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Abstract While fully device-independent security in (BB84-like) prepare-and-

measure quantum key distribution (QKD) is impossible, it can be guaranteed against

individual attacks in a semi-device-independent (SDI) scenario, wherein no assump-

tions are made on the characteristics of the hardware used except for an upper bound

on the dimension of the communicated system. Studying security under such minimal

assumptions is especially relevant in the context of the recent quantum hacking attacks

wherein the eavesdroppers can not only construct the devices used by the communicat-

ing parties but are also able to remotely alter their behavior. In this work, we study the

security of a SDIQKD protocol based on the prepare-and-measure quantum implemen-

tation of a well-known cryptographic primitive, the random access code (RAC). We

consider imperfect detectors and establish the critical values of the security parameters

(the observed success probability of the RAC and the detection efficiency) required

for guaranteeing security against eavesdroppers with and without quantum memory.

Furthermore, we suggest a minimal characterization of the preparation device in order

to lower the requirements for establishing a secure key.
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1 Introduction

In standard quantum key distribution (QKD) protocols, the security proofs assume

that the parties have access to the correct and exact specifications of the devices used

therein. This assumption is rather problematic. First, the principle problem lies at the

heart of quantum formalism. Generally, these devices are used for either state prepa-

ration or measurement. The quantum formalism provides mathematical abstractions

for states and measurements but no direct way to infer about them individually. The

only interface for any inference about the states and measurements is via the Born

rule which combines states and measurements and yields the probability of outcomes,

which is compared to experimental results. So a full characterization of the devices is

sufficient to warrant security, but it requires that each device and its components are

individually tested several times to gather enough statistics in order to warrant trust.

This is an extremely tedious task, instead we end up trusting the manufacturer of the

devices, which may be not the best idea. For instance, the supplier can install back-

doors that enable him to compromise the security without being detected. Recently

a lot of attention has been drawn to NSA which convinced RSA Security to set as a

default in their products Dual_EC_DRBG pseudo-random number generator which is

in turn known to have such a backdoor [1]. Moreover, even if the manufacturer is hon-

est, recent advances in quantum hacking [2–4] show that the adversary can remotely

influence the behavior of the devices during the protocol, effectively changing their

characteristics thereby hampering the security of the protocol. To cope with this issue,

the device-independent (DI) approach has been introduced wherein the key idea is that

if the parties violate a Bell (or some Bell-like) inequality then, regardless of how their

devices managed to do this, they can establish secure communication. Although the

term “DI” was first used in [5], the idea can be tracked back all the way to the original

Ekert’s paper [6]. Unfortunately, completely DI QKD is extremely arduous to realize

in practice and so far no experimental group has been able to do this. The main reason

for this is so-called detection efficiency loophole [7], which states that if the probabil-

ity of registering a particle by the detectors used in the experiment is below a certain

(usually very high) critical value, then the results of the experiment are inconclusive,

in other words: the possibility of a local-realistic description of its results cannot be

ruled out. Ruling out the possibility of these descriptions is a necessary, although not

always sufficient, condition for DI security.1 Another problem faced in this scenario is

that it can be applied only to protocols based on entanglement which are much more

complicated than their prepare-and-measure counterparts like the BB84 [8].

These two issues are addressed in the semi-device-independent (SDI) approach

[9]. Here a prepare-and-measure scenario is considered and again no assumptions are

made on the inner specifications and the working of the devices used. Prefix “semi”

is warranted by the fact that an upper bound on the dimension of the communicated

system is assumed. It was assumed this bound is well justified for both honest and

1 Necessity stems from the fact that if the experiment could be described by classical model, it must be

insecure as classical key distribution is impossible without additional assumptions on computational power

of the eavesdropper. Whether or not this condition is sufficient depends on the details of the protocol and

the power given to the eavesdropper.
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dishonest manufacturer. In latter case, the parties can study the devices delivered and,

while it is almost impossible to fully characterize them, it is much easier to establish

the effective dimension of the Hilbert space in which the states are being prepared.

When the supplier is honest but the protocol is subject to a quantum hacking attack, the

limitations on the technology available to the eavesdropper make the task of increasing

the channel capacity extremely difficult. In fact, to our knowledge, all the quantum

hacking attacks published so far did not increase this capacity. Also, because only one

side employs the detectors, the requirements on their efficiency are lower than in the

DI case. Another relaxation of the DI paradigm is measurement-device-independent

(MDI) scenario [10–12], wherein three devices are used: two communicating parties,

with perfectly characterized hardware, are sending the particles to the third which

makes the measurements. No assumptions are made on the characteristics of the third

device. The difference between MDI and SDI scenarios is that the former one is more

complicated (i.e., requires more devices and more sophisticated measurements) and

does not allow for any changes in the preparation devices (which is a big disadvantage

as even small changes can lead to the loss of security [13]). On the other hand, it was

shown [10] that MDI scenario thwarts quantum hacking attacks for any efficiency of

the detectors.

