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Abstract

The principle of compressed sensing (CS) can be applied in a cryptosystem by providing the notion of security. In this

paper, we study the computational security of a CS-based cryptosystem that encrypts a plaintext with a partial unitary

sensing matrix embedding a secret keystream. The keystream is obtained by a keystream generator of stream ciphers,

where the initial seed becomes the secret key of the CS-based cryptosystem. For security analysis, the total variation

distance, bounded by the relative entropy and the Hellinger distance, is examined as a security measure for the

indistinguishability. By developing upper bounds on the distance measures, we show that the CS-based cryptosystem

can be computationally secure in terms of the indistinguishability, as long as the keystream length for each

encryption is sufficiently large with low compression and sparsity ratios. In addition, we consider a potential chosen

plaintext attack (CPA) from an adversary, which attempts to recover the key of the CS-based cryptosystem. Associated

with the key recovery attack, we show that the computational security of our CS-based cryptosystem is brought by

the mathematical intractability of a constrained integer least-squares (ILS) problem. For a sub-optimal, but feasible key

recovery attack, we consider a successive approximate maximum-likelihood detection (SAMD) and investigate the

performance by developing an upper bound on the success probability. Through theoretical and numerical analyses,

we demonstrate that our CS-based cryptosystem can be secure against the key recovery attack through the SAMD.

Keywords: Compressed encryption, Hellinger distance, Indistinguishability, Integer least-squares (ILS) problem,

Relative entropy, Total variation distance, Stream ciphers

1 Introduction
Compressed sensing (CS) [1–4] is a novel data acquisition

scheme that samples a signal at a sub-Nyquist rate, which

allows simultaneous data acquisition and compression.

The original signal can be faithfully recovered from the

measurement samples, if it is sparse with respect to a par-

ticular basis and sampled via a random projection. With

efficient measurement and stable reconstruction, the CS

technique has been of interest in a variety of research

fields, e.g., communications [5–7], sensor networks

[8–10], image processing [11–13], and radar [14].

Recently, a great deal of attention has been paid to

the CS technique for data confidentiality in informa-

tion security field. A CS-based cryptosystem encrypts a
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plaintext through a CS measurement process by keeping

the sensing matrix secret. Then, the ciphertext can be

decrypted by a CS reconstruction process. Thus, the CS-

based cryptosystem performs simultaneous data acquisi-

tion and encryption at physical layer. Such a lightweight

cryptosystem is particularly attractive for secure commu-

nications in wireless sensor networks, where the resources

are not sufficient for providing data confidentiality by

conventional encryption.

The security potential of compressed sensing was hinted

by Candes and Tao [3], where the measurement sam-

ples were referred to as a weakly encrypted ciphertext.

In [15], Rachlin and Baron proved that the CS-based

cryptosystem cannot be perfectly secure but might be

computationally secure. Orsdemir et al. [16] showed that

it is computationally secure against a key search technique

via an algebraic approach. Subsequently, many researchers

have studied the security of CS-based cryptosystems
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for practical applications, which will be discussed with

more details in Section 2.3. For a comprehensive review

of CS techniques in information security, readers are

referred to [17].

In this paper, we study the computational security

of a CS-based cryptosystem that encrypts a plaintext

with a partial unitary sensing matrix embedding a secret

keystream. The keystream to be embedded is obtained by

a keystream generator of stream ciphers, which ensures

fast and efficient generation of the keystream. Assum-

ing that the keystream is part of the original one with an

extremely long period, we renew it at each encryption,

which leads to a one-time sensing (OTS) cryptosystem.

Then, the initial seed (or state) of the original keystream

generator is essentially the secret key of the CS-based

cryptosystem. With the sensing matrix, we demonstrate

that the CS-based cryptosystem theoretically guarantees a

stable and robust CS decryption for a legitimate recipient.

For security analysis, we first use probability metrics to

investigate the security in a statistical manner. The total

variation (TV ) distance [18] between probability distri-

butions of ciphertexts conditioned on a pair of plaintexts

is examined as a security measure for the indistinguisha-

bility [19] of our CS-based cryptosystem. We investigate

the TV distance by developing upper bounds on the rel-

ative entropy [20] and the Hellinger distance [21], which

demonstrates that our CS-based cryptosystem can be

computationally secure in terms of the indistinguisha-

bility, as long as the keystream length for each encryp-

tion is sufficiently large with low compression
(
M
N

)
and

sparsity
(
K
N

)
ratios.

Next, we analyze the security of our CS-based cryp-

tosystem by examining the resistance against a cryptan-

alytic attack. We consider a potential chosen plaintext

attack (CPA) from an adversary to recover the key of our

CS-based cryptosystem. In the CPA, the adversary needs

to restore a keystream embedded in CS encryption, which

is nontrivial unlike in stream ciphers, since the keystream

is not outstanding from a known plaintext-ciphertext pair.

Associated with the key recovery attack, we show that the

security of our CS-based cryptosystem is based on the

mathematical intractability of a constrained integer least-

squares (ILS) problem. For a sub-optimal, but feasible

key recovery attack, we consider a successive approxi-

mate maximum-likelihood (ML) detection (SAMD) for

the adversary’s CPA and investigate the performance by

developing an upper bound on the success probability.

Finally, theoretical analysis and numerical results reveal

that our CS-based cryptosystem can be secure against the

key recovery attack through the SAMD.

This paper is organized as follows. Section 2 reviews

the CS principle, discusses some known CS-based cryp-

tosystems, and summarizes the contributions of this

paper. In Section 3, we describe a mathematical model

of the CS-based cryptosystem proposed by this paper.

We discuss a theoretical guarantee of CS decryp-

tion for a legitimate recipient by the cryptosystem. In

Section 4, we analyze the indistinguishability of our

CS-based cryptosystem, to demonstrate the computa-

tional security. Section 5 introduces an adversary’s poten-

tial CPA strategy for key recovery, where we describe

the details and examine the performance of SAMD.

Section 6 presents numerical results to demonstrate

the reliability and the security of our CS-based cryp-

tosystem. Finally, concluding remarks will be given in

Section 7.

2 Background

2.1 Notations

A matrix (or a vector) is represented by a boldface upper

(or lower) case letter.UT and |U| denote the transpose and
the determinant of a matrix U, respectively. tr(U) denotes

the trace of a matrix U or the sum of all diagonal entries

of U. U(k, t) is an entry of an M × N matrix U in the

kth row and the tth column, where 0 ≤ k ≤ M − 1 and

0 ≤ t ≤ N − 1. μ(U) denotes the maximum magni-

tude of the entries of U, i.e., μ(U) = max
k,t

|U(k, t)|. diag(s)

is a diagonal matrix whose diagonal entries are from a

vector s. An identity matrix is denoted by I, where the

dimension is determined in the context. W is a conven-

tional N × N Walsh-Hadamard matrix, where WWT =
WTW = NI. Also, D denotes a discrete-cosine transform

(DCT) matrix, where DDT = DTD = NI. For a vector

x = (x0, · · · , xN−1)
T ∈ R

N , the lp-norm of x is denoted

by ||x||p =
(∑N−1

k=0 |xk|p
) 1

p
, where 1 ≤ p < ∞. If the

context is clear, ||x|| denotes the l2-norm of x. A vector

n ∼ N
(
0, σ 2I

)
is a Gaussian random vector with mean

0 = (0, · · · , 0)T and covariance σ 2I. Finally, E[·] denotes
the average of a random vector or a random matrix.

Table 1 summarizes the abbreviations of this paper.

