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Abstract. Physical random number generators (a.k.a. TRNGs) appear to be critical
components of many cryptographic systems. Yet, such building blocks are still too sel-
dom provided with a formal assessment of security, in comparison to what is achieved
for conventional cryptography. In this work, we present a comprehensive statistical
study of TRNGs based on the sampling of an oscillator subject to phase noise (a.k.a.
phase jitters). This classical layout, typically instantiated with a ring oscillator, pro-
vides a simple and attractive way to implement a TRNG on a chip. Our mathematical
study allows one to evaluate and control the main security parameters of such a random
source, including its entropy rate and the biases of certain bit patterns, provided that a
small number of physical parameters of the oscillator are known. In order to evaluate
these parameters in a secure way, we also provide an experimental method for filtering
out the global perturbations affecting a chip and possibly visible to an attacker. Finally,
from our mathematical model, we deduce specific statistical tests applicable to the bit-
stream of a TRNG. In particular, in the case of an insecure configuration, we show how
to recover the parameters of the underlying oscillator.

Key words. Hardware random number generators, Ring oscillators, Jitter model, En-
tropy, Statistical tests.

1. Introduction

Random Number Generators (RNGs) are crucial components for the security of
cryptographic systems—typical usages including key generation, initialization vectors
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and even countermeasures against side-channel attacks. Yet it is not easy to design
hardware-based RNGs with a proved entropy rate, together with the flaw-tolerance and
attack-resistance properties required by cryptographic applications. Most often, crypto-
graphic RNGs consist of two parts: on one side, a physical (or True) Random Number
Generator (TRNG) producing a random bitstream by harvesting some entropy source,
and on the other side, a cryptographic mode of operation ensuring that the final out-
puts remain computationally unpredictable even in case of an undetected failure of
the TRNG. In this paper, we investigate the design of a hardware-based TRNG with
a proved security, following the recommendations of [14]. This explains our focus on a
simple design, suitable for a complete and precise modeling.

A source of randomness commonly used in FPGA and ASIC implementations of
TRNGs is the instability of signal propagation time across logic gates. This instability
is typically accumulated in so-called ring oscillators, consisting in a series of inverters
or delay elements connected in a ring. The phase jitter of a ring oscillator is then ex-
tracted by means of a sampling unit, for instance a type-D flip-flop triggered by another
ring oscillator or by an external clock signal. This simple structure and the underlying
physical phenomena have been widely studied in the literature as building blocks for
many on-chip TRNGs [2,7,16]. From a more theoretical point of view, an analysis of
phase jitters in oscillators in given in [8,9]. This paper aims to present a comprehensive
statistical model of such a basic random unit, and contribute more generally to improv-
ing the security analysis of hardware random number generators.

Previous work on provably secure TRNGs based on sampled oscillators includes the
works [3,10,13] that consider mathematical models based on the flipping times Tk of
the signal, that is, the times of its rising and falling edges. These models are natural to
consider as they correspond to what can be experimentally observed on an oscilloscope.
Existing works [1,3,10] report that the durations Xk = Tk+1 − Tk between the flipping
times appear in many cases to be independent and identically distributed (in short, i.i.d.),
as one could expect from the physical intuition of electronic noise. This allows one to
compute a safe lower bound of the entropy rate of the TRNG [10]. Yet, we found that
such time-oriented models become quickly intractable when one wishes to compute
more precise security parameters, such as the maximal bias on a short vector, or the
probabilities of outputting certain bit patterns.

Our first contribution is an original approach to address this limitation using a dif-
ferent family of statistical models based on Wiener processes, a classical tool in the
study of noisy oscillators [5]. More precisely, we identify the phase of an oscillator to a
one-dimensional Brownian motion, and see the outputs of the generator as a (periodic,
possibly probabilistic) function of the phase. This new, phase-oriented presentation al-
lows us to achieve exact and approximate formulas for the probabilities of occurrence
and for the entropy of arbitrary-length bit-vectors, as well as a simple lower bound for
the entropy rate. We validate these computations from a physical perspective by argu-
ing, after [5], that the time-oriented and the phase-oriented models should be equivalent
whenever the jitters of oscillators are small compared to their nominal periods. (This
is always verified in practice.) Our formulas take as input a small number of physical
parameters that still need to be measured in order to provide a full security assessment.

For that purpose, we also present an experiment designed to compute the relevant
physical parameters of a given layout and a given technology. The main difficulty here
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is that the phase jitter of a ring oscillator, according to the model presented in [18], is
made up of several different components depending on whether the jitter is from local
or global sources, deterministic or nondeterministic. From a security perspective, it is
important to be able to distinguish the local Gaussian component, which is the entropy
source of the TRNG, from the deterministic jitter from global sources, which can be
manipulated from outside the device. Our results show that the measure of the statistical
parameters of the jitter usually described in the literature [1,3,16] can be inaccurate
and, sometimes, largely overestimated. To solve this issue, we present an experiment
allowing to extract and precisely measure the local Gaussian component of phase jitters,
by comparing the signals of two free running oscillators on the same FPGA.

Finally, we apply our formulas to deduce statistical tests directly applicable to the out-
put sequence of a TRNG. Our tests are specifically tailored to detect over-sampled oscil-
lators, and potentially much stronger than the general-purpose tests routinely used [11].
In particular, for a sufficiently large amount of over-sampled bits, we observe that it is
feasible to recover the main statistical parameters of a TRNG.

Organization of the paper In Sect. 2, we recall the classical, time-oriented models
for the sampling of oscillators, then we introduce our new, phase-oriented approach and
use it to compute the security parameters of oscillator-based TRNGs. Section 3 presents
an experiment designed to extract the Gaussian component of the phase jitter of a ring
oscillator. Finally, in Sect. 4, we outline two special-purpose statistical tests applicable
to the outputs of a TRNG in order to assess its statistical properties. Appendices A, B
and C contain related proofs, additional justifications and an extension to a design made
of two oscillators.

2. Statistical Models for the Sampling of Oscillators

Motivated by the example of TRNGs based on ring oscillators, we describe two ap-
proaches to model an oscillator subject to phase jitters, and sampled by a time reference
(e.g. a quartz clock signal). Whereas the first approach, based on flipping times, is clas-
sical [3,10,13], to our knowledge, the second approach, based on a Wiener processes,
has never been considered in the field of secure random number generators. We focus
on this new approach and derive several formulas to compute the security parameters of
a TRNG, notably the biases and the entropy of bit-vectors, and as well a lower bound
of the entropy rate.

For simplicity, in what follows, we keep in line with previous work in the area [3,
10,13] and concentrate on symmetric (in particular, balanced) oscillators, for which the
falling and rising transitions are equally distributed.

2.1. Classical Approach (Time-Oriented)

A common and natural model for jittered oscillators consists in assuming that the half-
periods, that is, the durations Xk = Tk+1 − Tk between the flipping times Tk (k ≥ 0) of
the signal, are independent and identically distributed random variables. In the sequel,
we write mX = E(Xk) for the mean, and s2

X = V(Xk) for the variance of Xk .
Once the flipping times Tk are defined, the corresponding signal s(t) ∈ {0,1} at time

t ≥ 0 is described by s(t) = max{k + 1 |Tk ≤ t} mod 2. This model of s(t) is often
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referred to as an alternated renewal process (see for instance [17]). Assuming a start-up
time tS and a fixed sampling period �t , the successive outputs of the random number
generator are finally given by s(tS), s(tS + �t), . . . , s(tS + n�t), . . . .

This model has been widely studied in the community of cryptographic random num-
ber generation [3,13], and even generalized [10] to allow for short-term dependencies
between the Xk . Notably, Killman and Schindler [10] provide an approximate lower
bound for the source entropy, and present experimental results on a TRNG based on
noisy diodes, which appear compatible with the i.i.d. assumption on the Xk .

