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Abstract. CS-Cipher is a block cipher which has been proposed at FSE
1998. It is a Markov cipher in which diffusion is performed by multiper-
mutations. In this paper we first provide a formal treatment for differen-
tial, linear and truncated differential cryptanalysis, and we apply it to
CS-Cipher in order to prove that there exists no good characteristic for
these attacks. This holds under the approximation that all round keys of
CS-Cipher are uniformly distributed and independent. For this we intro-
duce some new technique for counting active Sboxes in computational
networks by the Floyd-Warshall algorithm.

Since the beginning of modern public research in symmetric encryption, block
ciphers are designed with fixed computational networks: we draw a network and
put some computation boxes on. The Feistel scheme [13] is a popular design
which enables to make an invertible function with a random function. Its main
advantage is that decryption and encryption are fairly similar because we only
have to reverse the order of operations.

Another popular (and more intuitive) design consists of having a cascade of
computational layers, some of which implement parallel invertible transforma-
tions. (People inappropriately call it the “SPN structure” as for Substitution
Permutation Network, as opposed to Feistel schemes. Referring to Adams’ The-
sis [3], several Feistel schemes are also SPN ones.) For this we need two different
implementations for encryption and decryption. Several such designs have been
proposed to the Advanced Encryption Standard process: Serpent, Safer+, Rijn-
dael and Crypton (see [2]). In this paper we focus on CS-Cipher [32] in order to
investigate its security.1

The main general known attacks are Biham and Shamir’s differential cryp-
tanalysis [8] and Matsui’s cryptanalysis [23,24]. Over their variants, Knudsen’s
truncated differentials [18,19] have been shown to be powerful against Massey’s
Safer block cipher [22], so we investigate it as well. In this paper we consider
these attacks and we (heuristically) show that CS-Cipher is resistant against it.
For this we use the well known active Sboxes counting arguments techniques.

Here we first recall what can be formally proven under the intuitive ap-
proximation that all round keys are uniformly distributed and independent for
1 While this paper was presented, the owner of the CS-Cipher algorithm announced

a “Challenge CS-Cipher”: a 10000 euros award will be given to the first person who
will decrypt a message encrypted with a key which has been purposely limited to 56
bits. This is basically an exhaustive search race. See http://www.cie-signaux.fr/.

L. Knudsen (Ed.): FSE’99, LNCS 1636, pp. 260–274, 1999.
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differential and linear cryptanalysis. We contribute to a new similar analysis
of truncated differential cryptanalysis. Then we apply these techniques to CS-
Cipher. In particular we show how to count the minimal number of active Sboxes
in a computational network with multipermutations by using some easy graph
algorithms.

1 Previous Work

Public research on cryptography arose in the late 70s. On block ciphers, research
has been paradoxically motivated by the Data Encryption Standard [1] contro-
versial: the fact that the design rationales of DES was kept secret by the US
government.

Originally the research community was focusing on the fascinating nonlinear
properties of the DES Sboxes (and on the existence of a mythical hidden trap-
door). Nonlinear criterion has been investigated, and the possibility on how to
achieve it (see Adams and Tavares [3,4], Nyberg [27]).

Differential cryptanalysis has been invented by Biham and Shamir in the
90s [7], and a connection between the security against it and the nonlinea-
rity of the Sboxes has been found (see Nyberg [28]). Later on the same link
arose with Matsui’s linear cryptanalysis [23,24] (see Nyberg [29] and Chabaud-
Vaudenay [9]).

Since then an important effort has been done in order to study the security
of block ciphers against differential and linear cryptanalysis.

Lai and Massey first invented the notion of “Markov cipher” which enables
to make a formal treatment on the security against differential cryptanalysis (see
[21,20]). This enables to formally prove some heuristic approximations used in
this attack.

It was well known that the resistance against differential cryptanalysis de-
pends on the minimal number of “active Sboxes” in a characteristic. (The bulk
of Biham and Shamir’s attack against DES is to find a characteristic with a
number of active Sboxes as small as possible.)

