
Received July 25, 2019, accepted August 23, 2019, date of publication September 6, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939780

On the Security of SDN: A Completed Secure
and Scalable Framework Using the
Software-Defined Perimeter

AHMED SALLAM 1,3, AHMED REFAEY 1,2, AND ABDALLAH SHAMI1
1Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
2Manhattan College, Riverdale, New York, NY 10471, USA
3Department of Computer Science, Suez Canal University, Ismailia 41522, Egypt

Corresponding author: Ahmed Refaey (ahmed.hussein@manhattan.edu)

ABSTRACT The widespread adoption and evolution of Software Defined Networking (SDN) have enabled

the service providers to successfully simplify network management. Along with the traffic explosion, there

is decreasing CAPEX and OPEX as well as an increase in the average revenue per user. However, this wide

adoption of SDNs is posing real challenges and concerns in terms of security aspects. The main challenges

are how to provide proper authentication, access control, data privacy, and data integrity among others for the

API-driven orchestration of network routing. Herein, the Software Defined Perimeter (SDP) is proposed as a

framework to provide an orchestration of connections. The expectation is a framework that restricts network

access and connections between objects on the SDN-enabled network infrastructures. There are several

potential benefits as a result of the integration between SDP systems and SDNs. In particular, it provides a

completely scalable and managed security solution. Consequently, it leads to flexible deployment that can be

tailored to fit the need of any generic network security perimeter. The proposed Integrated frameworks are

examined through virtualized network testbeds. The testing results demonstrate that the proposed framework

is malleable to both port scanning (PS) attack and Denial of Service (DoS) bandwidth attack. In addition,

it clarifies some interesting potential integration points between the SDP systems and SDNs to further

research in this area.

INDEX TERMS SDP, SDN, DoS attack, security, network virtualization.

I. INTRODUCTION

Cisco predicts that by 2022 mobile devices will account for

79% of Internet traffic in comparison to the 65% share as

of 2017 [1]. When coupled with the statistic that global IP

traffic is expected to triple from 2017 to 2022 [1], the need for

infrastructure innovation to keep up with the ever-changing

landscape of users, resources, services, and applications is

a must. In fact, traditional hardware-based networks work

inadequately operate for consistently changing computing

and storage needs in campus environments, data centers,

and carrier/service provider environments. As a consequence,

the Software-defined networking (SDN) gained significant

traction as it fulfilled such situations, where numerous char-

acteristics demand a more flexible and dynamic approach [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tawfik Al-Hadhrami .

Despite the existing advantages of SDN security [3], [4],

there are still aspects of security that remain to be addressed.

For example, the centralized controller and flow-table limita-

tion in network devices make the SDN-based network more

vulnerable to Denial-of-Service (DoS) types of attacks [5].

In addition, the open programmability of the network intro-

duces trust concerns between the network elements, which

make threats by entering the network, and remain invisible

and uninspected. Furthermore, compromised security of the

controller or lapses in its datapath communication can render

the whole network compromised or at least leave it vulnerable

to illegitimate access and usage of network resources.

A number of industry-centered groups have been launched,

as of late, to discuss the impending security challenges

in SDN and their solutions. Meanwhile, researchers have

already presented solutions to some SDN security challenges.

These solutions range from controller replication schemes

to policy conflict resolution and authentication mechanisms.

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 146577

https://orcid.org/0000-0003-2807-2316
https://orcid.org/0000-0002-1540-9349
https://orcid.org/0000-0001-7441-604X

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

However, when the extent of the issues are compared to

the existing and proposed solutions placed on them, it is

clear that without a significant framework, equivalent to the

SDN but focused on security, it is unlikely that SDN will

succeed beyond the private datacenter or single organization

deployments seen today.

An equivalent framework is the Software-defined Perime-

ter (SDP). The SDP is an independent framework, made

popular its use by multiple organizations within the Depart-

ment of Defense (DoD) and Intelligence communities (IC).

In 2014 and emendate in 2018, the Cloud Security Alliance

(CSA) outlined the initial protocol for the Software Defined

Perimeter specifications [6] and in 2016Waverley labs devel-

oped opensource SDP modules. Similar to the software-

defined networking, the SDP has emerged as a new concept to

replace physical security appliances with logical components

that can operate under the control of the application owner.

Although there is a conceptual similarity between these two

independent frameworks, no such integration has been intro-

duced and evaluated. Therefore, contributions of this paper

can be summarized as follows:

• Propose an integrated SDP-SDN architecture to provide

a better security networking platform and ensure seam-

less integration between the two paradigms.

• Build a virtualized network testbed to introduce and

evaluate the aforementioned architecture.

The rest of this paper is organized as follows: In Section 2,

previous works conducted on SDN security challenges and

solutions are reviewed. In Section 3, SDP architecture is pre-

sented with an explanation of its functionality. In Section 4,

an introduction to possible integration architectures with cor-

responding challenges. In Section 5, new integrated architec-

ture is evaluated. Finally, the work and research provided are

concluded in Section 6.