Although an elegant explicit formula exists for the Laplace transform of P [s(t) = 1]
(see [17, p. 334]), to our knowledge there is no general way to compute the probabilities
of sampling arbitrary-length bit-vectors from alternating renewal processes, let alone if
one wishes to abstract away the initial conditions by letting the start-up time tS tend
to +∞. Yet, evaluating these probabilities is important to predict residual biases in
the outputs of a TRNG, design specific statistical tests, or simply validate the physical
model and the amount of Gaussian noise at a higher level. For these reasons, we consider
another approach that directly models the phase evolution of an oscillator.

2.2. New Approach (Phase-Oriented)

Motivated by typical solutions of equations in the study of noisy oscillators [5], we con-
sider a family of models where the phase ϕ of an oscillator is analogue to a (stationary)
one-dimensional Brownian motion. Accordingly, we model the evolution of the phase
by a Wiener stochastic process (ϕ(t))t∈R with drift μ > 0 and volatility σ 2 > 0. In other
words, for any time t ≥ t0, the phase ϕ(t) conditioned on the values (ϕ(t ′))t ′≤t0 prior to
t0 follows a Gaussian distribution of mean ϕ(t0) + μ(t − t0) and variance σ 2(t − t0).
Equivalently, in terms of conditional density of probability, we have for all t , t0, x, x0,

d

dx

[
ϕ(t) ≤ x | ϕ(t0) = x0,

(
ϕ(t ′)

)
t ′<t0

= · · · ]

= 1

σ
√

2π(t − t0)
exp

(−(x − x0 − μ(t − t0))
2

2σ 2(t − t0)

)
(1)

where the dots denote any set of values. (Note that both μ and σ 2 are frequencies here.)
Given a value x of the phase at a given time t , the output bit s(t) is then modeled by

a random variable such that the probability of s(t) = 1 is equal to g1(x), for some fixed
1-periodic function g1. Let g0 = 1−g1 be the complementary function. Again, in terms
of conditional probability, we have for all t , b, x,

P
[
s(t) = b | ϕ(t) = x,

(
ϕ(t ′), s(t ′)

)
t ′ �=t

= · · · ] = gb(x). (2)

The fact that g1 is 1-periodic is related to the periodicity of the sampled signal, whose
average period is thus equal to 1

μ
. Another noticeable consequence is that s(t) depends

only on the quantity ϕ(t) = ϕ(t) mod 1.
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In the following, we concentrate on the (almost) deterministic sampling process de-
fined by

g1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x mod 1 ∈ ] 1
2 ,1[,

0 if x mod 1 ∈ ]0, 1
2 [,

1
2 if x mod 1 ∈ {0, 1

2 }.
(3)

In other words, for such a choice of g1, we have that ϕ(t) ∈ ]0, 1
2 [ implies s(t) = 0,

ϕ(t) ∈ ] 1
2 ,1[ implies s(t) = 1, and ϕ(t) ∈ {0, 1

2 } implies that s(t) is a pure random bit.
(This last case is negligible and only motivated by Fourier series.) In particular, this
ensures that each ϕ(t0) follows the (same) uniform distribution, and that the source
(s(t))t∈R is stationary, that is, the probabilities of sampling bit-vectors are invariant by
time-shifting.

2.3. Equivalence Formulas Between Models

For real physical systems, we expect the jitters to be small, that is, σ 2 	 μ, in terms of
Wiener process. Arguably, the sampling of such a Wiener process is equivalent to that
of an alternated renewal process where the durations Xk follow an inverse Gaussian
distribution (a.k.a. Wald distribution):

pXk
(x) =

(
λ

2πx3

) 1
2

exp
−λ(x − mX)2

2m2
Xx

for x > 0 (4)

with parameters

mX = 1

2μ
and λ = m3

X

s2
X

= 1

4σ 2
. (5)

Indeed, on the one hand, it is well known that this distribution corresponds to the first
passage time, from ϕ(0) = k

2 to ϕ(x) = k+1
2 , of a Wiener process with drift μ and

volatility σ 2 (see for instance [4, p. 221]). On the other hand, the assumption σ 2 	 μ

allows us to ignore the possibility for the sampled signal to flip in a detectable manner
because of the phase going backwards: indeed, by another classical result of Wiener
processes [4, p. 212], the probability P [∃t ≥ 0, ϕ(t) ≤ ϕ(0) − α] = e−2αμ/σ 2

will be
infinitesimal for meaningful α > 0.

Remark 1. We note that (5) allows one to set the parameters mX and s2
X in function of

μ and σ 2, and use other distribution laws for Xk . For instance, we may use a Gamma
distribution:

pXk
(x) = 1

�(k)θk
xk−1ex/θ (6)

with parameters k = E(Xk)
2

V(Xk)
= μ

2σ 2 and θ = E(Xk)
k

= σ 2

μ2 .

In any case, we will have
s2
X

m2
X

= 2σ 2

μ
	 1, therefore, we expect that the shape of a

given distribution law will have little influence on the behavior of processes. By ex-
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tension, this suggests that Wiener processes suffice to approximate every physically
relevant model based on renewal alternating processes. In the literature of noisy oscilla-
tors, we found that Demir et al. [5] do relate phase-oriented processes to time-oriented
processes based on Gaussian distributions.

2.4. Controlling Bit-Vector Probabilities, Source Entropy and Biases

Let �t > 0 be some fixed sampling period. Using either kind of model, we define the

quality factor Q = σ 2 �t = s2
X �t

4m3
X

of an oscillator-based TRNG as the phase variance

accumulated between two samples, and let ν = μ�t = �t
2mX

be frequency ratio between
the sampled and the sampling signal.

As mentioned before, in physical random generators based on phase jitter, we expect

that Q
ν

= σ 2

μ
	 1.

Remark 2. We note that the notion of quality factor is in line with the intuitive defini-
tion for a alternating renewal process: the average relative variance accumulated during
a time �t (that is, approximately for �t

2 E(Xk)
= ν periods) is given by

ν
V(X2k + X2k+1)

E(X2k + X2k+1)2
= ν

2

V(Xk)

E(Xk)2
= σ 2�t = Q. (7)

We expect the sampled bits to behave as a perfect random source when the quality
factor Q is significantly larger than 1. Indeed, the accumulated phase jitter between two
samples then amounts to more than one period of the oscillator.

In order to make this statement rigorous, we provide several formulas for the proba-
bilities and the entropy of arbitrary-length bit-vectors.

Proposition 1. Consider a Wiener process (ϕ(t)) with parameters μ and σ 2 and de-
fine (s(t)) as previously. Let ν = μ�t and Q = σ 2 �t .

1. The probability to sample 1 at time t ≥ 0 conditioned on the phase at time 0
verifies

[
s(t) = 1 | ϕ(0) = x

] = 1

2
− 2

π
sin

(
2π(μt + x)

)
e−2π2σ 2t + O

(
e−4π2σ 2t

)
. (8)

2. The probability to output a vector b = (b1, . . . , bn) ∈ {0,1}n at sampling times
0,�t, . . . , (n − 1)�t satisfies

p(b) = [
s(0) = b1, . . . , s

(
(n − 1)�t

) = bn

]
(9)

= 1

2n
+ 8

2nπ2

(
n−1∑

j=1

(−1)bj +bj+1

)

cos(2πν)e−2π2Q + O
(
e−4π2Q

)
. (10)
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3. The entropy of such an output is

Hn =
∑

b∈{0,1}n
−p(b) logp(b) (11)

= n − 32(n − 1)

π4 ln(2)
cos2(2πν) e−4π2Q + O

(
e−6π2Q

)
. (12)

These expressions result from a careful study of the mathematical model, based on
Fourier series and given in Appendix A. Our study also provides exact formulas suitable
for precise numerical simulations.

Lower Bound for Entropy For a stationary process, it is well known [15] that 1
n
Hn

and Hn − Hn−1 tend (from above) to the same limit H , called the bit-rate entropy
of the source. We emphasize that the approximation of Hn above (12) is not provably
uniform in n, and thus cannot be used to provide a rigorous lower bound of H . However,
following similar ideas as in [10], it is easy to state a lower bound of H based on the
entropy of s(�t) conditioned on ϕ(0).