2.2 Compressed sensing

Compressed sensing (CS) [1–3] is to recover a sparse

signal from the measurements that are believed to

be incomplete. A signal x ∈ R
N is called K-sparse

with respect to a sparsifying (orthonormal) basis �

if θ = �x has at most K nonzero entries, where

K ≪ N . The sparse signal x is linearly measured by

r = �x + n = ��
T
θ + n ∈ R

M, where � is an

M × N measurement matrix with M ≪ N and n ∈ R
M

is a measurement noise. The CS theory states that

if the sensing matrix A = ��
T obeys the restricted

isometry property (RIP) [2], a stable and robust recon-

struction of θ can be guaranteed from the incomplete

measurement r. The CS reconstruction is accom-

plished by solving the l1-minimization problem of
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Table 1 Abbreviations

CoSaMP Compressive sampling matching pursuit

CPA Chosen plaintext attack

CS Compressed sensing

CVP Closest vector problem

DCT Discrete-cosine transform

GSD Generalized sphere decoding

ILS Integer least-squares

KPA Known plaintext attack

LFSR Linear feedback shift register

ML Maximum-likelihood

NMSE Normalized mean squared error

NP Nondeterministic polynomial time

PNR Plaintext-to-noise power ratio

RIP Restricted isometry property

RSSI Received signal strength indicator

SAMD Successive approximate maximum-likelihood detection

SSG Self-shrinking generator

TV Total variation

θ̂ = argmin
θ

||θ ||1subject to ||Aθ − r||2 ≤ ǫ

with convex optimization or greedy algorithms [4]. For

simplicity, this paper assumes � = I, or that x is sparse in

canonical basis, which yields the sensing matrix ofA = �.

2.3 Prior works on CS-based cryptosystems

Since the foundational works of [15] and [16], there have

been many research efforts on CS-based cryptosystems.

Bianchi, Bioglio, and Magli [22, 23] analyzed the secu-

rity of a noiseless CS-based cryptosystem utilizing ran-

dom Gaussian sensing matrices in an OTS manner. In

[24], a similar analysis has been made for a noiseless

CS-based cryptosystem having a circulant sensing matrix

for efficient CS processes. Cambareri et al. [25] pro-

posed a CS-based cryptosystem that supports multiclass

encryption using a random Bernoulli matrix and its class-

dependent variations. In spite of exploiting different secu-

rity measures, i.e., indistinguishability [23] and asymptotic

spherical security [25], the security analyses of [23] and

[25] showed that the statistical properties of ciphertexts

reveal only the information about the energy of the plain-

texts. The security of the multiclass encryption scheme

has been further investigated in [26] against a known

plaintext attack (KPA), by examining the average num-

ber of candidate solutions matching a plaintext-ciphertext

pair.

In addition to the secret sensing matrix, a CS-based

cryptosystem may employ an extra cryptographic prim-

itive, which can be considered as a product cipher. For

instance, scrambling or random permutation has been

additionally accomplished, before [27] or after [28] CS

encryption. In [29], nonlinear diffusion has been added

to quantized ciphertexts. Zhang et al. [30] proposed a bi-

level protected CS (BLP-CS), where the sparsifying basis

and the sensing matrix are generated with different secret

keys. In the BLP-CS, the knowledge of both the sparsifying

basis and the sensingmatrix is required for CS decryption.

To gain a resistance against KPA and CPA, a CS-

based cryptosystem normally operates in an OTSmanner,

by renewing the sensing matrix at each encryption. As

the renewal requires the additional complexity and can

quickly waste up the cryptographic resource for generat-

ing each sensing matrix, a CS-based cryptosystem reusing

the sensing matrix during multiple encryptions has also

been of interest. However, it is insecure against KPA and

CPA, since an adversary can easily recover the sensing

matrix with N linearly independent plaintexts by solv-

ing the system of linear equations [15]. While reusing the

same sensing matrix, the BLP-CS [30] attempted to over-

come the weakness and to achieve a CPA-resistance by

ensuring a RIPless reconstruction for an adversary.

CS-based cryptosystems can work in a framework

of physical layer security [31]. The emerging technol-

ogy of physical layer security is a promising paradigm

for enhancing wireless security [32], by exploiting the

randomness of wireless channel characteristics. In [33],

Agrawal and Vishwanath derived sufficient conditions

for secret communications via CS in a wiretap channel.

Reeves at al. [34] investigated the secrecy capacity of a

wiretap channel employing CS. Dautov and Tsouri [35]

used the received signal strength indicator (RSSI) from

wireless channels for secure key establishment in a CS-

based cryptosystem, where the shared key can be used

to form a common sensing matrix in a sender and a

recipient. In practice, a variety of CS-based cryptosystems

concerning the security and privacy of multimedia, imag-

ing, and smart grid data have been suggested and studied

in [36–39].

2.4 Summary of contributions

The main results of this paper are summarized in com-

parison with prior works. Our CS-based cryptosystem

encrypts a plaintext with a partial unitary sensing matrix

embedding a secret keystream, which is used only once

for each encryption. Thus, it operates in an OTS man-

ner, similar to those of [22–25], but different from the

BLP-CS [30]. It can further reduce the consumption of the

cryptographic resource by renewing only the keystream of

lengthN, not replacing the entireM×N sensingmatrix, at

each encryption. Unlike the BLP-CS, our CS-based cryp-

tosystem uses only a single cryptographic primitive, or the

secret keystream, while keeping the sparsifying basis pub-

lic. Furthermore, the secret keystream can be efficiently
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generated by a keystream generator of stream ciphers.

Based on the RIP analysis, the knowledge of the sens-

ing matrix, or equivalently the keystream, theoretically

guarantees a reliable CS decryption.

In security analysis, we obtain the result by two different

approaches. On the one hand, we demonstrate the indis-

tinguishability of our CS-based cryptosystem, by investi-

gating the TV distance between probability distributions

of a pair of ciphertexts. This statistical approach seems

like the analysis of [23], but we use a new probability met-

ric of the Hellinger distance [21] to characterize the TV

distance. On the other hand, we consider a potential CPA

from an adversary for key recovery of our CS-based cryp-

tosystem. By formulating the CPA as anNP-hard problem,

we show that the success of the CPA is computationally

infeasible for a sufficiently large keystream length. In addi-

tion, we introduce a sub-optimal but feasible CPA strategy

and investigate the performance with the highest possible

success probability. Finally, the CPA performance turns

out to be quite poor even under an optimistic scenario,

which guarantees the security against the CPA for our CS-

based cryptosystem. The second type of security analysis

is new in this paper.

3 Mathematical model

3.1 CS encryption with a partial unitary sensing matrix

A CS-based cryptosystem encrypts a sparse plaintext

x ∈ R
N through the CS measurement process with a

sensing matrix � ∈ R
M×N , which produces the cipher-

text r = �x + n ∈ R
M, where n ∼ N

(
0, σ 2I

)

is a measurement noise. This paper proposes a CS-

based cryptosystem that employs a partial unitary sensing

matrix � embedding a secret keystream, as defined in

Definition 1.

Definition 1 The sensing matrix1 of our CS-based cryp-

tosystem is defined by

� =
1

√
M

R�U =
1

√
MN

R�U1diag(s)U2. (1)

In (1), R� is a public random subsampling operator

that selects M rows out of N ones uniformly at ran-

dom, where the selected indices are specified by � =
{ω0, · · · ,ωM−1}. Also, Ui ∈ R

N×N is a unitary matrix,

i.e., UT
i Ui = UiU

T
i = NI for i = 1 and 2, respectively.

In particular, each entry of U1 has unit magnitude, i.e.,

|U1(k, t)| = 1 for all 0 ≤ k, t ≤ N − 1. Finally, U =
1√
N
U1diag(s)U2 is also unitary for s ∈ {−1,+1}N , where

s is a secret keystream to be embedded in � for each CS

encryption.