II. RELATED WORK

The large inflation in the world of networks after the advent

of virtualization technology and electronic cloud led to the

need of separating the control plane from the data/forwarding

plane in a new model that can elastically expand or shrink

with the dynamic change on the network without affecting the

network overall performance. Usually, the SDN network can

be divided into three main levels as shown in Fig. 1. The data

plane (Southbound), the control plane, and the application

plane (Northbound) [7], [8].

The Control plane is managed by an SDN controller. The

basic functions of the controller include flow table manage-

ment, link discovery, topologymanagement, strategymaking,

storage management, and control data management. Conse-

quentially, many applications and features can be added as

needed.

On the other hand, The data plane consists of a set of

forwarding devices which are commonly known as SDN

switches, although they may not contain the basic function of

layer 2 switches. The SDN switch can be found as software

FIGURE 1. SDN architecture.

FIGURE 2. SDN flow table.

such as OpenvSwitch [9] and can be found as hardware

router or switch that supports one of the southbound protocols

such as Cisco Catalyst 2960-S Series which supports Simple

Network Management Protocol (SNMP) and HP ProCurve

switches which supports OpenFlow. Moreover, hardware

switches can be fully programmable such as BroadcomMav-

erick switch which supports OpenSwitch network operating

system (OPX).

An SDN switch consists of one or more flow tables which

perform packet lookups and forwarding (see Fig. 2), and a

southbound channel to communicate with an external con-

troller. Using this channel, the controller can add, update, and

delete flow entries in flow tables, both reactively (in response

to packets) each time the switch receives a packet with no

matching rule in its flow table and proactively where the

rules are loaded to the switch when the network starts. Each

flow table in the switch contains a set of flow entries; each

flow entry consists of match fields, counters, and a set of

instructions to apply to match packets [10].

To understand the control flow between the controller and

the SDN switch, consider a scenario of an OpenFlow switch

which received a packet with no matching rule in its flow

table. In this scenario, a client sends a service request to the

switch, and then the switch starts the matching process at

146578 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

TABLE 1. SDN security challenges and existing solutions.

the first flow table and if no match was found the switch

continues to next flow tables. The outcome depends on the

configuration of the table-miss flow entry; For example, the

packet may be dropped, or forwarded to the controller over

the OpenFlow channel which is the case of this scenario.

Next, the controller will add two flows to connect the new

client to the service. One flow to set the client as a source

and the service as a destination, and another flow to set the

opposite direction.

Although SDN allows virtual networks provision on

demand for both efficient data transport and fine-grained

control services [11], [12], current security practices were not

designed to match the complexity and challenges emergent

from these software-defined infrastructures’ integration [13].

Precisely, separation of control and data planes opens security

challenges categorized into two levels. The first/outer level

is to protect the servers and switches from malware that

can sniff metadata and flooding attacks, which can result in

whole security systems take-down. The second/inner level is

to prevent malicious nodes from penetrating the controller

and taking over the network. The security challenges and their

existing solutions and drawbacks are summarized in Table 1.

Table 1 displays the security challenges in SDN network

categorized as either outer or inner levels. A further discus-

sion of these challenges and existing solutions are provided

in the following subsections. In addition, further details are

available in [14]–[17].

A. SDN OUTER LEVEL SECURITY

In the SDN systems’ outer level, services encounter flood-

ing attacks such as Denial of Service (DoS) and Dis-

tributed DoS (DDoS). The attack’s target is to expose

the dedicated server resources and/or to slow legitimate

users causing a denial of service [18]. Consequently, SDN

switches endure severe performance degradation depending

on SDN-controller decisions made while being attacked.

Notably, other factors affect switch performance, such as,

flow tables, memory and forwarding rate limitations, how-

ever, these factors are beyond this work’s scope.

Traditionally, detecting flooding attacks is achieved by

installing hardware-based middleboxes deployed with ded-

icated security functions such as intrusion detection (IDS),

firewalls, and anti-malware. In fact, these hardware-based

equipment are incapable of detecting significant security

activities inside modern software-based core networks in

general, and in SDN-based networks, in particular [19].

Therefore, Software-Defined Security (SDSec) has been

introduced [19]. The SDSec, a relatively new software-based

approach, separates forwarding and processing planes from

the security control plane following the same logical con-

cept of SDN. This concept has been adopted by indus-

tries for distributed security in appliances by virtualizing

security functions into ready-to-use Virtual Machines (VM).

vArmour, VMware vShield and Catbird are a well-known

example which implements a number of security features

and attributes such as intrusion detection, anti-malware, and

firewalls.

Machine Learning (ML) classification techniques were

explored to implement a security mechanism to detect and

prevent malicious traffic [15]. These techniques usually

include three steps: classify data flows to determine mali-

cious behavior and network attacks; modify flow tables; then

check the computed flow rules. Indeed, adopting these tech-

niques in SDN-based networks will contribute to increased

VOLUME 7, 2019 146579

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

overhead (e.g. collecting and transmitting traffic statistics)

which overloads OpenFlow switches. Also, controllers must

process statistics and compute flow rules before applying to

the switches [15].