The aim of this paper is to establish the security condition in the SDI case, i.e.,

finding the critical values of the security parameters required in order to establish

a secure key. In the case of Bell inequalities, given an observed value of detection

efficiency (greater than the critical detection efficiency), if the parties witness a Bell

violation above a certain threshold, they are sure that the system they share must be

non-local (or entangled if quantum theory is assumed). Similarly, we find the threshold

above which the SDIQKD protocol is secure based on the threshold value of some

observed parameter (for a given certain value of observed detection efficiency). We

start by defining the classes of attacks against which we want to be secure. We consider

individual attacks in which eavesdropper may or may not have access to quantum

memory. Then we take the most basic SDIQKD protocol based on (2 → 1) QRAC

[9] and find the security conditions required against such attacks. Next we propose

a modification of this protocol (basing it on the (3 → 1) QRAC instead) which

substantially reduces these security requirements. Furthermore, we suggest a minimal

characterization of the preparation device that substantially lowers the requirements

on the security parameters.

2 Device controlling attacks

In [2–4,14], the authors gave a simple description of the device controlling attacks

based on the detection efficiency loophole and experimentally demonstrated the same.

Assuming that Eve has perfect detectors, while Bob’s detectors have an average effi-

ciency of 50%. Eve intercepts the signal sent from Alice to Bob as a part of the BB84

protocol and measures it. Following which Eve encodes her detection results into

specially tailored bright pulse of light and resends it to Bob. Because of the physi-

cal properties of the signal and the physical implementation of Bob’s detectors, Bob

obtains an outcome only if he measures in the same basis as Eve. This implies that
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Bob’s detectors work perfectly (with 100% efficiency) conditioned on the even that

Eve’s and Bob’s settings are the same and not work at all otherwise. On an average

Bob’s detectors work with 50% efficiency which does not raise any suspicions. After

the raw key exchange, Bob and Eve have identical bit values and basis choices which

after sifting, error correction and privacy amplification made via classical communi-

cation allow Eve to get the identical final key as Alice and Bob. In this way Eve, by

active control of Bob’s detectors, can secretly learn the exchanged key. More about

this type of control can be found in [15].

In [13] a different approach is presented. Here Eve apart from exploiting her

possibility of interfering during the calibration of Alice’s device introduces a slight

modification in it.

These examples highlight the need for more general security conditions where Eve

is assumed to be substantially powerful, i.e., she can not only design all the devices

used in the protocol but can also actively control them. However, there are natural limits

to what she can do. Her modifications must not be significant so as to avoid detection.

Apart from this, we assume that Eve cannot make the preparation device use additional

degree of freedom of the communicated system to encode more information. Hence, in

the SDI scenario we assume that the eavesdropper can mold the characteristics of the

devices used as well as actively control them during the protocol but cannot increase

the dimension of the system sent by Alice.

3 SDIQKD protocol

The DIQKD protocol bases its security on violation of a Bell inequality [16] associated

with the scenario. The key rate, in this case, is maximized by reaching the quantum

bound of this inequality. On the other hand, SDIQKD is a prepare-and-measure key

distribution protocol wherein the dimension of the communicated system is upper

bounded [9]. Specifically, this limitation is only for the dimension of the signal emitted

by Alice’s device and doesn’t hold for what Bob’s device is receiving. This minimal

restriction is tremendously advantageous for Eve, which in turn captures the fact

that in device controlling attacks, the pulse sent by Eve to Bob’s laboratory could

carry substantially more information than just one bit. The SDIQKD scheme bases

its security on beating the classical bound on the winning probability (efficiency) of a

related communication complexity task. In [9] the task used was a (2 → 1) quantum

random access code (QRAC) [17], a prepare-and-measure quantum implementation of

a well-known cryptographic primitive, the random access code (RAC). In a (2 → 1)

QRAC Alice encodes her two input bits a0, a1 ∈ {0, 1} into a qubit ρa0,a1 . Bob gets an

input bit b ∈ {0, 1} and chooses his projective measurements M B
b based on it, where

B ∈ {0, 1} is the outcome of his measurement. Bob’s task is to return B = ab, i.e.,

guessing the bth bit of Alice. The measure of success in this task is the probability

with which Bob is able to guess correctly; we denote it by PB .

The SDIQKD protocol introduced in [9] comprises of many repetitions of (2 →
1) QRAC. In each of them a0, a1 and b were chosen randomly by Alice and Bob,

respectively. After this Bob announces his choice of b for each round. The bit ab

forms the bit of key for that round. Alice knows it, since it is one of the bits she herself
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a0 a1 b

B = abab

ρa0,a1
∈ P(Cd)

Alice Bob

b

{M b
B}

Fig. 1 A single round of the SDIQKD protocol based on (2 → 1) QRAC. Here the larger boxes represent

Alice’s and Bob’s laboratories of which their preparation and measurement devices, respectively (repre-

sented by smaller boxes), are a part of. The thinner lines represent classical communication channels, and

thick lines represent quantum communication channels which in this case has a bounded capacity. The

SDIQKD protocol contains the (2 → 1) QRAC along with a classical communication channel carrying

Bob’s input b and the classical post-processing at Alice’s end (represented by a small disk) required to

output ab using a0, a1, b as inputs

randomly generated. Bob has some information about ab. Probability for Bob to obtain

(for fixed settings a0, a1 and b) the result i is P(B = i |a0, a1, b) = tr(M B=i
b ρa0,a1).

