ where

$$
x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=\left(x_{1}-x_{3}\right) \lambda-y_{1}
$$

with $\lambda= \begin{cases}\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \text { [addition] } \\ \frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { [doubling] }\end{cases}$

Elliptic Curves over $\mathbb{Z}_{p r}$

$$
E\left(\mathbb{Z}_{p r}\right)=\left\{y^{2}=x^{3}+a x+b\right\} \cup\{\boldsymbol{O}\}
$$

- Let $\boldsymbol{P}=\left(x_{1}, y_{1}\right)$ and $\boldsymbol{Q}=\left(x_{2}, y_{2}\right)$
- Addition formulas no longer a group law (!)

$$
\begin{aligned}
& -\boldsymbol{P}+\boldsymbol{O}=\boldsymbol{O}+\boldsymbol{P}=\boldsymbol{P} \\
& --\boldsymbol{P}=\left(x_{1},-y_{1}\right) \\
& -\boldsymbol{P}+\boldsymbol{Q}=\left(x_{3}, y_{3}\right) \text { where }
\end{aligned}
$$

$$
x_{3}=\lambda^{2}-x_{1}-x_{2}, \quad y_{3}=\left(x_{1}-x_{3}\right) \lambda-y_{1}
$$

$$
\text { with } \lambda= \begin{cases}\frac{y_{1}-y_{2}}{x_{1}-x_{2}} & \text { [addition] } \\ \frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { [doubling] }\end{cases}
$$

Blömer-Otto-Seifert Countermeasure

Input $d, P=\left(x_{1}: y_{1}: 1\right) \in E\left(\mathbb{F}_{p}\right)$
Output $Q=[d] P$ or \perp
In memory prime r, curve params a_{r} and b_{r}

$$
P_{r} \in E_{r}\left(\mathbb{F}_{r}\right) \text { with } \# E_{r} \text { a prime }
$$

1. Let $E_{/ \mathbb{Z}_{p r}}^{\prime}: Y^{2}=X^{3}+\operatorname{CRT}\left(a, a_{r}\right) X Z^{4}+\operatorname{CRT}\left(b, b_{r}\right) Z^{6}$ and compute $P^{\prime}=\operatorname{CRT}\left(P, P_{r}\right)$
2. Compute $\boldsymbol{Q}^{\prime}=[d] \boldsymbol{P}^{\prime}$ on E^{\prime}
3. Compute $R^{\prime}=\left[d\left(\bmod \# E_{r}\right)\right] P_{r}$ on E_{r}
4. Check whether

$$
Q^{\prime} \stackrel{?}{=} R^{\prime}(\bmod r)
$$

and, if not, return \perp and stop
5. Return $\boldsymbol{Q}^{\prime} \bmod p$

Baek-Vasyltsov Countermeasure

Input $d, P=\left(x_{1}: y_{1}: 1\right) \in E\left(\mathbb{F}_{p}\right)$
Output $Q=[d] P$ or \perp

1. Choose a small random integer r
2. Compute $B=y_{1}^{2}+p y_{1}-x_{1}^{3}-a x_{1} \bmod p r$ and let $E_{/ \mathbb{Z}_{p r}}^{\prime}: Y^{2}+p Y Z^{3}=X^{3}+a X Z^{4}+B Z^{6}$
3. Compute $\left(X_{d}: Y_{d}: Z_{d}\right)=[d]\left(x_{1}: y_{1}: 1\right)$ on E^{\prime} (using an SPA-resistant point multiplication algorithm)
4. Check whether

$$
Y_{d}^{2}+p Y_{d} Z_{d}{ }^{3} \stackrel{?}{=} X_{d}{ }^{3}+a X_{d} Z_{d}^{4}+B Z_{d}{ }^{6}(\bmod r)
$$

and, if not, return \perp and stop
5. Return $\left(X_{d}: Y_{d}: Z_{d}\right) \bmod p$
images \& beyond

Main Observation

$$
E_{/ \mathbb{Z}_{p r}}^{\prime}: Y^{2}+p Y Z^{3}=X^{3}+a X Z^{4}+B Z^{6}
$$

- Point at infinity on E^{\prime} is $\boldsymbol{O}_{p r}=\left(\theta^{2}: \theta^{3}: 0\right)$ for any $\theta \in \mathbb{Z}_{p r}^{*}$
- Applying the formulas yields:
- doubling

$$
\operatorname{DBL}-\mathrm{JP}\left(O_{p r}\right)=O_{p r}
$$

- addition

$$
\left.\begin{array}{l}
\text { ADD-JP }\left(\boldsymbol{P}, \boldsymbol{O}_{p r}\right) \\
\operatorname{ADD-JP}\left(\boldsymbol{O}_{p r}, \boldsymbol{P}\right)
\end{array}\right\} \begin{aligned}
& (0: 0: 0) \\
& \neq \boldsymbol{P}, \quad \forall \boldsymbol{P} \in E^{\prime}
\end{aligned}
$$