In Heys and Tavares [16,17] is defined the notion of “diffusion order” which
enables to get lower bound on the number of active Sboxes in a substitution-
permutation network. Similarly, Daemen [11] talks about “branch number”. The
question was also addressed by Youssef, Mister and Tavares [40]. These notions
can be used together with the diffusion properties of the network. Namely, when
we use “multipermutations” (see [33,34]) we can compute these numbers. In
particular, inspired by the notion of multipermutation, Daemen, Knudsen and
Rijmen use an MDS code in the Square cipher [12] which has been used for two
AES candidates: Rijndael and Crypton [2].

An alternate way to prove the security against differential and linear cryp-
tanalysis is to use the Theorem of Nyberg and Knudsen [30,31] (or a variant),
which has been done by Matsui in the Misty cipher [25,26]. We can also use the
“decorrelation theory” [35,36,37,38,39] which has been used in order to create
the Peanut and Coconut cipher families (see [15,37]) and the DFC cipher [15]
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which is an AES candidate [2] (see [38,5]). Both approachs provide provable
security against differential and linear cryptanalysis (and not only a heuristic
security).

2 Formal Treatment on Markov Ciphers

In this section we consider an r-round cipher

Enc(x) = (ρr ◦ . . . ◦ ρ1)(x)

in which each ρi round uses a subkey ki. We assume that this is a Markov cipher
with respect to the XOR addition law, which means, following Lai [20] that for
any round i and any x, a and b, we have

Pr
ki

[ρi(x ⊕ a) ⊕ ρi(x) = b] = Pr
ki,X

[ρi(X ⊕ a) ⊕ ρi(X) = b]

where X is uniformly distributed. (Here ⊕ denotes the bitwise XOR operation.)

2.1 Preliminaries

For any p-to-q-bit function f , any p-bit a and any q-bit b, let us denote

DPf (a, b) = Pr
X

[f(X ⊕ a) ⊕ f(X) = b] (1)

LPf (a, b) =
(
2 Pr

X
[a · X = b · f(X)] − 1

)2
. (2)

(Here a · x denotes the dot product of a and x: the sum modulo 2 of all aixi.) It
is well known that we have

LPf (a, b) = 2−p
∑
x,y

(−1)(a·x)+(b·y)DPf (x, y) (3)

DPf (a, b) = 2−q
∑
x,y

(−1)(a·x)+(b·y)LPf (x, y). (4)

For any random function F (or equivalently any function f which depends
on a random parameter K) we consider the expected values over the distribution
of F

EDPF (a, b) = EF (DPF (a, b)) (5)
ELPF (a, b) = EF (LPF (a, b)). (6)

Obviously, Equations similar to (3) and (4) hold for EDP and ELP.
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2.2 Differential Cryptanalysis of Markov Ciphers

Biham and Shamir’s original differential cryptanalysis (see [8]) is defined by a
characteristic

Ω = (ω0, . . . , ωr) (7)

and focus on the probabilistic event

EΩ : {Mi ⊕ M ′
i = ωi; i = 0, . . . , r/M0 ⊕ M ′

0 = ω0}

where M0 and M ′
0 are two different plaintexts and Mi and M ′

i are the image of
M0 and M ′

0 respectively by
ρi ◦ . . . ◦ ρ1.

We let ∆Mi = Mi ⊕ M ′
i .

Differential cryptanalysis uses the EΩ event by looking at random pairs
(M0, M

′
0) such that ∆M0 = ω0 until EΩ occurs. Thus we try n random pairs,

the success rate is at most the probability that one out of the n pairs makes the
EΩ event occur. This probability is

1 −
(

1 − Pr
M0,M ′

0

[EΩ ]
)n

. (8)

Thus the probability of success is less than n Pr[EΩ ]. The average probability of
success (over the distribution of the key) is less than

nEk

(
Pr

M0,M ′
0

[EΩ ]
)

.

Thus we need a number of trials of p/E(Pr[EΩ ]) in order to achieve an average
probability of success at least p.

We define the following formal product

DP(Ω) =
r∏

i=1

DPρi(ωi−1, ωi)

(which depends on the key) and

EDP(Ω) =
r∏

i=1

EDPρi(ωi−1, ωi)

(which does not). We have the following result which is fairly similar to the
treatment of Lai, Massey and Murphy [21].2

2 The difference is that these authors assume the “principle of stochastic equivalence”
which enables to remove the expectation over the distribution of the key. The proof
is exactly the same.
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Lemma 1. If Enc is a Markov cipher and if the round keys k1, . . . , kr are uni-
formly distributed and independent, we have

Ek

(
Pr

M0,M ′
0

[EΩ ]
)

= EDP(Ω).

