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ABSTRACT

For speaker verification systems, security against imposture is
one of the most important problems, and many approaches
to reducing false acceptance of impostors as well as fase
rejection of clients have been investigated. On the other hand,
imposture using synthetic speech has not been considered. In
this paper, we investigate imposture against speaker verifica-
tion systems using synthetic speech. We use an HMM-based
text-prompted speaker verification system with a false accep-
tance rate of 0% for human impostors as a reference system,
and adopt a trainable HMM-based speech synthesis system
for imposture. Experimental results show that false accep-
tance rates for synthetic speech reached over 70% by training
the synthesis system using only 1 sentence from each cus
tomer, and current security of HMM-based speaker verification
systems against synthetic speech is inadequate.

1. INTRODUCTION

Speaker verification is the technique to judge whether input
speech is the same as the claimed speaker’s speech. This tech-
nique will make it possible to verify the identity of persons
accessing systems in various services. For such applications,
security against imposture is one of the most important prob-
lems, and many approaches to reducing false acceptance of
impostors as well as false rejection of clients have been inves-
tigated. For example, the text-prompted speaker verification
techniques [1]-[3] are robust to the impostor with playing back
recorded voice of a registered speaker.

Although most of these researches has assumed human
impostors without malice, recently, imposture using converted
speech has been reported [4],[5]. However, imposture using
synthetic speech has not been taken into account yet, due
to the facts that quality of synthetic speech was not enough,
and that it was difficult to synthesize speech with arbitrary
voice characteristics. Meanwhile, recent advances in speech
synthesis make it possible to synthesize speech of high quality
(e.g. [6]). As one of these speech synthesis systems, we have
proposed an HMM-based speech synthesis system [7] which
can synthesize smooth and natural speech. Moreover, we have
shown that we can change voice characteristics of synthetic
speech to resemble target speaker’s voice characteristics by
applying speaker adaptation techniques using a small amount
of adaptation data [8],[9].

In this paper, from these points of view, we investigate
imposture against an HMM-based text-prompted speaker veri-
fication system with the HMM-based speech synthesis system.

2. HMM-BASED SPEECH SYNTHESIS
SYSTEM

This section describes an overview of the HMM-based speech
synthesis system [7] briefly. The HMM-based speech synthesis
system consists of two parts; training part and synthesis part.
Firgt, in the training part, mel-cepstral coefficients are obtained
from speech database by mel-cepstral analysis [10]. Dynamic
features, i.e., delta and delta-delta mel-cepstral coefficients,
are caculated from mel-cepstral coefficients. Then phoneme
HMMs are trained using mel-cepstral coefficients and their
deltas and delta-deltas.

In the synthesis part, an arbitrary text to be synthesized
is transformed into a phoneme sequence. Then, a sentence
HMM is constructed, which represents the whole text to be
synthesized, by concatenating phoneme HMMs according to
this phoneme sequence. From the sentence HMM, speech
parameter sequence is generated using the algorithm described
in the next section. Using the MLSA (Mel Log Spectral
Approximation) filter [10], speech is synthesized from the
generated mel-cepstral coefficients directly.

2.1. Speech Parameter Generation from Con-
tinuous HMMs

Let ¢: be the mel-cepstral coefficient vector at frame ¢. Then
the dynamic features Ac; and Nc;, i.e, delta and delta-delta
mel-cepstral coefficients at frame ¢, respectively, are calculated
by linear combination of static features as follows:

Ac; = Zfile w1(T) Cttr, Q
Azct = Zfi—Lz ’wz(T) Ciyr. (2)

We assume that the speech parameter vector o at frame
t consists of the static feature vector ¢; and the dynamic
feature vectors Ac;, A%c;, that is, o; = [c}, Ac,, A%c}]’, where
- denotes matrix transpose.

