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Abstract

The RSA cryptosystem, named after its inventors, Rivest, Shamir and Adle-
man, is the most widely known and widely used public-key cryptosystem
in the world today. Compared to other public-key cryptosystems, such as
elliptic curve cryptography, RSA requires longer keylengths and is compu-
tationally more expensive. In order to address these shortcomings, many
variants of RSA have been proposed over the years. While the security of
RSA has been well studied since it was proposed in 1977, many of these
variants have not. In this thesis, we investigate the security of five of these
variants of RSA. In particular, we provide detailed analyses of the best
known algebraic attacks (including some new attacks) on instances of RSA
with certain special private exponents, multiple instances of RSA sharing
a common small private exponent, Multi-prime RSA, Common Prime RSA
and Dual RSA.
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Chapter 1

Introduction and
Cryptographic Preliminaries

The RSA cryptosystem, named after its inventors Rivest, Shamir and Adle-
man [102], is the most widely known and widely used public-key cryptosys-
tem in the world today.

Of particular importance, RSA is one of the public-key cryptosystems
used in the Transport Layer Security (TLS) protocol and its predecessor,
the Secure Sockets Layer (SSL) protocol, which are used to provide secure
communications on the Internet. Essentially, RSA is used to transmit a ses-
sion key for a symmetric cryptosystem which will be used for the remainder
of the communication. In fact, VeriSign, the world’s largest SSL certificate
dealer, uses RSA for the public-key component in all of the certificates that
they have ever issued1.

Even though RSA is the most used cryptosystem in the world today,
when compared to other public-key cryptosystems such as elliptic curve
cryptography (ECC), RSA requires longer keylengths and is computation-
ally more expensive. As computing devices become increasingly smaller
(e.g., hand-held devices and smartcards) and keylengths become increas-
ingly larger (to offer an adequate level of security), these shortcomings of
RSA become increasingly problematic. Eventually, the computational per-
formance that RSA can achieve will no longer be adequate for constrained
devices and another public-key cryptosystem will have to replace RSA as

1As of April 2007, VeriSign has issued more than 500, 000 certificates. Currently, there
are about 61, 000 sites secured with active VeriSign certificates and it is estimated that
the VeriSign Secured Seal is viewed on average 80-100 million times daily.
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the standard2. Of course, the scale of this change is very large and will
take years to accomplish. In the meantime, it is possible to obtain mod-
est improvements in computational performance by simply replacing RSA
with one of the many suggested variants of RSA (which are designed to
be more efficient than RSA in some manner). Most of these variants can
inter-operate with systems that were designed to use the original RSA and
so migrating to these is a relatively simple task.

The idea of modifying the original form of RSA is not new. In fact,
in the patent for RSA [103] (filed in 1977), Rivest, Shamir and Adleman
comment that

“In alternative embodiments, the present invention may use a
modulus n which is a product of three or more primes (not nec-
essarily distinct). Decoding may be performed modulo each of
the prime factors of n and the results combined using “Chinese
remaindering” or any equivalent method to obtain the result
modulo n.”

While RSA is a very well-studied public-key cryptosystem, the security of
most of the variants of RSA are not well studied. It is the aim of this thesis
to investigate the security of some of these variants of RSA. In particular, we
will analyze the security of several variants of RSA with respect to algebraic
attacks.

1.1 Overview of Thesis

We give a brief overview of the remainder of this work.
In the remainder of this chapter, we review the definition of public-key

cryptosystems, discuss the RSA cryptosystem and introduce some notation
and assumptions that will be used throughout the thesis.

In Chapter 2, we provide all the mathematical background needed for
the attacks in the remainder of the thesis. In particular, some results from
the theory of continued fractions and lattice basis reduction are presented.

In Chapter 3, we consider instances of RSA with private exponents that
are close to a fractional multiple of λ(N) = lcm(p−1, q−1), where N = pq is
the RSA modulus and p and q are primes. RSA with small private exponent
is a special case of this scenario.

2This change is inevitable since it will be economically driven. In Canada alone, Inter-
net sales have exceeded $100 billion since 2000 [110].
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In Chapter 4, we present a lattice-based extension of Wiener’s small
private exponent attack. The attack applies to multiple instances of RSA
each having a common small private exponent.

In Chapter 5, we analyze the security of Multi-prime RSA, a variant of
RSA in which the modulus contains more than two distinct primes.

In Chapter 6, we introduce and investigate the security of a variant of
RSA called Common Prime RSA. This is work that we presented at the
RSA conference in 2006.

In Chapter 7, we present some attacks on a new variant of RSA called
Dual RSA. This variant, essentially, consists of two unique instances of RSA
with common public and private exponents (but different moduli).

Finally, in Chapter 8, we give some concluding remarks and suggest some
possible directions for future work.

1.2 Public-Key Cryptography

The notion of public-key cryptography was first publicly developed and in-
troduced by Diffie and Hellman [42] and Merkle [85] in the mid 1970’s. We
refer the reader to Diffie [41] for a history of the beginnings of public-key
cryptography. We will use the following definition for a public-key cryp-
tosystem.

A public-key cryptosystem is a five-tuple (P, C,K, E ,D), where the fol-
lowing conditions are satisfied:

1. P is a finite set of possible plaintexts.

2. C is a finite set of possible ciphertexts.

3. K, the keyspace, is a finite set of possible keys.

4. For each key K ∈ K, there is an encryption rule encK ∈ E and a
corresponding decryption rule decK ∈ D. Each encK : P → C and
decK : C → P are functions such that decK(encK(m)) = m for every
plaintext element m ∈ P.

5. for each key K ∈ K and each plaintext m ∈ P, both encK(m) and
decK(encK(m)) are easy to compute.

6. for almost every key K ∈ K, each easily computable algorithm equiv-
alent to decK is computationally infeasible to derive from encK .
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7. The encryption rule encK is made public and the decryption rule decK

is kept private.

Alternatively, we can think of a public-key cryptosystem as consisting
of three efficiently computable algorithms: a key generation algorithm, an
encryption algorithm, and a decryption algorithm. Here, the key generation
algorithm (either implicitly or explicitly) defines the keyspace K and the
encryption and decryption algorithms define the plaintext and ciphertext
spaces P and C.

1.3 The RSA Cryptosystem

The RSA cryptosystem was the first publicly known public-key cryptosys-
tem. Introduced in 1977 in a Scientific American article written by Gard-
ner [49], the full research paper was published a year later by its inventors
Rivest, Shamir and Adleman [102]. The cryptosystem was originally called
the MIT public-key cryptosystem, in reference to the authors’ affiliation at
the time.

Using the definition of a public-key cryptosystem given above, we can
specify the original version of RSA, often called textbook RSA, as follows.

For textbook RSA, let N = pq, where p and q are primes, let P = C = ZN

(the integers modulo N) and define the keyspace as

K = {(N, p, q, e, d) : ed ≡ 1 (mod φ(N))} ,

where φ(N) = (p − 1)(q − 1) is Euler’s totient function. For each key
K = (N, p, q, e, d), the encryption rule encK : ZN → ZN is defined by

encK(x) = xe mod N,

and the decryption rule decK : ZN → ZN is defined by

decK(y) = yd mod N,

for x, y ∈ ZN . The pair (e,N) is the RSA public key and the triple (d, p, q)
is the RSA private key.

As the names suggest, the public key (e,N) is public knowledge while the
private key (d, p, q) is kept private. Here, N is called the RSA modulus or
simply the modulus, p and q are called the RSA primes, e is called the public
or encrypting exponent and d is called the private or decrypting exponent.
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The fact that the decryption rule recovers the original plaintext follows
from Euler’s theorem, which states that

aφ(N) ≡ 1 (mod N),

for any integer a that is relatively prime to N . Given a public key (e,N) and
a plaintext message m ∈ ZN that is relatively prime to N (i.e., m ∈ Z∗

N ),
the encryption rule computes the ciphertext

c = me mod N.

Using the decryption rule, and the key equation ed = 1+kφ(N), we recover
the plaintext since

cd mod N ≡ (me)d (mod N)

≡ med (mod N)

≡ m1+kφ(N) (mod N)

≡ m(mφ(N))k (mod N)

≡ m(1k) (mod N)

≡ m (mod N)

= m.

This argument, using Euler’s theorem, only applies to plaintext messages
m ∈ Z∗

N instead of all messages in the plaintext space P = ZN . However, it
is easily shown using the Chinese Remainder Theorem, that it holds for all
plaintext messages m ∈ ZN (of course, each plaintext message m ∈ ZN \Z∗

N

allows the modulus to be easily factored since gcd(c,N) will reveal a multiple
of one of the primes p or q).