Proof. Since Enc is a Markov cipher and that the keys are independent, from
Lai [20] (see also [21]) we know that ∆M0, . . . , ∆Mr is a Markov chain. Thus we
have

Ek

(
Pr

M0,M′
0

[EΩ ]

)
=

r∏
i=1

Pr
M0,M′

0,k
[∆Mi = ωi/∆Mi−1 = ωi−1, . . . , ∆M0 = ω0]

=
r∏

i=1

Pr
M0,M′

0,k
[∆Mi = ωi/∆Mi−1 = ωi−1]

=
r∏

i=1

EDPρi(ωi−1, ωi)

= EDP(Ω).

ut
We thus have the following theorem.

Theorem 2. Given a Markov cipher Enc = ρr ◦ . . . ◦ ρ1 for the XOR addition
law which uses r independent round keys and any differential characteristic Ω =
(ω0, . . . , ωr), in order to achieve an average probability of success greater than p
for a differential cryptanalysis we need a minimum number of trials of at least
p (EDP(Ω))−1. This holds in the model were the probability of success of the
differential cryptanalysis for a fixed key is given by Equation (8).

We emphasis that this is a real formal theorem which does not relies on unproven
assumptions.

2.3 Truncated Differential Cryptanalysis

In Biham and Shamir’s original differential cryptanalysis, we have a given input
difference ω0 and we expect a given output difference ωr when the computation
follows a path of differences ω1, . . . , ωr−1. It is sometimes useful to consider a
multi-path with same ω0 and ωr. Actually, we have

DPEnc(ω0, ωr) =
∑

ω1,...,ωr−1

Pr
M0,M ′

0

[Eω0,...,ωr ]. (9)

Thus, from Lemma 1, we obtain that

EDPEnc(ω0, ωr) =
∑

ω1,...,ωr−1

r∏
i=1

EDPρi(ωi−1, ωi). (10)
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In the original differential cryptanalysis we only consider the overwhelming term
of this sum.

An alternative way is to consider a sub-sum of characteristics which corre-
spond to the same pattern. For instance, Knudsen’s truncated differentials [18]
corresponds to the sum of all characteristics which predict some part of the
differences, i.e. for which

∀j 6∈ Ii (ωi)j = di,j .

In most of block ciphers, what makes the probability of a characteristic small
is the differences di,j of zero. We thus focus on the propagation of zero differen-
ces. (Actually, the attack on Safer by Knudsen and Berson [19] uses truncated
differentials with zeroes.) Let us denote

Supp(ωi) = {j; (ωi)j 6= 0}.

If we focus on characteristics in which

∀i Supp(ωi) = Ii and ωi ∈ Ai

we can get a maximal probability with largest Ai sets. The multi-path sum is
thus defined by Ω = (I0, . . . , Ir) and we consider the event

EΩ = {Supp(∆Mi) = Ii; i = 1, . . . , r/Supp(∆M0) = I0}

in which Ω = (I0, . . . , Ir). We call Ω a “support characteristic”.

Theorem 3. Given a Markov cipher Enc = ρr ◦ . . . ◦ ρ1 for the XOR addition
law which uses r independent round keys we consider a truncated differential
cryptanalysis. We heuristically assume that there is an overwhelming support
characteristic Ω = (I0, . . . , Ir) which is such that the probability of success of the
differential cryptanalysis for a fixed key is given by Equation (8). The complexity
of the attacks must be greater than

p

(
r∏

i=1

Pr
Mi−1,M ′

i−1,ki

[Supp(∆Mi) = Ii/Supp(∆Mi−1) = Ii−1]

)−1

in order to get an average probability of success greater than p, with the notations
of Section 2.2.

2.4 Linear Cryptanalysis

Linear cryptanalysis is fairly similar to differential cryptanalysis. Here we con-
sider a characteristic Ω associated with a set of linear approximations

(ωi · Mi) ⊕ (ωi+1 · Mi+1) ≈ αi · ki.
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The characteristic is not associated with a particular event, but corresponds to
an (assumed) overwhelming term in the multi-path sum. We define the following
formal product

LP(Ω) =
r∏

i=1

LPρi(ωi−1, ωi)

(which depends on the key) and

ELP(Ω) =
r∏

i=1

ELPρi(ωi−1, ωi).