In general, neither hardware nor software-based solutions

can withstand massive attacks that scale up to overwhelm

most traditional on-premises equipment and resources avail-

able in any virtualized environment. Fore example, between

May and June 2018, 8.3 billion malicious login attempts were

reported by Akamai, one of the world’s largest distributed

computing platforms that responsible for serving between

15% and 30% of all web traffic. These malicious login

attempts using account takeover tools known as botnet can

cause rapid destruction dute to the large volume of generated

traffic that reach over 600 Gbps [14]. Many copanies would

typically treat this like a DDos attack.

B. SDN INNER LEVEL SECURITY

In the inner level of SDN systems, the centralized controller

presents a potential single point of failure that is vulnerable

to network manipulation. Consequently, an intruder could

compromise the SDN controller and/or one of the SDN appli-

cations, produce false network data, and initiate different

attacks on the entire network [16]. To protect the controller,

a classical security aware solution, such as the access control

list (ACL), is utilized to define permissions applying to an

object and its properties. A security strategy involves creating

a whitelist and blacklist, which is an inconvenient burden

during large network configuration changes [20]. To elim-

inate this burden, security policy frameworks were devel-

oped to automate security policy transitions [20]. However,

automation consumes more resources, especially in a virtual-

ized environment with numerous VMs. Furthermore, no stan-

dards exist to facilitate control and application planes, seen

as SDN-Northbound interface. Therefore, third-party SDN

applications induce several active and passive attacks (e.g.

protocol spoofing, infiltrate the network, and sniff-modify-

stop traffic) [21].

Well-Established security mechanisms, like “honeypot”,

are used to mitigate potential threats to SDN applications

by forming high-interactions called “Honeynet” [17]. Some

leading honeypot systms include Google Hack Honeypot

(GHH), ‘‘KFSensor’’ a commercial Windows-based honey-

pot Intrusion Detection System (IDS) and ‘‘Honeyd’’ an

open source software released under GNU license for Unix

Operating Systems [17]. Generally, a honeypot consists of

data that appears to be a legitimate content of the site and

that seems to contain valuable information for intruders but

is monitored to track malicious behavior [22]. For complex

infrastructure that hosts a variety of services such as SDN

networks, one dedicated machine must be maintained for

each honeypot, which can be exorbitantly expensive. This

form of high-interaction honeypots is known as Honeynet.

Additional security-aware solutions are implemented to

add more power to the controller such as the access control

list (ACL) which define the permissions that apply to an

object and its properties. This task is further compounded

when we consider that network operators utilize whitelists

and blacklists as part of their security strategy for no less than

18,000 network configuration changes [23]. To overcome this

burden, many security policy frameworks were developed to

automate the security policy transitions [20]. However, the

side effect of this is that we are adding more burden over

the controller which is already overwhelmed especially in a

virtualized environment with numerous number of VMs.

Variously, data planes seen as SDN-Southbound inter-

face, lack encryption. This gives intruders opportunities

to sniff, capture, and analyze network traffic by allowing

the eavesdropping of critical flow information within the

SDN-based network. Traditionally, sniffing activity is pre-

vented by Transport Layer Security (TLS) and/or Secure

Socket Layer protocol (SSL) [24]. These encryption meth-

ods help protect connections between the SDN controller

and switches. For example, OpenFlow protocol specifica-

tion recommends using TLS connections between switches

and the controller, however, some SDN switches and con-

trollers do not support encryption, specifically the older

versions [3], [25].

III. SOFTWARE-DEFINED PERIMETERS FRAMEWORK

As a matter of fact, perimeters security is an ancient method

used by old empires to create a secure perimeter throughwalls

and barriers to maintain areas of power and property away

from intruders. In networking, this method was imitated by

creating a boundary between the private side of a network

and the public (usually provider-managed side of a network).

Previously, network perimeters had been applied by installing

hardware-based middleboxes deployed with dedicated secu-

rity functions such as firewalls and IDS. Today, with the

new Software-Defined paradigm, where resources are shared,

what does the network really look like? It is clear that a

network perimeter is an outdated concept for several reasons.

First, internal users are not simply connecting from inside the

building. They can connect anywhere using mobile devices.

Another vital reason is, local data and private applications

are no longer on local servers. Therefore, SDP emerged as

a new concept to go along with this new paradigm. It is

worth mentioning that, SDP market now is competitive and

some of the top players in the SDP market such as Cisco

Systems Inc., Symantec Corporation, and Intel Corporation.

Accordingly, the Transparency Market Research estimates

the SDP market’s valuation to increase from US$1,129.5 mn

in 2016 to US$12,247.9 mn by 2025 [26].

A. INTRODUCTION

Although there is a conceptual similarity between SDN and

SDP, both are independent-standalone solutions. Precisely,

SDN is the notation to control network behavior by empha-

sizing the software application instead of the network infras-

tructure. However, SDP is a completely different notation to

secure the application network infrastructure based on a need-

to-know model, in which device identity is verified before

146580 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 3. Commons between SDN and SDP.

granting access [27]. The commons and differences between

the aforementioned frameworks are shown in Fig. 3.

Typically, the SDP paradigm consists of three main

components:

• SDP Initiating Host (IH),

• SDP Accepting host (AH),

• SDP controller (CTRL).