Defining the public and private exponents as inverses modulo φ(N) gives
a sufficient (but not necessary) condition for the encryption rule to recover
the plaintext from any ciphertext. The necessary condition is that the pub-
lic and private exponents be inverses of each other modulo Carmichael’s
function λ(N) = lcm(p− 1, q − 1). This follows since Carmichael’s function
λ(N) is, by definition, the smallest number m such

am ≡ 1 (mod N),

for any integer a that is relatively prime to N . Thus, it is sufficient to define
the public and private exponents as inverses modulo any multiple of λ(N).
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Of course, φ(N) is a multiple of λ(N) since

φ(N) = (p− 1)(q − 1)

= gcd(p− 1, q − 1) lcm(p− 1, q − 1)

= gcd(p− 1, q − 1) λ(N),

which allows us to use φ(N) in the key generation algorithm. However, in
current standards and implementations of RSA (e.g., see PKCS #1 [104])
the public and private exponents are defined as inverses modulo λ(N).

RSA has the multiplicative property that the encryption of the product
of two plaintext messages is the same as the product of the encryptions of
the two plaintext messages. That is, for plaintext messages m1 and m2, we
have

encK(m1m2) = encK(m1)encK(m2).

This property, often called the homomorphic property of RSA, follows from
the basic properties of modular multiplication. Exploiting this homomorphic
property of RSA, Davida [38] showed that textbook RSA is insecure against
a chosen ciphertext attack3. A simplification of the attack by Judy Moore4

is as follows. Suppose an adversary is given a ciphertext c = me mod N and
wants to compute m. Selecting a random x ∈ ZN , the adversary asks for
the plaintext of the ciphertext c0 = cxe mod N . Since

m0 = c0
d mod N

= (cxe)d mod N

= cdxed mod N

= mx mod N,

the adversary can simply compute m = m0x
−1 mod N to recover the desired

plaintext.
Another, more practical attack, that uses the homomorphic property of

RSA is by Boneh, Joux and Nguy˜̂en [18]. Their attack uses the fact that, in
practice, RSA is mostly used to encrypt short messages (generally a session
key for a symmetric key cryptosystem). Essentially, their attack is a meet-
in-the-middle attack that assumes that the desired ℓ-bit plaintext m can be

3Given a ciphertext c, a chosen ciphertext attack allows the adversary to choose a
number of ciphertexts, not including c, and obtain their corresponding plaintexts in order
to assist in decrypting c.

4Denning credits, without reference, the simplification to Moore in [40].
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factored into two ℓ/2-bit factors m1 and m2 (i.e., m = m1m2). The attack
begins by constructing a table containing each ℓ/2-bit number m′

1 and its
encryption (m′

1)
e mod N . Then, for each possible ℓ/2-bit number m′

2, the
value c/m′

2 mod N is checked against each encryption in the table. When
m′

2 = m2, the value of c/m′
2 mod N , given by m1

e mod N , will be in the
table. When this match is found, the factorization of m (and hence m itself)
is found. The attack requires as much time as it takes to compute 2ℓ/2+1

modular exponentiations (modulo N), requires 2ℓ/2ℓ bits of memory and
succeeds with probability 18% (over the choice of the plaintext m).

These attacks are easily avoided by imposing some structure on the plain-
texts. In particular, a proper padding scheme, such OAEP [4], is sufficient.
In the remainder of this work, we implicitly assume that a proper padding
scheme is used in all variants considered and do not discuss this further.

1.3.1 CRT Decryption

The main drawback to textbook RSA (besides being insecure without a
padding scheme) are the long key lengths and the expensive computational
costs of key generation, encryption and decryption. In order to reduce the
effects of these drawbacks, many variants of RSA have been proposed. One
such variation is based on the observation that decryption can be accom-
plished by first decrypting a ciphertext modulo each of the primes p and
q and then combining the results using the Chinese Remainder Theorem
(CRT). While the idea of performing decryption using CRT was mentioned
as early as 1977 in the RSA patent [103] (when the modulus consists of more
than two primes) and in 1979 by Rabin [100], it was not fully appreciated
for use in RSA until Quisquater and Couvreur’s work in 1982 (see [99]).
Essentially, the decryption algorithm is replaced with the following method:
Given a ciphertext c = me mod N , first compute

cp = cdp mod p

cq = cdq mod q,

where dp = d mod p− 1 and dq = d mod q − 1, then compute the plaintext
message m using Garner’s algorithm (e.g., see [84, §14.5])

m = cq + (q−1 mod p)(cp − cq)q.

The CRT-exponents, dp and dq, and the value (q−1 mod p) can be pre-
computed and included in the private key so that they do not need to be
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computed for each decryption. Assuming quadratic complexity for mul-
tiplication, and performing modular exponentiation using the square-and-
multiply method (see [84, Chapter 14] for more information), decryption
costs can be reduced by a factor of four if the computations are done se-
quentially, and by a factor of eight if done in parallel and the RSA primes
are roughly the same size.

1.3.2 Security of RSA

The security of RSA is based on the difficulty of solving the so-called RSA
problem. Given an RSA public key (e,N) and a ciphertext c = me mod N ,
the RSA problem is to compute the plaintext m. Essentially, it is the problem
of computing eth roots modulo N . Clearly, if the RSA problem can be
solved efficiently then RSA is completely insecure. While there hasn’t been
a significant amount of research into the difficulty of this problem, it is
believed to be difficult to solve. In fact, the security of RSA is based on the
RSA assumption: the RSA problem is hard to solve when the modulus N
is sufficiently large and randomly generated and the plaintext m ∈ Z∗

N is
randomly chosen.

Since RSA has been publicly disclosed, there has been no evidence
(known to the public) to suggest that the RSA assumption is untrue. For
more information about the RSA problem, see Rivest and Kaliski [101].

Another problem that is commonly associated with the security of RSA is
the well-known integer factorization problem. It is clear that the RSA prob-
lem is not harder to solve than the integer factorization problem, because
factoring the RSA modulus N allows one to compute the private exponent
d, which allows one to efficiently solve the RSA problem. It is not clear,
however, if the converse is true. That is, it is unknown if solving the RSA
problem allows one to efficiently solve the integer factorization problem. In
1998, Boneh and Venkatesan [20] provided evidence that suggests that the
RSA problem may be easier to solve than the integer factorization problem
when the public exponent is small (or the product of small factors). In
2005, Brown [21] showed that solving the RSA problem with a straight line
program is almost as difficult as the integer factorization problem provided
that the public exponent is small or has a small factor.

Even though the RSA problem may be easier to solve than the integer
factorization problem, in practice, the security of RSA is always analyzed
based on the integer factorization problem. Perhaps one reason for this
is that the integer factorization problem is a well-known and well-studied
problem. We give a brief overview of the current state of the art in factoring
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methods below (see Crandall and Pomerance [37] for more information).
The best generic factoring method is Pollard’s general number field sieve

(NFS). Following Lenstra [72], we will use

L[n] = e1.923(log n)1/3(log log n)2/3
, (1.1)

as the heuristic expected runtime of the NFS to factor a composite number
n. Notice that the expected runtime of the NFS is a function of only the
size of the number being factored. The largest integer factored using the
NFS, as of April 2007 [126], is RSA200, a 200-digit number (665 bits) which
was factored in May 2005.

H. Lenstra’s elliptic curve method (ECM) for factoring can be substan-
tially faster than the NFS if one of the prime factors of n is significantly
smaller than

√
n. Again, following Lenstra [72], we use

E[n, p] = (log2 n)2e
√

2(log p)1/2(log log p)1/2
, (1.2)

as the heuristic expected runtime of the ECM to find a factor p of n. Notice
that the expected runtime of the ECM is a function of both the smallest
factor and the number being factored, with the size of the smallest factor
dominating the complexity. The largest factor found with the ECM, as of
April 2007 [126], is 66 digits in length (220 bits) which was found in April
2005.

Since the assumed difficulty of the integer factorization problem is the
de facto security measure for RSA, the level of security for an instance of
RSA is determined by the size of the modulus. Currently, 1024-bit moduli
are recommended for non-critical encryption. The expected complexity re-
quired to factor a 1024-bit RSA modulus is roughly 280 operations, which is
currently infeasible.