Here, M B=i
b are projective operators such that

∑

i∈{0,1} M B=i
b = I. The primary

security parameter is the average success probability for (2 → 1) QRAC,

PB =
1

8

∑

a0,a1,b∈{0,1}
P(B = ab|a0, a1, b). (1)

Parties randomly choose some of the rounds and announce a0 and a1 for those rounds

in order to estimate PB . Later the parties perform standard error correction and privacy

amplification to obtain perfectly correlated, secure bit strings (see Fig. 1).

Pb is the only security parameter if we consider the ideal case with perfect detectors,

i.e., all systems leaving Alice’s laboratory are detected at Bob’s end. In the case

with losses, the average detection efficiency (ηavg) of Bob’s detectors forms the other

security parameter. It is important to specify how the communicating parties deal

with the rounds in which no particle is detected. Although there are other options,

here we choose the simplest one: these rounds are discarded from the statistics. This

choice enables the parties to have the estimated average success probability close to

the optimal one ( 2+
√

2
4

in the perfect case for (2 → 1) QRAC).

4 Assumptions and attacks

We make the following assumptions:

1. Eve cannot influence the dimension of the system leaving Alice’s laboratory,

2. Eve performs individual attacks,
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3. For each bit of the key, Eve’s information about it is stored in a bit representing

her best guess of this bit,

4. Alice’s and Bob’s devices are controlled by Eve. She can make detectors work

with 100% efficiency if she chooses to. She also can send information to them

by hidden side channels. This implies that the states leaving Alice’s laboratory

can depend on Eve’s choice of measurement, while the measurement basis of

Bob’s device can depend on both Eve’s choice of measurement and her out-

come,

5. There is no information leakage from the devices. This implies that Eve cannot

receive any useful information using hidden side channels.

6. Bob’s observed detection efficiency is the same for each of his measure-

ments.

In this part of the paper, we study the security of SDIQKD against two distinct

classes of attacks,

1. Intercept/resend (without quantum memory),

2. Delayed measurement (with a qubit of quantum memory).

4.1 Intercept/Resend (IR)

Eve intercepts the signal transmitted from Alice to Bob and measures it in a bases

chosen based on her input e ∈ {0, 1} (see Fig. 2) [18,19]. Eve’s input e represents her

guess of input of Bob’s input b for that particular round. It is crucial for the security of

the protocol that e and b are uncorrelated, in other words that there is no information

leaking from Bob’s laboratory. However, Eve being able to choose different detection

probabilities for rounds when e = b and e �= b artificially introduces correlations

between e and b at the level of post-selected rounds of the experiment.

a0 a1 e

E = abab

ρa0,a1,e ∈ P(Cd)

Alice Eve

b

B = ab

Bob

ρa0,a1,e,E{M e
E} {M

e,b
B }

bb

Fig. 2 A snapshot of a successful implementation of the intercept/resend (IR) attack on SDIQKD protocol.

Here again the thin lines represent classical communication channels, while the thick lines represent the

quantum communication channel. The dotted lines represent channel for Eve’s active control of Alice’s and

Bob’s devices or equivalently channel for distribution of shared randomness. Notice that only the quantum

channel leaving Alice’s laboratory has an upper bound on capacity. Finally, as Eve does not have access

to quantum memory, she has to output her guess of ab as soon as she intercepts Alice’s communicated

state. Therefore, classical communication carrying Bob’s input b is of no use to her except in classical

post-processing
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Eve uses the measurement M E
e and obtains an output bit E ∈ {0, 1}. At this stage,

we can write Eve’s outcome probabilities as

P(E = i |a0, a1, e, b) = P(E = i |a0, a1, e)

= Tr(M E=i
e ρa0,a1,e),

(2)

where the first equality is because of the fact that Eve gets her outcome E before

Bob inputs b. Here, M E=i
e are projection operators such that

∑

i∈{0,1} M E=i
e = I. In

turns out that it is optimal for Eve to send the state ρa0,a1,e,E=i = M E=i
e to Bob,

with probability P(E = i |a0, a1, e) as it represents her best knowledge about Alice’s

input. In fact, it is the most general strategy. Since we assume that the eavesdropper

has full control over Bob’s measurements, any unitary transformation of the state can

be replaced by a corresponding transformation of the measurement bases.

According to assumption 4 Eve, for an observed value of the average detection

efficiency of Bob’s detectors ηavg can design in advance all the states ρa0,a1,e and all

measurements M B
e,E,b and M E

e . However, in any given round of communication she

is not aware of values of a1, a2 and b having just e chosen by her.