In this paper, we use U1 = H, or an N × N Hadamard

matrix that employs a binary m-sequence [40] of period

N − 1 = 2n − 1 for a positive integer n, i.e., d =

(d0, · · · , d2n−2), where dk ∈ {0, 1}. For 0 ≤ k, t ≤ N − 1,

each entry ofH is given by

H(k, t) =
{
1, if k = 0 or t = 0,

(−1)dk+t−2 , otherwise,

where the index k+t−2 is computedmodulo 2n−1. From

the structure, H is symmetric, or HT = H. As d has the

ideal two-level autocorrelation [40], i.e.,

2n−2∑

k=0

(−1)dk+dk+τ =
{
2n − 1, if τ = 0,

−1, if 1 ≤ τ ≤ 2n − 2,

where k + τ is computed modulo 2n − 1, it is obvious that

HHT = HTH = NI. Since H is public, the structure and

the initial state of an n-stage linear feedback shift register

(LFSR) generating the binary m-sequence d are publicly

known.

3.2 Keystream generation for CS encryption

In the sensing matrix � of (1), we assume that s is

a segment of length N from the original keystream of

an extremely long period, which enables to renew the

keystream s at each CS encryption. For fast and effi-

cient keystream generation, one may employ an LFSR-

based nonlinear keystream generator of stream ciphers.

For example, wemay consider the combinatorial sequence

generator [41], the filtering sequence generator [42], the

clock-controlled generator [43, 44], the shrinking gen-

erator [45], and the self-shrinking generator (SSG) [46],

each of which presents a simple structure but a remark-

able resistance against various attacks. For more details

on keystream generators and stream ciphers, see [47] and

[48]. Regarding the keystream of our CS-based cryptosys-

tem, we make the following assumption.

Assumption 1 An original keystream from a stream

cipher is designed to have nice pseudorandomness prop-

erties [40] such as balance, large period, low autocorrela-

tion, and large linear complexity. With the properties, we

assume that each element of the keystream s takes +1 or

−1 independently and uniformly at random, which facili-

tates the security analysis of our CS-based cryptosystem.

When we employ a keystream generator to produce the

keystream s, the initial seed (or state) of the generator

is essentially the key of our CS-based cryptosystem. The

key should be kept secret between a sender and a legit-

imate recipient, whereas the structure of the keystream

generator can be publicly known. For secure key exchange,

we may establish a separate secure channel, or use the

key establishment via the RSSI from wireless channels

as in [35].
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3.3 CS decryption

For CS decryption, a noisy ciphertext r = �x+n ∈ R
M is

available for an adversary as well as a legitimate recipient,

where n ∼ N
(
0, σ 2I

)
is a measurement noise. A legiti-

mate recipient of the ciphertext r, who knows �, attempts

to recover the plaintext x by conducting a CS reconstruc-

tion. Meanwhile, an adversary will make various attempts

to recover the plaintext x or the keystream s, with no

knowledge of �.

Proposition 1 presents the reliability and the stability

of our CS-based cryptosystem for a legitimate recipient,

which is from the RIP result [49, 50] of a partial unitary

sensing matrix.

Proposition 1 [49, 50] For a legitimate recipient, our

CS-based cryptosystem theoretically guarantees a stable

decryption of a K-sparse plaintext with bounded errors, as

long as M = O
(
μ2(U) · K log4N

)
.

When U1 = H, numerical experiments revealed that

μ(U) = O

(√
logN

)
for i) U2 = W or ii) U2 = D, if

each entry of the keystream s takes +1 or −1 uniformly at

random. In this case, if M = O
(
K log5N

)
, Proposition 1

guarantees a stable decryption.

Table 2 summarizes a symmetric-key CS-based cryp-

tosystem proposed in this paper.

4 Security analysis
A CS-based cryptosystem cannot be perfectly secure [15]

but is believed to be computationally secure [15, 16]. In

this section, we analyze the computational security of

our CS-based cryptosystem by studying the notion of

indistinguishability [19].

Assume that a cryptosystem produces a ciphertext by

encrypting one of two possible plaintexts. The cryptosys-

Table 2 Symmetric-key CS-based cryptosystem

Public Subsampling operator R�

Unitary matrices U1 and U2

Structure of a keystream generator

Secret Initial seed (or state) k ∈ {0, 1}L of a
keystream generator

Keystream generation With the initial seed k, a keystream s ∈
{−1,+1}N is generated. The keystream s is
renewed at each encryption.

CS encryption With the keystream s and a plaintext x ∈ R
N ,

a ciphertext is generated by r = �x + n ∈
R
M , where � = 1√

MN
R�U1diag(s)U2 and n

is a measurement noise.

CS decryption The plaintext x is reconstructed by a CS
recovery algorithm with the knowledge of s.

tem is said to have the indistinguishability, if no adversary

can determine in polynomial time which of the two plain-

texts corresponds to the ciphertext, with probability sig-

nificantly better than that of a random guess [51]. In short,

if a cryptosystem has the indistinguishability, an adversary

is unable to learn any partial information of the plaintext

in polynomial time from a given ciphertext.

In specific, let us consider an indistinguishability exper-

iment [51] with a constraint of K-sparse plaintexts. First

of all, an adversary creates a pair of plaintexts x1 and x2
with at most K nonzero entries per each. Then, our CS-

based cryptosystem produces a ciphertext r = �xh +n by

randomly selecting h, where h = 1 or 2. Given r, the adver-

sary attempts to figure out which plaintext, x1 or x2, was

encrypted for the ciphertext, by carrying out a polynomial

time testD : r → h ∈ {1, 2}.
In this paper, we make use of the total variation (TV)

distance [18] to evaluate the performance of the indistin-

guishability experiment. Let dTV(p1, p2) be the TV dis-

tance between the probability distributions p1 = Pr (r|x1)
and p2 = Pr (r|x2). Then, it is readily checked from

[52] that the probability that an adversary can success-

fully distinguish the plaintexts by some kind of the binary

hypothesis testD is bounded by

pd ≤
1

2
+

dTV(p1, p2)

2
. (2)

Therefore, if dTV(p1, p2) approaches to zero, the prob-

ability of success will be at most that of a random guess,

which leads to the indistinguishability of a cryptosystem.

Consequently, one can argue that a cryptosystem with

dTV(p1, p2) closer to zero would be more secure in terms

of the indistinguishability. Since computing dTV(p1, p2)

directly is difficult [53], we compute two probability

metrics instead to bound the TV distance, which ulti-

mately examines the indistinguishability of our CS-based

cryptosystem.

4.1 Relative entropy

In [23] and [24], the relative entropy (or the Kullback-

Leibler divergence [20]) has been used to quantify the

indistinguishability. Precisely, the relative entropy of two

probability distributions gives an upper bound on the TV

distance by Pinsker’s inequality [54] or the refinements

[55], which ultimately bounds the success probability of

the indistinguishability experiment by (2).

In (1), one may assume that the entries of � are asymp-

totically Gaussian for a sufficiently large N, since each

one can be seen as the sum of independent random

variables weighted by each entry of s. Along with the

Gaussian noise n, we assume that r, conditioned on x1
(or x2), is a jointly Gaussian random vector. Also, E[�]=
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1√
MN

R�U1 · E[diag(s)] ·U2 = 0 for a given R�, as each

entry of s takes ±1 with probability 1/2 under Assump-

tion 1. Thus, E [r|xh] = E[�] ·xh + E[n]= 0. With the

Gaussian random vector r, the relative entropy between

p1 = Pr (r|x1) and p2 = Pr (r|x2) has the following

closed-form expression [56]

D (p1||p2) =
1

2

[
log

|C2|
|C1|

+ tr
(
C−1
2 C1

)
− M

]
, (3)

where C1 and C2 are the covariance matrices of r con-

ditioned on x1 and x2, respectively. By measuring the

relative entropy by (3), we obtain an upper bound on the

TV distance, i.e.,

dTV(p1, p2) ≤ min

(√
D(p1||p2)

2
, 1

)
(4)

by Pinsker’s inequality. In (4), the upper bound is set to be

at most 1, since dTV(p1, p2) ∈[0, 1].
In what follows, we present an upper bound on the rel-

ative entropy with some constraints on plaintexts, which

subsequently yields an analytic upper bound on the maxi-

mum TV distance by (4).