Corollary 1. Let H(s(�t) | ϕ(0)) = ∫ 1
0 H(s(�t) | ϕ(0) = x)dx denote the average

conditional entropy of s(�t) with respect to ϕ(0), where by definition

H
(
s(�t) | ϕ(0) = x

) = −p log2(p) − (1 − p) log2(1 − p) (13)

if p = P [s(�t) = 1 | ϕ(0) = x]. Then we have that

H ≥ H
(
s(�t) | ϕ(0)

) = 1 − 4

π2 ln(2)
e−4π2Q + O

(
e−6π2Q

)
. (14)

Remark 3. For a sanity check, we note that the coefficient of e−4π2Q in the lower
bound of H is smaller than the same coefficient for Hn

n
: − 4

π2 ln(2)
≈ −0.58, whereas

− 32(n−1)

π4 ln(2)
cos2(2πν) > − 32

π4 ln(2)
≈ −0.47.

Bounding Biases in Function of Q and n We should emphasize that the given approxi-
mation for p(b) (10) holds when e−2π2Q is small enough for a fixed parameter n = |b|.
Preliminary numerical experiments suggest that these approximations might not hold
uniformly in n. As a consequence, controlling the biases of the source may require to
limit the number of consecutive outputs returned by the random source to not exceed a
fixed value nmax. To help designers assess nmax in a safe way, we provide exact bounds
on the biases ε(b) = 2np(b) − 1.

Proposition 2. Let ϑ(x) = ∑
k∈Z

xk2
for |x| < 1 and B = e−2π2Q. For every n and

every b ∈ {0,1}n, it holds that |ε(b)| ≤ ϑ(B)n−1 −1. In particular, for every n such that
n ≤ nmax = �1 + 1

log2(ϑ(B))
, we have |ε(b)| ≤ 1 and Hn ≥ n − 2.

Although these bounds may appear pessimistic compared to the approximate expres-
sions given in the previous section, we note that small values of Q still allow to compute
accurately p(b) for large n = |b|, as Table 1 illustrates.
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Q B = e−2π2Q nmax = �1 + 1
log2(ϑ(B))

 Hmin ≈ 1 − 4
π2 ln(2)

B2

0.1 1.3 · 10−1 3 1–1.1 · 10−2

0.2 1.9 · 10−2 18 1–2.1 · 10−4

0.3 2.6 · 10−3 130 1–4.2 · 10−6

0.5 5.1 · 10−5 6701 1–1.5 · 10−9

1 2.6 · 10−9 129 · 106 1–4.2 · 10−18

2 7.1 · 10−18 48 · 1015 1–3.0 · 10−35

Table 1. Security limit nmax and entropy lower bound Hmin as a function of Q.

3. Measuring the Phase Jitter of Ring Oscillators

In Sect. 2, we recalled classical models based on flipping times, and showed how to use
a new family of models based on Wiener processes to analyze the security of a TRNG.
Such security analyses rely on the physical parameters of the generators, that is, the
frequency ratio ν and a quality factor Q.

In this section, we first report several experiments in order to assess the physical
parameters of a single ring oscillator embedded in a FPGA, and to confirm the physical
relevance of the model in use. Note that, as mentioned before, the choice between time
and phase models does not matter as long as Q 	 ν.

Whereas the experiments are satisfactory for well-stabilized FPGAs (see for instance
[1,3]), we observe that the general case is more complex as the frequencies of oscillators
may fluctuate. As emphasized by Valtchanov et al. [18], an important component of
such fluctuations, the deterministic jitters from global sources, typically low-frequency
and global to a FPGA, should not be confused with Gaussian phase jitters from local
sources, as the former generally depends on signals such as the power source, that may
leak or even be controlled by an attacker.

For that reason, we introduce a modified statistical model where the nominal fre-
quency of an oscillator is subject to deterministic variations. We show how to validate
this model experimentally by considering a layout made of two ring oscillators, and by
simulating the sampling of one oscillator clock using the clock from other oscillator, in
a similar manner as it is done in a type-D flip-flop.

3.1. Simple Measures

Let t = (t0, . . . , tn) be the increasing sequence of flipping times observed in the
course of an experiment. Let x = (x0, . . . , xn−1) be the corresponding durations xk =
tk+1 − tk . If we neglect the effect of deterministic jitters from global sources, we expect
the durations xk to be mutually independent and to follow the same distribution of mean
mX = E(Xk) and variance s2

X = V(Xk).

To evaluate mX , we use the classical estimator Ê(x) = 1
n

∑n−1
i=0 xi . In theory, it should

also be possible to directly measure s2
X using V̂(x) = 1

n

∑n−1
i=0 x2

i − Ê(x)2. However, for
very high frequency oscillators such as the one typically used for random generation,
this method can be inaccurate (even in favorable cases) due to the quantification noise
of the oscilloscope—and perhaps other factors. For that reason, it is classical to estimate
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Fig. 1. Ring oscillator.

Fig. 2. Simple measure: Vs() as a function of .

the variance of Tk+ − Tk ( > 0) by letting

Vs() = V̂(t − t0, t2 − t, . . . , t�n/ − t(�n/−1) ) (15)

and carry on a linear regression on Vs(). Indeed, for n


big enough, we expect that
Vs() ≈  s2

X . By formula (5), the parameters of the corresponding Wiener process are

then μ = 1
2mX

and σ 2 = s2
X

4m3
X

.

Experimental Results We made a series of experiments on an Altera Stratix II board
with a non-well-stabilized switching power supply. We have implemented two different
ring oscillators R and R′ made up of a NAND gate and the same number of delay
elements (see Fig. 1). The clock signals of the two oscillators are connected to output
PINs and analyzed with a digital oscilloscope at 10 giga-samples per second.

From the data recorded by the oscilloscope we recover two sequences, t = (t0, . . . , tn)

and t′ = (t ′0, . . . , t ′n′), corresponding to the flipping times of the signals of R and R′,
respectively. We obtained that the mean period of R is 14,5 ns and that of R′ is 14,7 ns.
We remark that although R and R′ have identical VHDL specifications, their mean
periods are not equal because of the variability of routing. Starting from the sequence
t = (ti) of flipping times of R, we compute the estimator Vs() from the time gaps
(t(i+1) − ti). Figure 2 represents the graph of Vs() as a function of .
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We remark that Vs() is not a straight line with slope s2
X as one might expect if the

deterministic jitters from global sources were negligible. The accumulation phenom-
enon of the Gaussian jitter is nevertheless perfectly visible as the function Vs() is
globally increasing. We can explain the shape of Vs() by introducing a frequency per-
turbation function α(t) to model the effect of deterministic jitters from global sources.
Specifically, assume that the expected value of Tk+1 − Tk given that Tk = tk is close to
mX

α(tk)
where 1

α(t)
= 1 + A sin( 2πt

P
+ B) is sinusoidal of period P with P � mX . If  is

such that 2mX is very close to a multiple of P then on the average the sampling of
(T(k+1) − Tk) will cancel out the contribution of α(t) to the variance of the jitter, thus
giving a local minimum of Vs(). On the contrary, if 2mX is very close to a value of
the form jP + 1

2P , j ∈ N, then the contribution of α(t) to the variance of the jitter is
maximal and we obtain a local maximum of the graph of Vs().

3.2. Differential Measures

The previous experiments suggest that the statistical models of Sect. 2 may not be ac-
curate in general, for a non-well-stabilized oscillator, due to slow fluctuations of the
average frequency μ (or equivalently, of the half-period mX). This phenomenon nat-
urally leads us to model the phase of such an oscillator by a Wiener process with a
non-constant drift of the form μ(t) = μα(t), where α(t) > 0 is a perturbation function,
intuitively close to 1, and equal to 1 on the average.