For a given continuous HMM )\ and a state sequence Q =
{q1,¢,...,qr}, we obtain a sequence of mel-cepstral coeffi-
cient vectors C = [e, ¢5, .. ., ¢/r]" by maximizing P(O | Q, \)
with respect to O = |01, 05, ..., 07]" under the constraints (1)
and (2). Here we assume that the output distribution of each
state is a single Gaussian distribution. Without dynamic fea-
tures (i.e,, o+ = ¢¢), it is obvious that C which maximizes
P(O|Q,)) isequa to M = [, , ..., ., ], where p,
is the mean vector associated with state ¢.. On the other hand,
with dynamic features, C' which maximizes P(O|Q, ) is
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Figure 1. Imposture using the HMM-based speech synthesis system.

determined by a set of linear equations obtained by

0
5109P(01Q. ) =0, ©

which can easily be solved by a fast algorithm derived in
[11],[22]. It has been shown that the obtained mel-cepstral
coefficient vectors reflect not only the means of static and
dynamic feature vectors but also the covariances of those, and
as a result, the synthetic speech is quite smooth and natural
sounding.

3. EXPERIMENTS

A block diagram of imposture using the HMM-based speech
synthesis system against an HMM-based speaker verification
system is shown in Figure 1. We focused on a text-prompted
speaker verification system [1]-[3], and examined some com-
binations of the numbers of states of HMMs used in the
speech synthesis system and the spesker verification system.
In the following experiments, the text confirmation process
was omitted because input speech that differs from the key
text was not examined.

3.1. Speech Database

We used phonetically balanced Japanese sentences from ATR
Japanese speech database. The database consists of sentence
data uttered by 20 mae speskers, 10 speakers were used
as customers and the remainder were used as impostors.
Sentence data for each speaker consists of 150 sentences.
The database was divided into 3 sets, A-, B-, and C-sets,
each set contained 50 sentences for each speaker. A-set was
used to train speaker verification system and to determine
decision thresholds of normalized log-likelihood, B-set was
used to train speech synthesis system, and C-set was used as
test sentences. Speech signals were sampled at 10kHz, and
segmented and labeled into 48 phonemes (including silence
and pause) based on phoneme labels included in the database.
Both the speech synthesis system and the speaker verification
system used the same phoneme set and the same phoneme
sequences corresponding to the sentences.

3.2. BasdlinePerfor mance of the Speaker Ver-
ification System

We used an HMM-based text-prompted speaker verification
system [1]-[3] as areference system, in which a sentence HMM
corresponding to the key text is constructed by concatenating
phoneme models, and the normalized log-likelihood of the
input speech given the sentence HMM is compared with a
threshold to decide whether to accept or reject the speaker.

Speech signals were windowed by a 25.6 ms Blackman
window with a 5 ms shift, and the cepstral coefficients were
caculated by 15-th order LPC analysis. The feature vector
consisted of 16 cepstral coefficients including O-th coefficient,
and their deltas and delta-deltas.

For each customer, speaker dependent (SD) phoneme mod-
els were trained using 50 sentences. Spesker independent (SI)
phoneme models were aso trained using whole training sen-
tences of al customers. Each phone model was a 2- or
3-state 3-mixture left-to-right model with diagonal covariance
matrices. Because of limited training data, there were some
SD phoneme models which had only few samples for training
and remained untrained. In these cases, SI phoneme models
were used.

In the verification procedure, normalized log-likelihood
L(s) was calculated as follows [3],

L(s) =log P(O|Xs) —log P(O|Aair), (4)

where s denotes the claimed speaker, O denotes input speech,
As and A,y denote sentence HMMs constructed by concate-
nating speaker s's phoneme models and Sl phoneme models,
respectively. Then, the normalized log-likelihood was com-
pared with a prescribed threshold. A speaker dependent
threshold is determined using training data to equalize the
false acceptance rate (FAR) for impostors and the false re-
jection rate (FRR) for the customer. However, as shown in
Figure 2, which shows the FAR and the FRR for training data
of speaker m101 using 3-state models, there existed a region
in which both the FAR and the FRR were equal to 0%. In
this case, we adopted the center of the region as the threshold.

The baseline performance was examined on C-set. The
system achieved FARs of 0% for both 2- and 3-state models,
while FRRs reached to 7.2% and 9.8% for 2- and 3-state
models, respectively.
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Figure 2: False acceptance and rejection rates for training
sentences (speaker m101).
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Figure 3: False acceptance rates for synthetic speech against
the speaker verification system using 2-state models (speech
synthesis system: 2-, 3-, or 4-state models).
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Figure 4: False acceptance rates for synthetic speech against
the speaker verification system using 3-state models (speech
synthesis system: 2-, 3-, or 4-state models).

