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Abstract

Computing devices with touch-screens have experi-

enced unprecedented growth in recent years. Such an

evolutionary advance has been facilitated by various ap-

plications that are heavily relying on multi-touch ges-

tures. In addition, picture gesture authentication has been

recently introduced as an alternative login experience to

text-based password on such devices. In particular, the

new Microsoft Windows 8TM operating system adopts

such an alternative authentication to complement tradi-

tional text-based authentication. In this paper, we present

an empirical analysis of picture gesture authentication on

more than 10,000 picture passwords collected from over

800 subjects through online user studies. Based on the

findings of our user studies, we also propose a novel at-

tack framework that is capable of cracking passwords on

previously unseen pictures in a picture gesture authen-

tication system. Our approach is based on the concept

of selection function that models users’ password selec-

tion processes. Our evaluation results show the proposed

approach could crack a considerable portion of collected

picture passwords under different settings.

1 Introduction

Using text-based passwords that include alphanumerics

and symbols on touch-screen devices is unwieldy and

time-consuming due to small-sized screens and the ab-

sence of physical keyboards. Consequently, mobile op-

erating systems, such as iOS and Android, integrate a

numeric PIN and a draw pattern as alternative authenti-

cation schemes to provide user-friendly login services.

However, the password spaces of these schemes are sig-

nificantly smaller than text-based passwords, rendering

them less secure and easy to break with some knowledge

of device owners [8].

All correspondences should be addressed to Dr. Gail-Joon Ahn at

gahn@asu.edu.

To bring a fast and fluid login experience on touch-

screen devices, the Windows 8TM operating system

comes with a picture password authentication system,

namely picture gesture authentication (PGA) [25], which

is also an instance of background draw-a-secret (BDAS)

schemes [18]. This new authentication mechanism hit

the market with miscellaneous computing devices in-

cluding personal computers and tablets. At the time of

writing, over 60 million Windows 8TM licenses have been

sold [21] and it is estimated that 400 million computers

and tablets will run Windows 8TM with this newly intro-

duced authentication scheme in one year [28]. Conse-

quently, it is imperative to examine and explore potential

attacks on picture gesture authentication in such a preva-

lent operating system for further understanding user ex-

periences and enhancing this commercially popular pic-

ture password system.

Many graphical password schemes–including

DAS [24], Face [9], Story [15], PassPoints [41] and

BDAS [18]–have been proposed in the past decade

(for more, please refer to [6, 7, 13, 14, 16, 23, 34, 37]).

Amongst these schemes, click-based schemes, such as

PassPoints, have attracted considerable attention and

some research has analyzed the patterns and predictable

characteristics shown in their passwords [12, 39]. Fur-

thermore, harvesting characteristics from passwords of

a target picture and exploiting hot-spots and geometric

patterns on the target picture have been proven effective

for attacking click-based schemes [17, 32, 38]. However,

PGA allows complex gestures other than a simple

click. Moreover, a new feature in PGA, autonomous

picture selection by users, makes it unrealistic to harvest

passwords from the target pictures for learning. In

other words, the target picture is previously unseen

to any attack models. All existing attack approaches

lack a generic knowledge representation of user choice

in password selection that should be abstracted from

specific pictures. The absence of this abstraction makes

existing attack approaches impossible or abysmal (if
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possible) to work on previously unseen target pictures.

In this paper, we provide an empirical analysis of user

choice in PGA based on real-world usage data, show-

ing interesting findings on user choice in selecting back-

ground picture, gesture location, gesture order, and ges-

ture type. In addition, we propose a new attack frame-

work that represents and learns users’ password selec-

tion patterns from training datasets and generates ranked

password dictionaries for previously unseen target pic-

tures. To achieve this, it is imperative to build generic

knowledge of user choice from the abstraction of hot-

spots in pictures. The core of our framework is the con-

cept of a selection function that simulates users’ selection

processes in choosing their picture passwords. Our ap-

proach is not coupled with any specific pictures. Hence,

the generation of a ranked password list is then trans-

formed into the generation of a ranked selection function

list which is then executed on the target pictures. We

present two algorithms for generating the selection func-

tion list: one algorithm is to appropriately develop an op-

timal guessing strategy for a large-scale training dataset

and the other deals with the construction of high-quality

dictionaries even when the size of the training dataset is

small. We also discuss the implementation of our attack

framework over PGA, and evaluate the efficacy of our

proposed approach with the collected datasets.

The contributions of this paper are summarized as fol-

lows:

• We compile two datasets of PGA usage from user

studies2 and perform an empirical analysis on col-

lected data to understand user choice in background

picture, gesture location, gesture order, and gesture

type;

• We introduce the concept of a selection function

that abstracts and models users’ selection processes

when selecting their picture passwords. We demon-

strate how selection functions can be automatically

identified from training datasets; and

• We propose and implement a novel attack frame-

work which could be potentially redesigned as

a picture-password-strength meter for PGA. Our

evaluation results show that our approach cracked

48.8% passwords for previously unseen pictures in

one of our datasets and 24.0% in the other within

fewer than 219 guesses (the entire password space is

230.1).

The rest of this paper is organized as follows. Sec-

tion 2 gives an overview of picture gesture authentica-

tion. Section 3 discusses our empirical analysis on pic-

ture gesture authentication. In Section 4, we illustrate

2These datasets with the detailed information will be available at

http://sefcom.asu.edu/pga/.

our attack framework. Section 5 presents the implemen-

tation details and evaluation results of the proposed at-

tack framework. We discuss several research issues in

Section 6 followed by the related work in Section 7. Sec-

tion 8 concludes the paper.

2 Picture Gesture Authentication: An

Overview

Like other login systems, Windows 8TM PGA has two

independent phases, namely registration and authentica-

tion. In the registration stage, a user chooses a picture

from his or her local storage as the background. PGA

does not force users to choose pictures from a predefined

repository. Even though users may choose pictures from

common folders, such as the Picture Library folder

in Windows 8TM, the probability for different users to

choose an identical picture as the background for their

passwords is low. This phenomenon requires potential

attack approaches to have the ability to perform attacks

on previously unseen pictures. PGA then asks the user

to draw exactly three gestures on the picture with his or

her finger, mouse, stylus, or other input devices depend-

ing on the equipment he or she is using. A gesture could

be viewed as the cursor movements between a pair of

‘finger-down’ and ‘finger-up’ events. PGA does not al-

low free-style gestures, but only accepts tap (indicating

a location), line (connecting areas or highlighting paths),

and circle (enclosing areas) [29]. If the user draws a free-

style gesture, PGA will convert it to one of the three rec-

ognized gestures. For instance, a curve would be con-

verted to a line and a triangle or oval will be stored as a

circle. To record these gestures, PGA divides the longest

dimension of the background image into 100 segments

and the short dimension on the same scale to create a

grid, then stores the coordinates of the gestures. The line

and circle gestures are also associated with additional in-

formation such as directions of the finger movements.

Once a picture password is successfully registered,

the user may login the system by drawing correspond-

ing gestures instead of typing his or her text-based pass-

word. In other words, PGA first brings the background

image on the screen that the user chose in the registration

stage. Then, the user should reproduce the drawings he

or she set up as his or her password. PGA compares the

input gestures with the previously stored ones from the

registration stage. The comparison is not strictly rigid

but shows tolerance to some extent. If any of gesture

type, ordering, or directionality is wrong, the authenti-

cation fails. When they are all correct, an operation is

further taken to measure the distance between the input

password and the stored one. For tapping, the gesture

passes authentication if the predicate 12− d2 ≥ 0 satis-

fies, where d denotes the distance between the tap coordi-
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nates and the stored coordinates. The starting and ending

points of line gestures and the center of circle gestures

are measured with the same predicate [29].

The differences between PGA and the first BDAS

scheme proposed in [18] include: i) in PGA, a user up-

loads his or her picture as the background instead of

choosing one from a predefined picture repository; ii) a

user is only allowed to draw three specific types of ges-

tures in PGA, while BDAS takes any form of strokes.