Alternatively, in terms of flipping times Tk , we may equivalently consider a modified
classical model where the i.i.d. variables Xk now represent half-periods that are scaled
by α(t). More precisely, to define Tk+1 with respect to Tk and Xk , the relation Xk =
Tk+1 − Tk is now replaced by Xk = ∫ Tk+1

Tk
α(t) dt .

Following the empirical conclusions of Valtchanov et al. [18] regarding a decompo-
sition between jitters from local and global sources of oscillators, we expect α(t) to be
global, that is, applicable to all the (similar) oscillators running in a given FPGA, and
to have slow variations compared to the nominal frequency of oscillators.

Based on these considerations, we provide an experiment that we call “differential
measure,” which aims at eliminating the global component α(t) in the measurements of
jitters from local sources. The experiment runs as follows. Consider two similar ring os-
cillators R and R′ running on the same FPGA. Let t = (t0, . . . , tn) and t′ = (t ′0, . . . , t ′n′)
be the two increasing sequences of flipping times observed for R and R′, respectively.
Intuitively, we wish to rescale the first sequence t according to the second sequence t′,
seen as a time reference, and then apply the same statistical treatment as in Sect. 3.1 to
conclude.

More precisely, let mX′ be the average half-period of R′ (typically estimated as in
Sect. 3.1) and let φ be the simplest, continuous, strictly increasing, piecewise-affine
function from [t ′0, t ′n′ ] to [0, n′] such that φ(t ′k) = k mX′ (0 ≤ k ≤ n′). Assume for sim-
plicity that t ′0 ≤ t0 and tn ≤ t ′

n′ . We define the rescaled sequence τ = (τ0, . . . , τn) by
τj = φ−1(tj ) (0 ≤ j ≤ n); that is, more concretely: for every j ,

τj

mX′
= k(j) + tj − t ′k(j)

t ′k(j)+1 − t ′k(j)

(16)
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where k(j) = max{k ∈ N | t ′k ≤ tj }. Finally, we consider the differential estimators
Vd() defined by

Vd() = V̂(τ − τ0, τ2 − τ, . . . , τ�n/ − τ(�n/−1) ). (17)

We note that, by construction, sampling the digital signal corresponding to the flip-
ping times t at times (t ′0, t ′2, . . . , t ′2�n′/2)—this is typically done by connecting the out-
puts of R and R′ to a type-D flip-flop—would give exactly the same binary outputs as
the sampling of the signal corresponding to τ by a clock signal of constant period 2mX′ .

As we show in Appendix B, this analogy also applies to Vd(); that is: according
to the physical assumptions above, Vd() should be approximately proportional to .
More precisely, we show that the proportionality factor s2 ≈ Vd()


is an estimation of

the amount of local noise available in R and R′, in the sense that

s2 ≈ s2
X +

(
mX

mX′

)2

s2
X′ (18)

where mX and sX (resp. mX′ and sX′ ) are the mean and the standard deviation of the
durations Xk related to R (resp. X′

k related to R′).

Experimental Results We go on with the experimental results paragraph of Sect. 3.1
with the same experimental device and keep the same notations. From the flipping time
sequences t = (ti) and t′ = (t ′j ) of R and R′, as described above, we compute the esti-
mator Vd() from (τ(i+1) − τi) in the case of a differential measure.

Figure 3 represents the graph of Vd() as a function of . We can see that the function
Vd() is well approximated by an affine function. The differential measure has canceled
out the influence of the deterministic jitter from global sources. By doing an affine
regression on Vs() we obtain a line with slope 0.97, while in the case of Vd() the
slope of the linear regression is 0.09. As a consequence, we see that the usual simple
measure leads to a gross overestimation of the variance of the jitter of R.

3.3. Physical Relevance of the Model

In order to use the model of Sect. 2, we have to suppose that the Gaussian jitter from
local sources of a real oscillator can be modeled by i.i.d. variables Xk representing the
half-periods of an ideal oscillator, which deterministic jitter from global sources has
filtered out. The experiments we have carried out support this assumption, in particular
the fact that the graph Vd() as a function of , for instance one in Fig. 3, is well ap-
proximated by an affine function. However, as it seems difficult experimentally to prove
that the jitters that we assess with a differential measure behave like i.i.d. variables, it
would be desirable to be able to qualify the impact of small dependencies of the phase
jitter on the entropy rate. We leave this subject for further research.

Another assumption of our model is that falling and rising edges are equidistributed.
In fact, the switching transistors employed in ring oscillators behave as nonlinear analog
components and falling and rising edges have different shapes. Although we could not
observe any consequence of this fact in our sampling experiments, we mention that it is
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Fig. 3. Differential measure: Vd() as a function of .

easy to tweak our model in order to take into account unbalanced and/or probabilistic
sampling, simply by adapting the definition of g1 (see Sect. 2), for instance:

gbiased
1 (x) =

⎧
⎪⎨

⎪⎩

1 if x mod 1 ∈ ] 1
2 + ε,1[,

0 if x mod 1 ∈ ]0, 1
2+ε[,

1
2 if x mod 1 ∈ {0, 1

2 + ε}.
(19)

However, since such biased sources are easy to detect and disqualify, we have assumed
a balanced distribution of 0 and 1 in this article so as to keep the mathematics as simple
as possible. We also leave for future work the study of a source for which the noise rate
σ 2 may depend on the time t , or, even worse, on the samples s(t).

4. Statistical Tests

In the previous section, we provided low-level experiments to isolate and estimate the
Gaussian noise related to a given hardware technology. However, these experiments
require a direct access to the (possibly multiple) ring oscillators before the signal is
digitalized. In this section, we build upon the theoretical model presented in Sect. 2,
and report higher-level experiments carried out directly on the bitstream of a sampled
ring oscillator and applicable to any source that is presumably equivalent.

Our tests are based on the biases predicted by the statistical model when the quality
factor Q = σ 2�t (see Sect. 2) is insufficient, that is, when the sampling rate 1

�t
is too

high compared to the amount of noise available σ 2. Such a weakened behavior can
be obtained on purpose by accelerating the sampling clock. Interestingly, it could also
occur in the case of a bad design or a physical attack on the generator. After discussing a
simple autocorrelation test, we present numerical experiments related to the likelihood
of a given sample.
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Fig. 4. Scheme of the experiment.

Division factor (D) Sample size (n) Quality factor (Q) c(b) 1√
n

2559 71 483 0.012 −0.7523 0.003
22 598 110 621 0.114 0.0020 0.003
40 000 62 498 0.202 −0.0007 0.004

Table 2. Autocorrelation factors c(b) for samples from three random sources.

4.1. Autocorrelation Test

A consequence of Proposition 1 is that the first coefficient of autocorrelation of a sample
b = (b1, . . . , bn) ∈ {0,1}n defined by c(b) = 1

n−1

∑n−1
j=1(−1)bj +bj+1 gives a statistical

test especially well suited to detect biases in the bitstream of random generators based
on oscillators. Indeed, we note that the expectation of c(b) is 0 on a perfect random
source, but amounts to

∑

b

c(b)p(b) = 8

π2
cos(2πν)e−2π2Q + O

(
e−4π2Q

)
(20)

on a random generator such as considered in Sect. 2 (with the same notations). Besides,
on perfect random sources, by the central limit theorem, c(b) approximately follows a
centered Gaussian distribution of variance 1

n−1 . Therefore, we may expect a source with
low quality factor Q and cos(2πν) �= 0 to be easily distinguished from an ideal source
for large enough n.

Experimental Results We have implemented a single ring oscillator R composed of
49 inverters on an Altera Stratix II FPGA. We let the oscillator R be sampled via a
type-D flip-flop triggered by a divider applied to the quartz clock signal of the FPGA,
running at frequency f = 50 MHz (see Fig. 4). Using a digital oscilloscope, we could
measure the mean period of the ring oscillator: 2mX = 33.4 ns. By performing a dif-
ferential measure, we also estimated the variance of the jitter per half-period of R to be
approximately s2

X = 0.0047 ns2. From this, we could estimate the quality factor of the

generator for a given division factor D to be Q ≈ s2
X

4m3
X

D
f

≈ D
197 840 . Table 2 shows the

empirical autocorrelation factors obtained for various samples. (See also Table 1 for an
interpretation of Q in terms of biases and entropy.) We observe as expected that a too
small quality factor causes the source to be immediately discarded as |c(b)| � 1√

n
.
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Fig. 5. Maximum likelihood estimations for a real sample with D = 22 598 (left) and a uniform source
(right).