Theorem 1 In our CS-based cryptosystem, assume that

each plaintext x has at most K nonzero entries with the

constant energy Ex = ||x||2. Then, the relative entropy of

(3) is bounded by

D(p1||p2)≤
M

2

(
Kμ2(U2)· PNR−log

(
Kμ2(U2)·PNR+1

))
,

(5)

where PNR = Ex

Mσ 2 is the plaintext-to-noise power ratio

(PNR).

Proof See the Appendix.

In Theorem 1, μ(U2) = 1 if U2 = W, while μ(U2) =√
2 if U2 = D. However, if U2 =

√
NI, the upper

bound increases as N for μ(U2) =
√
N . Thus, Theorem 1

implies that one must not use U2 =
√
NI, to achieve the

indistinguishability of our CS-based cryptosystem.

To ensure a reliable CS decryption for a legitimate

recipient, our CS-based cryptosystem can set K =
O

(
M

μ2(U) logN

)
for nonuniform CS recovery [57], which

yields the following corollary.

Corollary 1 In our CS-based cryptosys-

tem with U1 = H and N = 2n, assume

U2 = W or D, where μ(U) = O(
√
logN). In

Theorem 1, if K ≤ cM
n2

with a constant c, then

D(p1||p2) ≤
M

2

(
cMμ2(U2)

n2
· PNR

− log

(
cMμ2(U2)

n2
· PNR + 1

))
.

Thus, if the keystream length N is sufficiently large with

given M and PNR, our CS-based cryptosystem will have

low relative entropy, which contributes to the indistin-

guishability against an adversary, while guaranteeing the

reliability for a legitimate recipient.

4.2 Hellinger distance

To bound the TV distance, wemay use another probability

metric, the Hellinger distance [21]. In our CS-based cryp-

tosystem, recall that the ciphertext r, conditioned on xh, is

assumed to be a jointly Gaussian random vector with zero

mean and the covariance matrix Ch, where h = 1 or 2.

Then, the Hellinger distance for the multivariate Gaussian

distributions p1 and p2 is given by [58, 59]

dH(p1, p2) =

√√√√1 −
|C1|

1
4 |C2|

1
4

|C3|
1
2

, (6)

where C3 = C1+C2
2 . The Hellinger distance is particularly

useful by giving both upper and lower bounds on the TV

distance [60], i.e.,

d2H(p1, p2) ≤ dTV(p1, p2) ≤ dH(p1, p2)

√
2 − d2H(p1, p2).

(7)

In what follows, we present an upper bound on the

Hellinger distance of (6), which leads to an analytic upper

bound on the maximum TV distance by (7).

Theorem 2 Recall the assumptions and definitions of

Theorem 1. In our CS-based cryptosystem, the Hellinger

distance of (6) is bounded by

dH(p1, p2) ≤

√√√√√1 −

(
2
√
Kμ2(U2) · PNR + 1

Kμ2(U2) · PNR + 2

)M
4

, (8)

where PNR = Ex

Mσ 2 .

Proof See the Appendix.

Corollary 2 In our CS-based cryptosystem with U1 =
H and N = 2n, assume U2 = W or D, where μ(U) =
O

(√
logN

)
. In Theorem 2, if K ≤ cM

n2
with a constant c,

then

dH(p1, p2) ≤

√√√√√1 −

(
2n

√
cMμ2(U2) · PNR + n2

cMμ2(U2) · PNR + 2n2

)M
4

.
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Thus, if the keystream length N is sufficiently large with

given M and PNR, our CS-based cryptosystem will have

low Hellinger distance, which contributes to the indistin-

guishability against an adversary, while guaranteeing the

reliability for a legitimate recipient.

Remark 1 Theorems 1 and 2 suggest that the relative

entropy and the Hellinger distance will approach to zero

as PNR decreases. Accordingly, our CS-based cryptosys-

tem will have low TV distance by (4) and (7) at low PNR.

Similarly, the TV distance will be low when M and K

are small, respectively. Consequently, our CS-based cryp-

tosystem can be indistinguishable at low PNR for small

M and K.

Remark 2 When N = 2n increases, Corollaries 1 and

2 suggest that if M is fixed, the relative entropy and the

Hellinger distance will decrease at a given PNR by reduc-

ing K = O

(
M
n2

)
, which will be confirmed by numerical

results of Section 5. On the other hand, if M increases with

M = O
(
Kn2

)
for a given K, numerical results reveal that

they also decrease over N at a given PNR, which contradicts

Theorems 1 and 2. This observation implies that there is

a room to improve the bounds of the theorems. Combined

with Remark 1, the TV distance will be low if the keystream

length N is sufficiently large with low compression
(
M
N

)

and sparsity
(
K
N

)
ratios, which leads to the asymptotic

indistinguishability of our CS-based cryptosystem.

5 Potential key recovery attack
In this section, we consider a potential key recovery attack

in which an adversary attempts to recover the key of our

CS-based cryptosystem. In the CPA, the adversary tries to

restore a keystream from a ciphertext (stage 1) and then

to recover the original key from the restored keystream

via algebraic cryptanalysis (stage 2). With a sufficiently

long key, we assume that the number of keystream bits

required for the algebraic cryptanalysis, denoted by D, is

much larger than the ciphertext length M. For a conve-

nience of analysis, we assume D = N , which means that

the adversary needs to restore a keystream of full length

N from stage 1. Figure 1 illustrates the potential CPA

from an adversary for key recovery. This section discusses

the adversary’s strategy for keystream recovery in stage 1.

Once a keystream is successfully restored through stage 1,

a known cryptanalysis [47, 48] can be carried out in stage 2

for key recovery, which will not be discussed in this paper.

5.1 Mathematical intractability of keystream recovery

In stage 1 of the CPA, an adversary needs to observe a

correct N-bit keystream from a ciphertext that has been

encrypted by a chosen plaintext. We assume that the

adversary will choose a plaintext x such that each entry

of x̂ = U2x is nonzero for a unitary matrix U2. Then, the

corresponding ciphertext is given by

r = �x + n =
1

√
MN

R�U1diag(s)U2x + n

=
1

√
MN

R�U1diag(̂x)s + n

= As + n,

(9)

where A = 1√
MN

R�U1diag(̂x). Unlike in stream ciphers,

restoring the keystream s from the known plaintext-

ciphertext pair is not a trivial task, since s is hidden under

compression in r.

From the ciphertext r of (9), an adversary needs to find a

most likely keystream, which is equivalent to amaximum-

likelihood (ML) estimate of

ŝ = argmin
s∈{−1,+1}N

||r − As||2. (10)

Fig. 1 An adversary’s chosen plaintext attack for key recovery against our CS-based cryptosystem
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Finding the ML solution of (10) is known as a con-

strained integer least-squares (ILS) problem, which is also

called a closest vector problem (CVP) [61] in lattices. For

a general A, the constrained ILS problem is proven to be

NP hard [62].

To find a most likely keystream of (10), an exhaus-

tive ML search requires the complexity of O
(
2N

)
, which

would be computationally infeasible if the keystream

lengthN is sufficiently large. Alternatively, the generalized

sphere decoding (GSD) algorithms [63–65] can find an

ML solution to the ILS problem of the underdetermined

system with M < N . However, as it has the complexity

exponential in N − M [63–65], the GSD cannot be appli-

cable to the ILS problem with M ≪ N . To the best of

our knowledge, there is no polynomial-time algorithm to

find an ML solution of (10) withM ≪ N for a sufficiently

large N.