At Bob’s end, M B=i
e,E,b are projective operators satisfying

∑

i∈{0,1} M B=i
e,E,b = I. Bob’s

outcome probabilities are given by

P(B = i |a0, a1, e, b, E) = Tr(M B=i
e,E,bρa0,a1,e,E ). (3)

As Bob does not know Eve’s output, we can obtain the outcome probabilities apparent

to Bob, by summing over the values of E which yields

P(B = i |a0, a1, e, b) =
∑

j∈{0,1}
P(E = j |a0, a1, e)P(B = i |E = j, a0, a1, e, b)

=
∑

j∈{0,1}
Tr

(

M
E= j
e ρa0,a1,e

)

Tr
(

M B=i
e, j,b M

E= j
e

)

. (4)

Both Eve and Bob are interested in guessing ab; therefore, we can write these proba-

bilities using a simplified notation as

Pe
Eb

=
1

4

∑

a0,a1∈{0,1}
P(E = ab|e, a0, a1), (5)

Pe
Bb

=
1

4

∑

a0,a1∈{0,1}
P(B = ab|e, b, a0, a1). (6)

Next we split Bob’s detection efficiency ηavg = P(Click) into

η = P(Click|e �= b),

ηe=b = P(Click|e = b). (7)
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Here Click signifies occurrence of the event namely Bob’s detectors provide an out-

come. The other no-click event could occur because of certain malfunction in the setup

(the devices or the channel) or an deliberate attempt at hacking the protocol by a mali-

cious third party. Note that different values of η and ηe=b, together with assumption

5, imply that the distribution of e must be uniform.

At this point Eve maximizes ηe=b making it unity as she wants Bob’s device to

return the outcomes as often as possible when she managed to guess Bob’s input

correctly. At the same time, she also tries to minimize η. Only thing limiting her in

doing so is the observed detection efficiency which can be easily verified by Bob.

Since Eve has no control over Bob’s settings, P(b) = P(b = e) = 1
2

. This leads to

ηavg =
1 + η

2
. (8)

Here the observed success probabilities for Bob and Eve, post-selected to rounds

when Bob’s detector registered a particle, can be represented as weighted averages

over inputs e and b,

PE (η) =
1

2(1 + η)

(

P0
E0

+ ηP0
E1

+ ηP1
E0

+ P1
E1

)

, (9)

PB(η) =
1

2(1 + η)

(

P0
B0

+ ηP0
B1

+ ηP1
B0

+ P1
B1

)

. (10)

Alice and Bob can establish a secret key if Shannon’s mutual information between

Alice and Bob is greater than between Alice and Eve (I (A : B) > I (A : E)).

Assumption 3 makes E a binary observable as it contains her best guess of the bth

bit of Alice (ab). Then I (A : E) becomes H(ab) − H(ab|E) = 1 − h(PE ), where

h(.) is binary Shanon entropy and PE the probability that E = ab. Similarly I (A :
B) = 1 − h(PB). The condition I (A : B) > I (A : E) implies h(PB) < h(PE ). The

parties always abort the protocol if the average success probability PB is lower than

the classical maximum winning probability of a (2 → 1) QRAC ( 3
4

) as no security can

be guaranteed in this case even for perfect detectors [9]. Assuming PB > 3
4

, PE > 3
4

,

in this region the Shannon’s entropy function h(.) is monotonically decreasing, which

enables us to simplify h(PB) < H(PE ) to

PB(η) > PE (η). (11)

Therefore, whenever PB(η) is higher than maximal success probability achievable by

Eve, Pmax
E (η) protocol is secure. Alice and Bob can rest assure that the protocol is

secure if the value of PB(η) is greater than the critical value PC
B (η) = 1

2
max{PB(η)+

PE (η)}. Now as both PE (η) and PB(η) are simultaneously maximized, this boils down

to finding

PC
B (η) = Pmax

E (η) = max

{

P0
E0

+ ηP0
E1

+ ηP1
E0

+ P1
E1

2(1 + η)

}

. (12)
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with Pe
Eb

= 1
4

∑

a0,a1
Tr(ρa0,a1,e M

E=ab
e ), and the maximization is over all possible

measurements of Eve and Bob as well as preparations of Alice. Here we consider two

cases:

– The general case Assumption 4 implies that Eve could have access to shared

randomness which allows her to control both the devices during the protocol. We

assume that the shared randomness used by Eve in both Alice’s and Bob’s device

is the same as her input e. In Alice’s device this implies that there are eight possible

preparations ρa0,a1,e which depend on Alice’s input a0, a1 as well as Eve’s shared

random bit e. The security condition here is

PC
B (η) =

1

2

(

1 +
1

1 + η

)

. (13)

The details of the physical implementation of the attack and the derivation of the

condition can be found in “Appendix (i)”,

– A minimal characterization of preparation device Because of the fact that manip-

ulations in Alice’s laboratory are much more difficult for Eve than just taking

control over Bob’s laboratory by hijacking the signal, we start with an assumption

that while Eve can choose Alice’s preparations, she cannot modify them during the

protocol. This assumption is justifiable as the only reasonable strategy to actively

control Alice’s device is to use shared randomness (or some classical signal which

can be modeled using shared randomness), and Alice can use some of her seed to

exhaust correlation between her device and Eve’s input (or in case of control via

classical signal, Alice could easily bar all input signal as her device’s only job is

to send information). This lets us denote Alice’s preparations as ρa0,a1 as now the

state leaving Alice’s device is only dependent on her inputs a0, a1 and not on Eve’s

input e or shared randomness. Now as Eve wants to maximize her probability of

guessing bth bit of Alice, it is optimal for her to choose the preparations to be

mutually unbiased bases (MUBs). This yields the following security condition

PC
B (η) =

1

4

(

2 + cos αη +
1 − η

1 + η
sin αη

)

. (14)

The details of implementation of the attack and the derivation of the security

condition can be found in “Appendix (ii)”.