4.2. Maximum Likelihood Estimation

The autocorrelation test is useful to detect flaws, but is not sufficient to estimate the
physical parameters of a generator, namely its quality factor Q and its frequency ra-
tio ν. On the other hand, the techniques used for proving Proposition 1 (see Appen-
dix A) make it possible to compute the probability p(Q,ν,b) of a sample b in func-
tion of (Q,ν) efficiently and with good precision. Following the heuristic of maximum
likelihood estimators, we may then choose the two parameters (Q,ν) that maximize
the probability of a given sample. Note that the mathematical model of sampling en-
tails p(Q,ν,b) = p(Q,±ν + k,b) for any k ∈ Z. Therefore, we can only observe
ν̄ = |(ν + 1

2 mod 1) − 1
2 | ∈ [0, 1

2 ].

Numerical Experiments The graphs in Fig. 5 result from the evaluation of these prob-
abilities on two bitstream samples of size n = 50 000: one sample taken from a perfect
simulated source (right-hand side), and the other from our FPGA for a division factor
D = 22 598 (left-hand side). On both graphs, Q is represented on the X-scale, ν on the
Y -scale, and the plotted value on the Z-scale is Lb(Q,ν) = log2(1+2np(Q,ν,b)). We
observe that contrarily to the simulated perfect source, the real data cause two symmet-
ric peaks indicating plausible values for Q and ν mod 1.

We also carried out the analysis on 1000 bits of the source D = 2559 and on 60 000
bits of the source D = 40 000 (Fig. 6, left and right respectively). We observe that the
maximum likelihood approach succeeds—that is, clearly discriminates the source from
a perfect random source—for the samples D = 2559 and D = 22 598, but does not for
the last sample D = 40 000. As we discuss below, this is due to the fact that the available
bitstream sample is too small. In the case D = 2559, we see that global maximum of
the plausibility function leads to the right value of the quality factor Q ≈ 0.01. The case
D = 22 598 is less clear as the plot seems to indicate a quality factor twice as big as
the expected value Q = 0.11. However, we should emphasize that the initial estimation
of the quality factor Q relies on a differential measure that filters out frequency jitters
from global sources, whereas the graphical estimation from Fig. 6, based on maximum
likelihood in the plain model, does not.



412 M. Baudet et al.

Fig. 6. Maximum likelihood estimations for two real samples with D = 2559 (left) and D = 40 000 (right).

Quality factor (Q) Best case (ν̄ = 0) Worst case (ν̄ = 0.25)

<0.05 <1000 <5000
0.1 50 000 100 000
0.2 500 000 1 000 000
0.3 2 000 000 >4 000 000

Table 3. Typical sample sizes needed by the estimator.

Further Numerical Experiments on Simulated Sources To study the convergence and
the reliability of our graphical estimator, we conducted a number of numerical exper-
iments on simulated random sources for different quality factors Q and frequency ra-
tio ν. In Table 3, we report the amounts of bits that we found usually necessary for a
graphical estimation to be conclusive.

Finally, to validate the equivalence between the different mathematical models
(Sect. 2), we simulated several sources of 50 000 bits, with parameters Q = 0.15 and
ν = 50.2, according to the model of Wiener processes (see left-hand side of Fig. 7)
and two models of alternating renewal processes using Gamma and Inverse Gaussian
laws (see right-hand side of Figs. 7 and 8, respectively). The resulting graphs have very
similar shapes from which we can estimate the same (correct) values for Q and ν. This
confirms the intuition that the three sources behave similarly and the fact that the graphs
provide correct estimations of the physical parameters.

5. Conclusion

We have seen that the family of random bit generators made of a ring oscillator sampled
by a clock signal is amenable to a comprehensive statistical study.

On the conception side, we provide practical formulas and an experimental method
to control the main security parameters of a TRNG—-in particular its entropy rate and
the probability biases in the output bits. Incidentally, our experiments give an explana-
tion for the observation reported in the literature that ring oscillators have a tendency to
couple with each other. Indeed, there is at least one coupling between ring oscillators
by the way of the deterministic jitters from global sources. Some authors [6] conclude
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Fig. 7. Maximum likelihood estimations for two simulated samples, following the phase-oriented model
(left) and the classical model with a Gamma distribution (right).

Fig. 8. Maximum likelihood estimations for a simulated sample following the classical model with an In-
verse Gaussian distribution.

that this phenomenon significantly reduces the amount of randomness produced by a
TRNG. Our observations tend to show that the deterministic jitters from global sources
do not undermine the randomness of a TRNG by itself, but can lead to dangerous over-
estimations.

On the attacker’s side, we have seen that it is easy to recover the statistical parameters
of an over-sampled oscillator from a sufficiently large amount of output bits. In extreme
cases, we note that this allows one to implement optimized brute-force attacks on the un-
known output vectors of such a generator. Indeed, one may determine the corresponding
distributions and try out the most probable values first (see [12] for a detailed analysis).

Finally, on the performance side, we observe that, in order to achieve a near-to-one
quality factor and obtain almost perfectly random bit-sequences, it is necessary to sam-
ple the ring oscillator at a very low frequency. Interestingly, our statistical model un-
covers some possible approach to improve the throughput of such a TRNG. Indeed, our
theoretical study (Proposition 1) suggests that the residual biases of the generator would
be considerably lowered if one could lock the term cos(2πν) to a very small value.

Further Work We believe that the framework described in this paper is an important
step towards precise security analyses of many other designs of generators based on
ring oscillators. For instance, a natural design, presumably more robust to deterministic
jitters from global sources [18], consists of a ring oscillator sampled by another ring
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oscillator—the random bitstream being accommodated to the system clock through a
FIFO-stack. As an encouraging result, we have proved using reasonable heuristics (see
Appendix C) that such a design can be well approximated by the model considered in
this paper for an appropriate choice of parameters. Another common design of gener-
ator, motivated by bit-rate efficiency, is made of a (XOR) combination of several ring
oscillators before sampling (see for instance [16]). Achieving precise and physically-
validated security analyses for such complex designs constitutes a challenging open
problem.
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Appendix A. Computing Probabilities and Source Entropy

This section provides the mathematical justifications and additional details related to
Section 2.

A.1. Exact Expression of Probabilities by Means of Fourier Series

Fourier Coefficients of ϕ(t) From the point of view of an outside observer, the state
of the generator at a given time t corresponds to a certain probability measure on the
phase ϕ(t).

More precisely, let pt(x | ξ) be the density of probability (possibly a distribution) of
ϕ(t) after a certain experiment described by precondition ξ . We introduce the Fourier
coefficients of pt(x | ξ):

ct (k | ξ) =
∫ +∞

−∞
pt (x | ξ) e−2πikx dx (A.1)

for every k ∈ Z.

Remark 4. We note that ct (0 | ξ) = ∫ +∞
−∞ pt(x | ξ) dx = 1.

Remark 5. The reason why we restrict k to integer values is that we are only interested
in the probability measure of ϕ(t) = ϕ(t) mod 1, which is described by the 1-periodic
density function:

pt(x | ξ) =
∑

k∈Z

pt(x + k | ξ). (A.2)
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Indeed, we observe that

ct (k | ξ) =
∑

u∈Z

∫ 1

0
pt(x + u | ξ) e−2πikx dx (A.3)

=
∫ 1

0
pt(x | ξ) e−2πikx dx. (A.4)

Assuming that the inverse formula for Fourier series holds for ct (k | ξ), we obtain:

pt (x | ξ) =
∑

k∈Z

ct (k | ξ) e2πikx . (A.5)

Effect of Time Evolution The following lemma expresses the effect of time evolution
on the Fourier coefficient of a density of probability pt(x | ξ).