In summary, the computational security of our CS-

based cryptosystem against the key recovery attack

is brought by the mathematical hardness that no

polynomial-time algorithm is known to find an ML solu-

tion to the underdetermined ILS problem. In fact, the

mathematical intractability of the ILS problem has been

exploited by public-key cryptosystems [66–68]. In our

symmetric-key CS-based cryptosystem, it also ensures

that if the keystream length N is sufficiently large with

M ≪ N , no adversary will be able to find a most

likely keystream of length N in polynomial time, which

demonstrates the computational security of our CS-based

cryptosystem against the key recovery attack.

5.2 Successive approximate maximum-likelihood

detection (SAMD)

In Section 5.1, we demonstrated that the ML detection

would be infeasible for keystream recovery, as long as the

keystream length is sufficiently large. As an alternative,

we consider a sub-optimal, but feasible keystream recov-

ery process for the CPA. Instead of restoring an N-bit

keystream at once, we assume that an adversary attempts

to restore a disjoint J-bit segment2 of the keystream

from each detection, where J ≪ N , and repeats the

detection ⌈N
J ⌉ times successively to restore the keystream

of full length N. In this subsection, we describe the

details of the successive detection process for keystream

recovery.

For a convenience of analysis, we assume a chosen plain-

text such that x̂ =
(√

MN , · · · ,
√
MN

)T
in (9), which

yields A = R�U1 for our analysis3. In the keystream

recovery, an adversary has a freedom to choose the value

of J and the J-bit positions of a keystream to be restored

at the ith detection. Let �i ⊂ {0, · · · ,N − 1} be a set of

indices, where |�i| = J if 1 ≤ i ≤ ns − 1 and |�i| =
N − (ns − 1)J if i = ns, respectively, for ns = ⌈N

J ⌉. Also,

�a ∩ �b = φ for a = b, where φ is an empty set, and

�1 + · · · + �ns = {0, · · · ,N − 1}.
Let s�i ∈ {−1,+1}|�i| be a |�i|-bit vector, where the

entries are taken from the indices of �i in the keystream

s. At the ith detection, an adversary attempts to find s�i

from the ciphertext r of (9). With s�1 , · · · , s�i−1 that have

been detected from the previous detections, the ith detec-

tion should use a new ciphertext ri by subtracting their

contribution from r, i.e.,

ri = r −
i−1∑

h=1

R�U1R
T
�ĥ

s�h
, (11)

where ŝ�h
is an estimate from the hth detection. In (11),

RT
�h

is an N × J column selection operator that selects J

columns ofU1 whose indices are specified by�h. Let	i =
{0, · · · ,N − 1} \ (�1 + · · · + �i), where 	ns = φ, and RT

	i

be anN×(N−iJ) column selection operator whose indices

are specified by 	i. By assuming ŝ�h
= s�h

for 1 ≤ h ≤
i − 1, we have from (11)

ri = R�U1R
T
�i
s�i + R�U1R

T
	i
s	i + n

= mi + wi + n,
(12)

where mi = R�U1R
T
�i
s�i corresponds to a desired

component to be detected at the ith detection, wi =
R�U1R

T
	i
s	i is an interfering component from the

keystream segments that have not been detected yet, and

n ∼ N (0, σ 2I) is a Gaussian random noise.

In (12), wns = 0 since 	ns = φ. On the other hand, if

1 ≤ i ≤ ns − 1, each entry of wi is taken from the sum of

N − iJ column vectors of R�U1, each of which is weighted

by the entry of s	i . Since each entry of s	i takes +1 or −1

randomly and independently under Assumption 1, wi will

follow the jointly Gaussian distribution by the central limit

theorem [69]. By noting that wi + n can be modeled as a

Gaussian random vector for 1 ≤ i ≤ ns, ri is also Gaussian

for a given s�i . Then,

E
[
ri|s�i

]
= E

[
mi|s�i

]
+ E

[
wi|s�i

]
+ E

[
n|s�i

]

= R�U1R
T
�i
s�i = mi,

(13)

where E
[
wi|s�i

]
= E

[
n|s�i

]
= 0, since s�i is indepen-

dent of wi and n, respectively. Also, the covariance of ri is

given by

E

[
(ri−mi)(ri−mi)

T |s�i

]
=E

[
(wi+n)(wi+n)T

]
=Ki+σ 2I,

(14)

where wi and n are independent. In (14),

Ki = E

[
wiw

T
i

]
= R�U1R

T
	i

· E
[
s	is

T
	i

]
· R	iU

T
1 R

T
�

= R�U1R
T
	i

· R	iU
T
1 R

T
�,

(15)
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where E

[
s	is

T
	i

]
= I. Since Ki does not depend on

s�i , the covariance of ri in (14) is equal for all possible

s�i ∈ {−1,+1}|�i| at each ith detection. Under the Gaus-

sian model of ri with equal covariance, we can apply the

ML decision rule [70] at the ith detection, which yields

ŝ�i = argmin
s�i∈{−1,+1}|�i|

(ri − mi)
T
(
Ki + σ 2I

)−1
(ri − mi) .

(16)

In (11) and (12), we assumed that all the estimates ŝ�h
,

1 ≤ h ≤ i − 1, from the previous detections are cor-

rect, and then ignored the estimation errors s�h
− ŝ�h

while subtracting the contribution from r. Therefore, (16)

cannot be a true ML detection, but an optimistic approxi-

mation to the adversary.

Finally, the adversary carries out the approximate ML

detection of (16) ns times successively for 1 ≤ i ≤
ns and restores the full N-bit keystream by combin-

ing the disjoint |�i|-bit estimates of ŝ�i . Throughout

this paper, the detection process is called a successive

approximate ML detection (SAMD). In what follows, we

present an upper bound on the success probability of

the SAMD.

Theorem 3 In the SAMD, recall the approximate ML

decision rule of (16) applied at each ith detection for 1 ≤
i ≤ ns, where ns = ⌈N

J ⌉. Let λmin(Ki) be the minimum

eigenvalue of the covariance matrix Ki in (15). Let Psucc be

the probability that an N-bit keystream can be successfully

restored by the SAMD. Then,

Psucc ≤
ns∏

i=1

⎛
⎝1 − Q

⎛
⎝
√

Mμ2(U1)

λmin(Ki) + σ 2

⎞
⎠
⎞
⎠ � Psucc,UB,

(17)

where Q(x) = 1√
2π

∫ ∞
x e−

t2

2 dt.

Proof See the Appendix.

Theorem 3 shows the result for a general unitary

matrix U1, which suggests that our CS-based cryptosys-

tem should choose an N × N unitary matrix U1 such that

μ(U1) is as small as possible, regardless of N, in order

to degrade the performance of the SAMD. In this paper,

μ(U1) = 1 from U1 = H.

The upper bound on the success probability of

Theorem 3 represents the highest possible performance

that the SAMD can achieve with no estimation errors

at each detection, which is an optimistic scenario for an

adversary. In reality, the actual probability of success will

be much lower than the upper bound, due to estimation

errors and error propagation through detections. If an

adversary finds a solution of (16) via an exhaustive search,

the complexity of each detection of the SAMD will be

O
(
2J
)
with J ≪ N .

5.3 Minimum eigenvalues of Ki

Theorem 3 implies that minimizing λmin(Ki) can improve

the performance of the SAMD. At the ith detection of the

SAMD, it is an adversary that determines the selection

operator R�i . Therefore, if the adversary appropriately

chooses �i (or equivalently 	i) to minimize λmin(Ki), the

success probability of the SAMD can be improved. In this

paper, we consider three possible selections for�i that the

adversary may choose reasonably.

1) Uniform selection: �i ={
i − 1, ⌊N

J ⌋ + i − 1, · · · , (J − 1)⌊N
J ⌋ + i − 1

}
.

2) Consecutive selection:

�i = {(i − 1)J , (i − 1)J + 1, · · · , iJ − 1}.
3) Random selection: �i selects the J indices from

{0, · · · ,N − 1} \ (�1 + · · · + �i−1) uniformly at

random.