- also holds for E
- $\boldsymbol{O}_{p r} \bmod p=\boldsymbol{O}_{p}$
- $(0: 0: 0) \bmod p=(0: 0: 0)$

Generalization

More generally:

Proposition

Let $q \mid r$. For any P and S satisfying extended curve equation E^{\prime} such that the Z-coordinate of S mod q is zero, we have:

$$
\operatorname{DBL}-J P(S) \equiv S \quad(\bmod q)
$$

and

$$
\left.\begin{array}{l}
\operatorname{ADD}-\operatorname{JP}(P, S) \\
\operatorname{ADD}-\operatorname{JP}(S, P)
\end{array}\right\} \equiv(0: 0: 0) \quad(\bmod q)
$$

Security Analysis

- Let $\left(X_{d}: Y_{d}: Z_{d}\right)=[d] P$
- Verification step

$$
Y_{d}^{2}+p Y_{d} Z_{d}{ }^{3} \stackrel{?}{=} X_{d}^{3}+a X_{d} Z_{d}^{4}+B Z_{d}{ }^{6} \quad(\bmod r)
$$

- Expected probability of fault detection
- about, at best, $2^{-|r|_{2}}$
- countermeasure is not perfect
- it checks whether $\left(X_{d}: Y_{d}: Z_{d}\right)$ belongs to the curve $E^{\prime} \bmod r$; or
- that it is triplet $(0: 0: 0)$

Effective Randomization Bit-Length

- Let q denote the largest factor of r such that $\left(X_{d}: Y_{d}: Z_{d}\right) \equiv(0: 0: 0)(\bmod q)$
- A random fault will go through verification step with probability of about $2^{-|r / q|_{2}} \approx 2^{-|r|_{2}+|q|_{2}}$
\Longrightarrow "effective" bit-length of r is $|r|_{2}-|q|_{2}$
- Numerical experiments

$\|r\|_{2}$	$\mathrm{P}-192$	$\mathrm{P}-224$	$\mathrm{P}-256$	$\mathrm{P}-384$	$\mathrm{P}-521$
20	10.7	10.3	10.1	9.6	9.2
32	22.7	22.3	22.1	21.6	21.2
40	30.7	30.3	30.1	29.6	29.2

- loss in effectiveness: approximately 10 bits
- (slightly) increases with field size
images \& beyond

Proportion of Undetected Faults

- Probability that $q=r$, i.e., that $\left(X_{d}: Y_{d}: Z_{d}\right) \equiv(0: 0: 0)$ $(\bmod r)$
\Longrightarrow a fault will not be detected
- Numerical experiments

$\|r\|_{2}$	$\mathrm{P}-192$	$\mathrm{P}-224$	$\mathrm{P}-256$	$\mathrm{P}-384$	$\mathrm{P}-521$
20	23.2%	27.3%	28.9%	33.8%	37.3%
32	2.4%	3.1%	3.6%	5.0%	6.2%
40	0.4%	0.6%	0.7%	1.0%	1.4%

- for 20-bit r, average proportion of undetected faults is more than 23.2\%
- for larger values, proportion is smaller but not non-negligible

Further Results

- Suppose last intermediate values are no longer be randomized - i.e., as soon as $\left(X_{d}: Y_{d}: Z_{d}\right) \equiv(0: 0: 0)(\bmod r)$
- DPA-type attack applies on the output of the algorithm by reversing the computations
- can be combined with Naccache-Smart-Stern attack
- "projective coordinates leak"
- can be prevented (affine- or randomized projective coord.)
images \& beyond

Summary

- Security analysis of Baek-Vasyltsov countermeasure
- contermeasure leads to a larger overhead
- 10 additional bits are required for the randomizer
- (addition formulæ are also more costly)
- non-negligible proportion of faults is undetected when the randomizer is in the range $2^{20} \sim 2^{40}$
- Extensive experiments on NIST-recommended curves

Conclusion

- Countermeasure should be used with care!
- Importance of using larger randomizers
- at the cost of performance losses

