
On the Security of Remotely Keyed Encryption

Stefan Lucks

Institut fiir Numerische und Angewandte Mathematik

Georg-August-Universit~it GSttingen

Lotzestr. 16-18, D-37083 GSttingen, Germany

(email: lucks@math.uni-goett ingen, de)

Abs t rac t . The purpose of remotely keyed encryption is to efficiently

realize a secret-key block cipher by sharing the computational burden

between a fast untrusted device and a slow device trusted with the key.

This paper deals with how to define the security of remotely keyed en-

cryption schemes. Since the attacker can take over the slow device and

actually take part in the encryption process, common definitions of the

security of block ciphers have to be reconsidered.

Using random mappings, collision resistant hash functions, and stream

ciphers as building blocks, the Random Mapping based Remotely Keyed

(RaMaRK) encryption scheme is proposed. Also GRIFFIN is proposed, a

fast new block cipher for flexible but large blocks. The RaMaRK scheme

and GRIFFIN are provably secure if the underlying building blocks are

secure.

1 I n t r o d u c t i o n

At the Fast Software Encryption conference 1996 in Cambridge, Blaze [5] pro-

posed a new paradigm for secret-key block ciphers: Remotely keyed encryption.
This means to share the workload for en- and decryption between a fast host

and a slow card. The host is trusted with plaintexts and ciphertexts, but only

the (hopefully tamper-resistant) card does know the key.

While Blaze's "remotely keyed encryption protocol" is a fresh and interesting

approach to solve the paradoxical problem how to realize "high-bandwidth en-

cryption with low-bandwidth smartcards", it also has some drawbacks. In Section

3.1 of his paper, Blaze himself mentions some security problems, but assumes

"neither of these attacks is likely to pose a serious threat to most practical ap-

plications." In spite of this assumption, the current author believes that a block

cipher realized by a remotely keyed encryption scheme should be as secure as

usually demanded from other block ciphers.

One goal of this paper is to generalize the common notions of block cipher

security. For block ciphers, one usually considers attacks where the attacker can

choose ciphertexts and decrypt them, and/or choose plaintexts and encrypt them.

For remotely keyed encryption, we have to consider the case when the attacker

does take par t in the encryption or decryption protocol as the host. A second

goal is to come up with a new remotely keyed encryption scheme. This has to be

provably secure with respect to the generalized notions of security if its building

220 Stefan Lucks

blocks are secure. As a side result, the block cipher GRIFFIN realized by our

scheme is a fast and secure block cipher for large blocks--and of practical interest

even outside the scope of remotely keyed encryption, see section 6.

Throughout this paper, "random" always means "according to the uniform

probability distribution". If x is randomly chosen from the set S, we write x ER

S. I f x and y are independent random values from S, then (x, y) E R S 2. By x@y
we denote the bit-wise XOR of x and y.

2 H o w t o A t t a c k t h e R K E P

In this section, we describe Blaze's remotely keyed encryption protocol (RKEP)

[5] and point out some of its weaknesses.

For the RKEP, we need a collision resistant hash function H : {0, 1}* >

{0, 1} b and a secret-key block cipher with b-bit blocks. Given the key K E {0, 1} k,

the encryption function is EK : {0, 1} b -~ {0, 1} b and the decryption function is

D~. To cover the case when k r b, one needs a public mapping M : {0, 1} b)

{0, 1} k. By P = (P1 , . . . , Pn) E {0, 1} nb we denote a plaintext block, which can be

divided into n subblocks P1 , P , each of b bits. C = (C1 , . . . , C,) E {0, 1} nb

is the corresponding ciphertext block. When encrypting P or decrypting C, an

intermediate block I = (I1 , . . . , In) E {0, 1} nb is considered.

Encrypting with the RKEP works as follows:

1. Given P, the host computes I by /~ := Pi @ H(P1) for i e {2 , . . . , n} and

then /1 := P1 @ H (/ 2 , . . . , In). We abridge this to I := Modify(P).

2. I1 is sent to the card, which knows the secret key K and computes C1 :=

EK(I1) and Kp := M(EK(C1)). The pair (C1, Kp) is sent back to the host.

For the sake of shortness, we write (C1, Kp) := LocalK(I1).

3. The host computes the remaining n - 1 subblocks C2 := EKp(I2 @ C1),
C3 := EKp(I3 @ C2), . . . , Cn := EKp(In @ C~-1) of the ciphertext C.