At present, the best attack on a random instance of RSA is factoring the
modulus with the NFS (if the primes are relatively balanced) or the ECM (if
the primes are very unbalanced). There are, however, many other attacks
that exploit certain key choices (small private exponent, for example), addi-
tional information (such as partial key exposure attacks), or implementation
details (such as side channel attacks). For more information, see Boneh’s
survey of attacks on RSA [12], or the more recent attacks by Blömer and
May [7, 8, 9], May [80], Ernst, Jochemsz, May and de Weger [46], Jochemsz
and May [69, 70], and Acıiçmez, Koç and Seifert [1].
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1.4 An Alternate History

There are at least two histories of the advent of public-key cryptography.
The usual history is that public-key cryptography was developed by Diffie,
Hellman and Merkle in the mid 1970’s and that the first public-key cryp-
tosystem was invented by Rivest, Shamir and Adleman in 1977. See Diffie [41]
for more details of this history.

A second history, however, was born in 1997, when the British Gov-
ernment Communications Headquarters (GCHQ) unclassified several docu-
ments which claimed that the ideas of public-key cryptography had been se-
cretly developed by some of its members in the early 1970’s. In particular, it
is claimed that the notion of non-secret digital encryption (essentially public-
key cryptography without the concept of digital signatures) was developed
by Ellis [44] in 1970, the equivalent of the RSA cryptosystem (for encryption
only, as digital signatures were not part of non-secret digital encryption) was
developed by Cocks [26] in 1973 and what it known as the Diffie-Hellman-
Merkle key exchange method was developed by Williamson [124, 125] in
1974. While none of the original documents exist (or have been made pub-
lic), it is generally acknowledged that this secret development of public-key
cryptography did indeed occur. See Ellis [45] for a brief summary of this
history.

It has also been claimed that the American National Security Agency
(NSA) had developed public-key cryptography in the 1960’s. These claims
are without substantiation, but make for an interesting read (see Bellovin [5]
for more information).

1.5 Assumptions and Notation

In the rest of this thesis, we use the following notation and assumptions
unless otherwise stated.

We only consider instances of RSA (and their variants) with balanced
primes. By balanced primes, we mean that the primes in the modulus are
roughly the same size. In particular, for an RSA modulus N = pq, we
assume that

4 <
1

2
N1/2 < p < N1/2 < q < 2N1/2. (1.3)

A consequence of this is that Euler’s totient function φ(N) = (p− 1)(q− 1)
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satisfies

N − φ(N) = N − (p− 1)(q − 1)

= N − (N − p− 1 + 1)

= p + q − 1

< 3N1/2.

(1.4)

For notational convenience, we define Λ = N − φ(N) = p + q − 1. Thus, we
have that |Λ| < 3N1/2.

Even though textbook RSA defines the public and private exponent as
inverses modulo Euler’s totient function φ(N) = (p−1)(q−1), as mentioned
earlier, the current standards and implementations (e.g., see PKCS #1 [104])
defines the exponents as inverses λ(N) = lcm(p − 1, q − 1). In the variants
of RSA that we consider in this work, the public and private exponents will
be defined modulo φ(N) or modulo λ(N). The choice will usually depend
on the context in which the variant was introduced.

When referring to RSA, textbook RSA or standard RSA, we mean the
following: let N = pq, where p and q are balanced primes. Let P = C = ZN ,
and define the keyspace as

K = {(N, p, q, e, d) : ed ≡ 1 (mod φ(N))} ,

or

K = {(N, p, q, e, d) : ed ≡ 1 (mod λ(N))} .

For a key K = (N, p, q, e, d), the encryption rule encK : ZN → ZN is defined
by

encK(x) = xe mod N,

and the decryption rule decK : ZN → ZN is defined by

decK(y) = yd mod N,

where x, y ∈ ZN . If CRT-decryption is used, an alternate decryption rule
dec′K : ZN → ZN defined by

dec′K(y) = (ydq mod q) + (q−1 mod p)(ydp mod p− ydq mod q)q,

where dp = d mod (p − 1) and dq = d mod (q − 1) can be used. The RSA
public key is the pair (e,N) and the RSA private key is the triple (d, p, q).
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Most of the variants of RSA that we consider in this thesis involve vari-
ations to the key generation algorithm (i.e., the keyspace is a proper subset
of the RSA keyspace). Instead of giving a (semi) formal definition of each
variant, we will simply explain what the variation is and possibly give an
explicit algorithm if needed.

In several of the documents cited in this thesis we have included a uni-
form resource locator (URL) for an electronic version of the document (or for
a webpage containing the document). Some of these documents only exist
online while others are very difficult to obtain otherwise (e.g., non-electronic
technical reports from the 1980’s). The URL’s included have all been tested
and are valid as April 2007. Also, since this is an electronic thesis, each of
these references are hyperlinked to the source document or webpage.
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Chapter 2

Mathematical Preliminaries

In this chapter we provide all the mathematical background needed for the
attacks presented in this thesis.

2.1 Some Notation

Here we collect some notation that is needed for the mathematical back-
ground reviewed in this chapter. The notation will also be used in the
remainder of the thesis unless otherwise noted.

Sets

We use Z, Q and R to denote the set of integers, rational numbers and real
numbers, respectively. For any positive integer N , we use ZN to denote the
ring of integers modulo N .

Vectors

For any vector x ∈ Rn, we use ‖x‖ to denote the Euclidean norm and ‖x‖∞
to denote the infinity norm. That is, for any vector x = (x1, . . . , xn), we
have

‖x‖ =

(
n∑

i=1

|xi|2
)1/2

‖x‖∞ = max
1≤i≤n

(|xi|).

For any two vectors x, y ∈ Rn, we use 〈x, y〉 to denote the inner (or dot)
product of the two vectors. That is, if x = (x1, . . . , xn) and y = (y1, . . . , yn)
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then

〈x, y〉 =
n∑

i=1

xiyi.

Polynomials

For any polynomial h(x1, . . . , xn), we use ‖h(x1, . . . , xn)‖ to denote the Eu-
clidean norm of the coefficient vector of h(x1, . . . , xn) and ‖h(x1, . . . , xn)‖∞
to denote the infinity norm of the coefficient vector of h(x1, . . . , xn). For
any polynomial

h(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inxi1
1 · · ·xin

n ,

with m monomials, the coefficient vector of h(x1, . . . , xn) is simply the m-
dimensional vector consisting of the m coefficients of h(x1, . . . , xn). The
Euclidean and infinity norms of h(x1, . . . , xn) are thus given by

‖h(x1, . . . , xn)‖ =




∑

i1,...,in

|ai1,...,in |2



1/2

‖h(x1, . . . , xn)‖∞ = max
i1,...,in

(|ai1,...,in |) .

The infinity norm of a polynomial is also called the height of a polynomial.
When working with the coefficient vectors of polynomials, we will assume

that there is an underlying ordering to the vector components. This ordering
will depend on each particular situation, but will be constant throughout
that situation. For example, if we are considering the polynomials

h1(x, y) = 1 + 2x + 3xy

h2(x, y) = 7 + 2xy + 4x3,

we might order the components of their corresponding coefficient vectors by
increasing total degree of each monomial. Thus, the coefficient vectors for
h1 and h2 would be given by

h1(x, y)→ (1, 2, 3, 0)

h2(x, y)→ (7, 0, 2, 4).
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Asymptotic Notation

When describing the asymptotic nature of a function we use both little-oh
and big-oh notation.

A function f(n) is said to be little-oh of a function g(n), denoted by
f(n) ∈ o(g(n)), if for any constant c > 0 there exists a constant n0 > 0 such
that 0 ≤ f(n) < cg(n) for all n ≥ n0. Informally, if f(n) ∈ o(g(n)), then
f(n) is negligible compared to g(n) for all sufficiently large values of n.

A function f(n) is said to be big-oh of a function g(n), denoted f(n) ∈
O(g(n)), if there exist constants c > 0 and n0 > 0 such that 0 ≤ f(n) ≤
cg(n) for all n ≥ n0. Informally, if f(n) ∈ O(g(n)), then f(n) is no larger
than some constant multiple of g(n) for all sufficiently large values of n.
When using big-oh notation, we will always assume that the function g(n)
is the smallest simple function such that f(n) ∈ O(g(n)). Thus, f(n) and
g(n) are comparable, up to a constant, for all sufficiently large values of n.

2.2 Continued Fractions

The first mathematical tool that we review is continued fractions. For more
information on continued fractions, see Olds [95].

An expression of the form

a1 +
1

a2 +
1

a3 +
1

. . . +
1

an

,

where a1 is any integer and a2, . . . , an are positive integers is called a fi-
nite simple continued fraction, which we will call a continued fraction. As
a shorthand for this cumbersome type of expression, we often express a
continued fraction as the tuple

[a1, . . . , an].