The first difference makes PGA more secure than the pre-

vious scheme, because a password dictionary could only

be generated after the background picture is acquired.

However, the second characteristic reduces the theoret-

ical password space from its counterpart. Pace et al. [29]

quantified the size of the theoretical password space of

PGA which is 230.1 with current length-three configu-

ration in Windows 8TM. For more details, please refer

to [29].

3 An Empirical Analysis of Picture Ges-

ture Authentication

In this section, we present an empirical analysis on user

choice in PGA by analyzing data collected from our user

studies. Our empirical study is based on human cognitive

capabilities. Since human cognition of pictures is limited

in a similar way to their cognition of texts, the picture

passwords selected by users are probably constrained by

human cognitive limits which would be similar to the

ones in text-based passwords [42].

3.1 Experiment Design

For the empirical study, we developed a web-based PGA

system for conducting user studies. The developed sys-

tem resembles Windows 8TM PGA in terms of its work-

flow and appearance. The differences between our im-

plementation and Windows 8TM PGA include: i) our

system works with major browsers in desktop PCs and

tablets whereas Windows 8TM PGA is a stand-alone pro-

gram; ii) some information, such as the criterion for cir-

cle radius comparison, is not disclosed. In other words,

our implementation and Windows 8TM PGA differ in

some criteria (we regard radiuses the same if their dif-

ference is smaller than 6 segments in grid). In addition,

our developed system has a tutorial page that includes

a video clip educating how to use the system and a test

page on which users can practice gesture drawings.

Our study protocol, including the type of data we plan

to collect and the questionnaire we plan to use, was re-

viewed by our institution’s IRB. The questionnaire con-

sisted of four sections: i) general information of the sub-

ject (gender, age, level of education received, and race);

ii) general feeling toward PGA (is it easier to remem-

ber, faster to input, harder to guess, and easier to observe

than text-based password); iii) selection of background

picture (preferred picture type); and iv) selection of pass-

word (preferred gesture location and type).

We started user studies after receiving the IRB ap-

proval letter in August 2012 and compiled two datasets

from August 2012 to January 2013 using this system.

Dataset-1 was acquired from a testbed of picture pass-

word used by an undergraduate computer science class.

Dataset-2 was produced by advertising our studies in

schools of engineering and business in two universities

and Amazon’s Mechanical Turk crowdsourcing service

that has been used in security-related research work [26].

Turkers who had finished more than 50 tasks and had

an approval rate greater than 60% were qualified for our

user study.

For registration, subjects in Dataset-1 were asked to

provide their student IDs for a simple verification af-

ter which they were guided to upload a picture, regis-

ter a password and then use the password to access class

materials including slides, homework, assignments, and

projects. Subjects used this system for the Fall 2012

semester which lasted three and a half months at our

university. If subjects forgot their passwords during the

semester, they would inform the teaching assistant who

reset their passwords. Subjects were allowed to change

their passwords by clicking a change password link af-

ter login. There were 56 subjects involved in Dataset-1

resulting in 58 unique pictures, 86 registered passwords,

and 2,536 login attempts.

Instead of asking subjects to upload pictures for

Dataset-2, we chose 15 pictures (please refer to Ap-

pendix B for the pictures) in advance from the PAS-

CAL Visual Object Classes Challenge 2007 dataset [19].

We chose these pictures because they represent a diverse

range of pictures in terms of category (portrait, wedding,

party, bicycle, train, airplane and car) and complexity

(pictures with few and plentiful stand-out regions). Sub-

jects were asked to choose one password for each pic-

ture by pretending that it was protecting their bank in-

formation. The 15 pictures were presented to subjects in

a random order to reduce the dependency of password

selection upon the picture presentation order. 762 sub-

jects participated in the Dataset-2 collection resulting in

10,039 passwords. The number of passwords for each

picture in the Dataset-2 varies slightly, with an average

of 669, because some subjects quit the study without set-

ting up passwords for all pictures.

For both datasets, subjects were asked to finish the

aforementioned questionnaire to help us understand their

experiences. We collected 685 (33 for Dataset-1, 652 for

Dataset-2) copies of survey answers in total. According

to the demographic-related inquiries in the exit survey,

81.8% subjects in Dataset-1 are self-reported male and

63.6% are between 18 and 24 years old. While partic-
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Table 1: Survey Question: Which of the following best

describes what you are considering when you choose lo-

cations to perform gestures?

Multi-choice Answers
Dataset

1 2 Overall

I try to find locations where special

objects are.

24

(72.7%)

389

(59.6%)

413

(60.3%)

I try to find locations where some spe-

cial shapes are.

8

(24.2%)

143

(21.9%)

151

(22.1%)

I try to find locations where colors are

different from their surroundings.

0

(0%)

57

(8.7%)

57

(8.3%)

I randomly choose a location to

draw without thinking about the back-

ground picture.

1

(3.0%)

66

(10.1%)

67

(9.8%)

ipants in Dataset-2 are more diverse with 64.4% male,

37.2% among 18 to 24 years old, 45.4% among 25 - 34,

and 15.0% among 35 - 50. Even though the subjects in

our studies do not represent all possible demographics,

the data collected from them represents the most com-

prehensive PGA usage so far. Their tendencies could

provide us with significant insights into the user choice

in PGA.

3.2 Results

This section summarizes our empirical analysis on the

above-mentioned datasets by presenting five findings.

3.2.1 Finding 1: Relationship Between Background

Picture and User’s Identity, Personality, or In-

terests

We analyzed all unique pictures3 in Dataset-1, and

the background pictures chosen by subjects range from

celebrity to system screenshot. We categorize them into

six classes: i) people (27/58), ii) civilization (7/58),

iii) landscape (3/58), iv) computer-generated picture

(14/58), v) animals (6/58), and vi) others (1/58).

For the category of ‘people’, 6 pictures were catego-

rized as ‘me’; 12 pictures were subjects’ families; 4 were

pictures of subjects’ friends; and 5 were celebrities. The

analysis of answers to the survey question “Could you ex-

plain why you choose such types of pictures?” revealed

two opposite attitudes towards using picture of people.

The advocates for such pictures considered: i) it is more

friendly. e.g. “The image was special to me so I enjoy

seeing it when I log in”; ii) it is easier for remembering

passwords. e.g. “Marking points on a person is easier to

remember”; and iii) it makes password more secure. e.g.

“The picture is personal so it should be much harder for

someone to guess the password”. However, other partic-

ipants believed it may leak his or her identity or privacy.

e.g. “revealing myself or my family to anyone who picks

up the device”. They preferred other types of pictures

3Due to the confidentiality agreement with the subjects, we are not

able to share pictures that are marked having personally identifiable

information.

Table 2: Attributes of Most Frequently Used PoIs

Attributes # Gesture # Password # Subject

Eye 36 20 19

Nose 21 13 10

Hand/Finger 6 5 4

Jaw 5 3 3

Face (Head) 4 2 2

because “less personal if someone gets my picture” and

“landscape usually doesn’t have any information about

who you are”.

14 pictures in Dataset-1 could be categorized as

computer-generated pictures including computer game

posters, cartoons, and some geometrical graphs. 24.1%

(14/58) of such pictures were observed in Dataset-1 but

the survey results indicated 6.4% (42/652) of partici-

pants were in such a usage pattern in Dataset-2 based

on the following survey question: “Please indicate the

type of pictures you prefer to use as the background”.

We concluded the population characteristics (male, age

18-24, college students) in Dataset-1 were the major rea-

son behind this phenomenon. The answers to “Could

you explain why you choose such types of pictures?” in

Dataset-1 supported this conjecture: “computer game is

something I am interested [in] it” and “computer games

picture is personalized to my interests and enjoyable to

look at”.

It is obvious that pictures with personally identifiable

information may leak personal information. However, it

is less obvious that even pictures with no personally iden-

tifiable information may provide some clues which may

reveal the identity or persona of a device owner. Tra-

ditional text-based password does not have this concern

as long as the password is kept secure. Previous graph-

ical password schemes, such as Face and PassPoints, do

not have this concern either because pictures are selected

from a predefined repository.