These components are used to create secure perimeters

among legitimate clients and available services in the net-

work. A simple SDP scenario would include three machines;

the first machine represents a legitimate client provided with

the IH module and trying to access a server behind a gateway

in a private network. The second machine represents the

gateway provided with an AH module and a firewall that

has a drop-all policy established for all traffic. The third

machine represents the SDP controller provided with the

CTRL module to manage the SDP authentication process.

During the SDP installation process, the network adminis-

trator should access the CTRL module to identify the legit-

imate clients and define services which they have access to

in the CTRL database {MySQL in this scenario. Moreover,

the administrator has to create credential keys and certificates

and distribute them among the IH and AH components to

authenticate their access to the CTRL.

B. SDP CONNECTION OVERVIEW

For a legitimate client to access a service, first, the IHmodule

already installed in its side (also known as SPAclient) sends a

valid Single Packet Authorization (SPA) packet (encrypted,

non-replayed, with an HMAC SHA-256) [28]. When the

CTRL authenticates the SPA packet, it will message the

AH at the gateway to configure the proper rules automat-

ically in the firewall for the client for a defined period

to access the services. Despite the fact that the gateway’s

firewall is enabled, the AH continues to receive the mes-

sage, authenticate the client and establish a Mutual Transport

Layer Security (mTLS) connection between the client and

gateway. After the configurable timeout, the rule to accept

the incoming connection will be deleted but the connection

remains open by using a tracking mechanism provided by the

firewall [28]. Notably, the AH has to follow this procedure

to initiate the connection to the controller. Fig. 4 summarizes

the Client-Server connection setup timeline with SDP.

FIGURE 4. Client-Server connection setup timeline with SDP.

According to the CSA standards, the legitimate client has

direct access to the SDP controller, this assumption was set

to illustrate how the authentication process is done [6]. How-

ever, this configuration exposes the SDP controller to direct

attacks that can lead to critical risk where an intruder can

take over the whole network. This problem can be tackled by

hiding the controller behind the gateway in a similar manner

to the services.

C. SDP PROTECTION

The SDP workflow through several layers of security gives

maximum protection to the systems while patching most

vulnerabilities found in the legacy security systems. Firstly,

the gateway\textquoteright s firewall contains a static drop-all

policy allowing SDP to effectively repel flooding and PS

attacks. Secondly, the SPAmitigates these attacks by allowing

the server to discard the DoS attempt before entering the TCP

handshake [6]. Thirdly, the connection between all hosts (IH

and AH) must use TLS or Internet Key Exchange (IKE) with

mutual authentication to validate the client as a legitimate

member of the SDP prior to furthering device validation

and/or user authentication.

All of these layers are capable of preventing network

manipulation attacks, MITM attacks, and traffic sniffing

attacks. In fact, the CSA SDP Hackathon challenged hackers

to attack a server defended by a SDP. Of the billions of

packets fired at the server, not one attacker penetrated even

the first layer of security [29].

IV. THE PROPOSED SDP-SDN INTEGRATED

ARCHITECTURE

In this section, the SDN networks ability to provide protec-

tion through SDP is presented. The following subsections

demonstrate the proposed architecture integration between

SDP and SDN main components. An explanation of various

client-server request scenarios is also provided.

VOLUME 7, 2019 146581

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 5. Integrating SDP with SDN.

A. ARCHITECTURE DESCRIPTION

The goal is to protect a set of services connected to an SDN

network by embedding the SDP components into the SDN

environment. To complete this task, each legitimate client

runs an IHmodule. Additionally, a separate gateway machine

connects to each SDN switch. Each gateway runs as an AH

module to manipulate a set of servers/services connected to

the switch as depicted in Fig. 5. Finally, representing the

SDP controller, another machine running the CTRL module

is added to the network. To clarify, the SDP controller was

placed on a separate machine.

Refereeing to the CSA standards, there are several ways to

implement the SDP-based network depending on the targeted

application. These implementation options can be summa-

rized as follows:

• Client-to-Gateway: in this implementation, the ser-

vice/server is hidden behind a gateway provided with a

running AH module.

• Client-to-Server: in this implementation, the AH mod-

ule can be installed directly into the server, such that the

server can act as a gateway and a service at the same

time.

Alternative implementation options, such as Server-to-Server

and Client-to-Server-to-Client are out of the scope of this

work due to their irrelevancy to SDN.

B. THE GATEWAY PLACEMENT

Choosing a suitable SDP implementation to integrate with

SDN is a trade-off between security and performance. On the

one hand, the Client-to-Server implementation is harmonized

with SDN because installing the AH module in each server

reduces the routing path to access this server instead of going

through extra nodes in the network, especially in a dynamic

environment with a huge number of VMs [30]. However, this

implementation is considered a poor security practice. Pre-

cisely, it exposes the server to direct attacks, such that the SDP

gateway only acts as a regular firewall with an advanced pro-

tocol. On the other hand, the Client-to-Gateway implementa-

tion seems to increase delay by placing additional gateway in

the middle to access the servers. However, it provides a more

secure environment by hiding these servers and reducing the

risk of taking them down (see Fig. 5). In fact, Client-to-

Gateway implementation does not completely counteract the

SDN network performance, however, it can reduce the flow

control delay between the SDN’s controller and switches.