Decryption is similar:

1. Given the ciphertext C, the host sends C1 to the card.

2. The card computes I1 := DK(C1), Kp :.: M(EK(CO) and sends both values

to the host. For short, we write (11, K p) : = Localgl(C1).

3. The host computes /2 : - DKp(C~) @ C1, I3 := DKp(C3) @ C~, . . . , I , :=

DKp(C,~) | Ca-1.
Also, the host computes the plaintext P from I: P1 := I10H(I~ , . . . , In) and

Pi := Ii @ H(P1) for i E {2 , . . . , n}- - in short: Y := Modi fy- l (I) .

Apart from enabling remotely keyed encryption, the RKEP can be seen as a

block cipher with large (i.e. bn bit) blocks. Thus we can write C := R K E P K (P)

for encrypting with the secret key K, and P := RKEP~:I(C) for decrypting. For

block ciphers, one usually requires: If the attacker encrypts or decrypts at most q
times, but has no further knowledge about the key K or plaintext-ciphertext pairs,
there should be no more than q such pairs (p(i), C(i)) with C (i) = RKEPK(P (i))

On the Security of Remotely Keyed Encryption 221

known to the attacker. As we will see below, the RKEP block cipher does not

meet this requirement.

Now, we consider two attacks on the RKEP block cipher. The attacker, we

call her Alice, has the unwitting help of Bob, who encrypts and decrypts for her.

Attack I is a chosen plaintext attack, since given a plaintext P, Alice chooses two

plaintexts P ' = (P~, . . . P~) and P " = (P~ ' , . . . Pn '~) different from P, receives the

corresponding ciphertexts C' = (C I , . . . C ~) and C" = (C[' , . . .C~') from Bob,

and uses this knowledge to compute the ciphertext C -- R K E P K (P) without

more help by Bob. Attack II is a two-sided attack, i.e. the attacker must be able

to encrypt and to decrypt.

A t t a c k I: Given a "suspicious" plaintext P Bob is not willing to encrypt for

Alice, Alice chooses two plaintexts P ' and P " which appear random. If Bob

gives her C' = RKEPK(P') and C" = RKEPK(P"), she can derive the pair

(C1,Kp) of values required to compute C = R K E P K (P) from this, without

further asking Bob. The attack requires the following six steps:

1. Alice computes I = Modify(P).

2. She chooses any I I r I, except for I~ = I1.

3. She computes P' = Modify-~(I ') and asks Bob for C' = R K E P K (P ') .

(Note that I t = I1 and hence C~ = C1.)

4. She chooses any I" r I, except for I~' = C~.

5. She computes P " = Mod i fy - l (I ' ') and asks Bob for C" = R K E P K (P ") .

(Now C['= EK(I~') = EK(C~) = EK(C1).)
6. She computes Kp -- M(C~l).

A t t a c k II: Given a ciphertext C Bob is not willing to decrypt for her, Alice

chooses a ciphertext C' different from C and a plaintext P ' . Similarly to the

above attack, Alice can find the pair (C), Kp)_ she needs to compute P -- RKEPK (C),

once she is given P ' = RKEPKI(C ') and C~ '= RKEPK(P")"

1. Alice chooses any C' r C, except for C~ = C1.

2. She asks Bob for P ' = RKEP~I(C ') .

3. She computes I ' = Modify(P') . (Now she knows/1 = I~.)

4. As in the last three steps of attack I, Alice computes Kp -~ M(EK(I1)).

For attack III, we will not consider attacks on the RKEP block cipher, but

examine how to misuse a given smartcard. Here, Alice does not need Bob's help

but can decrypt ciphertexts for herself, using a "decrypt only" smartcard. This is

a reasonable demand e.g. for pay-TV applications, where (paying) customers are

given a smartcard to decrypt broadcast data (i.e. the TV program). Customers

should not be able to encrypt. Otherwise they could encrypt and broadcast video

data for themselves, and thus forge the pay-TV program.

We consider a smartcard to compute the function LocalKl--but not Localn.

We assume that with significant probability it is possible to determine EK(C1)

from M(EK(C1)). This assumption appears to be reasonable, since Blaze only

requires the public function M to map a b-bit string to a k-bit key string, but

does not demand M to be either secret or a one-way function ([5], top of p. 35).