Any rational number p/q can be expanded (or expressed) as a continued
fraction

p

q
= [a1, . . . , an].
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Here, the ai are simply the quotients obtained by computing the greatest
common divisor (gcd) of p and q using the Euclidean algorithm. In partic-
ular, applying the Euclidean algorithm to p and q we obtain

p = a1q + r1

q = a2r1 + r2

r1 = a3r2 + r3

...

rn−2 = anrn−1 + 0.

For 0 ≤ i ≤ n, we define the ith convergent of the continued fraction
[a1, . . . , an] to be

ci = [a1, . . . , ai].

Each convergent ci can be expressed as a rational number pi/qi.
The main result from the theory of continued fractions that we use in

this thesis is the following theorem (see for example [55]).

Theorem 2.1. Let α ∈ Q and c, d ∈ Z satisfy

∣∣∣α− c

d

∣∣∣ <
1

2d2
.

Then c/d, in lowest terms, is one of the convergents in the continued fraction
expansion of α.

This result is applied to situations in which we can derive an equation

α =
c

d
+ β,

where α is the only known quantity and β is small, with the goal of com-
puting c and d (or c/d). From this equation, we have

∣∣∣α− c

d

∣∣∣ = |β|,

so that whenever β < 1/(2d2), we know from Theorem 2.1 that c/d, in lowest
terms, will be one of the convergents in the continued fraction expansion of
the known quantity α. This technique is, of course, only useful if there is a
way to test for the correct convergent.
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2.3 Lattice Background

The majority of attacks that we discuss in this thesis are based on tech-
niques that use lattice basis reduction. In this section we give some basic
background information about lattices and then outline the two main lattice-
based techniques that we employ. For more information about lattices and
cryptography, see the survey by Nguy˜̂en and Stern [94]. For more informa-
tion about the geometry of numbers, see [22, 54, 108]. For more information
about lattices and lattice basis reduction, see [27, 53, 77, 79].

2.3.1 Definitions and Basic Facts

A lattice is a discrete (additive) subgroup of Rn. Equivalently, given m ≤ n
linearly independent vectors b1, . . . , bm ∈ Rn, the set

L = L(b1, . . . , bm)

=

{
m∑

i=1

αibi : αi ∈ Z

}
,

(2.1)

is a lattice. The bi are called basis vectors of L and B = {b1, . . . , bm} is
called a lattice basis for L. Thus, the lattice generated by a basis B is the
set of all integer linear combinations of the basis vectors in B.

The dimension (or rank) of the a lattice, denoted dim(L), is equal to the
number of vectors making up the basis. The dimension of a lattice is equal
to the dimension of the vector subspace spanned by B. A lattice is said to
be full dimensional (or full rank) when dim(L) = n.

It is often useful to represent a lattice L by a basis matrix. Given a basis
B, a basis matrix M for the lattice generated by B is simply the m × n
matrix whose ℓth row is bℓ. The lattice can then be described as

L = {v : v = yM, y ∈ Zn}.

Similarly, a lattice can be generated by the columns of an n×m basis matrix
whose ℓth column is bℓ (i.e., L = {v : v =MT y, yT ∈ Zm}).

Lattices with dimension greater than one (i.e., m ≥ 2) have infinitely
many bases (each with the same cardinality). Given a lattice L with basis
matrixM and any m×m unimodular matrix U (i.e., U is an integral matrix
with det(U) = ±1) then M′ = UM is also a basis matrix for L. Any two
bases for a lattice L can be related in this way.
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The volume (or determinant) of a lattice, denoted by vol(L) is, by defi-
nition, the square root of the Gramian determinant1, which is independent
of the particular choice of basis. This definition corresponds to the actual
m-dimensional volume of the parallelepiped spanned by the bi’s and leads to
the following result, called Hadamard’s inequality, which relates the volume
of a lattice to any of its bases:

vol(L) ≤
m∏

i=1

‖bi‖, (2.2)

where equality holds if and only if the basis vectors are mutually orthogonal.
When a lattice is full dimensional its volume is given by

vol(L) = |det(M)|. (2.3)

In this case, it is clear that the volume is independent of the choice of basis
since any two basis matrices are related by a unimodular matrix.

If bi ∈ Qn for all 1 ≤ i ≤ m (i.e., L is a subgroup of Qn) then the
lattice L is called a rational lattice. If bi ∈ Zn for all i ≤ i ≤ m (i.e., L is a
subgroup of Zn) then the lattice L is called an integer lattice. The volume
of a full dimensional integer lattice (with dimension n) is also equal to the
index [Zn : L] of L in Zn.

Given any lattice of dimension m, for 1 ≤ i ≤ m, the ith successive
minima of L, denoted by λi(L) are defined to be the radii of the smallest balls
centred about the origin (of Rn) such that there exist i linearly independent
lattice vectors contained in this ball. That is,

λi(L) = min
v1,...,vi∈L
lin. ind.

max
1≤j≤i

‖vj‖. (2.4)

When the lattice is understood, we will sometimes use λi to denote the
successive minima, in order to simplify the notation. Essentially, λi is the ith

smallest Euclidean length of any non-zero vector in L. Of special importance
is λ1, which is the Euclidean length of a smallest non-zero vector in L.

Minkowski has shown the following result relating the successive minima
to the volume of the a lattice.

Theorem 2.2 (Minkowski’s Second Theorem). For any m-dimensional
lattice L, and for all r ≤ m,

λ1λ2 · · ·λr ≤
√

γr
m vol(L)r/m, (2.5)

where γm is Hermite’s constant of dimension m.

1The Gramian determinant is the determinant of the symmetric Gram matrix G, whose
components are defined by G(b1, . . . , bm)[i, j] = 〈bi, bj〉.
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Hermite’s constant of dimension m is the supremum of λ1(L)2/vol(L)2/m

taken over all m dimensional lattices L. That is,

γm = sup
L,dim(L)=m

(
λ1(L)

vol(L)1/m

)2

. (2.6)

There are only nine values of m such that Hermite’s constant γm is known.
These values are given in the following table:

m 1 2 3 4 5 6 7 8 24

(γm)m 1 4/3 2 4 8 64/3 64 28 424

For more information, see Gruber and Lekkerkerker [54] for the first eight
constants and Cohn and Kumar [28] for m = 24. The best known asymptotic
bounds for Hermite’s constant (see Milnor & Husemoller [89] for the lower
bound and Conway & Sloane [31] for the upper bound) are given by

m

2πe
+

log(πm)

2πe
+ o(1) ≤ γm ≤

1.744 m

2πe
(1 + o(1)), (2.7)

where e ≈ 2.71828 is the base of the natural logarithm (often called Euler’s
number). In fact, it is always true that γm ≤ m. Using this simple bound
for γm in Theorem 2.2, with m = 1, yields the following result about the
smallest non-zero vector in a lattice.

Corollary 2.3 (Minkowski). Let L be an m-dimensional lattice. Then
there exists a vector v ∈ L such that

‖v‖ ≤
√

m vol(L)1/m.

The number of lattice points in a full dimensional lattice in nice sets2 of
Rn is often estimated (up to a small additive error) to be the volume of the
set divided by the volume of the lattice. This estimate, which dates back to
Gauss, can be proven when the lattice dimension m is fixed and the nice set
is the ball centred at the origin with radius growing to infinity. Using this
estimate, the first minimum of a lattice is often approximated by

λ1 ≈
√

m
2πe vol(L)1/m, (2.8)

which is close to the limit given in Corollary 2.3. Of course, for some specific
lattices, this approximation for λ1 can be a significant over-estimate. For
example, the lattice L = Zm has λ1 = 1, which is much smaller than the
approximation (2.8) for large enough dimension m.

2See Nguy˜̂en and Stern [94] for an example of a nice set.
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2.3.2 Reduced Bases

For a given lattice L with dimension m ≥ 2 some bases are “better” than
others. Here, “better” depends on the actual application. Usually, we are
interested in so-called reduced bases of a lattice. There are several notions
of a reduced basis, but in essence, a reduced basis is simply a basis made
up of short vectors. Lattice basis reduction, or simply basis reduction, is a
process by which a reduced basis is found from a given basis.