3.3. Imposture Using Synthetic Speech

Here we investigated whether the reference speaker veri-
fication system can reject synthetic speech generated from the
HMM-based speech synthesis system.

The speech synthesis system was trained using B-set.
Speech signals were windowed by a 25.6 ms Blackman win-
dow with a 5 ms shift, and the cepstral coefficients were
calculated by 15-th order mel-cepstral analysis [10]. The fea
ture vector consisted of 16 mel-cepstral coefficients including
0-th coefficient, and their deltas and delta-deltas. It is noted
that the feature parameters used in the speech synthesis system
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Figure 5: Histograms of normalized log-likelihood scores.

were different from the speaker verification system.

Phoneme models were trained using 1, 3, or 5 sen-
tences uttered by customers of the speaker verification system.
Phoneme models were context independent 2-, 3-, or 4-state
single-mixture left-to-right models with diagonal covariance
matrices. As well as the speaker verification system, S
phoneme models were used instead of untrained SD phoneme
models because of insufficient training data. SI models were
trained using 500 sentences in B-set uttered by 10 impostors.

In the synthesis procedure, state durations were set to
means of state duration densities obtained from training data,
and white noise was used as an excitation to the MLSA filter
[10] whether speech is voiced or unvoiced.

Figure 3 and 4 show FARs for synthetic speech against
the speaker verification systems using 2- and 3-state models,
respectively. From these figures, it can be seen that synthet-
ic speech has very high FARs for any combinations of the
states of models used in speech synthesis and speaker veri-
fication systems. It is noted that FARs for synthetic speech
from SI models (i.e., without training data) were 0% for al
combinations.

The speaker verification system using 3-state models shows
better performance than using 2-state models. However, the
difference between these systems is insignificant. Further-
more, the system using 3-state models has a higher FRR for
customers.

With regard to the speech synthesis system, the system
using 3-state models achieves higher FARs than 2- and 4-
state models. Increasing the number of states makes HMMs
possible to model speech in detail resulting improvement in
speech quality, but too many states cause inaccurate estimate
of HMM parameters because of insufficient training data.

Figure 5 shows histograms of normalized log-likelihood
for a customer, impostors, and synthetic speech, in which the
claimed speaker is m101, the speaker verification system uses
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Figure 6: False acceptance rates for synthetic speech with and
without delta parameters (speaker verification system: 2-state
models).
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Figure 7: False acceptance rates for synthetic speech with and
without delta parameters (speaker verification system: 3-state
models).

3-state models, and the speech synthesis system uses 3-state
models trained using 5 sentences. From these figures, it can be
seen that the distribution of synthetic speech overlaps with the
customer’s distribution, and it is difficult to discriminate syn-
thetic speech from customer’s speech effectively by adjusting
the decision threshold.

Finally, we investigated effect of dynamic features on
synthetic speech. Figure 6 and 7 shows FARs for synthetic
speech with/without delta parameters. The speech synthesis
system was trained using 3 sentences. Without dynamic
features, subjective quality of synthetic speech is much lower
than with dynamic features [7]. However, it is still sufficient
for imposture against the reference speaker verification system.

4. CONCLUSION

In this paper, we have investigated imposture using synthetic
speech. In the experiments, conditions we used might be
unredlistic. For example, both the speaker verification system
and the speech synthesis system used the same phoneme sets
and the same phoneme sequences corresponding to key texts.
However, from the facts that the false acceptance rates for
synthetic speech reached over 70% by training the speech
synthesis system with only 1 sentence from each customer,
and that quality of synthetic speech will be improved with
the advance of technique of speech synthesis, current security
of HMM-based speaker verification systems against synthetic

speech is inadequate even though these disadvantages are taken
into account. To put speaker verification systems into practice,
it is required to develop techniques to discriminate synthetic
speech from natural speech, for example, utilizing pitch con-
tours or phoneme durations in addition to spectral parameters.
It is also necessary to investigate in another conditions, such
as different likelihood normalization techniques, and speaker
verification systems with different frameworks.
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