222 Stefan Lucks

A t t a c k III: Given a target plaintext P, Alice proceeds like this:

1. She computes I := Modify(P).

2. She feeds/1 into her smartcard to get

(dummy, X) -- Localg 1(I1) = (. . . , M(EK(I1))).

3. She determines C1 with X = M(C1).

4. She feeds C1 into the smartcard to get

(Y, Kp) -- Localg 1 (C1) = (DE (C1), M(EK(C1))).

Note that if b > k, exaustive search over the 2 b-k possible values C~ with

M(C~) = X is needed to find the unique C1 with I~ = Y = Dk(C~). Once

Alice knows (C1, Kp) = LocalK(I1), computing C2, . . . , Cn is easy for her.

We will not discuss under which circumstances the above attacks become

practical. Possibly, our attacks are of no relevance for the applications Blaze

considered for the RKEP. However, the RKEP block cipher clearly has some

properties, a good block cipher should not have.

3 W h e n is R e m o t e l y K e y e d E n c r y p t i o n " S e c u r e " ?

A remotely keyed encryption scheme is a protocol to distribute the computational

burden for a B-bit block cipher between two parties, a host and a card. (The

"card" could either be a smartcard connected to the host, or something quite

different, e.g. an "encryption server" in a computer network.) The host knows

plaintext and ciphertext, but only the card is trusted with the key. 1 The protocol

is divided into two subprotocols, an encryptzon protocol and a decryption protocol.

Given a B-bit input, either to encrypt or to decrypt, such a subprotocol runs

like this: The host sends a challenge value to the card, depending on the input,

and the card replies a response value, depending on both the challenge value and

the key. E.g. in the case of the RKEP encryption protocol, I1 is the challenge

value, and the pair (C1, t ip) is the response value, while for RKEP decryption C1

is the challenge value, and (I1, Kp) is the response value. Exchanging challenge

and response values can be iterated. During one run of a subprotocol every

challenge value depends on the input and the previously given response values

and the response values depend on the key and the previous challenge values. We

may assume that neither the overall number of bits for the challenge values, nor

the overall number of bits for the response values exceed p, where t3 << B.

For a key K E {0, 1} k, the encryption protocol realizes the encryption function

Encryp t g : {0, 1} B > {0, 1} B and the decryption protocol the decryption

function Decrypt K : {0, 1} B > {0, 1} B, such that for every plaintext X E

{0, 1} B the equation X = Dec ryp t /~ (Enc ryp tg (X)) holds. 2

1 Such a scheme can also be seen as the card's "mode of operation".

2 For B* > B this definition can be generalized to ~.ncrypt K : {0, 1} B ----+ {0, 1} B~

and Decrypt K : {0, 1} m' -----+ {0, 1} B, as long as X = DecryptK(EncryptK(X)) is

valid for all plaintexts X E {0, 1} B. But for the purposes of this paper, we don't need
that generalization.

On the Security of Remotely Keyed Encryption 223

In order to define the security of such a protocol, we first need to describe

the security of block ciphers. In this paper, we only consider block ciphers with

ciphertexts of the same size as the plaintexts. Encrypting with such a block cipher

means to apply a key-dependent permutation g to the plaintext, decrypting to

apply its inverse g-1 to the ciphertext.

In cryptography, one often considers a chosen plaintext attack, where attackers

can encrypt plaintexts of their choice. Here, we consider an even stronger type

of attack, the two-sided attack, often called "combined adaptive chosen plain-

text/chosen ciphertext attack", where attackers are able to encrypt plaintexts of

their choice and decrypt ciphertexts of their choice.

A block cipher is forgery secure, if after q encryptions resp. decryptions

of chosen inputs, the attacker can know at most q plaintext-ciphertext pairs

(p(1), C(1)), . . . , (p(q), c(q)), but no (P, C) ~ {(P(1), C(1)) , . . . , (p(a), c(q))},

with C = Encrypt /c(P) (without encrypting or decrypting again).

In the case of remotely keyed encryption, we need to consider attacks, where

instead of encrypting plaintexts or decrypting ciphertexts the attackers act as the

host when executing the encryption resp. decryption protocol.

Def in i t ion : A remotely keyed encryption scheme is forgery secure, if after q

executions of the encryption resp. decryption protocol with arbitrarily chosen

challenge values, the attacker can know no more than q plaintext-ciphertext pairs

(p(1), C(1)), . . . , (p(q), C(q)) which are valid, i.e. Ci = Encryp tg(P i).