We have the following result.

Lemma 4. If Enc is a Markov cipher and if the round keys k1, . . . , kr are in-
dependent, we have

ELPEnc(ω0, ωr) =
∑

ω1,...,ωr−1

ELP(ω0, . . . , ωr).

Proof. First, by Equations (3) and (10) we have

ELPEnc(ω0, ωr) = 2−`
∑

u0,...,ur

(−1)(ω0·u0)+(ωr·ur)
r∏

i=1

EDPρi(ui−1, ui)

where ` is the bit-length of the plaintext. If we now use Equation (4), after a
few formal computation steps we obtain the result. ut

Matsui’s original linear cryptanalysis assumes that one characteristic in the
sum is overwhelming, and the attack has a heuristic complexity equal to the
inverse of ELPEnc(ω0, ωr). We can thus get a (heuristic) complexity lower bound
by upper bounding ELP(Ω).

3 On the Security of CS-Cipher

3.1 Presentation of CS-Cipher

In this paper we use non standard notations for CS-Cipher which are better
adapted for our treatment. We recall that the secret key is first transformed into
a 64-bit subkey sequence k0, . . . , k8. We also use two 64-bit constants c and c′.
We let k0, . . . , k24 denote the sequence

k0, c, c′, k1, c, c′, . . . , k7, c, c′, k8.

We thus consider a modified CS-Cipher which is denoted CSC∗ which is defined
by a 1600-bit random key k = (k0, . . . , k24) with a uniform distribution.

Let us denote
si(x) = x ⊕ ki
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which is thus used to “randomize” the message block with a subkey.
We split the standard mixing function M into one linear transformation µ

and two involutions P . The linear mapping µ takes two 8-bit inputs and produces
two 8-bit outputs by

µ(a, b) = (ϕ(a) ⊕ b, Rl(a) ⊕ b).

Here Rl is a circular rotation by one position to the left, and ϕ is the standard
CS-Cipher operation defined by

ϕ(x) = (Rl(x) ∧ 55) ⊕ x

where ∧ denotes the bitwise AND operation and 55 is the 8-bit hexadecimal
constant 01010101. For convenience we let µ4 the linear mapping which takes
eight 8-bit inputs and produces eight 8-bit outputs by four parallel µ operations

µ4(x1, . . . , x8) = (µ(x1, x2), . . . , µ(x7, x8)).

We let P denotes the standard CS-Cipher involution defined by a table look-
up, and P 8 the application of eight parallel P computations:

P 8(x1, . . . , x8) = (P (x1), . . . , P (x8)).

We know let Lπ denote the following permutation

Lπ(x1, . . . , x8) = (x1, x3, x5, x7, x2, x4, x6, x8).

We let
ρi = Lπ ◦ P 8 ◦ µ4 ◦ si−1

for i = 1, . . . , 23 and
ρ24 = s24 ◦ Lπ ◦ P 8 ◦ µ4 ◦ s23

One CS-Cipher block encryption is defined by

Enc = ρr ◦ . . . ◦ ρ1.

This way we can consider CSC∗ of being a 24-round cipher in which each round
consists of one subkey offset, the µ4 linear mixing function, the P 8 confusion
boxes and the Lπ permutation. Due to the si structure, it is obvious that CSC∗

is a Markov cipher.

3.2 Differential Cryptanalysis

We consider a differential characteristic Ω = (ω0, . . . , ω24) and we aim to upper
bound EDP(Ω).

We compute each term of the product in EDP(Ω). Since si, Lπ and µ4 are
linear, we let

δi = µ4(ωi−1) (11)
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and
δ′
i = (Lπ)−1(ωi). (12)

δi and δ′
i are the input and output differences of the ith P 8 layer respectively.

From the linearity of µ4 and Lπ and the parallelism of P 8 we obtain

EDP(Ω) =
24∏

i=1

8∏
j=1

DPP ((δi)j , (δ′
i)j). (13)

Since P is a permutation, the following assumption is necessary for having
EDP(Ω) 6= 0

∀i Supp(δi) = Supp(δ′
i). (14)

We say that a P -box corresponding to indices i, j is “active” if (δi)j 6= 0. We
use the following definition.