To understand this point, assume that there exists two servers

S1 and S2 behind the gateway G1 and both connected to

the same SDN switch SW1. Suppose that a legitimate client

C1 wants to access S1. In this case, the SDN controller will

add two flows to SW1 to provide a bi-directional link between

C1 and G1. Now, suppose C1 wants to access S2, in this case,

SW1 will do nothing because it already has predefined flows

between C1 and G1.

When using Client-to-Gateway the open research question

to consider is, how many gateways would provide maximum

security while reducing network overhead in SDN platform?

To answer this question, assume that only one gateway hides

all the servers. Although this scenario will reduce the flow

control delay to its minimum, it will degrade the overall

network throughput by adding more burden on this gateway

and put it at risk of network bottlenecks. Now, assume a com-

pletely different scenario by assigning a gateway to hide each

server. This scenario provides a better security solution and

keeps the network performance untouched; however, it will

consume more resources and increase overall cost.

The service provider decides the appropriate number of

gateways based on a cost-to-benefit analysis and the desired

performance metric (throughput, delay). Herein, one gateway

was assigned to hide all services connected to the same SDN

switch. This strategy can provide excepted protection and

avoids losing more resources at extra cost.

C. FLOW CONTROL

Two scenarios considered here were based on the placement

of the SDP Controller with respect to the IH.

Scenario 1: In this scenario, the IH has direct access to the

SDP Controller, and the AH is already initialized. Thus, for a

new legitimate Client (A) to access an authorized service (F),

A should complete two communication sequences:

1) Authentication: The IH module on A will initialize

an authentication request to the SDP Controller (D).

Because (A↔D) are two new flows to the SDN Switch,

the Switch will send a packet-in to the SDN Con-

troller (C) to reply with the correct flows from A

to D and back from D to A as shown in Fig. 6. Next,

the SDP CTRL module on D will check the required

146582 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 6. Message sequence in the new platform - Senario 1.

credential and authenticates A to access F through the

gateway (E). If A passed the authentication process,

new forwarding rules added to the firewall (Iptables in

this scenario) at the gateway (E) to allow communica-

tion between A and F.

2) Service request: After A has been authenticated to

access F through E. Now,A can send the desired service

request to a running service on F through E as shown

with black arrows in Fig. 6. Again, because (A↔E)

are new flows to the Switch, the Switch will send a

packet-in to C one more time to get the correct flows

from A to E and back from E to A. When E receives

the service request, it will forward it to F and forward

back the response to A using the rules created in step 1

as shown with green arrows in Fig. 6.

Scenario 2: As mentioned before, it’s a bad security practice

to give a client direct access to the SDP controller. To tackle

this problem, in this scenario, the SDP controller is placed

behind the gateway as shown in Fig. 7. In other words, any

communication between the Client and the SDP Controller

will go through the gateway. This has two advantages. Firstly,

to protect the SDP Controller. Secondly, to reduce the flow

control delay time as there will be no need to define new flow

rules between each client and the SDP controller.

It’s worth mentioning that, the flow control requests

(packet-in) shown with dashed lines in Fig. 6 are one-time

requests to create the proper flows between the clients, gate-

way, and services. In other words, if there exists client C that

already gained access to services F1 through the gateway,

there will be no flow control delay if C wants to access

another service F2 through the same gateway.

V. TESTBED AND PERFORMANCE EVALUATION

To evaluate the performance of the proposed platform,

three evaluation metrics are considered, the flow control

delay time, the SDP connection setup time and the network

throughput. These metrics were compared with and without

SDP installed. Additionally, two types of attacks were ini-

tiated to test the performance of SDP protection, namely, a

DoS, and a PS attacks. The DoS attack was chosen as it

represents a threat to the services availability while the PS

attack represents a threat to data privacy. Therefore, these two

attacks were considered as they represent two threats the SDN

networks expected to experience.

A. TESTBED ENVIRONMENT

The testbed consists of five VMs running Linux Ubuntu

16.04 hosted by a physical machine running Ubuntu 18.04,

and VirtualBox 5.2. The implementation can be divided into

two parts, the SDN part, and the SDP part. The imple-

mentation of the SDN part has been done using OpenDay-

light (ODL) controller and Open vSwitch (OVS) 2.5.6. OVS

VOLUME 7, 2019 146583

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 7. Message sequence in the new platform - Senario 2.

TABLE 2. Testbed setup.

was installed within the host, while ODL was installed in

a dedicated VM. The SDPcontroller module was installed

on a VM to represent the SDP controller and the fwknop

module was installed on another VM to represent the SDP

IH on a legitimate client with the help of MySQL 5.7 and

OpenSSL 1.1. Finally, the fwknop module was installed

again with different settings on a separate VM to represent

the SDP AH and act as the gateway with the help of ipt-

ables 1.8 for routing. One more VM was created to act as

a service. A detailed specification of the testbed setup is

showen in Table 2.

B. ATTACKS SETUP

Two types of attacks where launched using hping3. hping3 is

a command-line oriented TCP/IP packet assembler/analyzer.