The first basis reduction algorithm, due to Gauss, is for 2-dimensional
lattices. Let L be a lattice with dimension m = 2. Gauss’s basis reduction
algorithm transforms any basis of L into a basis (b1, b2) such that b1 is a
shortest vector in the lattice and the component of b2 parallel to b1 has
length at most 1/2. The new basis (b1, b2) is said to be Gaussian-reduced.
The Gaussian algorithm, which has runtime quadratic in the input size, is
given in Algorithm 2.1. This algorithm has been generalized by Nguy˜̂en and
Stehlé [92] to lattices of any dimension. However, the generalized algorithm,
called the greedy algorithm, is only optimal for lattices of dimension m ≤ 4.
By optimal, we mean that each reduced basis vector satisfies ‖bi‖ = λi(L)
for i = 1, . . . ,m. The complexity of the greedy algorithm is also quadratic
in the size of the input.

Algorithm 2.1 Gaussian Reduction

Input: (b1, b2)
1: repeat
2: if ‖b1‖ > ‖b2‖ then
3: swap b1 and b2

4: end if
5: µ← 〈b1,b2〉

‖b1‖2

6: b2 ← b2 − ⌈µ⌋b1 (⌈α⌋ = ⌊α + 0.5⌋)
7: until ‖b1‖ < ‖b2‖

Output: (b1, b2) which is Gaussian reduced

Before describing the next important class of reduced bases, we recall
the Gram-Schmidt Orthogonalization process. Given m linearly independent
vectors b1, . . . , bm ∈ Rn, define the vectors b∗1, . . . , b

∗
m ∈ Rn by the recurrence

b∗1 = b1,

b∗i = bi −
i−1∑

j=1

µi,jb
∗
j for 2 ≤ i ≤ m,

(2.9)
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where µi,j = 〈bi, b
∗
j 〉/‖b∗j‖2 are called the Gram-Schmidt coefficients. We

will call b∗1, . . . , b
∗
m the Gram-Schmidt orthogonalization of b1, . . . , bm. The

Gram-Schmidt orthogonalization process creates an orthogonal basis for the
span of the b1, . . . , bm. Unfortunately, since the µi,j are usually not integers,
the lattice L(b∗1, . . . , b

∗
m) is not, in general, the same lattice as L(b1, . . . , bm).

However, letting L = L(b1, . . . , bm), the Gram-Schmidt orthogonalization of
b1, . . . , bm satisfies the following:

vol(L) =

m∏

i=1

‖b∗1‖

λ1(L) ≥ min
1≤i≤m

{ ‖b∗1‖, . . . , ‖b∗m‖ }.
(2.10)

We can now proceed to the next class of reduced bases. A basis b1, . . . , bm

of a lattice L is said to be Lovász-reduced or LLL-reduced if

|µi,j | ≤
1

2
for 1 ≤ j < i ≤ n, (2.11)

and

‖b∗i + µi,i−1b
∗
i−1‖2 ≥

3

4
‖b∗i−1‖2 for 1 < i ≤ n, (2.12)

or equivalently

‖b∗i ‖2 ≥
(

3

4
− µ2

i,i−1

)
‖b∗i−1‖2 for 1 < i ≤ n, (2.13)

where the b∗i and µi,j are defined by the Gram-Schmidt orthogonalization
process acting on the bi. Notice that the vectors b∗i +µi,i−1b

∗
i−1 and b∗i−1 are

the projections of bi and bi−1, respectively, on the orthogonal complement
of the span of {b1, . . . , bi−2}. Some useful properties of LLL-reduced bases
are given in the following theorem (see Cohen [27]).

Theorem 2.4. Let b1, . . . , bm be an LLL-reduced basis of a rational lattice
L ∈ Qn and let b∗1, . . . , b

∗
m be its Gram-Schmidt orthogonalization. Then

1. The volume of L satisfies

vol(L) ≤
m∏

i=1

‖bi‖ ≤ 2m(m−1)/4vol(L). (2.14)

2. The reduced basis vectors satisfy

‖bj‖ ≤ 2(i−1)/2‖b∗i ‖ for 1 ≤ j ≤ i ≤ m. (2.15)
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3. The smallest basis vector b1 satisfies

‖b1‖ ≤ 2(m−1)/4vol(L)1/m. (2.16)

4. For every x ∈ L with x 6= 0 we have

‖b1‖ ≤ 2(m−1)/2‖x‖. (2.17)

5. For any t ≤ m linearly independent vectors x1, . . . , xt ∈ L we have

‖bj‖ ≤ 2(m−1)/2 max(‖x1‖, . . . , ‖xt‖) for 1 ≤ j ≤ t. (2.18)

The results of Theorem 2.4 lead directly to the following bounds on each
of the LLL-reduced basis vectors.

Corollary 2.5. Let b1, . . . , bm be an LLL-reduced basis of an integral lattice
L ∈ Zn. Then

1. For 1 ≤ ℓ ≤ m (Blömer and May [8]),

‖bℓ‖ ≤ 2
m(m−1)

4(m−ℓ+1) vol(L)
1

m−ℓ+1 . (2.19)

2. For ℓ = 1 or 1 < ℓ ≤ m and ‖b1‖ ≥ 2(ℓ−2)/2 (Proos [97]),

‖bℓ‖ ≤ 2
m+ℓ−2

4 vol(L)
1

m−ℓ+1 . (2.20)

LLL-reduced bases are an important class of reduced bases because there
exists a polynomial time algorithm to compute them. The first such algo-
rithm, due to Lovász, is called the Lovász reduction algorithm, or more com-
monly, the LLL-algorithm [74]. For an m-dimensional lattice L ∈ Qn, the
LLL-algorithm has runtime O(nm5B3) where B is a bound on the bitlength
of the components of the basis vectors (i.e., B = maxi(log ‖bi‖∞)).

Some other notions of reduced bases include Minkowski-reduced and
(Korkine-Zolotareff) KZ-reduced. They are defined as follows. Let B =
(b1, . . . , bm) be a basis for the lattice L. The basis B is said to be Minkowski-
reduced if b1 is a shortest vector of L and, for each i = 2, . . . ,m, the vector
bi is a shortest vector independent from b1, . . . , bi−1 such that b1, . . . , bi can
be extended to a basis of L. The basis B is said to be KZ-reduced if b1 is
a shortest vector of L and, for each i = 2, . . . ,m, the vector bi is a shortest
vector of the lattice Li which is the projection of L onto the subspace of Rn

perpendicular to b1, . . . , bi−1. For 2-dimensional lattices, KZ-reduction and
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Gaussian-reduction are equivalent. Also, for each i = 1, . . . ,m, the vectors
bi of a KZ-reduced basis satisfy

√
4

i + 3
λi(L) ≤ ‖bi‖ ≤

√
i + 3

4
λi(L).

Thus, the size of each bi is at most a factor of
√

n away from λi(L).
In [105], Schnorr introduced a hierarchy of polynomial-time lattice basis

reduction algorithms. These algorithms, called blockwise Korkine-Zolotareff
reductions or BKZ-reductions, can compute a reduced basis ranging from
LLL-reduced to KZ-reduced depending on a parameter called the block-
size. These algorithms are super-exponential in the blocksize (requiring an
exhaustive search on sets defined by the blocksize).

2.3.3 Algorithmic Problems

There are three main algorithmic problems dealing with lattice basis reduc-
tion: the shortest vector problem, the closest vector problem, and the small-
est basis problem. We are only concerned with the shortest vector problem
in this thesis. In the rest of this section, we will assume that all lattices are
rational lattices (L ⊆ Qn) with dimension m ≤ n, unless otherwise stated.

Given a basis for a lattice L, the shortest vector problem (SVP) is to find
v ∈ L such that ‖v‖ = λ1(L). The approximate shortest vector problem is
to find a vector v ∈ L such that ‖v‖ = f(m)λ1(L) for some approximation
factor f(m).

It has been shown by Ajtai [2] that SVP is NP-hard under randomized
reductions. Micciancio [86] has further shown that approximating SVP to
within a factor less than

√
2 is also NP-hard under randomized reductions.

The NP-hardness of SVP under deterministic reductions remains an open
problem. The best algorithm known for exact SVP, by Ajtai, Kumar and
Sivakumar [3], requires randomized 2O(m)-time.

There is no known algorithm to approximate SVP to within a polynomial
factor of the dimension of the lattice. There are, however, some polynomial
time algorithms that can approximate it to within a slightly exponential
factor. From (2.17), we see that the LLL-algorithm approximates SVP to
within a factor of 2(m−1)/2. This was improved to 2O(m(log log m)2/ log m) by
Schnorr [105] and in randomized polynomial time it was further lowered to
2O(m log log m/ log m) by Ajtai, Kumar and Sivakumar [3].