3.2.2 Finding 2: Gestures on Points of Interest

The security of background draw-a-secret schemes

mostly relies on the location distribution of users’ ges-

tures. It is the most secure if the locations of users’

gestures follow a uniform distribution on any picture.

However, such passwords would be difficult to remem-

ber and may not be preferable by users. By analyz-

ing the collected passwords, we notice that subjects fre-

quently chose standout regions (points of interest, PoIs)

on which to draw. As shown in Table 1, only 9.8% sub-

jects claimed to choose locations randomly without car-

ing about the background picture. The observation is

supported by survey answers to “Could you explain the

way you choose locations to perform gestures?”: “If I

have to remember it; it [would] better stand out.” and

“Something that would make it easier to remember”.

Even though the theoretical password space of PGA is
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Table 3: Numbers of Gesture Type Combinations and Average Time Spent on Creating Them

3×t 3×l 3×c 2×t+l 2×t+c 2×l+t 2×l+c 2×c+t 2×c+l t+l+c

Dataset-1
# 60 3 0 9 1 7 1 0 0 5

Average Time (Seconds) 5.74 12.39 N/A 10.12 21.56 11.17 17.51 N/A N/A 11.22

Dataset-2
# 3438 1447 253 1211 380 1000 622 192 442 1054

Average Time (Seconds) 4.33 7.11 9.96 6.02 6.14 7.72 9.98 8.78 10.19 9.37

Table 4: Numbers of Gesture-order Patterns

H+ H- V+ V- DIAG Others

Dataset-1 43

50.0%

5

5.8%

16

18.6%

4

4.6%

22

25.5%

18

20.9%

Dataset-2 3144

31.3%

1303

12.9%

1479

14.7%

887

8.8%

2621

26.1%

3326

33.1%

larger than text-based passwords with the same length,

a background picture affects user choice in gesture loca-

tion, reducing the feasible password space tremendously.

We summarize three popular ways that subjects used to

identify standout regions: i) finding regions with objects.

e.g. “I chose eyes and other notable features” and “I

chose locations such as nose, mouth or whole face”; ii)

finding regions with remarkable shapes. e.g. “if there is

a circle there I would draw a circle around that”; and

iii) finding regions with outstanding colors. The detailed

distribution of these selection processes is shown in Ta-

ble 1. 60.3% of subjects prefer to find locations where

special objects catch their eyes while 22.1% of subjects

would rather draw on some special shapes.

3.2.3 Finding 3: Similarities Across Points of Inter-

est

We analyzed the attributes of PoIs that users preferred to

draw on. We paid more attention to the pictures of people

because it was the most popular category. In the 31 regis-

tered passwords for the 27 pictures of people uploaded by

22 subjects in Dataset-1, we analyzed the patterns of PoI

choice. As shown in Table 2, 36 gestures were drawn on

eyes and 21 gestures were drawn on noses. Other loca-

tions that attracted subjects to draw included hand/finger,

jaw, face (head), and ear. Interestingly, 19 subjects out of

22 (86.3%) drew on eyes at least once, while 10 subjects

(45.4%) performed gestures on noses. The tendencies

to choose similar PoIs by different subjects are common

in other picture categories as well. Figure 1 shows an-

other example where two subjects uploaded two versions

of Starry Night in Dataset-1. The passwords they chose

show strikingly similar patterns with three taps on stars,

even if there is no single gesture location overlap.

3.2.4 Finding 4: Directional Patterns in PGA Pass-

word

Salehi-Abari et al. [32] suggest many passwords in click-

based systems follow some directional patterns. We are

interested in whether PGA passwords show similar char-

acteristics. For simplicity, we consider the coordinates of

tap and circle gestures as their locations and the middle





 

Figure 1: Two Versions of Starry Night and Correspond-

ing Passwords

point of the starting and ending points of line as its loca-

tion. If the x or y coordinate of a gesture sequence fol-

lows a consistent direction regardless of the other coor-

dinate, we say the sequence follows a LINE pattern. We

divide LINE patterns into four categories: i) H+, denot-

ing left-to-right (xi ≤ xi+1); ii) H-, denoting right-to-left

(xi ≥ xi+1); iii) V+, denoting top-to-bottom (yi ≤ yi+1);

and iv) V-, denoting bottom-to-top (yi ≥ yi+1). If a se-

quence of gestures follows a horizontal pattern and a ver-

tical pattern at the same time, we say it follows a DIAG

pattern.

We examined the occurrence of each LINE and DIAG

pattern in the collected data. As shown in Table 4,

more than half passwords in both datasets exhibited some

LINE patterns, and a quarter of them exhibited some

DIAG patterns. Among four LINE patterns, H+ (drawing

from left to right) was the most popular one with 50.0%

and 31.3% occurrences in Dataset-1 and Dataset-2, re-

spectively. And, V+ (drawing from top to bottom) was

the second most popular with 18.6% and 14.7% occur-

rences in two datasets, respectively. This finding shows it

is reasonable to use gesture-order patterns as one heuris-

tic factor to prioritize generated passwords.

3.2.5 Finding 5: Time Disparity among Different

Combinations of Gesture Types

We analyzed all registered passwords to understand the

gesture patterns and the relationship between gesture

type and input time. For 86 registered passwords (258

gestures) in Dataset-1, 212 (82.1%) gesture types were

taps, 39 (15.1%) were lines, and only 7 (2.7%) were cir-

cles. However, the corresponding occurrences for 10,039

registered passwords (30,117 gestures) in Dataset-2 were

15,742 (52.2%), 10,292 (34.2%), and 4,083 (13.5%), re-

spectively. Obviously, subjects in Dataset-2 chose more

diverse gesture types than subjects in Dataset-1. As

shown in Table 3, there was a strong connection between

the time subjects spent on reproducing passwords and
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the gesture types they chose. Three taps, the most com-

mon gesture combination, appeared in both datasets with

the lowest average time (5.74 seconds and 4.33 seconds

in corresponding dataset). On the other hand, the pass-

words with two circles and one line took the longest av-

erage input time (10.19 seconds in Dataset-2). In the

user studies, subjects in Dataset-2 were asked to set up

the passwords by pretending they were protecting their

bank information. However, subjects in Dataset-1 actu-

ally used these passwords to access the class materials

which they accessed more than four times a week on av-

erage. This may be a reason why subjects in Dataset-1

prefer passwords with simpler gesture type combinations

that are easier to reproduce in a timely manner.

4 Attack Framework

In this section, we present an attack framework on Win-

dows 8TM picture gesture authentication, leveraging the

findings addressed in Section 3. Our attack framework

takes the target picture’s PoIs, a set of learning pictures’

PoIs and corresponding password pairs as input, and pro-

duces a list of possible passwords, which is ranked in the

descending order of the password probabilities.

Next, we first discuss the attack models followed by

the representations of picture password and PoI. We then

illustrate the idea of a selection function and its auto-

matic identification. We also present two algorithms for

generating a selection function sequence list and describe

how it can generate picture password dictionaries for pre-

viously unseen target pictures.

4.1 Attack Models

Depending on the resources an attacker possesses, we ar-

ticulate three different attack models: i) Pure Brute-force

Attack: an attacker blindly guesses the picture password

without knowing any information of the background pic-

ture and the users’ tendencies. The password space in

this model is 230.1 in PGA [29]. ii) PoI-assisted Brute-

force Attack: an attacker assumes the user only performs

drawings on PoIs of the background picture and this

model randomly guesses passwords on identified PoIs.

The password space for a picture with 20 PoIs in this

model is 227.7 [29]. Salehi-Abari et al. [32] designed an

approach to automatically identify hot-spots in a picture

and generate passwords on them. iii) Knowledge-based

PoI-assisted Attack: in addition to the assumption for

PoI-assisted brute-force attack, an attacker ought to have

some knowledge about the password patterns learned

from collected picture and password pairs (not necessar-

ily from the target user or picture). The guessing space

in this model is the same as the one in PoI-assisted brute-

force attack. However, the generated dictionaries in this

model are ranked with the higher possibility passwords

on the top of the list.