• DoS attack: This attack was applied via spoofed broad-

cast of TCP requests with SYN flag.

146584 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

• Port Scanning attack: This attack was applied with

SYN flag.

C. EXPERIMENTS FORMULATION

The SDP connection setup was tested by calculating the

required time to initiate each SDP component in a regular net-

work with L2Switch and in an SDN network with OpenFlow

enabled switch. The result shows that there was no significant

difference between the startup time of the SDP components in

both environments. That is, the accepting host authentication

time in the regular network takes 4.182067 s while it takes

4.194367 s in SDN network, and the the Initiating Host

authentication time takes 2.068458 s while it takes 2.067069 s

in the SDN network.

Secondly, the network throughput was reported by trans-

ferring 250 MB of raw data between the legitimate client and

the service using netcat utility version 1.10. The traffic was

captured on the gateway from the client side and the server

side for two scenarios, when the SDP platform is disabled

and when the SDP platform is enabled (see Fig. 8 and Fig. 9).

Finally, the flow control delay time between the Packet-in

message sent by the OVS switch and the Flow_MOD replied

back by the ODL controller was calculate as 45 ms.

FIGURE 8. Network traffic at the gateway - client side.

FIGURE 9. Network traffic at the server.

The port scanning attack was launched by sending a SYN

flag request to ten consequent destination ports starting from

FIGURE 10. Port scanning attack with SYN flag.

port 50. Normally, if they are open then they will reply on the

source port. The result was captured in Fig. 10.

D. RESULT ANALYSIS

From Subsection V-C, we can notice that there is insignifi-

cance delay by running the SDP components in SDN network

compared to the regular network due to a one-time flow

control delay time required to find the correct flow between

the gateway/client and the SDP controller. The reason behind

this is that when amachine is trying to talk to another machine

through an SDN switch (OVS in this environment) the switch

would search first in its flow tables to find a route to the

destination, if the switch cannot find the correct flow it will

start a flow control sequence by sending a Packet-in message

to the controller.

On the other hand, Fig. 8 and Fig. 9 show how did the SDP

platform mitigate the DoS attack and retain the legitimate

client connected. In this figure, the number of packets was

captured at the gateway’s the public network interface and

the Server’s network interface, and then a log function was

applied to relax the different scale of both traffic.

Considering the traffic at the Gateway’s public network

interface shown in Fig. 8, from the second 0 to 19 the traffic

represents the authorized packets of the legitimate client.

At the second 20, a SYN flood attack was launched, this

explains the sudden peaks in the traffic which reflects the

effect of the attack. Without SDP platform, the traffic rep-

resents the attack’s SYN packets to request a flood of new

connections in addition to the ACK packets sent back to

reply to the attacker. However,With SDP platform, this traffic

represents the attack’s SYN packets only, which clarify the

difference between the number of packets in each line. In the

latter case, the SYN packets are simply dropped and never

replied back because the AH module initiates the firewall’s

drop policy at the gateway. This setting tells the firewall to

allow only TCP packets combined with an authorized SPA

packet. At second 40, the flood attack was stopped however

its effect continues for a few seconds later based on the

Ethernet interface buffer size and contents. This happens due

to the massive number of packets received and buffered at the

interface to be processed.

Considering the traffic at the server’s network interface

shown in Fig. 9, which represents the client’s data pack-

ets. Starting from second 20 to second 40, without SDP,

the client traffic was taken down completely by the attack

and recovered back again after stopping the attack at second

40. Contrarily, the SDP retained 75% of the legitimate traffic

VOLUME 7, 2019 146585

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

and the transmission of the data was successfully completed

at second 50.

Fig. 10 shows that the SDP-SDN platform was able to

completely block the port scanning SYN request due to the

firewall drop policy.

VI. DISCUSSION

Although the proposed architecture can protect the SDNouter

level, more challenges still exist to secure the inner level,

mainly the SDN Controller. Generally, the SDN Controller

is hidden by default and invincible against flooding attacks

because of the SDN architecture. In other words, it’s not

possible to directly attack the SDN Controller unless meta-

data was sniffed which is not possible especially in the new

proposed architecture due to the TLS connection. Moreover,

there are several simple solutions that can be traded such as

managing a firewall at the controller to block all inbound

traffic except the SDN switches.

From a different perspective, there is still a chance for

indirect attacks to take over the controller. For example, aDoS

attack can be established by requesting anonymous servers

randomly through one the SDN switches connected to the

controller. Although these requests will end up in a null route

or blocked by a firewall, it still can overwhelm the SDN

Controller with Packet-In requests, where the controller com-

pelled to provide the switch with a proper reply. Fortunately,

this special DoS attacks can’t be established from a public

network/internet and requires direct physical access to the

SDN switch which is managed by the targeted Controller.

VII. CONCLUSION AND FUTURE RESEARCH

OPPORTUNITIES

This paper illustrated the potential of SDN networking secu-

rity architecture by integrating the SDP framework with SDN

as a solution to security challenges threatening different levels

of the network. First, we briefly summarized and discussed

challenges facing the SDN network. Then, we adopted a

client-gateway SDP architecture to propose an improved and

secured SDN network. Furthermore, performance was evalu-

ated by analyzing network throughput and connection setup

time under two types of network attacks, namely DoS and PS

attack.