4.2 Delayed measurement (DM)

Let us now consider a more general approach with a more powerful Eve who is

equipped with a qubit of memory ρo (per signal) [20,21]. Yet again we deal with two

sub-cases

– The general case Eve after receiving the signal ρa0,a1,e from Alice, without any

knowledge about Bob’s input b ∈ {0, 1}, performs unitary transformation Ue

(based on her input bit e) on both qubits and produces
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a0 a1 e

E = abab

ρa0,a1,e ∈ P(Cd)

Alice Eve

b

B = ab

Bob

ρa0,a1,e
Ue {M

e,b
B }

{M
e,b
E }

bb

Fig. 3 Successful implementation of delayed measurement (DM) attack on SDIQKD protocol. Eve’s

laboratory now has two devices. The first device intercepts the signal sent from Alice’s lab and applies

a unitary based on Eve’s input bit e on the joint system of the signal and quantum memory. This device

then forwards the signal to Bob and quantum memory to Eve’s second device. The second device performs

a measurement on the quantum memory based on Eve’s input e; Bob’s input b retrieved from classical

communication carrying it yields an output

ρ̃a0,a1,e = Ueρa0,a1,e ⊗ ρoU †
e , (15)

where ρ̃a0,a1,e is a two qubit state. Eve then forwards the first subsystem to Bob,

while holding on to the second one. In this way, Eve delays her measurement until

Bob publicly announces his setting b (see Fig. 3). Bob’s projective measurement

M B
b,e and Eve’s measurement M E

e,b are designed by Eve so as to maximize her

success probabilities while keeping Bob’s success probabilities to a observed value

greater than the threshold classical value. Note that since Eve now measures after

Bob does, Bob’s measurement cannot depend on E . The joint probabilities can be

written as

P(E = i, B = j |a0, a1, e, b) = Tr
((

M E=i
e,b ⊗ M

B= j
e,b

)

ρ̃a0,a1,e

)

. (16)

Summing over Bob’s outcome yields the probability of Eve outcomes

P(E = i |a0, a1, e, b) = Tr
((

M E=i
e,b ⊗ I

)

ρ̃a0,a1,e

)

. (17)

In this case, we get same final security condition as (13) details of which are

provided in “Appendix (iii)”.

– A minimal characterization of preparation device The restriction that while Eve

can choose the states that leave Alice’s laboratory, she cannot alter them during

the protocol is still helpful. We find that the optimal states are still the MUBs (29)

and the security condition we obtain here is the same as (14).

These results were verified using techniques such as the seesaw method-based semi-

definite programming (SDP) [22–24] deploying generalized measurements (POVMs)

and are plotted in Fig. 4. We conclude that neither quantum memory nor generalized

measurements help the eavesdropper.
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0.90
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1.00 (a)

(b)

0.60.5

0.75

Fig. 4 Critical value of the success probability PC
B

(η) for SDIQKD based on (2 → 1) QRAC versus

observed average detection efficiency ηavg. Because we assume that the communicating parties use post-

selection and remove all the rounds when Bob did not register a particle from statistics, inefficient detectors

do not lower Bob’s success probability which can be close to the quantum maximum of 2+
√

2
4 (the thin

dotted horizontal line) regardless of the value of ηavg. The graphs represent the minimal value of observed

success probability PB required in order to guarantee security against (a) Eve with an unrestricted active

control of both Alice’s preparation device and Bob’s measurement and equipped with (DM) or without

(IR) quantum memory and, (b) Eve with no active control of Alice’s preparation device and equipped with

(DM) or without (IR) quantum memory. The plot allows one to infer about level of security provided by

the devices. This can be done by comparing the observed operational parameters PB , ηavg with PC
B

(η). If

for an observed ηavg, PB > PC
B

(η), then the protocol is secure

5 Modified SDI protocol

Here we present SDI protocol based on (3 → 1) QRAC which is a straightforward

generalization of the (2 → 1) QRAC and study its security against both (IR and DM)

attacks. In a (3 → 1) QRAC Alice is given three bits a0, a1, a2 ∈ {0, 1} depending

on which she sends the state ρa0,a1,a2 , while Bob gets a classical trit b ∈ {0, 1, 2}
and is required to guess the value of ab. Bob’s final output is B ∈ {0, 1} and the

success probability is labeled by PB = P(B = ab). The quantum maximum success

probability is 3+
√

3
6

, whereas the classical maximum remains the same 3
4

. Yet again,

the bit ab forms the raw key bit and after classical post-processing yields the final

key. Eve wants to learn ab in order to establish the same key with Alice as Bob. We

keep the structure, the reasoning and the notation (IR and DM) the same as in the SDI

protocol based on (2 → 1) QRAC. In this case, the average detection efficiency of