Another property of block ciphers is, when attackers can operate only in one

direction, e.g. choose plaintexts and encrypt, they should be unable to solve the

problem to compute in the reverse direction, i.e. to decrypt a given ciphertext.

Def in i t ion : A remotely keyed encryption scheme is inversion secure,

- if for attackers able to execute the encryption protocol it is infeasible to

decrypt a randomly chosen ciphertext, and

- if for attackers able to execute the decryption protocol it is infeasible to

encrypt a randomly chosen plaintext.

Often, the security of cryptographic primitives is defined as the non-existence

of statistical tests to detect non-randomness properties. This point of view leads

to an even stronger definition of the security of block ciphers than forgery-

security: A B-bit block cipher is called pseudorandom, if for two-sided attack-

ers it is infeasible to distinguish whether they are given a random permutation

p : {0, 1} B > {0, 1} B and its inverse, or the encryption function Encrypt K :

{0, 1} B > {0, 1} B and the decryption Function Decrypt g depending on the

secret key K. Attackers who participate in an encryption or decryption protocol

learn the card's response values and thus know that the encryption is not a ran-

dom permutation. Hence when considering pseudorandomness, we can't consider

attackers which execute the encryption or decryption protocol.

Def in i t ion : A remotely keyed encryption scheme is pseudorandom, if the block

cipher it realizes is pseudorandom.

224 Stefan Lucks

Note that the RKEP is neither forgery secure (cf. attacks I and II), nor inver-

sion secure (cf. attack III), nor pseudorandom (cf. attacks I and II). Even if we

only consider chosen plaintext attacks, the RKEP block cipher is neither forgery

secure nor pseudorandom (cf. attack I).

4 The R a M a R K Encrypt ion scheme

Now we describe the R___q_andom Mapping based Remotely Keyed (RaMaRI() En-
cryption scheme. The name comes from one of our building blocks, a fixed size
random mapping f : {0, 1} b ~ {0, 1} b. For the proofs of security, we assume f

to be a random function (a "random oracle" in the sense of Bellare and Rogaway

[4]), i.e. for s r t: (f(s) , f(t)) ER {0, 1} 2b.

Except when b is tiny, one can't actually implement such random functions--

one would have to store b2 b bits. In practice, one assumes f to be a pseudorandom

function depending on a small secret key and undistinguishable from a random

function for everyone without knowledge of the key. This could be done e.g. by

using a block cipher or a dedicated hash function. Note that realizing pseudor-

andom mappings from dedicated hash functions must be done with great care to

be secure (cf. [9]). Also note that b must be large enough--performing close to

25/2 encryptions has to be infeasible. 3 We use three building blocks:

1. Random mappings fi : {0, 1} b ~ {0, 1} b, as described above.

2. A hash function H : {0, 1)* ~ {0, 1} b. H has to be collision resistant, i.e.

it has to be infeasible to find any t, u E {0, l}* with u r t but H(u) = H(t).
3. A pseudorandom bit generator (i.e. a "stream cipher") S : {0, 1} b

{0, 1}*. We restrict ourselves to S : {0, 1} b ---4 {0, 1} B-2b. If the seed

s E {0, 1} b is randomly chosen, the bits produced by S(s) have to be un-

distinguishable from randomly generated bits.

For theorem 3 we need an additional property: If s is secret and attackers

choose tl , t2, . . . E {0, 1} b with t i r tj for i r j and receive outputs S(s G
t l) , S(s @ t~), . . . , it has to be infeasible for the attackers to distinguish

these outputs from independently generated random bit strings of the same

size. Hence, such a construction behaves like a random mapping {0, 1} b

{0, 1} B-2b, but actually is a pseudorandom one, depending on the secret s.

Based on these building blocks, we realize a remotely keyed encryption scheme

to encrypt blocks of any size B _> 3b, see figure 1. In contrast to Blaze's RKEP,

B need not be a multiple of b.

We represent the plaintext by (P, Q, R) and the ciphertext by (A, B, C),

where (P, Q, R), (A, B, C) E {0, 1} b x {0, 1} 6 • {0, 1} s-2b. For the protocol

3 If we only are given a random mapping f ' : {0, l) b' ----+ {0, 1) b' with b' just large

enough that performing close to 2 b' encryptions is infeasible, we can apply Aiello's
and Venkatesan's work [1] to construct a random mapping f : {0, 1} b) {0, 1} b with
b : -= 2b'. Provably ~2(2 b/2) queries are needed to distinguish with 8(1) probability

between f and a truly random b-bit to b-bit function.

