On the Security of a Unified Countermeasure

Marc Joye

Thomson R&D, Security Labs marc.joye@thomson.net

FDTC 2008 Washington DC • August 10, 2008

This Talk

If not properly implemented, cryptosystems are susceptible to implementation attacks, including

- fault attacks, and
- side-channel attacks (SPA, DPA, ...)

Countermeasures

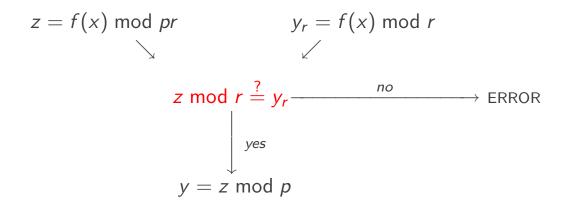
For elliptic curve cryptosystems:

- Blömer, Otto and Seifert (FDTC 2005)
- Baek and Vasyltsov (ISPEC 2007)
 - fault coverage less than what was anticipated
 - further security weaknesses

Shamir's Method

• Secure evaluation of $y = f(x) \mod p$

- general description



Elliptic Curves over \mathbb{F}_p

$$E(\mathbb{F}_p) = \{y^2 = x^3 + ax + b\} \cup \{O\}$$

• Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$

• Group law • P + O = O + P = P• $-P = (x_1, -y_1)$ • $P + Q = (x_3, y_3)$ where $x_3 = \lambda^2 - x_1 - x_2, \ y_3 = (x_1 - x_3)\lambda - y_1$ with $\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\ \frac{3x_1^2 + a}{2x_1} & \text{[doubling]} \end{cases}$

Elliptic Curves over \mathbb{Z}_{pr}

$$E(\mathbb{Z}_{pr}) = \{y^2 = x^3 + ax + b\} \cup \{\boldsymbol{O}\}$$

• Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ • Addition formulas no longer a group law (!) - P + O = O + P = P- $-P = (x_1, -y_1)$ - $P + Q = (x_3, y_3)$ where $x_3 = \lambda^2 - x_1 - x_2, y_3 = (x_1 - x_3)\lambda - y_1$ with $\lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{[addition]} \\ \frac{3x_1^2 + a}{2y_1} & \text{[doubling]} \end{cases}$

Blömer-Otto-Seifert Countermeasure

Input d, $P = (x_1 : y_1 : 1) \in E(\mathbb{F}_p)$ Output Q = [d]P or \perp In memory prime r, curve params a_r and b_r $P_r \in E_r(\mathbb{F}_r)$ with $\#E_r$ a prime

- 1. Let $E'_{\mathbb{Z}_{Pr}}$: $Y^2 = X^3 + CRT(a, a_r)XZ^4 + CRT(b, b_r)Z^6$ and compute $P' = CRT(P, P_r)$
- 2. Compute Q' = [d]P' on E'
- **3.** Compute $\mathbf{R'} = [d \pmod{\#E_r}]\mathbf{P_r}$ on E_r
- 4. Check whether

 $Q' \stackrel{?}{\equiv} R' \pmod{r}$

and, if not, return \perp and stop

5. Return $Q' \mod p$

Baek-Vasyltsov Countermeasure

Input d, $\boldsymbol{P} = (x_1 : y_1 : 1) \in E(\mathbb{F}_p)$ Output $\boldsymbol{Q} = [d]\boldsymbol{P}$ or \perp

- **1.** Choose a small random integer r
- 2. Compute $B = y_1^2 + py_1 x_1^3 ax_1 \mod pr$ and let $E'_{/\mathbb{Z}_{pr}} : Y^2 + pYZ^3 = X^3 + aXZ^4 + BZ^6$
- **3.** Compute $(X_d : Y_d : Z_d) = [d](x_1 : y_1 : 1)$ on E' (using an SPA-resistant point multiplication algorithm)
- 4. Check whether