Attack schemes could also be divided into two cate-

gories based on whether or not an attacker has the ability

to attack previously unseen pictures. The method pre-

sented in [32] is able to attack previously unseen pic-

tures for click-based graphical password. It uses click-

order heuristics to generate partially ranked dictionar-

ies. However, this approach cannot be applied directly to

background draw-a-secret schemes because the gestures

allowed in such schemes are much more complex and

the order-based heuristics could not capture users’ selec-

tion processes accurately. In contrast, our attack frame-

work could abstract generic knowledge of user choice

in picture password schemes. In addition, as a working

knowledge-based PoI-assisted model, it is able to gener-

ate ranked dictionaries for previously unseen pictures.

4.2 Password and PoI Representations

We first formalize the representation of a password in

PGA with the definition of a location-dependent gesture

which represents a single gesture on some locations in a

picture.

Definition 1 A location-dependent gesture (LdG) de-

noted as π is a 7-tuple ⟨g,x1,y1,x2,y2,r,d⟩ that consists

of gesture’s type, location, and other attributes.

In this definition, g denotes the type of LdG that must

be one of tap, line, and circle. A tap LdG is further rep-

resented by the coordinates of a gesture ⟨x1,y1⟩. A line

LdG is denoted by the coordinates of the starting and

ending points of a gesture ⟨x1,y1⟩ and ⟨x2,y2⟩. A circle

LdG is denoted by the coordinates of its center ⟨x1,y1⟩,
radius r, and direction d ∈{+,−} (clockwise or not). We

define the password space of location-dependent gesture

as Π = Πtap

∪
Πline

∪
Πcircle. A valid PGA password is

a length-three sequence of LdGs denoted as π⃗ , and the

PGA password space could be denoted as Π⃗.

A point of interest is a standout region in a picture.

PoIs could be regions with semantic-rich meanings,

such as face (head), eye, car, clock, etc. Also, they

could stand out in terms of their shapes (line, rectangle,

circle, etc.) or colors (red, green, blue, etc.). We

denote a PoI by the coordinates of its circumscribed

rectangle and some describing attributes. A PoI is a

5-tuple ⟨x1,y1,x2,y2,D⟩, where ⟨x1,y1⟩ and ⟨x2,y2⟩
are the coordinates of the top-left and bottom-right

points of the circumscribed rectangle, and D ⊆ 2D

is a set of attributes that describe this PoI. D has

three sub-categories Do,Ds and Dc and four wildcards

∗o,∗s,∗c, and ∗, where Do = {head, eye, nose, ...},

Ds = {line, rectangle, circle, ...}, and Dc =

{red, blue, yellow, ...}. Wildcards are used when

no specific information is available. For example, if a

PoI is identified with objectness measure [3] that gives
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LdGSF 1: Circle a head
i.e., (circle, {head}, Ф)

LdGSF 2: Line two noses
i.e., (line, {nose}, {nose})

LdGSF 3: Tap a nose
i.e., (tap, {nose}, Ф)

Gesture 1: Circle my father’s head

Gesture 2: Connect my little 
sister’s nose to my older sister’s 
nose

Gesture 3: Tap my mother’s nose





 

(a) (b) (c)

Figure 2: (a) Background picture and password (b)

User’s selection processes that were taken from [30]

(c) Corresponding LdGSFs that simulate user’s selection

processes

no semantics about the identified region, we mark the

PoI’s describing attribute as ∗.

4.3 Location-dependent Gesture Selection

Functions

A key concept in our framework is the location-

dependent gesture selection function (LdGSF) which

models and simulates the ways of thinking that users go

through when they select a gesture on a picture. The

motivation behind this abstraction is that the set of PoIs

and their locations differ from picture to picture, but the

ways that users think to choose locations for drawing a

gesture exhibit certain patterns. This conjecture is sup-

ported by our observations from collected data and sur-

veys discussed in Section 3. With the help of LdGSF,

the PoIs and corresponding passwords in training pic-

tures are used to generalize picture-independent knowl-

edge that describes how users choose passwords.

Definition 2 A location-dependent gesture selection

function (LdGSF) is a mapping s : G×2D ×2D ×Θ→ 2Π

which takes a gesture, two sets of PoI attributes, and a set

of PoIs in the learning picture as input to produce a set

of location-dependent gestures.

The universal set of LdGSF is defined as S. A

length-three sequence of LdGSF is denoted as s⃗, and a

set of length-three LdGSF sequences is denoted as S⃗.

s(tap,{red,apple},∅,θk) is interpreted as ‘tap a red ap-

ple in the picture pk’ and s(circle,{head},∅,θk) as ‘cir-

cle a head in pk’. Note that, no specific information of

the locations of ‘red apple’ and ‘head’ is provided here

which makes the representations independent from ac-

tual locations of objects in the picture.

One challenge we face is some PoIs may be big

enough to take several unique gestures. Let us consider

a picture with a big car image in it. Simply saying ‘tap

a car’ could result in lots of distinct tap gestures in the

circumscribed rectangle of the car. One solution to this

problem is to divide the circumscribed rectangle into a

grid with the scale of toleration threshold. However, this

solution would result in too many password entries in

the generated dictionary. For simplicity, we introduce

five inner points for one PoI, namely center, top, bot-

tom, left, and right that denote the center of the PoI and

LdG 1: <circle, 33, 15, 0, 0, 9,  >

LdG 2: <line, 54, 34, 79, 27, 0, 0>

LdG 3: <tap, 16, 35, 0, 0, 0, 0>

PoI 1: <4, 23, 21, 46, {head}>
PoI 2: <23, 3, 43, 28, {head}>
PoI 3: <46, 19, 63, 43, {head}>
PoI 4: <71, 12, 90, 35, {head}>
PoI 5: <13, 33, 18, 37, {nose}>
PoI 6: <32, 17, 34, 19, {nose}>
PoI 7: <51, 31, 56, 35, {nose}>
PoI 8: <76, 24, 81, 28, {nose}>

  ...





 

(a) (b) (c)

Figure 3: (a) Background picture and identified PoIs (b)

Identified PoIs (c) Password representations (Colors are

used to indicate the connections between the PoIs in (b)

and LdGs in (c))

four points of the center of two consecutive corners. Any

gesture that falls into the proximities of these five points

of a PoI would be considered as an action on this PoI.

For some PoIs that are big enough to take an inner line

gesture, we put ∅ as the input of the second set of PoI

attributes. s(line,{mouth},∅,θk) denotes ‘line from the

left(right) to the right(left) on the same mouth’. While,

s(line,{mouth},{mouth},θk) means ‘connect two dif-

ferent mouths’.

Figure 2 shows an example demonstrating how

LdGSF simulates a user’s selection processes that were

taken from [30]. In reality, a user’s selection process on

a PoI and gesture selection may be determined by some

subjective knowledge and cognition. For example, ‘cir-

cle my father’s head’ and ‘tap my mother’s nose’ may

involve some undecidable computing problems. One so-

lution to handle this issue is to approximate subjective

selection processes in objective ways by including some

modifiers. ‘circle my father’s head’ may be transformed

into ‘circle the uppermost head’ or ‘circle the biggest

head’. However, it is extremely difficult, if not impossi-

ble, to accurately approximate subjective selection pro-

cesses in this way, and it may bring serious over-fitting

problems in the learning stage. Instead, we choose to

ignore subjective information by abstracting ‘circle my

father’s head’ to ‘circle a head’. A drawback of this

abstraction is that an LdGSF may return more than one

LdG and we have no knowledge to rank them directly, as

they come from the same LdGSF. Using Figure 2(a) as

an example, ‘circle a head’ outputs four different LdGs

on each head in the picture. The LdGSF sequence shown

in Figure 2(c) generates 4×(4×3)×4= 192 passwords.

To cope with this issue, we use gesture-order to rank

the passwords generated by the same LdGSF sequence

that will be detailed in Section 4.5. Next, we present an

automated approach to extract users’ selection processes

from the collected data and represent them with LdGSFs.