Definition 5. For any differential characteristic Ω = (ω0, . . . , ω24), we define
the δis and δ′

is by Equations (11) and (12) respectively. We say that Ω is “con-
sistent” if the property of Equation (14) holds. Let #Ω denotes the number of
indices i, j such that (δi)j 6= 0.

We thus have the following result.

Lemma 6. For any non-zero differential characteristic Ω we have

EDP(Ω) ≤ (DPP
max)

#Ω

where DPP
max = 2−4 and EDP(Ω) = 0 if Ω is not consistent.

Proof. We start from Equation (13). If Ω is not consistent, we obviously have
EDP(Ω) = 0 since P is a permutation. For non active P -boxes, the probability
is obviously 1. For active P -boxes (there are #Ω of it), we upper bound the
probability by

DPP
max = max

a6=0,b
DPP (a, b)

which is equal to 2−4 for CS-Cipher by construction. ut
We thus need to lower bound #Ω for consistent differential characteristics. This
paradigm is already well known in the literature: in order to protect against heu-
ristic differential attacks, we need to make sure that all consistent characteristic
have a large number of active nonlinear boxes. Actually, the original papers of
Biham and Shamir focus on looking for differential characteristics with a minimal
number of S-boxes (see [7]).

Thanks to the multipermutation property of µ, it is fairly easy to investigate
the minimal number of active P -boxes in CS-Cipher. Actually, µ has the property
that

1. µ is a permutation,
2. for all a, both outputs of µ(a, y) are permutations of y,
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3. for all b, both outputs of µ(x, b) are permutations of x.

Thus, if exactly one input of µ is non-zero, then both outputs of µ are non-zero.
If the two inputs of µ are non-zero, then at least one output of µ is non-zero.
In other terms, the difference patterns around one µ box can only be one out of
the six following patterns.

00 → 00 0∗ → ∗ ∗ ∗0 → ∗ ∗ ∗∗ → 0 ∗ ∗∗ → ∗0 ∗ ∗ → ∗ ∗ .

(Stars mean any non-zero differences.) With the notations of the previous section,
we recall that

δi+1 = (µ4 ◦ Lπ)(δ′
i).

Moreover we consider consistent characteristics, which means that (δ′
i)j is non-

zero if and only if (δi)j is non-zero. This enables to make rules for “non-zeroness”
of the (δi)j .

Actually, we consider 8-bit vectors Ii = Supp(δi). From the previous argu-
ments we can make a list of possible Ii → Ii+1 transitions. (In total we have
64 = 1296 rules.) To each possible Ii we associate its Hamming weight #Ii. We
can now make the graph of all possible Iis weighted by #Ii and in which each
edge corresponds to a rule. Since #Ii is also equal to the number of non-zero
entries in ωi, finding out the minimal number of active P -boxes in a consistent
differential characteristic corresponds to finding a path of length 24 edges with
minimal non-zero weight in this graph, which is fairly easy, for instance by using
the Floyd-Warshall algorithm [14] (see [10, pp. 558–565]). Its complexity is es-
sentially cubic in time and quadratic in memory (in term of number of vertices,
which is 256 here). Experiment shows that such a path has at least a total weight
of 72. More precisely, the shortest non-zero weight for paths of given edge-length
is given by the table below.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
w 1 3 5 9 13 18 20 24 26 30 32 36 38 42 44 48 50 54 56 60 62 66 68 72

Thus, we obtain that for any differential characteristic Ω we have

EDP(Ω) ≤ 2−288.

This makes CSC∗ provably resistant against the original differential cryptana-
lysis. Actually, six rounds of CSC∗ leads to an upper bound of 2−72, which is
already enough. This corresponds to two rounds of CS-Cipher instead of eight,
so this suggests that four rounds of CS-Cipher are already secure against 2R
differential attacks.

3.3 Linear Cryptanalysis

Linear cryptanalysis has a very similar treatment as was shown by Biham [6].
Actually, we have

ωi−1 · Mi−1 = (t(µ4)−1(ωi−1) · (µ4 ◦ si−1)(Mi−1)) ⊕ (ωi−1 · ki−1)
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and
ωi · Mi = tLπ(ωi+1) · (Lπ)−1(Mi)

thus we let
δi = t(µ4)−1(ωi−1) (15)

and
δ′
i = tLπ(ωi). (16)

As for differential cryptanalysis, we have the following result.