Lemma 1. Assume an average drift speed μ and volatility σ 2 (σ > 0) for the Wiener
process ϕ(t). For any t0 ≤ t and for every precondition ξ concerning only events prior
to t0, we have

ct (k | ξ) = ct0(k | ξ) e−2πiμ(t−t0) k e−2π2σ 2(t−t0) k2
. (A.6)

Proof. Let f (x) = 1
σ
√

2π(t−t0)
exp −(x−μ(t−t0))

2

2σ 2(t−t0)
be the density probability of the

Gaussian distribution with mean μ(t − t0) and variance σ 2(t − t0). By construction
of Wiener processes (1), we have that pt(x | ξ) = pt0(x | ξ) ∗ f (x) where ∗ denotes
the convolution product. The result then follows from the property of Fourier trans-
form w.r.t. convolution, and the computation of Fourier coefficients for normal distrib-
utions. �

Notation Let ct (ξ ) denote the infinite vector (ct (k | ξ))k∈Z. Let δk be the Dirac (in-
finite) column vector with a one in kth position, and π j be Dirac (infinite) row vector
with a one in j th position.

The linear relation above is written

ct (ξ ) = E[t − t0] ct0(ξ) (A.7)

where E[t − t0] denotes the (t − t0)-evolution operator with coefficient (j, k) ∈ Z
2 given

by:

π j E[t − t0] δk =
{

0 if j �= k,

e−2πiμ(t−t0) k e−2π2σ 2(t−t0) k2
otherwise if j = k.

(A.8)

Remark 6. Let 1 = (1)k∈Z denote the vector made of ones. We note that σ > 0 implies
that for any t > 0, ‖E[t] 1‖1 < ∞.
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Effect of Sampling The next lemma expresses the effect of sampling a bit b on the
Fourier coefficient of a density pt (x | ξ).

Lemma 2. For any t and for every precondition ξ concerning only events prior to t ,
we have

ct

(
j | ξ, s(t) = b

) = 1

P

∑

k∈Z

γb(j − k) ct (k | ξ) (A.9)

where γb(k) = ∫ 1
0 gb(x) e−2πikx dx is the kth Fourier coefficient of the (periodic) sam-

pling probability gb , and

P = [
s(t) = b | ξ] =

∑

k∈Z

γb(−k) ct (k | ξ). (A.10)

Proof. By definition and by Bayes formula on probability densities, we have

pt

(
x | ξ, s(t) = b

) = 1

P
pt(x | ξ) gb(x)

where

P = P
[
s(t) = b | ξ] =

∫ +∞

−∞
pt (x | ξ) gb(x) dx.

The result follows from the usual property of Fourier coefficients, which transform prod-
ucts into convolutions, and maps mean values of functions to their 0th coefficients. �

Notation The relation above is written

ct

(
ξ, s(t) = b

) = 1

P
S[b] ct (ξ ) (A.11)

where S[b] denotes the b-sampling operator with coefficient (j, k) given by

π j S[b] δk = γb(j − k) (A.12)

and P = π0 S[b] ct (ξ ).

Exact Expressions of the Probabilities We may now determine the probabilities of
sampling arbitrary bit patterns from a jittered oscillator.

Proposition 3. Let A0 = e−2πiμ and B0 = e−2π2σ 2
. For any x ∈ R, let 1x =

(e−2iπkx)k∈Z. Using the other vector notations above, we have for every t > 0,

p1,x(t) = [
s(t) = 1 | ϕ(0) = x

]
(A.13)

= π0 S[1] E[t] 1x (A.14)

=
∑

k∈Z

γ1(−k) e−2iπkxAtk
0 Btk2

0 (A.15)
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and for every t1 < t2 < · · · < tn, letting i0 = in = 0, we have

fb(t) = P
[
s(t1) = b1, . . . , s(tn) = bn

]
(A.16)

= π0 S[bn] E[tn − tn−1] · · · S[b2] E[t2 − t1] S[b1] δ0 (A.17)

=
∑

(i1, ..., in−1)∈Zn−1

n−1∏

k=0

γbk
(ik − ik+1) A

∑n−1
k=1 ik(tk+1−tk)

0

× B

∑n−1
k=1 i2

k (tk+1−tk)

0 . (A.18)

Note that the expression of fb(t) shows in particular that (s(t))t∈R is a stationary source.
For numerical computations, for |B0| small enough, we observe that the expression of
fb(t) can be approximated by means of a product of n finite matrices.

Proof. We observe that

p1(t) = [
s(t) = 1 | ϕ(0) = x

]

= π0 S[b] ct (ϕ(0) = x) by Lemma 2

= π0 S[b] E[t] c0
(
ϕ(0) = x

)
by Lemma 1

= π0 S[b] E[t] 1x by definition of Fourier coefficients ct (k | ϕ(0) = x).

Similarly, letting qn = P [s(t1) = b1, . . . , s(tn) = bn], we have for all n > 0:

qn ctn

(
s(t1) = b1, . . . , s(tn) = bn

)

= qn

Pn

S[bn] ctn

(
s(t1) = b1, . . . , s(tn−1) = bn−1

)

= qn−1 S[bn] ctn

(
s(t1) = b1, . . . , s(tn−1) = bn−1

)

= qn−1 S[bn] E[tn − tn−1] ctn−1

(
s(t1) = b1, . . . , s(tn−1) = bn−1

)

= S[bn] E[tn − tn−1]
(
qn−1 ctn−1(s(t1) = b1, . . . , s(tn−1) = bn−1)

)
,

where Pn = P
[
s(tn) = bn | s(t1) = b1, . . . , s(tn−1) = bn−1

]
.

Given that q0 ct0() = δ0 and E[t1 − t0] δ0 = δ0, we obtain by induction on n:

qn ctn

(
s(t1) = b1, . . . , s(tn) = bn

)

= S[bn] E[tn − tn−1] . . . S[b2] E[t2 − t1] S[b1] δ0.

The first expression of fb(t) follows from π0 ct (ξ ) = ct (0 | ξ) = 1.
In the end, we obtain the desired final expressions by expanding the matrix products

(the conditions σ > 0, t > 0 and t1 < · · · < tn ensuring that every sum is absolutely
convergent). �
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A.2. Approximate Expressions of Probabilities and Entropy

Consider the function g1(x) defined in Sect. 2. The Fourier coefficient of g1(x) are
given by

– γ1(0) = 1
2

– for every k �= 0, γ1(2k) = 0; and
– for every k, γ1(2k + 1) = i

(2k+1)π
.

From g0 + g1 = 1, we also deduce that γ0(0) = 1
2 and γ0(k) = −γ1(k) for k �= 0. In

particular, the exact expression of p1,x(t), taken from Proposition 3, becomes

p1,x(t) =
∑

k∈Z

γ1(−k) e−2πik(μt+x)e−2π2σ 2tk2
(A.19)

= 1

2
− 2

π

+∞∑

N=0

sin(2π(μt + x)(2N + 1))

2N + 1
e−2π2σ 2t (2N+1)2

. (A.20)

We now focus on periodic sampling times: t = (0,�t, . . . , (n − 1)�t) for some pe-
riod �t > 0. Let Q = σ 2�t and ν = μ�t . Let A = A�t

0 = e−2πiν , B = B�t
0 = e−2π2Q

and i0 = in = 0. The exact expression of p(b) = fb(t), taken from Proposition 3, be-
comes

p(b) =
∑

(i1, ..., in−1)∈Zn−1

n−1∏

k=0

γbk
(ik − ik+1) A

∑n−1
k=1 ik B

∑n−1
k=1 i2

k (A.21)

=
+∞∑

N=0

aN(b)BN (A.22)

where

aN(b) =
∑

∑n−1
k=1 ik

2=N

n−1∏

k=0

γbk
(ik − ik+1) A

∑n−1
k=1 ik . (A.23)