$$Y_d^2 + pY_dZ_d^3 \stackrel{?}{\equiv} X_d^3 + aX_dZ_d^4 + BZ_d^6 \pmod{r}$$

and, if not, return \perp and stop

5. Return $(X_d : Y_d : Z_d) \mod p$

Main Observation

$$E'_{/\mathbb{Z}_{pr}}: Y^2 + pYZ^3 = X^3 + aXZ^4 + BZ^6$$

- Point at infinity on E' is $O_{pr} = (\theta^2 : \theta^3 : 0)$ for any $\theta \in \mathbb{Z}_{pr}^*$
- Applying the formulas yields:
 - doubling

$$\mathsf{DBL-JP}(\boldsymbol{O}_{pr}) = \boldsymbol{O}_{pr}$$

addition

- also holds for E
 - $O_{pr} \mod p = O_p$
 - $(0:0:0) \mod p = (0:0:0)$

Generalization

More generally:

Proposition

Let $q \mid r$. For any **P** and **S** satisfying extended curve equation E' such that the Z-coordinate of **S** mod q is zero, we have:

$$\mathsf{DBL}\text{-}\mathsf{JP}(\boldsymbol{S}) \equiv \boldsymbol{S} \pmod{q}$$

and

 $\begin{array}{l} \mathsf{ADD}\mathsf{-JP}(\boldsymbol{P},\boldsymbol{S}) \\ \mathsf{ADD}\mathsf{-JP}(\boldsymbol{S},\boldsymbol{P}) \end{array} \end{array} \equiv (0:0:0) \pmod{q}$

Security Analysis

- Let $(X_d : Y_d : Z_d) = [d] \boldsymbol{P}$
- Verification step

$$Y_d^2 + pY_dZ_d^3 \stackrel{?}{\equiv} X_d^3 + aX_dZ_d^4 + BZ_d^6 \pmod{r}$$

- Expected probability of fault detection
 - about, *at best*, $2^{-|r|_2}$
 - countermeasure is not perfect
 - it checks whether (X_d : Y_d : Z_d) belongs to the curve E' mod r; or
 - that it is triplet (0:0:0)

Effective Randomization Bit-Length

- Let q denote the largest factor of r such that $(X_d : Y_d : Z_d) \equiv (0 : 0 : 0) \pmod{q}$
- A random fault will go through verification step with probability of about $2^{-|r/q|_2} \approx 2^{-|r|_2 + |q|_2}$

 \implies "effective" bit-length of r is $|r|_2 - |q|_2$

r ₂ P-192 P-224 P-256 P-384 P-52
20 10 7 10 2 10 1 0.6 0.2
20 10.7 10.3 10.1 9.6 9.2
32 22.7 22.3 22.1 21.6 21.2
40 30.7 30.3 30.1 29.6 29.2

- loss in effectiveness: approximately 10 bits

• (slightly) increases with field size

Proportion of Undetected Faults

Probability that q = r, i.e., that (X_d : Y_d : Z_d) = (0 : 0 : 0) (mod r)

 \implies a fault will not be detected

 Numerical experiments 							
	$ r _2$	P-192	P-224	P-256	P-384	P-521	
	20	23.2%	27.3%	28.9%	33.8%	37.3%	
	32	2.4%	3.1%	3.6%	5.0%	6.2%	
	40	0.4%	0.6%	0.7%	1.0%	1.4%	

 for 20-bit r, average proportion of undetected faults is more than 23.2%

- for larger values, proportion is smaller but not non-negligible

Further Results

- Suppose last intermediate values are no longer be randomized
 i.e., as soon as (X_d : Y_d : Z_d) ≡ (0 : 0 : 0) (mod r)
- DPA-type attack applies on the output of the algorithm by reversing the computations
 - can be combined with Naccache-Smart-Stern attack
 - "projective coordinates leak"
 - can be prevented (affine- or randomized projective coord.)

Summary

- Security analysis of Baek-Vasyltsov countermeasure
 - contermeasure leads to a larger overhead
 - 10 additional bits are required for the randomizer
 - (addition formulæ are also more costly)
 - non-negligible proportion of faults is undetected when the randomizer is in the range $2^{20}\sim 2^{40}$
- Extensive experiments on NIST-recommended curves

Conclusion

- Countermeasure should be used with care!
- Importance of using larger randomizers
 - at the cost of performance losses