Definition 7. For any linear characteristic Ω = (ω0, . . . , ω24), we define the δis
and δ′

is by Equations (15) and (16) respectively. We say that Ω is “consistent”
if the property of Equation (14) holds. Let #Ω denotes the number of indices i, j
such that (δi)j 6= 0.

We thus have the following result.

Lemma 8. For any non-zero linear characteristic Ω we have

ELP(Ω) ≤ (LPP
max)

#Ω

where LPP
max = 2−4 and ELP(Ω) = 0 if Ω is not consistent.

Here the relation between the δis and the δ′
is is

δ′
i−1 = t(µ4 ◦ Lπ)(δi)

which is equivalent to
δi = ((tµ−1)4 ◦ Lπ)(δ′

i−1)

instead of
δi = (µ4 ◦ Lπ)(δ′

i−1)

as for differential cryptanalysis. Obviously, tµ−1 has the same multipermutation
property than µ, thus the “non-zeroness” rules for the δis and δ′

is are the same.
We thus obtain that

ELP(Ω) ≤ 2−288.

This makes CSC∗ heuristically resistant against the original linear cryptanalysis.

3.4 Support Characteristics

Here we aim to upper bound the probabilities of the support characteristics for
CSC∗. One problem is that the propagation of non-zero differences through the
P -boxes has no unusual cases. For this we concentrates on unusual propagations
through the µ boxes.

Here the characteristic Ω = (I0, . . . , I24) defines exactly which inputs and
outputs of the µ-boxes are non-zero. The probability of the characteristic is non-
zero only if the number of non-zero input-output of any µ-box is in {0, 3, 4}.
With these rules we can make the graph of all possible Ii → Ii+1 transitions.
The problem is to weight it.
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The more interesting probabilities correspond to the case where two inputs
of a µ-box are non-zero, and one output is zero. Let us denote µ1 and µ2 the
two outputs. We thus consider the two probabilities

Pr
X,X′,Y,Y ′

[µj(X ⊕ X ′, Y ⊕ Y ′) = 0/X 6= X ′, Y 6= Y ′]

for j = 1 and j = 2. Due to the linearity of µ, this is equal to

Pr
X,Y

[µj(X, Y ) = 0/X 6= 0, Y 6= 0]

which is 2−8 from the multipermutation properties of µ.
One problem is the vertex I = {1, . . . , 8}, because all transitions towards it

have weight 0. Intuitively, if we go through this vertex, we loose all information,
and the final probability is actually meaningless, because it is smaller than the
probability of the same external characteristic for a truly random cipher. For
instance, if we have the support characteristic Ω = (I, . . . , I24) in which Ii =
{1, . . . , 8}, we obtain

Pr
M0,M ′

0,k
[EΩ ] ≤ Pr

X
[Supp(X) = I24]

so the “signal” of the support characteristic will vanish against the “noise” of
natural behavior. Thus we remove this vertex from the graph.

We can now weight the edges of the graph by the total number of 2-1 transi-
tions in the four µ-boxes: each Ii → Ii+1 edge defines four transitions though a
µ-box, so we can count the ones with no zero-input and one zero-output. Then
we can look for the path with length 24 and minimal weight. The experiment
shows that the minimal weight is 22. Actually, for any length ` ≥ 2, the minimal
weight is ` − 2 is obtained, for instance, by iterating the path

{1, 3} → {1, 2, 5, 6} → {1, 3}

which has weight 2 (thus probability 2−16). For instance, the path

{1, 3} → {1, 2, 5, 6} → {1, 3} → . . . → {1, 2, 5, 6} → {1, 3, 6, 8}

of even length ` has weight ` − 2.
Thus the probability of a support characteristic on 24 rounds is less than

(2−8)22 = 2−176. Actually ten rounds of CSC∗ leads to an upper bound of
2−64. This corresponds to 3.33 rounds of CS-Cipher. So we believe that these
properties make 5.33 rounds of CS-Cipher heuristically resistant against any
multi-path differential characteristics. Eight rounds is therefore a comfortable
safety margin.