On the Security of Remotely Keyed Encryption

Card

225

P

Q-

~T : A

*-B

Fig. i . The RaMaRK encryption protocol.

description we also consider intermediate values T, U, V, X, Y, Z E {0, 1} b, and

I E {0, 1} B-2b. The encryption protocol works as follows:

1. Given the plaintext (P, Q, R), the host sends P and Q to the card.

2. The card computes V = f l (P)@Q, T = f2(V)@P, and sends X = f3(T)GU

to the host.

3. The host computes I = S(X) ~ R, Y = g (I) , sends Z = X ~ Y to the card,

and computes C = S(Z) @ I.

4. The card computes V = f4(T) �9 Z and sends the two values A = fh(V) ~ T

and B = f6 (A) ~ V to the host.

Decrypting (A, B, C) is done like this:

1. The host sends A and B to the card.

2. The card computes V = f6(A)@B, T = fh(V)@A, and sends Z = f 4 (T) ~ Y

to the host.

3. The host computes I = S(Z) ~ C, Y = H(I) , sends X = Z ~ Y to the card,

and computes R = S(X) �9 I.

4. The card computes U = fa(T) @X and sends the two values P = f2(U) ~ T

and Q = f l (P) �9 U to the host.

226 Stefan Lucks

One can easily verify that by first encrypting any plaintext using any key, then

decrypting the result using the same key, one gets the same plaintext again.

5 T h e S e c u r i t y o f t h e R a M a R K e n c r y p t i o n s c h e m e

Next, we prove the forgery security, the inversion security, and the pseudoran-

domness of the RaMaRK scheme.

T h e o r e m 1. A two-sided attack against the RaMaRK encryptzon scheme to find
q valid plaintext-ciphertext pairs by q-1 protocol executions succeeds with at most
the probability q22/2b.

Proof. By Pi, Qi, Xi, Zi, Ai, and Bi we denote the challenge and response values

of the ith protocol execution--independently of whether the encryption protocol is

executed, i.e. (Pi, Qi) and Zi are challenge and Xi and (Ai, Bi) response values,

or the decryption protocol is executed and the role of challenge and response

values is reversed. Similarly are the subscripts for Ii, Yi, ~ , Ui, and Vi used.

Since H is collision resistant, for every Yi at most one Ii with H(I~) = Yi
can be known to the attacker and thus every triple (Pi, Qi, Yi) for the encryption

protocol corresponds to at most one plaintext (Pi, Qi, Ri) known to the attacker,

and every triple (Ai, Bi, Yi) corresponds to at most one ciphertext. It doesn't help

attackers to repeat the challenge values of a previous protocol execution. For i r j

we can assume (Ai, Bi, Ci) r (Aj, Bj, Cj) and (Pi, Qi, Z,) r (Pj, Qj, Zj). After

every protocol execution, the attacker can choose whether next to execute the

encryption or the decryption protocol.

At first, we consider the e n c r y p t i o n p ro toco l . The attacker sends Pr and

Qr to the card. For every i E {1 , . . . , r - 1} we need to distinguish whether

Pi = P~ and Qi = Qr or not.

Case I: Pi = Pr and Qi = Qr. In this case, the corresponding internal values are

equal, i.e. Ti = Tr and Xi = Xr, but Zi r Z~ and thus ~ r V~, (Ai, A~) ER
{0, 1} 2b, and prob[Ai = A~] _< 1/2 b. If A i r Ar then (Bi, Br) e R {0, 1} 2b.

Thus with a probability _> 1 - 1/2 b, the ciphertext fractions (Ai, Bi) and

(A~, B~) are independently chosen random values.

C a s e II: Pi • P, or Qi r Qr. If Pi = Pr and Qi r Qr, then Ui r U~. If

Pi ys Pr, then fl(Pi) and f l (Pr) are two independent random values, ,we

write (ft(Pi),f~(P~)) eR {0,1) 2b, and so are Ui and U~, thus prob[Ui =

Ur] _< 1/2 b.

If Ui ~ Us, then (Ti, T~) ER {0, 1) 2b, hence p rob[T/= Tr] <_ 2/2 b.
If T / r T~, then (~ , Vr) ER {0, 1} 2b, prob[V/-- Vr] _< 3/2 b, prob[(Ai, At) E R

{0, 1) ~b] > 1 - 3/2 b, and prob[Ai = A~] _> 1 - 4/2 b. Thus with a probab-

ility not below 1 - 4/2 b, the ciphertext fractions (A~, B~) and (A~,Br) are

independently chosen random values.