The experiments’ result proved that by integrating the

SDP and SDN frameworks, it is possible to block PS and

flooding attacks. Meanwhile, mitigating its effect on the

target resources to retain 75\% of the network throughput

without interruptions or losing the connection. These results

reveal the promising potential of the proposed architecture

to provide a solution that is homogeneous with the SDN

system and accommodates the networks’ scale in a virtual-

ized environment. Furthermore, it would reduce the Oper-

ating Expense (OPEX) and Capital Expense (CAPEX) of

enterprises.

ACKNOWLEGMENT

The authors would like to thank Ms. Juanita Koilpillai from

Waverley Labs for her valuable support.

REFERENCES

[1] Cisco. (2018). White Paper: Cisco Visual Networking Index: Forecast

and Trends, 2017–2022. [Online]. Available: https://www.cisco.com/

c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white-paper-c11-741490.pdf

[2] K. Alhazmi, A. Shami, and A. Refaey, ‘‘Optimized provisioning of SDN-

enabled virtual networks in geo-distributed cloud computing datacenters,’’

J. Commun. Netw., vol. 19, no. 4, pp. 402–415, Aug. 2017.

[3] S. Scott-Hayward, G. O’Callaghan, ‘‘SDN security:

A survey,’’ in Proc. SDN4FNS Workshop Softw. Defined Netw. Future

Netw. Services, Nov. 2013, pp. 1–7.

[4] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, ‘‘Realtime

DDoS defense using COTS SDN switches via adaptive correlation anal-

ysis,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1838–1853,

Jul. 2018.

[5] V. Yazici, M. O. Sunay, and A. O. Ercan, ‘‘Controlling a software-defined

network via distributed controllers,’’ CoRR, vol. 90, no. 11580, pp. 6–11,

Jan. 2014. [Online]. Available: https://arxiv.org/abs/1401.7651

[6] A. Moubayed, A. Refaey, and A. Shami, ‘‘Software-defined perimeter

(SDP): State of the art secure solution for modern networks,’’ IEEE Net-

work, vol. 33, no. 5, pp. 226–233, Sep./Oct. 2019.

[7] M. C. Dacier, H. König, R. Cwalinski, F. Kargl, and S. Dietrich,

‘‘Security challenges and opportunities of software-defined network-

ing,’’ IEEE Security Privacy, vol. 15, no. 2, pp. 96–100, Apr. 2017.

doi: 10.1109/MSP.2017.46.

[8] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens, ‘‘A policy-

based security architecture for software-defined networks,’’ IEEE Trans.

Inf. Forensics Security, vol. 14, no. 4, pp. 897–912, Apr. 2019.

[9] M. Casado. (2018). List of OpenFlow Software Projects (That I Know Of).

[Online]. Available: http://yuba.stanford.edu/~casado/of-sw.html

[10] P. Goransson and C. Black, ‘‘‘‘How SDN works,’’ in Software Defined

Networks, P. Goransson and C. Black, Eds. Boston, MA, USA:

Morgan Kaufmann, 2014, ch. 4, pp. 59–79. [Online]. Available: http://

www.sciencedirect.com/science/article/pii/B9780124166752000048

[11] K. Kalkan and S. Zeadally, ‘‘Securing Internet of Things with software

defined networking,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 186–192,

Sep. 2018.

[12] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, ‘‘Enabling

security functions with SDN: A feasibility study,’’ Comput. Netw., vol. 85,

pp. 19–35, Jul. 2015. doi: 10.1016/j.comnet.2015.05.005.

[13] R. Khondoker and N. Function, SDN NFV Security, vol. 30.

New York, NY, USA: Springer, 2018. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-71761-6

[14] E. Shuster, R. Shen, M. McKeay, and A. Fakhreddine, ‘‘State of the

Internet,’’ Environment, vol. 4, no. 4, p. 18, 2018. [Online]. Avail-

able: https://www.akamai.com/us/en/multimedia/documents/state-of-the-

internet/soti-2018-credential-stuffing-attacks-executive-summary.pdf

[15] B. J. Van Asten, ‘‘Increasing robustness of software-defined networks,’’

M.S. thesis, Dept. Fac. Elect. Eng., Math. Comput. Sci., Delft Univ.

Technol., Delft, The Netherlands, 2014.

[16] M. McBride, M. Cohn, S. Deshpande, M. Kaushik, M. Mathews, and

S. Nathan, ‘‘SDN security considerations in the data center,’’ ONF Solution

Brief, Menlo Park, CA, USA, 2013.

[17] OmniSecu. (2018). Leading Honeypot Products. [Online]. Available:

http://www.omnisecu.com/security/infrastructure-and-email-security/

leading-honeypot-products.php

[18] A. F. T. Ali, R. Gziva, S. Jouet, and D. Pezaros, ‘‘SDNFV-based DDoS

detection and remediation in multi-tenant, virtualised infrastructures,’’ in

Guide to Security SDN NFV. Cambridge, MA, USA: Springer, 2017, ch. 7.