Figure 3 shows an example demonstrating that how

to extract users’ selection processes from PoIs automat-

ically. First, PoIs in the background picture are iden-

tified using mature computer vision techniques such as

object detection, feature detection and objectness mea-

sure. Then, each LdG in a password is compared with
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PoIs based on their coordinates and sizes. If a match be-

tween PoIs and LdGs is found, a new LdGSF is created

as the combination of the LdG’s gesture type and PoI’s

attributes. For instance, the location and size of LdG 1 in

Figure 3(c) matches PoI 2 in Figure 3(b) (the locations

of the circle gesture and PoI center are compared first;

then, the radius of the circle is compared with 1/2 of PoI’s

height and width). Then, an LdGSF s(circle,{head},∅)
is created which is equivalent to the LdG shown in Fig-

ure 2(c).

To choose a password in PGA, the user selects a

length-three LdGSF sequence. With the definition of

LdGSF, the generation of ranked password list is simpli-

fied into the generation of the ranked LdGSF sequence

list. Let order: S⃗ → {1..|⃗S|} be a bijection which indi-

cates the order LdGSF sequences should be performed.

The objective of generating ranked LdGSF sequence list

is to find such a bijection.

4.4 LdGSF Sequence List Generation and

Ordering

Now we present our approach to find the aforementioned

bijection that indicates the order that the LdGSF se-

quences should be performed on a target picture for gen-

erating the password dictionary. Our framework is not

dependent on certain rules, but is adaptive to the tenden-

cies shown by users who participate in the training set.

The characteristic of adaptiveness helps our framework

generate dedicated guessing paths for different training

data. Next, we present two algorithms for obtaining such

a feature.

4.4.1 BestCover LdGSF Sequence List Generation

We first propose an LdGSF sequence list genera-

tion algorithm named BestCover that is derived from

Bemts [44]. The objective of BestCover LdGSF se-

quence list generation is to optimize the guessing order

for the sequences in the list by minimizing the expected

number of sequences that need to be tested on a random

choice of picture in the training dataset.

The problem is formalized as follows: Instance: The

collection of LdGSF sequences s⃗1, ..., s⃗n and correspond-

ing picture password π⃗1,...,π⃗n, for which s⃗i(θi) ∋ π⃗i, i ∈
{1..n} and θ1, ..,θn are the sets of PoIs in pictures

p1, .., pn. Question: Expected Min Selection Search

(emss): The objective is to find order so as to minimize

E(min{i : s⃗i(θr) ∋ π⃗r}, where s⃗i = order
−1(i) and the

expectation is taken with respect to a random choice of

r ←{1..n}.

The hardness of this problem is that different LdGSFs

and LdGSF sequences may generate the same list of

LdGs and passwords. For instance, ‘tap a red object’

and ‘tap an apple’ turn out the same result on a picture

in which there is a red apple. An overlap in different

LdGSF results is similar to the coverage characteristics

in the set cover problem. We can prove the NP-hardness

of emss by reducing from emts [44]. Due to space lim-

itations, we omit the corresponding proof. We give an

approximation algorithm for emss in Algorithm 1 that is

a modification from Bmssc [20]. The time complexity of

BestCover is O(n2 + |⃗S′|log(|⃗S′|)).

Algorithm 1: BestCover((s⃗1, .., s⃗n),(π⃗1,...,π⃗n))

for i = 1..n do

T⃗si
←{k : s⃗i(θk) ∋ π⃗k};

end

S⃗′ ← {⃗s : |T⃗s|> 0};

for i = 1..|S⃗′| do

order
−1(i)← s⃗k, that Ts⃗k

has most elements that are not

included in
∪

i′<iorder
−1(i′);

end

return order

BestCover is good for a training dataset that consists

of comprehensive and large scale password samples, be-

cause it assumes the target passwords exhibit same or at

least very similar distributions to the training data. How-

ever, if the training dataset is small and biased, the results

from BestCover may over-fit the training data and fail in

testing data.

4.4.2 Unbiased LdGSF Sequence List Generation

The over-fitting problem in BestCover is brought about

by the biased PoI attribute distributions in training data.

For example, we have a training set with 9 pictures of

apples and 1 picture of a car, and 5 corresponding pass-

words have circles on apples and 1 has a circle on car. In

the generated LdGSF sequence list, BestCover will put

sequences with ‘circle an apple’ prior to the ones with

‘circle a car’, because the former ones have an LdGSF

that was used in more passwords. However, we can see

the probability for users to circle car (1/1) is higher than

apples (5/9) if we consider the occurrences of apple and

car in pictures.

Unbiased LdGSF sequence list generation copes with

this issue by considering the PoI attribute distributions. It

removes the biases from the training dataset by normal-

izing the occurrences of LdGSFs with the occurrences of

their corresponding PoIs. Let Ds⃗k
⊆ θ denote the event

that θ contains enough PoIs that have attributes specified

in s⃗k. If a PoI with a specific type of attributes does not

exist in a picture, the probability that a user select the PoI

with such an attribute on this picture to draw a password

is 0, denoted as Pr(s⃗k|Ds⃗k
⊆ θ)= 0, e.g. a user would not

think and perform ‘tap a red apple’ on a picture without

the existence of the red apple. We assume each LdGSF

in a sequence is independent of each other and approxi-

mately compute Pr(s⃗k|Ds⃗k
⊆ θ) with Equation 1.
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Pr(s⃗k|Ds⃗k
⊆ θ)

= Pr(s1s2s3|Ds1
⊆ θ ∧Ds2

⊆ θ ∧Ds3
⊆ θ)

= Pr(s1|Ds1
⊆ θ)×Pr(s2|Ds2

⊆ θ)×Pr(s3|Ds3
⊆ θ)

(1)

For each si ∈ S, we compute Pr(si|Dsi
⊆ θ) with Equa-

tion 2:

Pr(si|Dsi
⊆ θ) =

∑
n
j=1 count(Dsi

, π⃗ j)

∑
n
j=1 count(Dsi

,θ j)
(2)

where ∑
n
j=1 count(Dsi

, π⃗ j) denotes the number of LdGs

in passwords of the training set that share the same

attributes with si, and ∑
n
j=1 count(Dsi

,θ j) denotes the

number of PoIs in the training set that share the same

attributes with si. Pr(si|Dsi
⊆ θ) describes the probabil-

ity of using a certain LdGSF when there are enough PoIs

with the required attributes.

The Unbiased algorithm generates an LdGSF se-

quence list by ranking Pr(s⃗k|Ds⃗k
⊆ θ) instead of Pr(s⃗k)

in descending order as shown in Algorithm 2. The time

complexity of Unbiased is O(n|S|+ |⃗S|log(|⃗S|)). The Un-

biased algorithm would be better for the scenarios where

fewer samples are available or samples are highly biased.

Algorithm 2: Unbiased(S)

for s ∈ S do

Compute Pr(s|Ds ⊆ θ) with Equation 2;

end

for s⃗ ∈ S⃗ do

Compute Pr(⃗s|Ds⃗ ⊆ θ) with Equation 1;

end

for i = 1..|⃗S| do

order
−1(i)← s⃗k, that Pr(s⃗k|Ds⃗k

⊆ θ) holds the i-th position

in the descending ordered Pr(⃗s|Ds⃗ ⊆ θ) list;

end

return order

4.5 Password Dictionary Generation

The last step in our attack framework is to generate the

password dictionary for a previously unseen target pic-

ture. First, the PoIs in the previously unseen picture are

identified. Then, a dictionary is acquired by applying

the LdGSF sequences on the PoIs, following the order

created by the BestCover or Unbiased algorithm. Obvi-

ously, the passwords generated by an LdGSF sequence

that holds a higher position in the LdGSF sequence list

will also be in higher positions in the dictionary. How-

ever, as addressed earlier, BestCover and Unbiased al-

gorithms do not provide extra information to rank the

passwords generated by the same LdGSF sequence. In-

spired by using the click-order patterns as the heuris-

tics for dictionary generation [32], we propose to rank

such passwords generated by the same LdGSF sequence

with gesture-orders. In the training stage, we record the

gesture-order occurrence of each LINE and DIAG pat-

tern and rank the patterns in descending order. In the

attack stage, for the passwords generated by the same

LdGSF sequence, we reorder them with their gesture-

orders in the order of LINE and DIAG patterns. Pass-

words that do not belong to any LINE or DIAG pattern

hold lower positions.