In cryptography, the most important algorithmic problem is the shortest
vector problem (or the approximate version) and its natural generalization
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of finding more than one short vector in a lattice. In addition, most lattices
considered are integer lattices.

For many years, the algorithm of choice for these problems was the LLL-
algorithm. For a lattice L ⊆ Zn with dimension m, the LLL-algorithm has
complexity O(nm5B3), where B is an upper bound on the bitlength of the
input basis vectors. The complexity is cubic in B due to exact (long) integer
arithmetic. Floating-point variants have often been implemented to reduce
the complexity by a factor of B, but these variants, unfortunately, have
been unstable in the worst case (i.e., the algorithms are not guaranteed to
terminate and sometimes the output may not be an LLL-reduced basis).
In 2005, Nguy˜̂en and Stehlé [93] presented a new algorithm, called the L2-
algorithm, which is a natural floating-point variant of the LLL-algorithm.
The algorithm has complexity O(nm4(m + B)B) and it outputs an LLL-
reduced basis.

2.4 Linear Lattice Problems

The first lattice-based method we consider uses the following heuristic.

Heuristic 2.6 (Small Vectors in a Lattice). Let L be an integer lattice
with dimension m. If v ∈ L satisfies Minkowski’s bound (Corollary 2.3) for
a smallest vector in a lattice

‖v‖ ≤
√

m vol(L)1/m,

then it is likely that v is a smallest vector in L.

For a given class of lattices, experimental evidence suggests that this
heuristic either holds extremely well or does not hold at all. There does not
seem to be a middle ground except when the vector just satisfies Minkowski’s
bound (i.e., v ≈ √m vol(L)1/m). For example, if the heuristic holds for a
random instance of a certain problem, then it will very likely hold for almost
all instances of that problem. And, when the heuristic fails for a random
instance of a certain problem, then it will very likely fail for all instances of
that problem.

Using this heuristic, we try to find small solutions of linear multivariate
equations. Basically, the method consists of constructing a lattice basis
with the known coefficients of the linear equation such that the lattice is
known to contain a small target vector. This target vector will contain some
information that we wish to recover (e.g., part of the solution). If the target
vector satisfies Minkowski’s bound for the lattice, we apply Heuristic 2.6
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and try to recover this vector using lattice basis reduction. We illustrate
this method with a simple example equation in three variables. Suppose
that for some a, b ∈ Z we know that

ax + by = z,

where x, y and z are unknown and x and z are small. We would like
to compute the unknown values x, y and z. To simplify this illustration,
suppose that we also know a real α > 1 such that cz < αx < z, for some c
that is not too small. Consider the system of equations given by ax+by = z
and the trivial equation αx = αx. We can write this system as the vector
matrix equation

(x, y)

[
α a

b

]
= (αx, z),

where we omit all zero entries in the matrix. Notice that the target vector
v = (αx, z) satisfies ‖v‖ ≤

√
2 |z|. Also, since x, y ∈ Z, we know that v is a

vector in the lattice L generated by the basis vectors (α, a), (0, b). Since the
basis matrix M = [ α a

b ] is triangular, we can easily compute the volume of
the lattice, given by vol(L) = |αb|. Now, from Corollary 2.3 (Minkowski),
we know that a shortest vector v′ in a 2-dimensional lattice must satisfy

‖v′‖ ≤
√

2 vol(L)1/2.

If the size of the target vector v satisfies this bound and Heuristic 2.6 holds,
then v will likely be a smallest vector in L. Using an algorithm such as LLL
or L2, we compute an LLL-reduced basis for L. If v is a smallest vector in L
and if ±v are the only smallest vectors, then the first reduced basis vector
will be ±(αx, z), which immediately reveals z. And, since we know that
(x, y) [ α a

b ] = (αx, z), we can easily solve for x and y. Of course, this can
only happen if the target vector v satisfies Minkowski’s bound for a smallest
vector in a lattice. Therefore, this can happen only when ‖v‖ ≤ vol(L)1/2,
or more simply when

|z| ≤
√

αb,

which becomes the enabling equation for the heuristic method. Thus, if this
enabling equation holds, we expect that the target vector v will be a short
vector in the lattice. If we are lucky and Heuristic 2.6 holds, v will be a
shortest vector in the lattice and we can recover it by reducing the lattice
basis.
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In general, the method consists of constructing a lattice, with basis vec-
tors consisting of the coefficients of the linear equation, such that the lattice
contains a target vector satisfying Minkowski’s bound for a smallest vector.
We then compute a reduced basis for the lattice and hope that the known
vector is recovered as one of the reduced vectors. When the target vector
is found, we possibly solve for the vector that constructs the target vector
(i.e., the vector that multiplies the basis matrix) and then we extract the
desired information. Bounds for the method are obtained by forcing the
size of the target vector to satisfy Minkowski’s bound for a smallest vector
(Corollary 2.3).

In practice, the target vector v is often chosen so that all of its compo-
nents are roughly the same size. This is done to improve the likelihood that
Heuristic 2.6 holds. For example, it often happens that the heuristic will fail
for a given problem with a target vector with some small components but
will hold when the problem is slightly modified so that the target vector’s
components are equally sized. Thus, in the general method outlined above,
the problem is often first stated and then modified so that the target vector
has components that are roughly the same size.

2.5 Coppersmith’s Methods

The second type of lattice-based methods that we utilize are Coppersmith’s
methods and their heuristic extensions. These methods allow us to efficiently
compute sufficiently small roots of polynomials (i.e, solutions to polynomial
equations), where the solutions are over the integers Z or over a ring ZN .

To motivate the techniques in this chapter let’s consider the univariate
modular case. Let N be an integer with unknown factorization and let

fN (x) = xd + ad−1 xd−1 + · · ·+ a2 x2 + a1 x + a0 ∈ Z[x].

That is, fN (x) is a monic polynomial3 of degree d. The goal is to efficiently
find all |x0| < X satisfying

fN (x0) ≡ 0 (mod N),

for as large a bound X as possible.

3 If the polynomial is not monic, we can simply multiply fN (x) by the inverse of
the leading coefficient modulo N . If the inverse does not exist, this yields the (partial)
factorization of N which in most applications in cryptography yields more information
than the desired small solution x0. Thus, we assume without loss of generality that fN (x)
is monic.
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In some instances, we can efficiently compute small solutions of the mod-
ular equation by simply solving the integer equation fN (x) = 0. Let X be a
bound on the size of the solutions that can be found this way. For example,
when fN (x) = xd − a0 we can efficiently find all solutions up the bound
X = N1/d. This follows since |x0| < X = N1/d can be found by simply
computing the d th roots of a0 over the integers. More generally, if each
coefficient of fN (x) satisfies

|ai| <
N (1−i/d)

(d + 1)
,

then all solutions |x0| < X = N1/d can be found by solving fN (x) = 0 over
the integers, since N divides p(x0) and

|fN (x0)| ≤
d∑

i=0

|ai| |xi
0|

<
d∑

i=0

N (1−i/d)

d + 1
N i/d

= N.

A more useful sufficient condition for solutions of fN (x) ≡ 0 (mod N) to
be solutions of fN (x) = 0 is the following result attributed to Howgrave-
Graham [66].

Theorem 2.7. Let h(x) ∈ Z[x] be the sum of at most ω monomials. For
some positive bound X, suppose that x0 satisfies

1. h(x0) ≡ 0 (mod N),

2. ‖h(xX)‖ < 1√
ω
N , and

3. |x0| < X.

Then x0 is a root of h(x) over Z. That is, h(x0) = 0.

Of course the coefficients of fN (x) will not, in general, be small enough
to satisfy the conditions in Theorem 2.7 (or the conditions in the previous
discussion).

In order to make use of this theorem, we use lattice basis reduction to
construct a polynomial with sufficiently small coefficients. Recalling that x0

satisfies fN (x0) ≡ 0 (mod N), we construct a lattice with basis vectors that
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correspond to the coefficient vectors of polynomials that all have a solution
x0 modulo N . Using the LLL- or L2-algorithm, we compute an LLL-reduced
basis for the lattice. The smallest reduced basis vector then corresponds to a
polynomial f(x) with small coefficients (also having the solution x0 modulo
N). If this polynomial satisfies Theorem 2.7, we can then compute x0 by
solving f(x) = 0 over the integers, which can be done efficiently (e.g., see
the methods discussed in [121, Chapter 15]).

Essentially, this is the framework for all the lattice-based methods for
finding small solutions of polynomials.