Due to the symmetric construction of the RaMaRK scheme, similar arguments

apply as well if the attacker runs the d e c r y p t i o n p ro toco l .

On the Security of Remotely Keyed Encryption 227

Finding q valid plaintext-ciphertext pairs with q - 1 protocol executions es-

sentially means to find a plaintext (Pq, Qq, Rq) where one can predict the cor-

responding ciphertext (Aq, Bq, Cq) without having used either ((Pq, Vq), Zq) or

((Aq, Bq), Xq) as challenge values for the encryption resp. decryption protocol.

We consider the second response value wi E {0, 1} 25 the attacker receives

during the ith protocol execution, i.e. (A~., Bi) when encrypting and (Pi, Qi)

when decrypting. Note that after q - 1 protocol executions, the attacker needs to

predict wq. Random response values can't be predicted, the attacker can do no

better than to deliberately guess one. There are q(q - 1)/2 sets {i, j} with i r j

and i , j E {1 , . . . , q}, hence the probability that after q - 1 protocol executions

the attacker can either predict or guess wq is at most q22/25. [:]

Theorem 1, gives us an exact upper bound for the probability of success of

forgery attacks against our scheme, depending on the number q - 1 of queries.

For the sake of simplicity and shortness, in the following we omit such an exact

treatment and assume that there are only q = o(25/2) queries. Note that the

constants hidden by the asymptotics are quite small and can be found similarly

to the proof of theorem 1.

T h e o r e m 2. The RaMaRK scheme is secure against inversion attacks.

Sketch of proof." We restrict ourselves attackers who only can execute the en-

cryption protocol. For reasons of symmetry, the proof for attackers only able to

execute the decryption protocol is the same.

We consider the permutation g : {0, 1} 25) {0, 1} 25 with g(P, Q) = (T, X).

Given the ciphertext (T, X), our problem is to find a plaintext (M, N) with

g(M, N) = (T, X), where we are allowed to evaluate g, but not its inverse g-1. We

choose random functions f4, fh, and f6, the value R ER {0, 1} B-25, and compute

the corresponding ciphertext (A, B, C). Now we can simulate the card's part of

the encryption protocol. If one could find the plaintext (P, Q, R) corresponding to

(A, B, C), one also could break g. But since q = 0(25/2) and g is a Luby-Rackoff

cipher, chosen plaintext attacks on it are infeasible [6]. []

T h e o r e m 3 . The RaMaRK scheme is pseudorandom.

Sketch of proof: Reconsider the proof of theorem 1. At the rth point of time, the

attacker either chooses a plaintext (Pr, Q~, R~) for encryption, or a ciphertext

(At, Br, C~) for deeryption.

First, we consider the case when a plaintext is chosen and encrypted. For

every i E {0 , . . . , r - 1}, we need to distinguish whether Pi = P~ and Qi = Q~,

or not.

Case I: If P, = Pr and Qi = Qr then Ri ~ R~ and thus I i r I~, otherwise the

attacker would not get any new information.

Case II: If P i r P, or Q~ r Q~ then prob[T/ r Tr] < 2/2 b, and if T/ r T~

then (X~, X~) eR {0, 1} 25 thus S(X~) and S(X~) are undistinguishable from

independent (B - 2b)-bit strings chosen at random--and so are I~ and I~.

228 Stefan Lucks

For reasons of symmetry, the same arguments apply if a ciphertext is chosen and

decrypted.

Now q = 0(25/2), i.e. q2 ~ 25/2, thus we can expect all I1, Is, . . . , Iq to be

pairwise distinct. Then all]I1, Y2, . . . , Yq are pairwise distinct, too--otherwise

the collision resistant hash function H would be broken.

/.Prom the proof of theorem 1 we can deduce that a part of the o u t p u t -

(A, B) when encrypting and (P, Q) when decrypting--is undistinguishable from

randomly chosen bit-strings with a probability not below 1 - q22/25. The pseu-

dorandomness of the remaining part can be deduced from the additional property

of the stream cipher S. []

When designing cryptographic algorithms and protocols one often needs col-

lision resistant hash functions with more properties [2]. For our proof of security,

collision resistance of the hash function H is sufficient. But if H behaves like a

random oracle [4], we can abandon the demand for the additzonal property of S.