5 Implementation and Evaluation

5.1 PoI Identification

We chose OpenCV [1] as the computer vision framework

for our implementation and collected several feature de-

tection tools for automatically identifying PoIs in back-

ground pictures. The computer vision techniques we

adopted include: i) object detection: the goal of object

detection is to find the locations and sizes of semantic

objects of a certain class in a digital image. Viola-Jones

object detection framework [40] is the first computation-

ally affordable online object detection framework that

utilizes Haar-like features instead of image intensities.

Each learned classifier is represented and stored as a haar

cascade. We collected 30 proven haar cascades from [31]

for 8 different object classes including face (head), eye,

nose, mouth, ear, head, body, and clock. ii) low-level fea-

ture detection: due to the high positive and high negative

rates of object detection, we also resorted to some low-

level feature detection algorithms that identify standout

regions without extracting semantics. To identify regions

whose colors are different from their surroundings, we

first converted the color pictures to black and white, then

found the contours using algorithms in [35]. For the

circle detection, we used Canny edge detector [10] and

Hough transform algorithms [5]. iii) objectness mea-

sure: objectness measure [3] deals with class-generic

object detection. Different from detecting objects in a

specific class, the objectness measure finds the locations

and sizes of class-generic objects whose colors and tex-

tures are opposed to the background images. Objectness

measure could be considered as a technique combining

several low-level feature detectors together. We used an

objectness measure library from [2] that is able to locate

objects and give numerical confidence values with its re-

sults.

Figure 4 displays the PoI detection results on four

example pictures in Dataset-2. As we can see in Fig-

ure 4(b), circle detection could identify both bicycle

wheels and car badge, but its false positive rate is a lit-

tle high. Contour detection is the most robust algorithm

with a low false positive rate which could locate regions

whose colors are different as shown in Figure 4(c). Ob-

jectness measure shown in Figure 4(d) could also iden-
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Figure 4: PoI Identification on Example Pictures in

Dataset-2: (a) Original pictures (b) Circle detection with

Hough transform (c) Contour detection (d) Objectness

measure (e) Object detection

tify regions whose colors and textures are different from

their surroundings. Since most haar cascades we used

are designed for facial landmarks, they work smoothly

on portraits as does the second picture in Figure 4(e).

However, the results show relatively high false positive

rates on pictures from other categories. In order to iden-

tify more PoIs as accurate as possible, our approach in

PoI identification leveraged two steps. In the first step,

all possible PoIs were identified using different kinds of

tools. In the second step, we examined all identified PoIs

and removed duplicates by comparing their locations,

sizes and attributes. Then, our approach generated a PoI

set called P
1
A-40 and P

2
A-40 for each picture in Dataset-1

and Dataset-2, respectively. Those PoI sets consisted of

at most 40 PoIs with the highest confidences.

Since our attack algorithms are independent from the

PoI identification algorithms, we are also interested in

examining how our attack framework performs with

ideal PoI annotations for pictures. Besides using the au-

tomated PoI identification techniques, we manually an-

notated pictures in Dataset-2 for some outstanding PoIs

as well. To annotate the pictures, we simply recorded the

locations and attributes of at most fifteen most appealing

regions in the pictures without referring to any password

in the collected dataset. We call this annotated PoI set

P
2
L-15.

5.2 Attack Evaluation

Offline Attacks. Due to the introduction of a tolerance

threshold, picture passwords may be more difficult to

store securely compared with text-based passwords that

are normally saved after salted hashing. Even though the

approach that Windows 8TM is adopting to store picture

passwords remains undisclosed, we could consider two

attack scenarios where picture passwords are prone to

offline attacks. In the first scenario, all passwords which

fall into the vicinity (defined by the threshold) of cho-

sen passwords could be stored in a file with salted hashes

for comparison. An attacker who has access to this file
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Figure 5: (a) Percentage of passwords cracked vs. num-

ber of password guesses, per condition. (b) Percentage

of LdGs cracked vs. number of password guesses, per

condition. For Dataset-1, there are 86 passwords that

include 258 LdGs. For Dataset-2, there are 10,039 pass-

words that have 30,117 LdGs.

could perform offline dictionary attacks like cracking

text-based password systems. In the second scenario,

picture passwords could be used for other purposes be-

sides logging into Windows 8TM, where no constraint on

the number of attempts is enforced. For example, a reg-

istered picture password could be transformed and used

as a key to encrypt a file. An attacker who acquires the

encrypted file would like to perform an offline attack.

In order to attack passwords from a previously unseen

picture, the training dataset excluded passwords from the

target picture. More specifically, to evaluate Dataset-1

(58 unique pictures), we used passwords from 57 pic-

tures as the training data and attacked the passwords for

the last picture. To evaluate Dataset-2 (15 unique pic-

tures), we used passwords for 14 pictures as training

data, learned the patterns exhibited in the training data,

and generated a password dictionary for the last picture.

The same process was carried out 58 and 15 times for

Dataset-1 and Dataset-2, respectively, in which the tar-

get picture was different in each round. The size of the

dictionary was set as 219 which is 11-bit smaller than the

theoretical password space. We compared all collected

passwords for the target picture with the generated dic-

tionary for the picture, and recorded the number of pass-

word guesses.

The offline attack results within 219 guesses in differ-

ent settings are shown in Figure 5. There are 86 pass-

words in Dataset-1, which have a total of 258 LdGs.
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Figure 6: (a) Percentage of passwords cracked vs. num-

ber of password guesses, per condition. (b) Percentage of

LdGs cracked vs. number of password guesses, per con-

dition. Only the first chosen password by each subject in

Dataset-2 was considered. There are 762 passwords that

have 2,286 LdGs.

And 10,039 passwords were collected in Dataset-2, con-

taining a total of 30,117 LdGs. For Dataset-1, Best-

Cover cracks 42 (48.8%) passwords out of 86 while Un-

biased cracks 40 (46.5%) passwords for the same dataset

with P
1
A-40. For Dataset-1, 178 LdGs (68.9%) out of

258 are cracked with Unbiased and 171 (66.2%) are bro-

ken with BestCover. On the other hand, Unbiased with

P
2
L-15 breaks 2,953 passwords (29.4%) out of 10,039 for

Dataset-2. This implies Unbiased with P
2
A-40 cracking

2,418 passwords (24.0%) is the best result for all purely

automated attacks on Dataset-2. As Figure 5 suggests,

BestCover outperforms Unbiased slightly when ample

training data is available. The better performance of both

algorithms on Dataset-1 is because the password gesture

combinations in Dataset-1 are relatively simpler than the

ones in Dataset-2 as we discussed in Section 3.2.5.

In Dataset-2, subjects may not choose all 15 pass-

words with the same care as they were eager to finish

the process. To reduce this effect, we ran another analy-

sis in which only the first chosen password by each sub-

ject was considered. There are 762 passwords that have

2,286 LdGs. Like previous analysis, the training dataset

excluded passwords from the target picture. As shown in

Figure 6, results of this analysis are not as good as pre-

vious ones. Unbiased with P
2
L-15 breaks 160 passwords

(21.0%) out of 762. Unbiased with P
2
A-40 cracking 123

passwords (16.1%). BestCover cracks 108 (14.2%) and

116 (15.2%) with P
2
L-15 and P

2
A-40, respectively.
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Figure 7: (a) Percentage of passwords cracked vs. num-

ber of password guesses, per condition. (b) Percentage of

LdGs cracked vs. number of password guesses, per con-

dition. Only passwords for pictures 243, 1116, 2057,

4054, 6467, and 9899 were considered. There are 4,003

passwords that have 12,009 LdGs.