One open problem is the resistance against the recent impossible differen-
tial cryptanalysis. In this paper we investigated differential characteristics with
overwhelming behavior. The question now is how to address characteristics with
unexpected low probabilities.
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4 Conclusion

We have shown that CSC∗ admits no differential or linear characteristic with
average probability greater than 2−288, and no support characteristic with an
average probability greater than 2−176. We believe that these results hold for
CS-Cipher as well, which makes it heuristically secure against differential, li-
near, truncated, and other related differential cryptanalysis. The question on
the impossible differentials issue remains open though, as well as more general
attacks.

Whereas ciphers similar than CS-Cipher use linear diffusion layers for mi-
xing all pieces of a message in each round (for instance the four AES candidates
Safer+, Serpent, Rijndael, Crypton), CS-Cipher uses a nonlinear diffusion primi-
tive: the µ operation which is mixed with two non linear P -boxes. This enables
to achieve a stronger design at a minimal cost (both µ and P have quite efficient
implementations). It also illustrates that we can use general multipermutations
and not only MDS codes: large linear layers are nice presents for the attacker.

References

1. FIPS 46, Data Encryption Standard. U.S. Department of Commerce — National
Bureau of Standards, National Technical Information Service, Springfield, Virginia.
Federal Information Processing Standard Publication 46, 1977.

2. CD-ROM “AES CD-1: Documentation”, National Institute of Standards and Tech-
nology (NIST), August 1998. Documentation for the First Advanced Encryption
Standard Candidate Conference.

3. C. M. Adams. A Formal and Practical Design Procedure for Substitution-
Permutation Network Cryptosystems., Ph.D. Thesis of Queen’s University, King-
ston, Ontario, Canada, 1990.

4. C. M. Adams, S. E. Tavares. Designing s-boxes Resistant to Differential Cryptana-
lysis. In Proceedings of 3rd Symposium on the State and Progress of Research in
Cryptography, pp. 386–397, Rome, Italy, 1994.

5. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, R. Harley, A. Joux, P.
Nguyen, F. Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern, S. Vaudenay.
DFC Update. In Proceedings from the Second Advanced Encryption Standard
Candidate Conference, National Institute of Standards and Technology (NIST),
March 1999.

6. E. Biham. On Matsui’s Linear Cryptanalysis. In Advances in Cryptology EU-
ROCRYPT’94, Perugia, Italy, Lectures Notes in Computer Science 950, pp. 341–
355, Springer-Verlag, 1995.

7. E. Biham, A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In
Advances in Cryptology CRYPTO’90, Santa Barbara, California, U.S.A., Lectures
Notes in Computer Science 537, pp. 2–21, Springer-Verlag, 1991.

8. E. Biham, A. Shamir. Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

9. F. Chabaud, S. Vaudenay. Links Between Differential and Linear Cryptanalysis.
In Advances in Cryptology EUROCRYPT’94, Perugia, Italy, Lectures Notes in
Computer Science 950, pp. 356–365, Springer-Verlag, 1995.



On the Security of CS-Cipher 273

10. T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms, Mc Graw
Hill, 1990.

11. J. Daemen. Cipher and Hash Function Design — Strategies based on Linear and
Differential Cryptanalysis, Doctoral Dissertation, Katholieke Universiteit Leuven,
1995.

12. J. Daemen, L. R. Knudsen, V. Rijmen. The Block Cipher Square. In Fast Software
Encryption, Haifa, Israel, Lectures Notes in Computer Science 1267, pp. 149–165,
Springer-Verlag, 1997.

13. H. Feistel. Cryptography and Computer Privacy. Scientific American, vol. 228, pp.
15–23, 1973.

14. R. W. Floyd. Algorithm 97 (SHORTEST PATH). In Communications of the ACM,
vol. 5, p. 345, 1962.

15. H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin, G. Poupard, J. Stern,
S. Vaudenay. Decorrelated Fast Cipher: an AES Candidate. Submitted to the Ad-
vanced Encryption Standard process. In CD-ROM “AES CD-1: Documentation”,
National Institute of Standards and Technology (NIST), August 1998.