From the expressions of γ0(k) and γ1(k), we obtain in particular the first terms aN(b):

a0(b) = 1

2n
, (A.24)

a1(b) = γb1(−1) γb2(1) γb2(0) · · ·γbn(0) A

+ γb1(0) γb2(−1) γb3(1) · · ·γbn(0) A

+ · · ·
+ γb1(0) · · ·γbn−2(0) γbn−1(−1) γbn(1) A

+ γb1(+1) γb2(−1) γb2(0) · · ·γbn(0) A−1
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+ γb1(0) γb2(+1) γb3(−1) · · ·γbn(0) A−1

+ · · ·
+ γb1(0) · · ·γbn−2(0) γbn−1(+1) γbn−1(−1) A−1 (A.25)

= A + A−1

2n−2π2

(
n−1∑

j=1

(−1)bj +bj+1

)

(A.26)

= 8

2nπ2
cos(2πν)

(
n−1∑

j=1

(−1)bj +bj+1

)

. (A.27)

We now address the development of Hn = −∑
b∈{0,1}n p(b) log2 p(b). Given that

(1+x) ln(1+x) = x +∑+∞
N=2

(−1)N

N(N−1)
xN for |x| < 1, and that p(b) tends to a0(b) = 1

2n

when B → 0, we have for sufficiently small values of B:

−p(b) log2
(
p(b)

) = np
(
b
) − 1

2n ln(2)

(
2np(b)

)
ln

(
2np(b)

)
(A.28)

= np(b) − 1

2n ln(2)

+∞∑

N=2

(−1)N

N(N − 1)
ε(b)N , (A.29)

where we use ε(b) = 2np(b) − 1 to denote the bias of a vector b. Using that∑
b∈{0,1}n p(b) = 1 and a0(b) = 1

2n , we obtain

Hn = n − 1

2n ln(2)

∑

b∈{0,1}n

+∞∑

N=2

(−1)N

N(N − 1)

( +∞∑

M=1

2naM(b)BM

)N

(A.30)

= n − 2n−1

ln(2)

∑

b∈{0,1}n
a1(b)2 B2 + O

(
B3). (A.31)

But, by the previous expression of a1(b), we have

∑

b∈{0,1}n
a1(b)2 = 64

22nπ4
cos2(2πν)

∑

b∈{0,1}n

(
n−1∑

j=1

(−1)bj +bj+1

)2

(A.32)

= 64

22nπ4
cos2(2πν) 2n(n − 1) (A.33)

= 64(n − 1)

2nπ4
cos2(2πν). (A.34)

Therefore, we may conclude that Hn = n − 32(n−1)

π4 ln(2)
cos2(2πν) B2 + O(B3).

A.3. Safe Bounds on Bias and Entropy

The proof of Corollary 1 runs as follows.



420 M. Baudet et al.

Proof of Corollary 1. By definition, Hn = H(s((n − 1)�t), . . . , s(�t), s(0)) and we
have that

Hn+1 − Hn = H
(
s(n�t) | s((n − 1)�t

)
, . . . , s(�t), s(0)

)

≥ H
(
s(n�t) | ϕ(

(n − 1)�t
))

= H
(
s(�t) | ϕ(0)

)

=
∫ 1

0
H

(
s(�t) | ϕ(0) = x

)
dx

but

H
(
s(�t) | ϕ(0) = x

) = 1 − 1 + ε

2
log2(1 + ε) − 1 − ε

2
log2(1 − ε)

= 1 − ε2

2 ln(2)
+ O

(
ε3),

where ε = 2 P [s(�t) = 1 | ϕ(0) = x] − 1 = 4
π

sin(2π(ν + x)) e−2π2Q + O(e−4π2Q).
The result follows from replacement of ε and by integration. (Equation (A.20) of Ap-
pendix A.2 shows that the last O(.) is indeed uniform in x.) �

Next, we give a proof of Proposition 2.

Proof of Proposition 2. Using the expression of p(b) at (A.23) and the fact that
γb(0) = 1

2 , we have that

ε(b) = 2np(b) − 1 (A.35)

=
∑

(i1, ..., in−1)�=0

n−1∏

k=0

(
2 γbk

(ik − ik+1)
)
A

∑n−1
k=1 ik B

∑n−1
k=1 i2

k . (A.36)

Since |A| = 1, B > 0 and for every k, |γb(k)| ≤ 1
2 , we obtain

∣∣ε(b)
∣∣ ≤

∑

(i1, ..., in−1)�=0

B
∑n−1

k=1 i2
k = ϑ(B)n−1 − 1. (A.37)

The lower bound of Hn results the fact that the function x �→ x log2 x is monotone:

−p(b) log2
(
p(b)

) = np(b) − 1

2n

(
2np(b)

)
log2

(
2np(b)

)
(A.38)

≥ np(b) − 1

2n
ϑ(B)n−1 log2 ϑ(B)n−1. (A.39)

Hence, by summing on b, we have Hn ≥ n − ϑ(B)n−1 log2(ϑ(B)n−1) ≥ n − 2. �
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Appendix B. Physical Justifications of Differential Measures

The goal of this section is to justify that the physical assumptions of Sect. 3.2 imply
Vd() ≈  s2 for some value s2 that we relate to the amount of noise available in R

and R′.
In line with Sect. 3.2, for simplicity, we directly model the flipping times Tk of R

and assume the variables Xk = ∫ Tk+1
Tk

α(t) dt to be i.i.d. according to some distribution
of mean mX and standard deviation sX . We model R′ in a similar way using the corre-
sponding prime symbols.

The physical assumptions of our models are the following:

(i) sX 	 mX (small local jitters for R).
(ii) sX′ 	 mX′ (small local jitters for R′).

(iii) α(t) ≈ 1 (small deterministic perturbations on R and R′).
(iv) |α′(t)| 	 1

mX
and |α′(t)| 	 1

mX′ (slow variations of α(t)).

Note that the last assumption implies that the equation Xk = ∫ Tk+1
Tk

α(t) dt can be
simplified into

Tk+1 − Tk ≈ Xk

α(Tk)
(B.1)

(and similarly for T ′
k+1 − T ′

k ).
Following the notations of Sect. 3.2, from the two sequences of times t = (t0, . . . , tn),

t′ = (t ′0, . . . , t ′n′), we define a rescaled sequence τ = (τ0, . . . , τn) such that for every j

(t ′0 ≤ tj < t ′
n′ ),

τj

mX′
= k(j) + tj − t ′k(j)

t ′k(j)+1 − t ′k(j)

, (B.2)

where k(j) = max{k ∈ N | t ′k ≤ tj }.
To show that Vd() = V̂(τ−τ0, τ2−τ, . . . , τ�n/−τ(�n/−1) ) is approximately

proportional to , we argue that each τj+1 −τj independently follows a distribution with
mean m ≈ mX and variance s2 ≈ s2

X + ( mX

mX′ )
2s2

X′ .
Indeed, by definition, we have

τj+1 − τj

mX′
= tj+1 − t ′

k(j+1)

t ′k(j+1)+1 − t ′k(j+1)

+ k(j + 1) − tj − t ′
k(j)

t ′k(j)+1 − t ′k(j)

− k(j) (B.3)

= tj+1 − t ′k(j+1)

t ′k(j+1)+1 − t ′k(j+1)

+
k(j+1)−1∑

k=k(j)

t ′k+1 − t ′k
t ′k+1 − t ′k

+ t ′k(j) − tj

t ′k(j)+1 − t ′k(j)

. (B.4)

For all 0 ≤ k ≤ n′ − 1, let

ε′
k = α(t ′k) (t ′k+1 − t ′k)

mX′
− 1. (B.5)
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By (B.1) and assumption (ii), ε′
k approximately follows a centered Gaussian distrib-

ution of variance
s2
X′

m2
X′

	 1. As a consequence, we may write

mX′

(t ′k+1 − t ′k)
= α(t ′k)

1 + ε′
k

≈ α(t ′k) (1 − ε′
k). (B.6)

By assumption (iv), for k(j) ≤ k ≤ k(j + 1), a first-order approximation of α(t ′k) is
α(tj ). Therefore, putting altogether (B.4) and (B.6) and neglecting second-order terms,
we have

τj+1 − τj ≈ α(tj ) (tj+1 − tj ) − α(t ′k(j+1)) ε′
k(j+1)(tj+1 − t ′k(j+1))

−
k(j+1)−1∑

k=k(j)

α(t ′k) ε′
k (t ′k+1 − t ′k)

− α(t ′k(j)) ε′
k(j) (t

′
k(j) − tj ). (B.7)

We note that the first part of the equation approximately follows a Gaussian distribu-
tion of mean mX and variance s2

X , whereas the second half approximately (and indepen-
dently) follows a centered Gaussian distribution of variance (

sX′
mX′ )

2 m2
X . Therefore, we

may conclude that the (τj+1 − τj ) are independent outcomes of a Gaussian distribution
of mean mX and variance s2 = s2

X + s2
X′(

mX

mX′ )
2.