Since some pictures in Dataset-2 are similar, we ran an

additional analysis in which only passwords for pictures

243 (airplane), 1116 (portrait), 2057 (car), 4054 (wed-

ding), 6467 (bicycle), and 9899 (dog) were considered.

There are 4,003 passwords that have 12,009 LdGs. Un-

biased with P
2
L-15 breaks 1,147 passwords (28.6%) while

803 passwords (20.1%) are cracked by Unbiased with

P
2
A-40. BestCover cracks 829 (20.7%) and 875 (21.8%)

with P
2
L-15 and P

2
A-40 respectively. Results of this anal-

ysis are not as good as results with passwords from all

pictures.

Online Attacks. The current Windows 8TM allows

five failure attempts before it forces users to enter their

text-based passwords. Therefore, breaking a password

under five guesses implies the feasibility for launching

an online attack. Figure 8 shows a refined view of the

number of passwords and LdGs cracked with the first

five guesses per condition. Purely automated attack Un-

biased with P
2
A-40 breaks 83 passwords (0.8%) with the

first guess and cracks 94 passwords (0.9%) within the

first five guesses, while BestCover with P
2
A-40 cracked

20 passwords (0.2%) for the first guess and 38 pass-

words (0.4%) within five guesses. Additionally, Unbi-

ased with P
2
A-40 breaks 1,723 LdGs (5.7%) with the first

guess. With the help of manually labeled PoI set P
2
L-15,

the results are even better. For example, Unbiased breaks

195 passwords (1.9%) for the first guess and 266 (2.6%)

within the first five guesses. In the meantime, Unbi-
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Figure 8: (a) Number of passwords cracked within five

guesses, per condition. (b) Number of LdGs cracked

within five guesses, per condition.
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Figure 9: (a) Average number of passwords cracked vs.

different training data sizes. (b) Average number of LdGs

cracked vs. different training data sizes. P2
A-40 is used for

this analysis. Average over 3 analyses, with one standard

deviation shown.

ased with P2
L-15 breaks 3,022 LdGs (10.0%) with the first

guess and 4,090 LdGs (13.5%) with five guesses.

Effects of Training Data Size. In Figure 9, we show

the password and LdG cracking results with different

sizes of training datasets. For each algorithm, we used

P2
A-40 as the PoI set and performed three analyses with 60,

600, and all available passwords (about 9,400) as train-

ing data, respectively. The sizes of 60 and 600 represent

two cases: i) a training set (60) is ten times smaller than

the target set (about 669); and ii) a training set (600) is

almost the same size as the target set (about 669). For

training datasets with the sizes of 60 and 600, we ran-

domly selected these training passwords and performed

each analysis three times to get the averages and standard

deviations.

As Figure 9 shows, BestCover with 60 training sam-

ples could only break an average of 888 passwords

(8.8%) out of 10,039. And the standard deviation is as

strong as 673. While Unbiased with 60 training sam-

ples can crack 2,352 passwords (23.4%) that is almost

the same as the results generated from all available train-

ing samples. Also, the standard deviation for three trials

is as low as 62. The results from BestCover with 600

training samples are much better than the counterparts

with 60 training samples. All these observations are ex-

pected as Unbiased could eliminate the biases considered
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Figure 10: (a) pictures with fewer PoIs (b) portraits (c)

pictures with people in them (d) pictures with lots of

PoIs. Unbiased algorithm on P2
A-40 is used for this analy-

sis. (Please refer to Appendix B for the pictures).

in BestCover. The results clearly demonstrate the benefit

of using the Unbiased algorithm when a training dataset

is small.

Effects on Different Picture Categories. We mea-

sured the attack results on different picture categories

as shown in Figure 10 where each subfigure depicts the

number of passwords cracked versus the number of pass-

word guesses. Each curve in a subfigure corresponds to

a picture as shown in the legend. Our approach cracks

more passwords for a picture, if the curve is skewed up-

ward. And the cracking is faster (with fewer guesses), if

the curve is leaned toward the left.

Figure 10(a) provides a view of the attack results on

target pictures 243 and 316, each of which has only one

airplane flying in the sky. Fewer PoIs in these two pic-

tures make subjects choose more similar passwords. Un-

biased with P2
A-40 breaks 261 passwords (39.0%) for the

picture 243 and 209 (31.2%) for the picture 316. The

cracking success rates are much higher than the average

success rate in Dataset-2 under the same condition. Note

that the size of generated dictionaries for these two pic-

tures are smaller than 219 due to the number of available

PoIs.

In Figure 10(b), we show the results on two portrait

pictures where Unbiased with P2
A-40 cracks 389 pass-

words (29.0%) for both in total. The attack success rate is

much higher than the average success rate in Dataset-2.

This is due to the fact that state-of-the-art computer vi-

sion algorithms work well on facial landmarks and sub-

jects’ tendencies of drawing on these features are high.

The results show that passwords on simple pictures with

fewer PoIs or portraits, for which state-of-the-art com-
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Figure 11: Average runtime in seconds to order LdGSF

sequences using BestCover and Unbiased. Average over

15 pictures in Dataset-2 with one standard deviation

shown.

puter vision techniques could detect PoIs with high ac-

curacy, are easier for attackers to break.

Figure 10(c) shows the attack results on 5 pictures of

people. Some of these pictures only have very small fig-

ures of people and others have larger figures but not big

enough to be considered as a portrait. Unbiased with

P
2
A-40 cracks 726 passwords (21.7%) for these 5 pictures

in total, which is lower than the average success rate in

Dataset-2.

Figure 10(d) shows the attack results on 4 miscella-

neous pictures, two of which are bicycle pictures and the

other two are car pictures. The picture, 6412.jpg, has

a bicycle leaning against the wall. Different colors on

the bicycle and wall in this picture make it cluttered and

have lots of PoIs. Unbiased with P
2
A-40 only cracks 68

passwords (10.1%) for this picture. However, Unbiased

with P
2
A-40 cracked 458 (17.1%) for all 4 pictures.

Performance. We also evaluated the performance of

our attack approach. Our analyses were carried out on

a computer with dual-core processor and 4GB of RAM.

In Figure 11, we show the average runtime for our algo-

rithms to order the LdGSF sequences and generate dic-

tionary for a picture in Dataset-2. Each bar represents the

average time in seconds over 15 pictures with the stan-

dard deviation using different algorithms and PoI sets.

The results show that BestCover is much faster than Un-

biased under the same condition. The average runtime

for BestCover on P
2
A-40 to order LdGSF sequences is only

0.06 seconds and to generate a dictionary is 2.68 seconds,

while Unbiased spends 18.36 and 3.96 seconds, respec-

tively. As we analyzed in Section 4.4, such a difference

is caused by the complexity of each algorithm. With such

a prompt response, BestCover could be used for online

queries.

6 Discussion

6.1 Picture-Password-Strength Meter

Our framework could enhance the security of PGA so it

would eventually protect users and their devices by pro-

viding a picture-password-strength meter. One way to

help users choose secure passwords is to enforce some

composition policies, such as ‘three taps are not al-

lowed’. However, a recent effort [26] on text-based pass-

word found that rule-based password compositions are

ineffective because they can allow weak passwords and

reject strong ones. The cornerstone of accurate strength

measurement is to quantify the strength of a password.

With a ranked password dictionary, our framework, as

the first potential picture-password-strength meter, is ca-

pable of quantifying the strength of selected picture pass-

words. More intuitively, a user could be informed of the

potential number of guesses for breaking a selected pass-

word through executing our attack framework.

6.2 Other Attacks on PGA

Besides keyloggers that record users’ finger movements,

there are some other attack methods that may affect the

security of PGA and other background draw-a-secret

schemes. Shoulder surfing, an attack where attackers

simply observe the user’s finger movements, is one of

them. In our survey, 54.3% participants believe the

picture password scheme is easier for attackers to ob-

serve when they are providing their credentials than text-

based password. Several new shoulder surfing resistant

schemes [22, 43] were proposed recently. However, the

usability is always a major concern for these approaches.

The smudge attack [4] which recovers passwords from

the oily residues on a touch-screen has also been proven

feasible to the background draw-a-secret schemes and

could pose threats to PGA.