6 T h e B l o c k C i p h e r G R I F F I N

Even if remotely keyed encryption is not required, GRIFFIN, the block cipher

realized by the RaMaRK scheme, is of some interest of its own.

In 1996, Anderson and Biham [3] proposed two block ciphers for flexible but

large blocks, BEAR and LION. A similar proposal is the block cipher BEAST, see

[8]. All three block ciphers depend on using a hash function H and a stream cipher

S as building blocks, BEAST also needs a fixed size pseudorandom mapping.

With respect to chosen ciphertext attacks, BEAR, LION, and BEAST are

pseudorandom (see [7] for a proof). But neither of the three ciphers is pseudor-

andom as defined in this paper, i.e. with respect to two-sided attacks. Luby's and

Rackoff's attack on three-round Luby-Rackoff ciphers [6] works well for BEAR,

LION, and BEAST. Therefore, Anderson and Biham [3] also proposed LIONESS,

a block cipher pseudorandom even with respect to two-sided attacks. BEAR re-

quires to evaluate H twice and S once, LION requires to evaluate S twice and H

once, and LIONESS requires to evaluate H twice and S twice, where the inputs

of H and the outputs of S are about as large as the cipher's blocks. As suggested

by Anderson and Biham, we consider using the hash function SHA-1 for H and

the stream cipher SEAL for S. SEAL appears to be faster than SHA-1, at least if

one ignores SEAL's key set-up time. Thus, if the blocks are large, LION should

be faster than BEAR, and LIONESS slower.

On a 133 MHz DEC Alpha machine (a "sandpiper") and for 1 MBit blocks,

Anderson and Biham measured 13.62MBit/sec for BEAR and 18.68MBit/sec

for LION. We expect LIONESS to operate at about l l .8MBit/sec under the

same conditions.

Due to theorem 3, GRIFFIN is pseudorandom with respect to two-sided

attacks, too. For large blocks (e.g. B = 1 MBit), the effort to evaluate the fixed

size pseudorandom mappings fl , . . . , f6 is negligible. Then the speed of GRIFFIN

is determined by evaluating S twice and H once. If we use SHA-1 and SEAL,

On the Security of Remotely Keyed Encryption 229

and if the blocks are large, G R I F F I N can be expected to run at about the same

speed as LION and thus significantly faster than its competi tor LIONESS. 4

References

1. W. Aiello, R. Venkatesan, "Foiling Birthday Attacks in Length-Doubling Transform-

ations", in Eurocrypt'96 (ed. U. Maurer), Springer LNCS 1070, 307-320, 1996.

2. R. Anderson, "The Classification of Hash Functions", in Fourth IMA conference on

cryptography and coding, 83-93, 1993.

3. R. Anderson, E. Bib_am, "Two Practical and Provably Secure Block Ciphers: BEAR

and LION", in Fast Software Encryption (ed. D. Gollmann), Springer LNCS 1039,
113-120, 1996.

4. M. Bellare, P. Rogaway, "Random Oracles are Practical: A Paradigm for Designing

Efficient Protocols", in First A C M Conference on Computer and Communications

Security, ACM, 1993.

5. M. Blaze, "High-Bandwidth Encryption with Low-Bandwidth Smartcards", in Fast

Software Encryption (ed. D. Gollmann), Springer LNCS 1039, 33-40, 1996.

6. M. Luby, C. Rackoff, "How to Construct Pseudorandom Permutations from Pseu-

dorandom Functions", SIAM J. Computing, Vol. 17, No. 2, 373-386, 1988.

7. S. Lucks, "Faster Luby-Rackoff Ciphers", in Fast Software Encryption (ed. D. Goll-

mann), Springer LNCS 1039, 189-203, 1996.

8. S. Lucks, "BEAST: A Fast Block Cipher for Arbitrary Blocksizes", in IFIP Con-

ference on Communications and Multimedia Security (ed. P. Horster), Chapman &

Hall, 144-153, 1996.

9. B. Preneel, P. van Oorschot, "On the Security of Two MAC Algorithms", in Euro-

crypt '96 (ed. U. Maurer), Springer LNCS 1070, 19-32, 1996.

4 For similar reasons, BEAST outperforms LION. Under the same conditions as above,

we expect BEAST to run at about 23.6 MBit/sec [8].