Appendix C. Equivalent Physical Parameters of a Dual-Oscillator TRNG

In Sect. 2, we considered the sampling of an oscillator R by a perfectly stabilized clock
signal. The present section is devoted to the study the sampling of an oscillator R by
another ring oscillator R′. We also allow small global variations of frequency for R and
R′ as considered in Sect. 3. Our goal is to show that such a complex system is still well
approximated by the simple framework of Sect. 2.

Model and Physical Assumptions We model the phase of the sampled oscillator R by
a Wiener process of variable speed μ(t) = μα(t) and volatility σ 2. As for the sampling
oscillator R′, for simplicity, we directly model the flipping times Tk and assume the
variables Xk = ∫ Tk+1

Tk
α(t) dt to be i.i.d. according to some distribution of mean mX and

standard deviation sX . (Here we omit the prime symbols for readability.)
As before, the physical assumptions of our models are the following:

(i) σ 2 	 μ (small local jitters for R).
(ii) sX 	 mX (small local jitters for R′).

(iii) α(t) ≈ 1 (small deterministic perturbations on R and R′).

(Note that we do not assume α(t) to have low frequency variations, here.)
To compare this setting with the simpler model of Sect. 2, we proceed in two steps.

First, we generalize the method used in Appendix A to reason about the effect of time
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evolution on phases. Second, we use the physical assumptions above to argue that the
sampling of R by R′ can be well approximated by the sampling of a single oscillator R′′
by a periodic time reference, that is, following the model initially considered in Sect. 2.

Phase Evolution Revisited In Appendix A, we noticed that, for an oscillator R with
constant statistical parameters μ and σ 2, the evolution of the conditional distribution of
the phase from time tk to time tk+1 ≥ tk is expressed by a convolution product:

ptk+1(x | ξ) = ptk (x | ξ) ∗ fμ(tk+1−tk),σ
2(tk+1−tk)

(x), (C.1)

where fm,s2(x) = 1
s
√

2π
exp −(x−m)2

2s2 is the density function of the Gaussian distribution

with mean m and variance s2, and ξ denotes any event related to the sampling of R at
times before tk .

In the case of non-constant statistical parameters μ(t) and σ 2(t) for R, this equation
generalizes as follows:

ptk+1(x | ξ) = ptk (x | ξ) ∗ fm,s2(x), (C.2)

where m = ∫ tk+1
tk

μ(t) dt and s2 = ∫ tk+1
tk

σ 2(t) dt .
Now let us consider that the sampling times tk are probabilistic drawings of random

variables T2k modeling the raising times of another oscillator R′ such that the durations
Xk = ∫ Tk+1

Tk
α(t) dt are i.i.d. following some density pX . Besides, assume that μ(t) =

μα(t) and σ 2(t) = σ 2α(t) for some constant μ and σ . We have that

P
[
s(T2(k+1)) = 1 | ξ] =

∫ +∞

−∞
P
[
s(t) = 1 | ξ]

dPT2(k+1) | ξ (t) (C.3)

=
∫ +∞

−∞
g1(x)pk+1(x | ξ) dx, (C.4)

where we let pk+1(x | ξ) = ∫
pt(x | ξ) dPT2(k+1) | ξ (t) denote the average conditional

density of the phase of R at the (k + 1)th sampling time.
By definition of T2(k+1) and from (C.2), we obtain that

pk+1(x | ξ) = pk(x | ξ) ∗ g(x) ∗ g(x), (C.5)

where g(x) = ∫ ∞
0 pX(y)fμy,σ 2y(x) dy. Altogether, (C.4) and (C.5) allow one to define

modified operators S[b] and E[t] operating on the Fourier coefficient of pk(x | ξ) sim-
ilarly as for the proof of Proposition 3. We now argue that in the physical cases under
consideration, these new operators are in fact well approximated by the same operators
as before, using suitable parameters.

Interpretation Above, we have let σ 2(t) = σ 2α(t) instead of σ 2(t) = σ 2 in the model
of Sect. 3.2. This approximation is justified by the assumptions (i) and (iii) that σ is
small and α(t) ≈ 1.

Formula (C.5) is similar to (C.1) except that the Gaussian density is replaced by a
function g(x) ∗ g(x) obtained by averaging the durations between two sampling times.
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We note that the two formulas are exactly equivalent when X = �t
2 with probabil-

ity 1: indeed, g(x) ∗ g(x) = fμ�t,σ 2�t(x). When X has a very small variance (assump-
tion (ii)), g(x) ∗ g(x) will be very close to a Gaussian function, and therefore we can
approximate the behavior of the two composed oscillators by a single one.

More precisely, we compute the mean and the variance of the approximation of
g(x) ∗ g(x) as follows. Let mX and s2

X be the mean and the variance of X. By as-
sumption (ii), sX 	 mX , therefore, letting f (x, y) = fμy,σ 2y(x), we have the following
approximation:

g(x) =
∫ ∞

0
pX(y)f (x, y) dy (C.6)

≈
∫ ∞

0
pX(y)

[
f (x,mX) + (y − mX)

∂f

∂y
(x,mX)

+ (y − mX)2

2

∂2f

∂y2
(x,mX)

]
dy (C.7)

= f (x,mX) + s2
X

2

∂2f

∂y2
(x,mX). (C.8)

Given that f (x, y) is infinitely derivable and for every i, j, k ≥ 0, for every y0,

|xk ∂i+j f

∂xi yj (x, y)| is bounded by a summable function of x, in the neighborhood of y0,
we may compute the first central moments of g(x) as follows:

∫ +∞

−∞
x g(x) dx ≈

∫ +∞

−∞
x f (x,mX)dx + s2

X

2

∫ +∞

−∞
x

∂2f

∂y2
(x,mX)dx (C.9)

= μmX + ∂2

∂y2

∫ +∞

−∞
xf (x, y) dx

∣∣∣∣
y=mX

(C.10)

= μmX + ∂2μy

∂y2

∣∣∣∣
y=mX

(C.11)

= μmX. (C.12)
∫ +∞

−∞
x2 g(x)dx − (μmX)2 ≈

∫ +∞

−∞
x2 f (x,mX)dx − (μmX)2

+ s2
X

2

∫ +∞

−∞
x2 ∂2f

∂y2
(x,mX)dx (C.13)

= σ 2 mX + s2
X

2

∂2

∂y2

∫ +∞

−∞
x2f (x, y) dx

∣∣∣∣
y=mX

(C.14)

= σ 2 mX + s2
X

2

∂2(μ2y2 + σ 2 y)

∂y2

∣∣∣∣
y=mX

(C.15)

= σ 2 mX + s2
Xμ2. (C.16)
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These values must be doubled for g(x) ∗ g(x). Finally, we obtain that the composition
of R and R′ by means of a type-D flip-flop is equivalent to a system made of single
oscillator R′′ sampled by a time reference, with frequency ratio ν = 2μmX and quality
factor Q = 2σ 2 mX + 2μ2 s2

X .
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