Bob’s detector is given by

ηavg =
1 + 2η

3
. (18)

Owing to the fact that P(b = e) = P(b) = 1
3
, Eve’s success probability is given by
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Fig. 5 A single round of

SDIQKD protocol based

(3 → 1) QRAC. Alice has three

inputs a0, a1, a2 instead of two

in the (2 → 1) QRAC

a0 a2 b ∈ {0, 1, 2}

B = abab

ρa0,a1,a2
∈ P(Cd)

Alice Bob

a1

{M b
B}

b

PE (η) =
1

3(1 + 2η)

(

P0
E0

+ η

(

P0
E1

+ P0
E2

)

+ P1
E1

+ η

(

P1
E0

+ P1
E2

)

+ P2
E2

+ η

(

P2
E1

+ P2
E0

))

. (19)

Again we branch into two cases (Fig. 5):

– The general case Assumption 4 implies that Eve could have access to shared

randomness which allows her to control both the devices during the protocol. We

assume that the shared randomness used by Eve in both Alice’s and Bob’s device is

the same as her input e. In Alice’s device, this implies that there are eight possible

preparations ρa0,a1,a2,e which depend on Alice’s input a0, a1, a2 as well as Eve’s

shared random bit e. Under both IR and DM attacks, we have the following security

condition

PC
B (η) =

1

2

(

1 +
1

1 + 2η

)

. (20)

In a nutshell, the deviation from (13) could be attributed to the spread of

e, b ∈ {0, 1, 2}. As both e, b are considered to be uniformly random, the chances

of them being equal are lowered down to P(e = b) 1
3

. The details of the imple-

mentation and a brief proof sketch is provided in “Appendix (iv)”.

– A minimal characterization of preparation device As manipulations in Alice’s

laboratory are much more difficult for Eve than just taking control over Bob’s

laboratory by hijacking the signal, we start with an assumption that while Eve can

choose Alice’s preparations, she cannot modify them during the protocol. This

lets us denote Alice’s preparations as ρa0,a1,a2 as now the state leaving Alice’s

device is only dependent on her inputs a0, a1, a2 and not on Eve’s input e or

shared randomness. This yields the following security condition for both IR and

DM attacks which is as follows

PC
B (η) =

⎧

⎨

⎩

φ(η), for η ∈
[

0, 3
√

2−4
2

]

3
4
, η ∈

(

3
√

2−4
2

, 1
] (21)
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Fig. 6 Critical value of the success probability PC
B

(η) for SDIQKD based on (3 → 1) QRAC versus

ηavg. The thin dotted horizontal line represents the quantum maximum winning probability 3+
√

3
6 . The

graphs represent the minimal value of observed success probability PB required in order to guarantee

security against (a) Eve with an unrestricted active control of both Alice’s preparation device and Bob’s

measurement and equipped with (DM) or without (IR) quantum memory and (b) Eve with no active control

of Alice’s preparation device and equipped with (DM) or without (IR) quantum memory. The plot allows

one to infer about level of security provided by the devices. This can be done by comparing the observed

operational parameters PB , ηavg with PC
B

(η). If for an observed ηavg, PB > PC
B

(η), then the protocol

is secure. Notice the increased tolerance (possibility of a secure protocol) at lower values of detection

efficiency (ηavg) as compared to the security offered by the protocol based on (2 → 1) QRAC Fig. 4

where

φ(η) =
1

8

(

4 + (1 + cos αη) cos βη +
2(1 − η)

1 + 2η
sin αη sin βη

)

,

αη = arccos

(

1

N (η)2 − 1

)

,

βη = arctan

(

tan(αη)

N (η)

)

,

N (η) =
2(1 − η)

1 + 2η
. (22)

Unlike the previous case, if Eve wants to maximize her probability of guessing bth

bit of Alice, it is optimal for her to choose the preparations that are not MUBs but

converge to MUBs under a specific efficiency condition. The details are provided

in “Appendix (v)”.

These results were verified using techniques such as the seesaw method-based semi-

definite programming (SDP) deploying generalized measurements (POVMs) and are

plotted in Fig. 6.