Each selection is valid for 1 ≤ i ≤ ns − 1, and

�ns = {0, · · · ,N − 1} \ (�1 + · · · + �ns−1), where

ns = ⌈N
J ⌉. To further minimize λmin(Ki), the adversary

might be able to develop a more sophisticated selec-

tion of �i by exploiting the structure of R� and U1.

However, we leave this issue open for future research.

Regarding the selection operator, we have the following

assumption.

Assumption 2 Once an adversary chooses a

value of J and a type of selection, we assume that

they will be fixed through the entire detections of

the SAMD.

Intuitively, the larger J will ensure better detection per-

formance for the SAMD, since a longer keystream seg-

ment that can be subtracted from each detection may

contribute less interference. The intuition will be justi-

fied by the numerical results of Section 6. In this regard,

Assumption 2 is valid, since the adversary’s reasonable

option is to fix the value of J to the largest possible one

allowed by the computing power. In addition, the numer-

ical results of Section 6 show that λmin(Ki) is not so

affected by the type of selections, which also supports

Assumption 2.

In what follows, we present a theoretical lower bound

on λmin(Ki) for 1 ≤ i ≤ ns, if �i is a random

selection.

Theorem 4 In our CS-based cryptosystem withU1 = H,

assume that an adversary chooses a random selection for
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�i in the ith detection of the SAMD, where 1 ≤ i ≤ ns =
⌈N
J ⌉. Let IT = ⌈N−c2M logM

J ⌉ for a constant c2 > 0. Then,

λmin(Ki) ≥

{ (√
N − iJ −

√
c1M logM

)2
, if i < IT ,

0, if i ≥ IT

(18)

with high probability, where c1 is a constant with

0 < c1 < c2.

Proof See the Appendix.

The numerical results of Section 6 show that the lower

bound also holds for uniform and consecutive selections.

Using the bound, Corollary 3 presents a further upper

bound on the success probability of the SAMD, which is

straightforward from Theorems 3 and 4 with μ(H) = 1.

Corollary 3 In our CS-based cryptosystem with U1 =
H, if an adversary chooses a random selection for �i,

1 ≤ i ≤ ns during the SAMD, Psucc, UB in Theorem 3 is

bounded by

Psucc,UB≤

(
1− Q

(√
M

σ 2

))ns−IT+1

·
IT−1∏

i=1

(
1−Q

(√
M

(
√
N − iJ−

√
c1M logM)2+σ 2

))

� Psucc,U2B,

where IT = ⌈N−c2M logM
J ⌉ for constants c1 and c2 with 0 <

c1 < c2.

6 Numerical results
This section presents numerical results to demonstrate

the reliability and the security of our CS-based cryp-

tosystem. In numerical experiments, each plaintext x

has at most K nonzero entries, where the positions are

chosen uniformly at random and the coefficients are

taken from the Gaussian distribution. In CS encryp-

tion, � = 1√
MN

R�U1diag(s)U2, where U1 = H,

and U2 = W or D. Also, the secret keystream s

is generated by the self-shrinking generator [46] of a

128-stage LFSR. For CS decryption, the CoSaMP recov-

ery algorithm [71] has been employed for a legiti-

mate recipient to decrypt each ciphertext with the

knowledge of �.

6.1 CS decryption of a legitimate recipient

Figure 2 demonstrates the performance of CS decryp-

tion of a legitimate recipient, where the plaintext length

is N = 1024 and the ciphertext length is M = 48.

The figure sketches the normalized mean squared error

(NMSE), defined by NMSE = E

[
||x−x̂||2
||x||2

]
, where x and

x̂ are original and decrypted plaintexts, respectively. We

examine the performance with total 10000 plaintexts at

a given PNR , where each one has at most K = 4

nonzero entries. For comparison, we sketch the perfor-

mance of CS reconstruction with a random Gaussian

sensing matrix for �. The figure shows that the per-

formance of our CS decryption is as good as that of

CS recovery with a random Gaussian sensing matrix.

As a consequence, it demonstrates that our CS-based

cryptosystem guarantees a reliable CS decryption for a

legitimate recipient.
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Fig. 2 The normalized mean squared error (NMSE) of CS decryption for a legitimate recipient
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6.2 Indistinguishability

Figure 3 displays the upper and lower bounds of TV dis-

tance over PNR with U2 = W, where N = 1024, M =
48, and K = 4. In the figure, the relative entropy of (3)

and the Hellinger distance of (6) were computed using

the covariance matrix of (19). Averaged over 10,000 pairs

of randomly generated plaintexts (x1, x2) with at most

K nonzero entries per each, the relative entropy and the

Hellinger distance yield the bounds of (4) and (7) on the

TV distance, respectively. For comparison, we also sketch

the theoretical upper bounds on the TV distance, which

are obtained by the maximum relative entropy of (5) and

the maximum Hellinger distance of (8), respectively. The

figure shows that the TV distance approaches to zero as

noise level grows, which implies that our CS-based cryp-

tosystem can be indistinguishable at low PNR. As PNR

increases, however, we observe that the upper and lower

bounds increase and finally converge to certain levels,

respectively. More extensive simulations agreed with the

implication of Remark 1 that the CS-based cryptosystem

will have lower TV distances with less PNR, M, and K.

We made similar observations of the TV distance when

U2 = D and/or each plaintext has bipolar nonzero entries.

Figure 4 depicts the upper bounds on the success prob-

ability of an adversary in the indistinguishability experi-

ment, where the best- and worst-case upper bounds of (2)

are from the minimum and maximum achievable TV

distances of (7), respectively, obtained by the Hellinger

distance (6). In the figure, U2 = W and PNR = 25 dB.

With a given ciphertext length M = 48, the maximum

sparsity is set as K =
⌊
cM/ log22N

⌋
for each N = 2n, to

ensure a reliable nonuniform CS decryption for a legiti-

mate recipient, where c = 8.5. For comparison, we sketch

the empirical success probability of CS decryption by a

legitimate recipient, where a decrypted plaintext has been

declared as a success if ||x−x̂||2
||x||2 < 10−2. The figure reveals

that the adversary’s success probability approaches to that

of a random guess as the keystream length N increases,

while a legitimate recipient maintains its reliability.

Figure 5 also displays the upper bounds on the suc-

cess probability of an adversary in the indistinguishability

experiment. At this time, the ciphertext length is kept as

M =
⌈
cK log22N

⌉
for each N = 2n with a given K = 4,

where c = 0.12. As in Fig. 4, it also reveals that the

adversary’s success probability approaches to 0.5 as the

keystream length N increases, while a legitimate recipi-

ent maintains its reliability. In conclusion, the empirical

results of Figs. 4 and 5 show that if the keystream lengthN

is sufficiently large with low compression
(
M
N

)
and sparsity(

K
N

)
ratios, our CS-based cryptosystem can be computa-

tionally secure in terms of the indistinguishability, while

guaranteeing a reliable CS decryption for a legitimate

recipient.
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Fig. 3 The upper and lower bounds of total variation distance over PNR
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6.3 Performance of SAMD

Figure 6 sketches the minimum eigenvalues of the covari-

ance matrix Ki of (15) at the ith detection for various J ∈
{32, 48, 64, 80}, where N = 1024 and M = 48. For com-

parison, it also sketches the lower bound of Theorem 4,

where c1 = 0.5 and c2 = 1. For each i, we tested

with 100,000 pairs of (�,�i) for random subsampling and

selection operators R� and R�i , where �i had been fixed

through the tested pairs in case of uniform and consec-

utive selections. In each subfigure, λmin(Ki) is sketched

over 1 ≤ i ≤ ns − 1, where ns = ⌈N
J ⌉. Figure 6 shows that

if J increases, λmin(Ki) decreases faster over i, which sug-

gests that the detection performance will be improved as J

increases. It is plausible because if more keystream bits are

detected from the ith detection with no estimation errors,

more interfering components can be subtracted from the

(i + 1)th detection. In addition, it appears that the mini-

mum eigenvalues are irrelevant to the types of �i, which

means that an adversary may expect no benefits from

a particular selection of �i. Finally, Fig. 6 demonstrates

that the lower bound of Theorem 4 is valid, not only for

random selection but also for uniform and consecutive

selections.