16. H. M. Heys. The Design of Substitution-Permutation Network Ciphers Resistant
to Cryptanalysis, Ph.D. Thesis of Queen’s University, Kingston, Ontario, Canada,
1994.

17. H. M. Heys, S. E. Tavares. Substitution-Permutation Networks Resistant to Diffe-
rential and Linear Cryptanalysis. Journal of Cryptology, vol. 9, pp. 1–19, 1996.

18. L. R. Knudsen. Truncated and Higher Order Differentials. In Fast Software En-
cryption, Leuven, Belgium, Lectures Notes in Computer Science 1008, pp. 196–211,
Springer-Verlag, 1995.

19. L. R. Knudsen, T. A. Berson. Truncated Differentials of SAFER. In Fast Software
Encryption, Cambridge, United Kingdom, Lectures Notes in Computer Science
1039, pp. 15–26, Springer-Verlag, 1996.

20. X. Lai. On the Design and Security of Block Ciphers, ETH Series in Information
Processing, vol. 1, Hartung-Gorre Verlag Konstanz, 1992.

21. X. Lai, J. L. Massey, S. Murphy. Markov Ciphers and Differential Cryptanalysis.
In Advances in Cryptology EUROCRYPT’91, Brighton, United Kingdom, Lectures
Notes in Computer Science 547, pp. 17–38, Springer-Verlag, 1991.

22. J. L. Massey. SAFER K-64: a Byte-Oriented Block-Ciphering Algorithm. In Fast
Software Encryption, Cambridge, United Kingdom, Lectures Notes in Computer
Science 809, pp. 1–17, Springer-Verlag, 1994.

23. M. Matsui. Linear Cryptanalysis Methods for DES Cipher. In Advances in Crypto-
logy EUROCRYPT’93, Lofthus, Norway, Lectures Notes in Computer Science 765,
pp. 386–397, Springer-Verlag, 1994.

24. M. Matsui. The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. In Advances in Cryptology CRYPTO’94, Santa Barbara, California, U.S.A.,
Lectures Notes in Computer Science 839, pp. 1–11, Springer-Verlag, 1994.

25. M. Matsui. New Structure of Block Ciphers with Provable Security against Diffe-
rential and Linear Cryptanalysis. In Fast Software Encryption, Cambridge, United
Kingdom, Lectures Notes in Computer Science 1039, pp. 205–218, Springer-Verlag,
1996.

26. M. Matsui. New Block Encryption Algorithm MISTY. In Fast Software Encryption,
Haifa, Israel, Lectures Notes in Computer Science 1267, pp. 54–68, Springer-Verlag,
1997.

27. K. Nyberg. Perfect Nonlinear S-Boxes. In Advances in Cryptology EU-
ROCRYPT’91, Brighton, United Kingdom, Lectures Notes in Computer Science
547, pp. 378–385, Springer-Verlag, 1991.



274 S. Vaudenay

28. K. Nyberg. Differentially Uniform Mapping for Cryptography. In Advances in
Cryptology EUROCRYPT’93, Lofthus, Norway, Lectures Notes in Computer
Science 765, pp. 55–64, Springer-Verlag, 1994.

29. K. Nyberg. Linear Approximation of Block Ciphers. In Advances in Cryptology
EUROCRYPT’94, Perugia, Italy, Lectures Notes in Computer Science 950, pp.
439–444, Springer-Verlag, 1995.

30. K. Nyberg, L. R. Knudsen. Provable Security against a Differential Cryptanaly-
sis. In Advances in Cryptology CRYPTO’92, Santa Barbara, California, U.S.A.,
Lectures Notes in Computer Science 740, pp. 566–574, Springer-Verlag, 1993.

31. K. Nyberg, L. R. Knudsen. Provable Security against a Differential Cryptanalysis.
Journal of Cryptology, vol. 8, pp. 27–37, 1995.

32. J. Stern, S. Vaudenay. CS-Cipher. In Fast Software Encryption, Paris, France,
Lectures Notes in Computer Science 1372, pp. 189–205, Springer-Verlag, 1998.

33. S. Vaudenay. On the Need for Multipermutations: Cryptanalysis of MD4 and SA-
FER. In Fast Software Encryption, Leuven, Belgium, Lectures Notes in Computer
Science 1008, pp. 286–297, Springer-Verlag, 1995.
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