6 Conclusions

In this paper, we analyzed individual quantum hacking attacks on SDIQKD protocols

based on QRACs where eavesdropper can not only design but actively control all
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Table 1 Critical average detection efficiency ηcritical
avg for (a) Eve without quantum memory (IR) or equipped

with quantum memory (DM) and unrestricted active control of both Alice’s preparation device and Bob’s

measurement device, (b) Eve without quantum memory (IR) or equipped with quantum memory (DM) and

no active control of Alice’s preparation device

ηcritical
avg (a) (b)

(2 → 1) QRAC 0.71 1
2

(3 → 1) QRAC 0.58 1
3

devices during the protocol. Looking at these types of attacks was motivated by their

recent experimental realizations. We study security against two types of quantum

eavesdroppers (with and without access to quantum memory) and for two distinct

levels of characterizations of the devices (with and without a minimal characterization

of the preparation device). We found that access to small quantum memory (a qubit)

does not help the eavesdropper to attack the SDIQKD protocol and conjecture that the

same holds for other protocols and unlimited memory. As QKD in general is gaining

immense popularity [25–28] and entanglement-based QKD remains commercially

nonviable, devices employing prepare-and-measure QKD schemes seem to be natural

way forward. Our analysis, other than being robust, deals with worst case scenarios

and provides for the everyday naive user a hassle-free way to infer about the security

his devices offer. In particular, Figs. 4 and 6 provide a straightforward way to ensure

security; namely a user can crosscheck the operational security parameters PB, ηavg

against PC
B (η), and if he finds the PB > PC

B (η), he can rest assure without going into

further details. Our double-layered results enable such crosschecking for two layers

of device specification and may be used according to varying degrees of trust in the

provider.

We provide condition for establishing a secure key for SDIQKD based on (2 → 1)

QRAC and (3 → 1) QRAC against Eve who has full active control of their devices.

Using SDIQKD based on (3 → 1) QRAC lowers the key rate, but the security require-

ments are significantly lowered. Further, a minimal characterization for the preparation

device is provided which lowers the critical detection efficiency all the way down to

50% for (2 → 1) QRAC and to 41.2% for (3 → 1) QRAC. We have listed the

critical detection efficiencies for the various cases considered in Table 1. It is known

that (2 → 1) RAC and (3 → 1) RAC can also be implemented using entanglement

and classical communication, often called the (2 → 1) entanglement assisted RAC

(EARAC). These implementations can also be seamlessly used for QKD using the

aforementioned method. We conjecture based on numerical evidence that the results

derived in this work still hold for (2 → 1) and (3 → 1) EARAC.

We would like to remark that the critical detection efficiency is the efficiency of

the whole process taking into the account not only the losses in the device of the

receiver but also in the transmission. Therefore, in practice, they will increase with

the distance between the parties and the critical detection efficiency of a protocol

puts a bound on how far apart the communicating parties can be. For the standard

device-independent QKD, this distance is just a couple of kilometers [29]. Using

SDI protocols described here, it can be significantly extended. Our results suggest
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a connection between security and MUB-based encoding decoding schemes, which

deserves further exploration. While this work studied security of SDIQKD protocols

with constrained capacity (dimension) of the communication channel, security based

on other SDI constraints has also shown potential, for instance the oblivious constraint

as introduced in [30].
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Appendix

(i)

W.l.o.g. we can consider Eve’s projective measurements to be

∣

∣

∣
M E=0

e

〉

= cos
αe

2
|0〉 + sin

αe

2
|1〉

∣

∣

∣
M E=1

e

〉

=
∣

∣

∣
M E=0

e

〉⊥
, (23)

and M E=0
e = |M E=0

e 〉〈M E=0
e |,M E=0

e = |M E=1
e 〉〈M E=1

e |. Now one can rewrite (12)

as

Pmax
E (η) =

1

2
max

{

P
a0=a1

E + P
a0 �=a1

E (η)

}

, (24)

where

P
a0=a1

E =
1

4
Tr

(

ρ000 M0
0 + ρ001 M0

1 + ρ110 M1
0 + ρ111 M1

1

)

, (25)

P
a0 �=a1

E (η) =
1

4
Tr

(

ρ010

M0
0 + ηM1

0

1 + η
+ ρ011

M1
1 + ηM0

1

1 + η

+ ρ100

M1
0 + ηM0

0

1 + η
+ ρ101

M1
1 + ηM0

1

1 + η

)

. (26)

Notice that (25) and (26) divide Alice’s preparations into two mutually exclusive

subsets. Alice’s states that maximize P
a0=a1

E , ρ0,0,0, ρ0,0,1, ρ1,1,0, ρ1,1,1 remain the

same irrespective of whether Eve was able to correctly guess Bob’s input (e = b) or

not (e �= b) simply because both of Alice’s input are the same. This allows Eve to

set these states equivalent to the projectors M0
0 , M0

1 , M1
0 , M1

1 ,, respectively, which in

123

http://creativecommons.org/licenses/by/4.0/


131 Page 16 of 20 A. Chaturvedi et al.

turn allows one to rewrite (24) as

Pmax
E (η) =

1

2

(

1 + max
{

P
a0 �=a1

E (η)

})

. (27)

Now in order to find the maximum value of (26), consider one of the terms involved

Tr

(

ρ010

M0
0 + ηM1

0

1 + η

)

=
1

1 + η
−

1 − η

1 + η
Tr

(

ρ010 M1
0

)

, (28)

where the equality stems from the fact that M0
0 = I− M1

0 . The maximum for this term

is reached by setting ρ010 = M0
0 which yields the final security condition (13).