2.5.1 Small Solutions of Modular Polynomials

We again begin by discussing univariate modular polynomials. Let N be
a positive integer with unknown factorization and let fN (x) ∈ Z[x] be a
monic polynomial with degree d. The goal is to efficiently find all |x0| < X
satisfying

fN (x0) ≡ 0 (mod N),

for as large a bound X as possible.
Early work by H̊astad [56, 57] and Vallée, Girault and Toffin [118, 51]

(in the mid to late 1980’s), showed that lattice-based methods can efficiently
find solutions |x0| < X for a bound as large as

X = N
2

d(d+1)
−ǫ

,

where ǫ > 0 is a function of the degree d. Essentially, the method uses lattice
basis reduction to find a polynomial h(x), with small coefficients, that is a
constant multiple of fN (x) modulo N . The basis vectors used to construct
the lattice simply consisted of the coefficient vectors of the d+1 polynomials

fi(xX) =

{
N(xX)i for 0 ≤ i ≤ d− 1,

fN (xX) for i = d.

Notice that in order to use Theorem 2.7, the polynomials are each evaluated
at xX. For a degree d polynomial

fN (x) = a0 + a1x + . . . ad−1x
d−1 + xd,
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we use the basis matrix

M =





N
NX

NX2

. . .

NXd−1

a0 a1X a2X
2 · · · ad−1X

d−1 Xd





.

Notice that any element in the lattice L (generated by M) can be written
as

(
(ca0 − c0N), (ca1 − c1N)X, . . . , (cad−1 − cd−1N)Xd−1, cXd

)
,

which corresponds to the coefficient vector of some polynomial h(x) given
by

h(x) = (ca0 − c0N) + (ca1 − c1N)x + · · ·+ (cad−1 − cd−1N)xd−1 + cxd,

when evaluated at xX. In particular, notice that

h(x) ≡ cfN (x) (mod N).

Thus, all roots of fN (x) modulo N are also roots of h(x) modulo N .
The main improvement over these early results came in 1996, when Cop-

persmith [33, 34] increased the bound from N2/d(d+1)−ǫ to N1/d−ǫ. This
improvement is the result of considering polynomial combinations of fN (x)
modulo Nu for some integer u (as compared to a constant multiple of fN (x)
modulo N used earlier). In the original presentation [33, 34], Coppersmith
was working in an “unnatural” space. The presentation was difficult to fol-
low and was not easily transferred to practical implementations. However,
shortly after, in 1997, Howgrave-Graham [66] gave an alternate presentation
that was more natural and more easily implemented. In fact, all current uses
of Coppersmith’s univariate modular method use Howgrave-Graham’s ap-
proach. We outline the method below.

Given a polynomial fN (x) with root x0 modulo N , we fix some integer
m ≥ 1 and consider a set of polynomials

fi,j(x) = xifN (x)jNm−j ,

for various values of i, j ≥ 0. Since x0 satisfies fN (x0) ≡ 0 (mod N), notice
that x0 also satisfies fi,j(x0) ≡ 0 (mod Nm) for any i, j ≥ 0 and m ≥ 1.
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With care, we select ω of these polynomials (i.e., ω pairs (i, j)) and use
the coefficient vectors of fi,j(xX) for each as a basis vector for a lattice L.
Notice again that we use the coefficient vectors of the polynomials evaluated
at xX so that Theorem 2.7 can be used. With a careful choice of (i, j) pairs,
the basis matrix is a triangular ω × ω matrix. Thus, the lattice L is an ω-
dimensional full rank integer lattice.

Since the lattice is full rank and the basis matrix is triangular, the prod-
uct of the diagonal elements is equal to the volume of the lattice. Since
fN (x) is monic, we find that

vol(L) = XCX NCN ,

for some CX , CN ≥ 0.
Applying the LLL- or L2-algorithm, we compute an LLL-reduced basis

for the lattice. From the properties of LLL-reduced bases (Theorem 2.4),
we know that the smallest vector in the reduced basis corresponds to a
polynomial h(x), having x0 as a root modulo Nm, and satisfying

‖h(xX)‖ ≤ 2
ω−1

4 vol(L)
1
ω . (2.21)

Also, a simple extension of Theorem 2.7, from solutions modulo N to solu-
tions modulo Nm, shows that if |x0| < X and

‖h(xX)‖ <
Nm

√
ω

, (2.22)

then h(x0) = 0. Using both (2.21) and (2.22), we see that a sufficient
condition for x0 to be a solution of h(x) = 0 is given by

2
ω−1

4 vol(L)
1
ω <

Nm

√
ω

.

Substituting vol(L) = XCX NCN into this inequality, we find that an equiv-
alent sufficient condition is given by

XCX <
Nm−CN

2
ω−1

4
√

ω

= Nm−CN−ǫ.

The inequality XCN < Nm−CN−ǫ becomes what is often referred to as the
enabling equation for the attack. All solutions |x0| < X, where X satisfies
the enabling equation, are solutions of h(x) = 0 and they can be found
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with standard root finding techniques. Often, the bound X is expressed as
X = Nγ so that the enabling equation can be described in terms of the
exponents of N . In this case, the enabling equation would be

γCN < m− CN − ǫ.

The main result of Coppersmith’s technique for univariate polynomials is
given in the following theorem. The result is a slight generalization of Cop-
persmith’s, which was first used by Boneh, Durfee and Howgrave-Graham
in their lattice-based factoring method [17]. The general result, as given
below, is from May [82] (for a proof, see Hinek [58]).

Theorem 2.8 (Coppersmith). For every ǫ > 0 there exists an N0 such
that the following holds: Let N > N0 be an integer with unknown factoriza-
tion which has a divisor b ≥ Nβ. Let gb(x) be a monic univariate polynomial
of degree d and let cN be a function that is upper-bounded by a polynomial
in log(N). All solutions x0 of the relation gb(x0) ≡ 0 (mod b), such that

|x0| ≤ cNNβ2/d−ǫ,

can be found in time polynomial in log2(N).

Coppersmith’s method for finding small solutions of univariate modular
polynomials is easily extended to multivariate modular polynomials. The
first extension was used in Boneh and Durfee’s lattice-based attack on small
private exponent RSA [13], in which they consider a bivariate modular equa-
tion. Unfortunately, all extensions to the multivariate case lead to heuristic
attacks instead of provable results. We briefly outline the general strategy
below.

Given a multivariate polynomial fN (x1, . . . , xn) with solution (y1, . . . , yn)
modulo N , we fix some integer m ≥ 1 and consider the set of polynomials

fi1,...,in,j(x1, . . . , xn) = x1
i1x2

i2 · · ·xn
infN (x1, . . . , xn)jNm−j ,

for carefully chosen i1, . . . , in, j ≥ 0. In this case, the difficulty in choosing
the best i1, . . . , in, j increases with the number of variables and the com-
plexity of the polynomial fN . Just as in the univariate case, we construct
a full rank lattice using the coefficient vectors of the fi1,...,in,j(x1, . . . , xn),
evaluated at (x1X1, . . . , xnXn), and compute an LLL-reduced basis for the
lattice. The reduced basis allows us to construct n linearly independent
polynomials h1, . . . , hn, each having the root (y1, . . . , yn) modulo Nm. If
the size of all of these polynomials also satisfies the conditions in the mul-
tivariate generalization of Theorem 2.7, given in the theorem below, then
(y1, . . . , yn) is a root of each of the polynomials over the integers.
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Theorem 2.9 (Howgrave-Graham). Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be
the sum of at most ω monomials and let u be a positive integer. For any
(y1, . . . , yn) ∈ Zn satisfying |yi| < Xi for 1 ≤ i ≤ n, if

1. h(y1, . . . , yn) ≡ 0 (mod Nu)

2. ‖h(x1X1, . . . , xnXn)‖ < 1√
ω
Nu,

then (y1, . . . , yn) is a root of h(x1, . . . , xn) over Z. That is, h(y1, . . . , yn) = 0.

Up to this point, everything we have presented is a natural general-
ization of the univariate case. The main difference now is that, given the
polynomials h1, . . . , hn, we might not be able to solve for the desired com-
mon root. This is because the polynomials obtained from the LLL-reduced
basis, while guaranteed to be linearly independent, are not guaranteed to
be algebraically independent4.

If the polynomials are algebraically independent, then we can solve for
(y1, . . . , yn) using repeated resultant computations to remove variables until
we reach a univariate polynomial which we can solve and then start back-
tracking until the entire root (y1, . . . , yn) is recovered (see [58, §3.1.3] for
more details). When the polynomials have four or more variables, the resul-
tant computations become too expensive and Gröbner basis techniques can
be used (see Jochemsz and May [70]).