Figure 7 displays the upper bounds on the success prob-

ability of the SAMD for keystream recovery. For com-

parison, it also sketches the theoretical upper bound of

Corollary 3 for random selection �i. In view of the adver-

sary’s bounded computing power, we set J ≤ 128, where

the complexity of each detection in the SAMD will be

O
(
2J
)
by an exhaustive search. Since λmin(Ki) has similar

values for different types of�i’s in Fig. 6, the upper bounds

of Fig. 7 are also similar for every selection types. More-

over, the upper bounds increase over J, which is obvious

from the sharp decline of λmin(Ki) over J, observed from

Fig. 6. However, even if an adversary chooses a large value

of J, the upper bounds on the success probability are still
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Fig. 7 The upper bounds on the success probability of the SAMD

significantly low, which implies that the potential of the

SAMD to restore a correctN-bit keystream is pessimistic.

Note that this is the result of an optimistic scenario, and in

reality, the actual probability of success of the SAMD will

be much lower than the upper bounds, due to estimation

errors and their propagation through the SAMD.

7 Conclusions
This paper has proposed a CS-based cryptosystem that

encrypts a plaintext with a partial unitary sensing matrix

embedding a secret keystream. We demonstrated that

our CS-based cryptosystem can offer a theoretically and

empirically reliable decryption performance for a legit-

imate recipient, which is the first contribution of this

paper. Then, we examined the indistinguishability of our

CS-based cryptosystem by studying the TV distance as

a security measure. To investigate the TV distance, we

developed upper bounds on the relative entropy and the

Hellinger distance, respectively. From the second contri-

bution, we showed that our CS-based cryptosystem can be

computationally secure in terms of the indistinguishabil-

ity, as long as the keystream length for each encryption is

sufficiently large with low compression and sparsity ratios.

In addition, we considered a potential CPA from an

adversary to recover the key of our CS-based cryp-

tosystem. The computational security of our CS-based

cryptosystem against the CPA is based on the mathemati-

cal hardness that no polynomial-time algorithm is known

to find an ML solution to the underdetermined ILS prob-

lem for keystream recovery. As a sub-optimal approach,

we introduced the SAMD for an adversary to restore a

secret keystream in polynomial time. In the third con-

tribution, we developed an upper bound on the success

probability of the SAMD and demonstrated that the per-

formance of the keystream recovery through the SAMD is

very pessimistic. In conclusion, our CS-based cryptosys-

tem with a partial unitary sensing matrix embedding a

secret keystream can be secure against the CPA, while

guaranteeing a stable and robust decryption for a legiti-

mate recipient.

Endnotes
1This paper assumes that a plaintext x is sparse in

canonical basis, or � = I. In general, if a plaintext x is

sparse with respect to an arbitrary orthonormal basis � ,

i.e., x = �
T
θ , the sensing matrix A = ��

T maintains

the form of (1) by considering U2�
T as a new unitary

matrix U2.
2 In the last detection, (N − (⌈N

J ⌉ − 1)J)-bit segment

will be restored, where ⌈N
J ⌉ denotes the nearest integer

greater than or equal to N
J .
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3Under this assumption, numerical results showed that

the upper bound on the success probability of the succes-

sive detection is more favorable for an adversary than that

of x̂ with arbitrary nonzero entries.

Appendices

Proof of Theorem 1

We give a brief sketch for the proof of Theorem 1, as

the underlying technique is similar to that of Theorem 1

in [72]. Similar to Lemma 1 of [72], the covariance matrix

of r is given by

Ch = E

[
rrT |xh

]
= R�C̃hR

T
� + σ 2I, (19)

where C̃h = 1
NUT

1 diag
(

|̂xh|2
M

)
U1 for x̂h = U2xh. Let

λ1(Ch) ≥ · · · ≥ λM(Ch) be the eigenvalues of Ch,

while λ1(C̃h) ≥ · · · ≥ λN
(
C̃h

)
be the eigenvalues of

C̃h. With x̂h = U2xh =
(
x̂h,0, · · · , x̂h,N−1

)T
, let vh =(

vh,0, · · · , vh,N−1

)T
, where vh,k = |̂xh,π(k)|2 for k =

0, · · · ,N − 1, and π(k) is a permutation for vh,0 ≥ · · · ≥
vh,N−1. From the definition of C̃h, it is clear that λt

(
C̃h

)
=

vh,t−1

M ≥ 0 for t = 1, · · · ,N .

In (19), Ĉh = R�C̃hR
T
� is an M × M principal sub-

matrix of C̃h, where successive application of the inter-

lacing inequality [73] leads to λt+N−M

(
C̃h

)
≤ λt

(
Ĉh

)
≤

λt
(
C̃h

)
for 1 ≤ t ≤ M. Thus, min

h
min
xh

λM
(
Ĉh

)
=

min
h

min
xh

λN
(
C̃h

)
= 0 from vh,N−1 ≥ 0. On the

other hand, max
h

max
xh

λ1
(
Ĉh

)
= max

h
max
xh

λ1
(
C̃h

)
=

max
h

max
xh

vh,0
M . By the Cauchy-Schwarz inequality, we

obtain
vh,0
M = |̂xh,π(0)|2

M = 1
M

∣∣∑
k∈S xh,kU2(π(0), k)

∣∣2 ≤
Kμ2(U2)·Ex

M , where S is the set of nonzero entries of xh with

|S| ≤ K . As λt(Ch) = λt
(
Ĉh

)
+ σ 2 from Ch = Ĉh + σ 2I,

we have

λmin = min
h

min
xh

λM(Ch) = σ 2,

λmax = max
h

max
xh

λ1(Ch) =
Kμ2(U2) · Ex

M
+ σ 2,

(20)

where h = 1 or 2.

Meanwhile, the upper bound on tr
(
C−1
2 C1

)
in Lemma

3 of [72] yields

D(p1||p2) ≤
1

2

M∑

t=1

(
log

λM+1−t(C2)

λt(C1)
+

λt(C1)

λM+1−t(C2)
− 1

)

=
1

2

M∑

t=1

f (zt),

where f (z) = z − log z − 1 and zt = λt(C1)
λM+1−t(C2)

> 0. With

λmin and λmax in (20), define τ = λmax
λmin

= Kμ2(U2)Ex
Mσ 2 + 1 >

1. Similar to the proof of Theorem 1 in [72], D(p1||p2) ≤
M
2 f (τ ), which yields (5).

Proof of Theorem 2

We use definitions and notations in the proof of

Theorem 1. Let λ1(C3) ≥ · · · ≥ λM(C3) be the eigenval-

ues of C3 = C1+C2
2 . Clearly, the eigenvalues of C1, C2, and

C3 are positive by (20) and theWeyl inequality [73]. In (6),

let Ŵ = |C1|
1
2 |C2|

1
2

|C3| �
Ŵn
Ŵd

. Then,

Ŵd =
M∏

t=1

λt(C3) ≤

(∑M
t=1 λt(C3)

M

)M

=
(
tr(C3)

M

)M

=
(
tr(C1) + tr(C2)