(ii)

W.l.o.g she fixes Alice’s preparations to be MUBs

ρ00 = |0〉〈0|,

ρ01 =
1

2
(|0〉 + |1〉)(〈0| + 〈1|),

ρ10 =
1

2
(|0〉 − |1〉)(〈0| − 〈1|),

ρ11 = |1〉〈1|, (29)

which is an optimal set of states for the standard (2 → 1) QRAC. Next w.l.o.g. we

characterize Eve’s projective measurement using vectors from the same plane as the

states in (29)

∣

∣

∣
M E=0

e

〉

= cos
αe

2
|0〉 + sin

αe

2
|1〉,

∣

∣

∣
M E=1

e

〉

=
∣

∣

∣
M E=0

e

〉⊥
, (30)

and M E
e = |M E

e 〉〈M E
e |. This allows us to partition (12) into two parts based on different

values of e. These parts are independent and, due to symmetry, equal. Therefore, we

may rewrite PE (η) as

PE (η) = max

{

P0
E0

+ ηP0
E1

1 + η

}

, (31)

which is

PE (η) =
1

8(1 + η)
Tr

(

M E=0
e=0 (ρ00 + ρ01) + M E=1

e=0 (ρ10 + ρ11)

)

+
η

8(1 + η)
Tr

(

M E=0
e=0 (ρ00 + ρ10) + M E=1

e=0 (ρ01 + ρ11)

)

.

(32)
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After plugging in (29), (30), this yields

Pmax
E (η) = max

α0

(PE (η))

=
1

4

(

2 + cos α0 +
1 − η

1 + η
sin α0

)

.
(33)

This expression is maximized for αη = arctan
(

1−η
1+η

)

. Hence, we obtain the security

condition (14).

(iii)

Here the success probability for Eve is

PE (η) =
1

8(1 + η)
Tr

∑

a0a1eb

η1−δeb P(E = ab|a0, a1, e, b), (34)

which can in turn be expressed as

PE (η) =
1

8
Tr

⎡

⎣

∑

i, j

ρ̃i,i, j

M
E= j
i,i ⊗ I + ηM

E= j
i,1−i ⊗ I

1 + η

+ ρ̃i,1−i, j

M
E=1−δi, j

i,i ⊗ I + ηM
E=δi, j

i,1−i ⊗ I

1 + η

⎤

⎦ .

(35)

Notice that this expression constitutes four independent elements for specific value

of the pair (i, j). In order to find PE (η)max, we need to only find the maximizing

condition for one term. Lets consider a particular pair (i, j), then the expression for

PE (η)max simplifies to

Pmax
E (η) =

1

2
max

{

Tr

(

ρ̃i,i, j

M
E= j

i,i ⊗ I + ηM
E= j

i,1−i ⊗ I

1 + η

+ ρ̃i,1−i, j

M
E=1−δi, j

i,i ⊗ I + ηM
E=δi, j

i,1−i ⊗ I

1 + η

⎞

⎠

⎫

⎬

⎭

.

(36)

This equation is maximized when M
E= j

i,i = M
E= j

i,1−i or M
E=1−δi, j

i,i = M
E=δi, j

i,1−i yielding

the same security condition as (13).
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(iv)

In the case when Eve does not have access to quantum memory (IR), we can rewrite

(19) in a convenient way as

Pmax
E (η) =

1

4
max

{

P
a0=a1=a2

E + P
NOT{a0=a1=a2}
E

}

, (37)

where P
a0=a1=a2

E is Eve’s success probability for the case when all three of the input

bits of Alice are equal and P
NOT{a0=a1=a2}
E is Eve’s success probability for the case

when the three inputs of Alice are not equal. As Alice’s states and Bob’s measurement

that maximize P
a0=a1=a2

E remain the same irrespective of the fact whether Eve was

able to guess Bob’s input correctly or not, we can further rewrite this as

Pmax
E (η) =

1

4

(

1 + max

{

P
NOT{a0=a1=a2}
E

})

. (38)

Following exactly the same steps as above, this yields the security condition (20).

(v)

We find that the optimal states are

|000〉 = |0〉,
|001〉 = cos

α

2
|0〉 + sin

α

2
|1〉,

|010〉 = cos
α

2
|0〉 + eiβ sin

α

2
|1〉,

|100〉 = cos
α

2
|0〉 + e−iβ sin

α

2
|1〉,

|111〉 = |000〉⊥,

|110〉 = |001〉⊥,

|101〉 = |010〉⊥,

|011〉 = |100〉⊥, (39)

where α and β are parameters controlled by Eve. In this case optimal encoding for

standard (3 → 1) QRAC is reproduced for α = arccos 1
3

and β = 2π/3. For Eve’s

measurements (M
E=ab
e = |M E=ab

e 〉〈M
E=ab
e |), we use the following parametrization

∣

∣

∣
M E=0

e

〉

= cos
αe

2
|0〉 + eiβe sin

αe

2
|1〉

∣

∣

∣
M E=1

e

〉

=
∣

∣

∣
M E=0

e

〉⊥
, (40)

A straightforward maximization yields the security condition (21).
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