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This Talk

If not properly implemented, cryptosystems are susceptible to
implementation attacks, including

• fault attacks, and

• side-channel attacks (SPA, DPA, . . . )

Countermeasures

For elliptic curve cryptosystems:

• Blömer, Otto and Seifert (FDTC 2005)

• Baek and Vasyltsov (ISPEC 2007)

fault coverage less than what was anticipated
further security weaknesses
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Shamir’s Method

• Secure evaluation of y = f (x) mod p

general description

z = f (x) mod pr yr = f (x) mod r
↘ ↙

z mod r
?
= yr

no−−−−−−−−−−−−−−−→ ERRORy yes

y = z mod p

Elliptic Curves over Fp

E (Fp) = {y2 = x3 + ax + b} ∪ {OOO}

• Let PPP = (x1, y1) and QQQ = (x2, y2)

• Group law

PPP + OOO = OOO + PPP = PPP
−PPP = (x1,−y1)
PPP + QQQ = (x3, y3) where

x3 = λ2 − x1 − x2, y3 = (x1 − x3)λ− y1

with λ =


y1 − y2

x1 − x2
[addition]

3x2
1 + a

2y1
[doubling]



Elliptic Curves over Zpr

E (Zpr ) = {y2 = x3 + ax + b} ∪ {OOO}

• Let PPP = (x1, y1) and QQQ = (x2, y2)

• Addition formulas no longer a group law (!)

PPP + OOO = OOO + PPP = PPP
−PPP = (x1,−y1)
PPP + QQQ = (x3, y3) where

x3 = λ2 − x1 − x2, y3 = (x1 − x3)λ− y1

with λ =


y1 − y2

x1 − x2
[addition]

3x2
1 + a

2y1
[doubling]

Blömer-Otto-Seifert Countermeasure

Input d , PPP = (x1 : y1 : 1) ∈ E (Fp)

Output QQQ = [d ]PPP or ⊥
In memory prime r , curve params ar and br

PrPrPr ∈ Er (Fr ) with #Er a prime

1. Let E ′/Zpr
: Y 2 = X 3 + CRT(a, ar )X Z 4 + CRT(b, br ) Z 6 and

compute P ′P ′P ′ = CRT(PPP,PrPrPr )

2. Compute Q ′Q ′Q ′ = [d ]P ′P ′P ′ on E ′

3. Compute R ′R ′R ′ = [d (mod #Er )]PrPrPr on Er

4. Check whether

Q ′Q ′Q ′
?≡ R ′R ′R ′ (mod r)

and, if not, return ⊥ and stop

5. Return Q ′Q ′Q ′ mod p



Baek-Vasyltsov Countermeasure

Input d , PPP = (x1 : y1 : 1) ∈ E (Fp)

Output QQQ = [d ]PPP or ⊥

1. Choose a small random integer r

2. Compute B = y1
2 + py1 − x1

3 − ax1 mod pr and let
E ′/Zpr

: Y 2 + pYZ 3 = X 3 + aXZ 4 + BZ 6

3. Compute (Xd : Yd : Zd) = [d ](x1 : y1 : 1) on E ′

(using an SPA-resistant point multiplication algorithm)

4. Check whether

Yd
2 + pYdZd

3 ?≡ Xd
3 + aXdZd

4 + BZd
6 (mod r)

and, if not, return ⊥ and stop

5. Return (Xd : Yd : Zd) mod p

Main Observation

E ′/Zpr
: Y 2 + pYZ 3 = X 3 + aXZ 4 + BZ 6

• Point at infinity on E ′ is OOOpr = (θ2 : θ3 : 0) for any θ ∈ Z∗pr
• Applying the formulas yields:

doubling
DBL-JP(OOOpr ) = OOOpr

addition
ADD-JP(PPP,OOOpr )
ADD-JP(OOOpr ,PPP)

}
= (0 : 0 : 0)
6= PPP, ∀PPP ∈ E ′

also holds for E
• OOOpr mod p = OOOp

• (0 : 0 : 0) mod p = (0 : 0 : 0)



Generalization

More generally:

Proposition

Let q | r . For any PPP and SSS satisfying extended curve equation E ′

such that the Z-coordinate of SSS mod q is zero, we have:

DBL-JP(SSS) ≡ SSS (mod q)

and
ADD-JP(PPP,SSS)
ADD-JP(SSS ,PPP)

}
≡ (0 : 0 : 0) (mod q)

Security Analysis

• Let (Xd : Yd : Zd) = [d ]PPP

• Verification step

Yd
2 + pYdZd

3 ?≡ Xd
3 + aXdZd

4 + BZd
6 (mod r)

• Expected probability of fault detection

about, at best, 2−|r |2

countermeasure is not perfect
• it checks whether (Xd : Yd : Zd) belongs to the curve

E ′ mod r ; or
• that it is triplet (0 : 0 : 0)



Effective Randomization Bit-Length

• Let q denote the largest factor of r such that
(Xd : Yd : Zd) ≡ (0 : 0 : 0) (mod q)

• A random fault will go through verification step with
probability of about 2−|r/q|2 ≈ 2−|r |2+|q|2

=⇒ “effective” bit-length of r is |r |2 − |q|2

• Numerical experiments

|r |2 P-192 P-224 P-256 P-384 P-521

20 10.7 10.3 10.1 9.6 9.2
32 22.7 22.3 22.1 21.6 21.2
40 30.7 30.3 30.1 29.6 29.2

loss in effectiveness: approximately 10 bits
• (slightly) increases with field size

Proportion of Undetected Faults

• Probability that q = r , i.e., that (Xd : Yd : Zd) ≡ (0 : 0 : 0)
(mod r)

=⇒ a fault will not be detected

• Numerical experiments

|r |2 P-192 P-224 P-256 P-384 P-521

20 23.2% 27.3% 28.9% 33.8% 37.3%
32 2.4% 3.1% 3.6% 5.0% 6.2%
40 0.4% 0.6% 0.7% 1.0% 1.4%

for 20-bit r , average proportion of undetected faults is more
than 23.2%
for larger values, proportion is smaller but not non-negligible



Further Results

• Suppose last intermediate values are no longer be randomized

i.e., as soon as (Xd : Yd : Zd) ≡ (0 : 0 : 0) (mod r)

• DPA-type attack applies on the output of the algorithm by
reversing the computations

can be combined with Naccache-Smart-Stern attack
• “projective coordinates leak”
• can be prevented (affine- or randomized projective coord.)

Summary

• Security analysis of Baek-Vasyltsov countermeasure
contermeasure leads to a larger overhead

• 10 additional bits are required for the randomizer
• (addition formulæ are also more costly)

non-negligible proportion of faults is undetected when the
randomizer is in the range 220 ∼ 240

• Extensive experiments on NIST-recommended curves

Conclusion
• Countermeasure should be used with care!

• Importance of using larger randomizers

at the cost of performance losses