2M

)M

,

(21)

where the inequality is from the arithmetic mean-

geometric mean inequality. For h = 1 or 2, the tth

diagonal entry of C̃h = 1
NUT

1 diag
(

|̂xh|2
M

)
U1 is given by

1
MN

∑N−1
k=0 |̂xh,k|2U2

1(k, t) = 1
MN ||̂xh||2 = 1

M ||xh||2 = Ex
M ,

where U2
1(k, t) = 1 for 0 ≤ t ≤ N − 1. Note that

Ĉh = R�C̃hR
T
� has the same diagonal entry of C̃h. Thus,

from Ch = Ĉh + σ 2I, we have

tr(Ch) = tr(Ĉh) + Mσ 2 = Ex + Mσ 2, (22)

where (21) becomes

Ŵd ≤
(
Ex

M
+ σ 2

)M

. (23)

In Ŵn, the geometric mean-harmonic mean inequality

yields

|Ch|
1
2 =

(
M∏

t=1

λt(Ch)

) 1
2

≥

(
1

1
M

∑M
t=1 λ−1

t (Ch)

)M
2

,

(24)

where h = 1 or 2. By the Kantorovich inequality [74],

1

M

M∑

t=1

λ−1
t (Ch) ≤

M

4 tr(Ch)

(
λ1(Ch)

λM(Ch)
+

λM(Ch)

λ1(Ch)
+ 2

)

=
M

4 tr(Ch)

(
λmax

λmin
+

λmin

λmax
+ 2

)

=
M

4 tr(Ch)

(
τ +

1

τ
+ 2

)
,

(25)
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where λ1(Ch) and λM(Ch) have been replaced by λmax and

λmin of (20), respectively. In (25), τ = λmax
λmin

= Kμ2(U2)·Ex
Mσ 2 +

1 = Kμ2(U2) · PNR + 1. By (22), (24), and (25),

Ŵn ≥

(
4
√
tr(C1) · tr(C2)

M(τ + 1
τ

+ 2)

)M

=

⎛
⎝
4
(
Ex
M + σ 2

)

τ + 1
τ

+ 2

⎞
⎠

M

.

(26)

By combining Ŵd and Ŵn, (23) and (26) yield

Ŵ =
Ŵn

Ŵd
≥

(
4
(
Ex
M +σ 2

)

τ+ 1
τ
+2

)M

(
Ex
M + σ 2

)M =
(
2
√

τ

τ + 1

)M
2

=

(
2
√
Kμ2(U2) · PNR + 1

Kμ2(U2) · PNR + 2

)M
2

.

Finally, the proof is completed by dH(p1, p2) =√
1 − Ŵ

1
2 .

Proof of Theorem 3

In (15), Ki is the Gram matrix, or Ki = AT
i Ai

with Ai = R	iU
T
1 R

T
� for 1 ≤ i ≤ ns − 1,

where λmin(Ki) ≥ 0, since Ki is positive semi-

definite [73]. Let s�i and s′�i
be a pair of correct and

wrong J-bit segments from a keystream s at the index

set �i, respectively. From (13), E
[
ri|s�i

]
= mi =

R�U1R
T
�i
s�i andE

[
ri|s′�i

]
= m′

i = R�U1R
T
�i
s′�i

, respec-

tively. Also, (14) yields E
[
(ri − mi) (ri − mi)

T |s�i

]
=

E

[(
ri − m′

i

) (
ri − m′

i

)T |s′�i

]
= Ki + σ 2I. Assuming that

ri is a Gaussian random vector, the binary hypothesis

detection of Section 3.2 in [70] reveals that the pairwise

error probability that s′�i
is incorrectly detected by the ith

detection is

Pr
[
s�i → s′�i

∣∣ s�i , s
′
�i

]
≥ Q

(
||mi − m′

i||
2
√

λmin(Ki) + σ 2

)

= Q

⎛
⎝

||R�U1R
T
�i

(
s�i − s′�i

)
||

2
√

λmin(Ki) + σ 2

⎞
⎠.

(27)

We assume that the pairwise error event occurs only for

a specific s′�i
, which is closest to s�i , and ignore all the

other s′�i
. In other words, we take into account only a sin-

gle s′�i
, where s�i − s′�i

has the nonzero entry (+2 or −2)

at one position, or equivalently ||s�i − s′�i
|| = 2 for a

given s�i . This assumption, similar to the one in [75], is

favorable for an adversary. From (27), the error probability

under the assumption is given by

P(i)
e =

∑

s�i

Pr
[
s�i

]
·
∑

s′�i

Pr
[
s�i →s′�i

|s�i , s
′
�i

]
·Pr

[
s′�i

| s�i

]

=
∑

s�i

Pr
[
s�i

]
·Pr

[
s�i →s′�i

| s�i , s
′
�i
, ||s�i − s′�i

||=2
]

=Pr
[
s�i → s′�i

| s�i , s
′
�i
, ||s�i − s′�i

|| = 2
]

≥ Q

⎛
⎜⎝

√∑M−1
k=0 4

∣∣U1

(
ωk , θi,τ

)∣∣2

2
√

λmin(Ki) + σ 2

⎞
⎟⎠

= Q

⎛
⎝
√

Mμ2(U1)

λmin(Ki) + σ 2

⎞
⎠ ,

(28)

where ωk ∈ � and θi,τ ∈ �i. In (28), we assumed that

s�i and s′�i
differ only at a position corresponding to

the column index θi,τ of U1. Note that P
(i)
e is under the

assumption that all the estimates from previous i−1 detec-

tions have been subtracted with no errors to yield ri of

(12). Then, the success probability of the ith detection is

P(i)
s = Pr

[
ŝ�i = s�i | ŝ�1 = s�1 , · · · , ŝ�i−1 = s�i−1

]

= 1 − P(i)
e ≤ 1 − Q

⎛
⎝
√

Mμ2(U1)

λmin(Ki) + σ 2

⎞
⎠ ,

(29)

where 1 ≤ i ≤ ns. If a correct N-bit keystream is to

be restored, all the component detections should be suc-

cessful. Thus, the success probability of the SAMD is

Psucc = Pr
[
ŝ�1 = s�1 , · · · , ŝ�ns

= s�ns

]

=
ns∏

i=1

Pr
[
ŝ�i = s�i | ŝ�1 = s�1 , · · · , ŝ�i−1 = s�i−1

]

=
ns∏

i=1

P(i)
s .

(30)

Finally, we obtain the upper bound of (17) by combining

(29) and (30), which completes the proof.

Proof of Theorem 4

In (15), let Ai = R	iH
TRT

� with U1 = H. Then, the

singular values of Ai are equal to the square roots of the

eigenvalues of Ki = AT
i Ai, where λmin(Ki) ≥ 0 for all i’s.

In other words, if σmin(Ai) denotes the minimum singular

value of Ai, then λmin(Ki) = σ 2
min(Ai).



Yu EURASIP Journal on Advances in Signal Processing  (2017) 2017:73 Page 17 of 18

To examine σmin(Ai) for 1 ≤ i ≤ ns − 1, we first define

Bi = HTRT
�. Then, Bi is an N × M matrix satisfying

BT
i Bi = R�H · HTRT

� = NI, which means that each col-

umn of Bi is mutually orthogonal. Also, it is clear that the

l2-norm of each row of Bi is
√
M, since each entry of Bi is

±1. If�i is a random selection, so is	i, whereAi = R	iBi

is an (N − iJ) × M matrix obtained by randomly subsam-

pling (N−iJ) rows fromBi, where the selected row indices

are specified by 	i. For such a matrixAi, Corollary 5.55 of

[4] shows that for every t ≥ 0,

σmin(Ai) ≥
√
N − iJ − t

√
M (31)

with probability at least 1 − 2Me−ct2 for a constant c > 0.

The corollary assumed that t ≥
√
c1 logM and N − iJ >

c2M logM for the bound to be nontrivial and nonnegative,

where 0 < c1 < c2. Thus, the bound of (31) is valid only

for i < ⌈N−c2M logM
J ⌉ = IT , and we set σmin(Ai) ≥ 0 if

i ≥ IT , which gives the bound of (18) from λmin(Ki) =
σ 2
min(Ai).
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