[19] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, and A. Rindos,

‘‘Software defined cloud: Survey, system and evaluation,’’ Future Gener.

Comput. Syst., vol. 58, pp. 56–74, May 2016.

[20] J. H. Cox, R. J. Clark, and H. L. Owen, ‘‘Security policy transition frame-

work for software defined networks,’’ in Proc. IEEE Conf. Netw. Function

Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2017, pp. 56–61.

146586 VOLUME 7, 2019

http://dx.doi.org/10.1109/MSP.2017.46
http://dx.doi.org/10.1016/j.comnet.2015.05.005

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

[21] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, ‘‘Security in software

defined networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,

pp. 2317–2346, 4th Quart., 2015.

[22] E. Cole and S. Northcutt. (2018). Security Laboratory Honeypots:

A Security Manager’s Guide to Honeypots Honeypot Liabilities.

[Online]. Available: https://www.sans.edu/cyber-research/security-

laboratory/article/honeypots-guide

[23] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, R. Clark,

and I. Nsdi, ‘‘Kinetic: Verifiable dynamic network control,’’ in Proc.

12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,

pp. 59–72.

[24] K. Bhargavan, B. Blanchet, and N. Kobeissi, ‘‘Verified models and refer-

ence implementations for the TLS 1.3 standard candidate,’’ in Proc. IEEE

Symp. Secur. Privacy (SP), May 2017, pp. 483–502.

[25] V. Bernat, TLS Computational DoS Mitigation. Vincent Bernat, 2018.

[Online]. Available: https://vincent.bernat.ch/en/blog/2011-ssl-dos-

mitigation

[26] Transparency Market Research. (2017). Software Defined

Perimeter (SDP) Market. [Online]. Available: https://www.

transparencymarketresearch.com/report-toc/download/thanks/16916

[27] J. Koilpillai. (2016). Software Defined Network (SDN) or Software

Defined Perimeter (SDP). What’s the Difference? [Online]. Available:

http://www.waverleylabs.com/software-defined-network-sdn-or-

software-defined-perimeter-sdp-whats-the-difference/

[28] M. Rash. (2016). Single Packet Authorization: A Comprehensive Guide

to Strong Service Concealment With FWKNOP. [Online]. Available:

http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html#install-

fwknop

[29] K. Griffith. (2018). Software-Defined Perimeter Remains Undefeated

in Hackathon. [Online]. Available: https://www.sdxcentral.com/articles/

news/software-defined-perimeter-remains-undefeated-in-hackathon/

2015/08/

[30] A. Iqbal, U. Javed, S. Saleh, J. Kim, J. S. Alowibdi, and M. U. Ilyas,

‘‘Analytical modeling of end-to-end delay in OpenFlow based networks,’’

IEEE Access, vol. 5, pp. 6859–6871, 2017.

AHMED SALLAM received the B.Sc. degree in

computer science from Suez Canal University,

Egypt, theM.Sc. and Ph.D. degrees of Engineering

in computer science and technology from Hunan

University, China, in 2010 and 2013, respec-

tively. He currently holds postdoctoral position at

Western University, Canada.

AHMED REFAEY received the B.Sc. and M.Sc.

degrees from Alexandria University, Egypt,

in 2003 and 2005, respectively, and the Ph.D.

degree from Laval University, Canada, in 2011.

He is currently an Assistant Professor with Man-

hattan College and an Adjunct Research Profes-

sor with Western University. Previously, he held

various positions including, a Senior Systems

Architect, Mircom, from 2013 to 2016, and a

Postdoctoral at ECE Department, Western Univer-

sity, from 2012 to 2013, and a Researcher at the LRTS Laboratory, from

2007 to 2011. His research interests include adaptive communication systems

and networks security.

ABDALLAH SHAMI received the B.E. degree

in electrical and computer engineering from

Lebanese University, in 1997, and the Ph.D.

degree in electrical engineering from the City

University of New York, in September 2002.

In 2002, he joined the Department of Electri-

cal Engineering, Lakehead University, Thunder

Bay, ON, Canada, as an Assistant Professor. Since

July 2004, he has been with Western University,

where he is currently a Professor and an Acting

Chair with the ECE Department. His research interests include network

optimization and cloud computing.

VOLUME 7, 2019 146587

	INTRODUCTION
	RELATED WORK
	SDN OUTER LEVEL SECURITY
	SDN INNER LEVEL SECURITY

	SOFTWARE-DEFINED PERIMETERS FRAMEWORK
	INTRODUCTION
	SDP CONNECTION OVERVIEW
	SDP PROTECTION

	THE PROPOSED SDP-SDN INTEGRATED ARCHITECTURE
	ARCHITECTURE DESCRIPTION
	THE GATEWAY PLACEMENT
	FLOW CONTROL

	TESTBED AND PERFORMANCE EVALUATION
	TESTBED ENVIRONMENT
	ATTACKS SETUP
	EXPERIMENTS FORMULATION
	RESULT ANALYSIS

	DISCUSSION
	CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES
	REFERENCES
	Biographies
	AHMED SALLAM
	AHMED REFAEY
	ABDALLAH SHAMI