6.3 Limitations of Our Study

While we took great efforts to maintain our studies’ va-

lidity, some design aspects of our studies and developed

system may have caused subjects to behave differently

from what they do on Windows 8TM PGA. Subjects in

Dataset-2 pretended to access their bank information but

did not have anything at risk. Schechter et al. [33] sug-

gest that role playing like this affects subjects’ security

behavior, so passwords in Dataset-2 may not be repre-

sentative of real passwords chosen by real users. Be-

sides, we did not record whether a subject used a tablet

with touch-screen or a desktop with mouse. The different

ways of input may affect the composition of passwords.

Moreover, Dataset-2 includes multiple passwords per

user and this may have impacted the results. In our anal-

yses, training password datasets include passwords from

the targeted subject. Even though this may have affected

the results, we believe it is less influential. Because,

for each analysis, there were around 9,400 training pass-

words for which only 14 came from the targeted user.
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Since all training passwords were treated equally, the in-

fluence brought by the 0.14% training data is low. As

discussed in Section 5.2, even though our online attack

results showed the feasibility of our approach, it still re-

quires more realistic and significant attack cases. As part

of future work, we plan to integrate smudge attacks [4]

into our framework to improve the efficacy of our online

attacks.

7 Related Work

The security and vulnerability of text-based password

have attracted considerable attention because of several

infamous password leakage incidents in recent years.

Zhang et al. [44] studied the password choices over time

and proposed an approach to attack new passwords from

old ones. Castelluccia et al. [11] proposed an adap-

tive Markov-based password strength meter by estimat-

ing the probability of password using training data. Kel-

ley et al. [26] developed a distributed method to calcu-

late how effectively password-guessing algorithms could

guess passwords. Even though the attack framework we

presented is dedicated to cracking background draw-a-

secret passwords, the idea of abstracting users’ selection

processes of password construction introduced in this pa-

per could also be applicable to cracking and measuring

text-based passwords.

The basic idea of attacking graphical password

schemes is to generate dictionaries that consist of poten-

tial passwords [36]. However, the lack of sophisticated

mechanisms for dictionary construction affects the attack

capabilities of existing approaches. Thorpe et al. [38]

proposed a method to harvest the locations of training

subjects’ clicks on pictures in click-based passwords to

attack other users’ passwords on the same pictures. In the

same paper [38], they presented another approach which

creates dictionaries by predicting hot-spots using image

processing methods. Oorschot et al. [27] cracked DAS

using some password complexity factors, such as reflec-

tive symmetry and stroke-count. Salehi-Abari et al. [32]

proposed an automated attack on the PassPoints scheme

by ranking passwords with click-order patterns. How-

ever, the click-order patterns introduced in their approach

could not capture users’ selection processes accurately,

especially when a background image significantly affects

user choice.

8 Conclusion

We have presented a novel attack framework against

background draw-a-secret schemes with special attention

on picture gesture authentication. We have described an

empirical analysis of Windows 8TM picture gesture au-

thentication based on our user studies. Using the pro-

posed attack framework, we have demonstrated that our

approach was able to crack a considerable portion of

picture passwords in various situations. We believe the

findings and attack results discussed in this paper could

advance the understanding of background draw-a-secret

and its potential attacks.
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A Memorability and Usability Analysis

The tolerance introduced in PGA is a trade-off between

security and usability. In order to quantify this tradeoff,

we calculate the distance between input PGA passwords

with the registered ones. When the types or directions of

gestures do not match, we regard input passwords incom-

parable with the registered ones. Otherwise, the distance
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Figure 12: Memorability and Usability

is defined as the average distance of all gestures. We de-

note the password presented for the i-th attempt π⃗
(i) and

π⃗
(0) as the password registered for the same picture.

In the 2,536 login attempts collected in Dataset-1, 422

are unsuccessful in which 146 are type or direction er-

rors and 276 are distance errors. Figure 12(a) shows the

distance distribution for the password whose distance is

less than 10 and the red line denotes the threshold for be-

ing classified as successful. The result shows the current

setup in our system is quite reasonable to capture most

closely presented passwords.

Figure 12(b) shows the average time in seconds that

subjects spent on registering, confirming, and reproduc-

ing passwords. x = 1 denotes the registration, x = 2 de-

notes the conformation, and all others denote the later

login attempts. As we can notice, the average time for

the registration is 7.43 seconds while 4.53 seconds are

taken for the confirmation. With subjects getting used to

the picture password system, the average time spent for

successful logins is reduced to as low as 2.51 seconds.

On the other hand, the average time spent on all unsuc-

cessful login attempts is 5.86 seconds.

B Dataset-2 Pictures

Figure 13 shows 15 images that are used in Dataset-2 as

the background pictures for password selection.

    

    

    

Figure 13: Background Pictures Used in Dataset-2

C LdGSF Identification

We discuss the identified LdGSFs by linking PoIs and

passwords in Dataset-2 with the help of two PoI sets

P
2
L-15 and P

2
A-40 using our LdGSF identification algorithm

discussed in Section 4.3. The results from PL are closer to

users’ actual selection processes, while the results from

PA are the best approximations to users’ selection pro-

cesses we could get in a purely automated way with state-

of-the-art computer vision techniques.

Table 5: Top 10 Identified LdGSFs using P
2
L-15

Rank Pr(sk) Pr(sk|Dsk
⊆ θ)

1 (tap,{head},∅) (tap,{nose},∅)
2 (tap,{∗c},∅) (tap,{mouth},∅)
3 (tap,{circle},∅) (tap,{circle},∅)
4 (tap,{eye},∅) (tap,{eye},∅)
5 (circle,{head},∅) (tap,{∗c},∅)
6 (tap,{nose},∅) (tap,{head},∅)
7 (circle,{circle},∅) (circle,{circle},∅)
8 (circle,{eye},∅) (tap,{ear},∅)
9 (line,{∗c},{∗c}) (line,{mouth},{mouth})

10 (line,{eye},{eye}) (tap,{forehead},∅)

The top ten identified LdGSFs using P
2
L-15 are shown

in Table 5 ordered by their Pr(sk) and Pr(sk|Dsk
⊆ θ).

It also suggests that ‘tap a head’ is found the most times

in the passwords, while ‘tap a nose’ is the most popular

one when there is a nose in the picture. The result seems

unreasonable at the first glance since there is always a

nose in a head. Actually, it is because if the head in the

picture is really small, we simply annotate the circum-

scribed rectangle as head instead of marking the inner

rectangles with more specific attributes. Table 5 indi-

cates that gestures on human organs are the most popular

selection functions adopted by subjects.

Table 6: Top 10 Identified LdGSFs using P
2
A-40

Rank Pr(sk) Pr(sk|Dsk
⊆ θ)

1 (tap,{circle},∅) (tap,{clock},∅)
2 (tap,{mouth},∅) (circle,{clock},∅)
3 (tap,{eye},∅) (tap,{shoulder},∅)
4 (tap,{head},∅) (tap,{eye},∅)
5 (tap,{∗c},∅) (tap,{head},∅)
6 (tap,{∗},∅) (tap,{body},∅)
7 (circle,{eye},∅) (tap,{mouth},∅)
8 (tap,{body},∅) (tap,{circle},∅)
9 (circle,{circle},∅) (tap,{∗},∅)

10 (circle,{head},∅) (tap,{∗c},∅)

The top ten identified LdGSFs using P
2
A-40 are shown

in Table 6. By comparing Table 5 and Table 6, we could

notice differences caused by using annotated PoI set and

automated detected PoI set. The fact that s(tap,{∗},∅)
is among the top ten LdGSFs is an indicator that the au-

tomatic PoI identification could not classify many PoIs

and simply mark them as ∗. It is surprising to find

out there are two LdGs on clock in top ten ordered by

Pr(sk|Dsk
⊆ θ) at first, because there is no clock in

any picture in Dataset-2. The closest guess is OpenCV

falsely identified some circle shape objects as clocks, but

the number is not very big since there is no LdG on a

clock in the top ten ordered by Pr(sk).