If the polynomials are not algebraically independent, sometimes infor-
mation can still be obtained from them. For example, Blömer and May [7]
show a bivariate case in which the polynomials are always algebraically de-
pendent, but information contained in the smallest polynomial can be used
to compute as much information as the desired solution. In other instances,
even if the first n polynomials are algebraically dependent there might be n
algebraically independent polynomials found within the first n′ > n reduced
basis vectors.

Known Results for Modular Polynomials

We finish this section on modular polynomials by collecting all known results
for extensions of Coppersmith’s univariate method to multivariate methods.
First we give some definitions to describe certain classes of polynomials.

Let f(x1, . . . , xn) be a polynomial where the degree of xi is λiD, for some
fixed D, for 1 ≤ i ≤ n. We say that f(x1, . . . , xn) is a generalized rectangle
with parameters D and λi, for 1 ≤ i ≤ n.

4Two polynomials h1 and h2 are algebraically independent if and only if their only
common factors are constants (i.e., gcd(h1, h2) = constant).
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Let f(x1, . . . , xn) be a polynomial with monomials xk1
1 xk2

2 · · ·xkn
n where

0 ≤ k1 ≤ λ1D

0 ≤ k2 ≤ λ2D −
λ2

λ1
k1

...

0 ≤ kn ≤ λnD −
n−1∑

i=1

λn

λi
ki,

for some fixed D, for 1 ≤ i ≤ n. We say that f(x1, . . . , xn) is a generalized
lower triangle with parameters D, λi and ki, for 1 ≤ i ≤ n.

With these definitions, we now list all the known extensions of Copper-
smith’s univariate modular methods in the following theorem.

Theorem 2.10. For every ǫ > 0 there exists an N0 such that the following
holds: Let N > N0 be an integer with unknown factorization.

Let fN (x1, . . . , xn) be one of the polynomials listed below and let X1, . . . , Xn

be positive integers.
Let (y1, . . . , yn) satisfy fN (y1, . . . , yn) ≡ 0 (mod N) and suppose |yi| <

Xi for 1 ≤ i ≤ n.
For each (y1, . . . , yn), if the enabling equation accompanying the given

polynomial is satisfied (for any τ > 0, if applicable), then we can construct
a set of n linearly independent polynomials g1, . . . , gn ∈ Z[x1, . . . , xn], in
time polynomial in log2(N), such that gi(y1, . . . , yn) = 0 for each 1 ≤ i ≤ n.

Further, if these polynomials are also algebraically independent then we
can compute each solution (y1, . . . , yn) in time polynomial in log2(N).

1. [Boneh and Durfee [13]]: fN (x1, x2) = a0 + a1x2 + a2x2x2, with en-
abling equation

X1
2+3τX2

1+3τ+3τ2
< N1+3τ−ǫ. (2.23)

2. [Blömer and May [8]]: fN (x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3,
with enabling equation

X1
1+4τX2

2+4τX3
1+4τ+6τ2

< N1+4τ−ǫ. (2.24)

3. [Jochemsz and May [69]]: fN (x1, . . . , xn) is a generalized rectangle
with parameters D and λi, for 1 ≤ i ≤ n, with enabling equation

n∏

i=1

Xi
λi < N

2
(n+1)D

−ǫ
. (2.25)
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4. [Jochemsz and May [69]]: fN (x1, . . . , xn) is a generalized lower tri-
angle with parameters D, λi and ki, for 1 ≤ i ≤ n, with enabling
equation

n∏

i=1

Xi
λi < N

1
D
−ǫ. (2.26)

2.5.2 Small Solutions of Integer Polynomials

The natural starting point for finding small solutions of polynomials is with
bivariate polynomials. The first result in this area was also by Copper-
smith [32, 34], in 1996. As with the univariate modular case, Coppersmith’s
presentation took place in an “unnatural” space5. In 2004, Coron [35] pre-
sented a simplification of the method, much like Howgrave-Graham simpli-
fied the univariate modular case, that is slightly weaker than Coppersmith’s
original description but much more natural. The bounds on the solution
are the same, but the runtime is exponential (rather than polynomial) in
the degree of the polynomial. The main result, as given by Coron, is the
following theorem.

Theorem 2.11 (Coppersmith). Let f(x, y) =
∑

i,j ai,jx
iyj be an irre-

ducible polynomial in two variables over Z. Let X and Y be upper bounds
on the desired integer solution (x0, y0), and let W = ‖f(xX, yX)‖∞.

1. If f(x, y) has maximum degree d in each variable separately and

XY < W 2/(3d)−ǫ,

for some ǫ > 0, then in time polynomial in (log W, 2d), one can find all
integer pairs (x0, y0) such that |x0| < X, |y0| < Y , and f(x0, y0) = 0.

2. If f(x, y) has total degree d and

XY < W 1/d−ǫ,

for some ǫ > 0, then in time polynomial in (log W, 2d), one can find all
integer pairs (x0, y0) such that |x0| < X, |y0| < Y , and f(x0, y0) = 0.

The method is very similar to the methods for finding small solutions of
modular polynomials. We briefly outline Coron’s simplification of Copper-
smith’s method below.

5This unnatural space, however, turns out to be more efficient when implementing the
method. See Blömer and May [10] or Jochemsz and May [69] for more information.
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Let f(x, y) ∈ Z[x, y] be an irreducible polynomial with root (x0, y0) over
the integers, satisfying |x0| < X and |y0| < Y for some bounds X and Y .
The problem is first converted to a bivariate modular equation. Without
loss of generality, we will assume that f(0, 0) 6= 0 and gcd(f(0, 0), XY ) = 1.
For some positive integer k, we define the modulus N = u(XY )k, where

u = W + ((1−W ) mod |f(0, 0)|),

and we compute the polynomial

g(x, y) = a−1
0,0 f(x, y) mod n

= 1 +
∑

(i,j) 6=(0,0)

bi,jx
iyj .

We now look for small solutions of g(x, y) modulo N using the methods of the
previous section. In this case, we only need one of the reduced basis vectors.
Let h(x, y) be the polynomial corresponding to the smallest reduced basis
vector. Using an extension of a result by Mignotte [87, Theorem 2], Coron
shows that h(x, y) and the original polynomial f(x, y) are algebraically in-
dependent. Thus, if h(x, y) satisfies Howgrave-Graham’s condition (i.e., if
‖h(xX, yY )‖ is small enough so that h(x0, y0) = 0), we can solve the system
of two equations in two unknowns

f(x, y) = 0

h(x, y) = 0,

for the root (x0, y0). Unlike the pure modular bivariate case, this result is
provable.

Coron’s simplification of Coppersmith’s bivariate polynomial method is
easily extended to multivariate polynomials in general (for example, see [46],
[69] and [70]). Like the extensions of the univariate modular case, however,
these extensions are only a heuristic.

Given a multivariate polynomial f(x1, . . . , xn) ∈ Z[x1, . . . , nn] with so-
lution (y1, . . . , yn) over the integers, we convert the problem to a modular
multivariate polynomial problem which is solved using the techniques of the
previous section. Using the original polynomial f and the smallest n − 1
polynomials obtained from the reduced basis g1, . . . , gn−1 we try to solve the
system of n equations in n unknowns. If all n polynomials are algebraically
independent, we can use resultant computations or Gröbner basis methods
to compute the solution (y1, . . . , yn). Just as Coron showed that the original
polynomial f is algebraically independent of the polynomial corresponding
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to the smallest reduced basis vector, we can show that f is algebraically
independent of each of g1, . . . , gn−1. This was shown by Hinek and Stin-
son [65]. Unfortunately, nothing is known about the algebraic independence
of the polynomials corresponding to the reduced basis vectors g1, . . . , gn−1.

Known Results for Integer Polynomials

We finish this section on integer polynomials by collecting all known re-
sults for extensions of Coppersmith’s bivariate integer polynomial method
to multivariate polynomials in general. As with the modular case, we first
give some definitions to describe certain classes of polynomials.

Let f(x1, x2) be a polynomial with monomials xk1
1 xk2

2 for k1 = 0, . . . , D
and k2 = 0, . . . , λk1. We say that f(x1, x2) is an upper triangle with param-
eters D and λ.

Let f(x1, x2) be a polynomial with monomials xk1
1 xk2

2 for k2 = 0, . . . , D
and k1 = 0, . . . , γD + λ(D − k1). We say that f(x1, x2) is an extended
rectangle with parameters D, γ and λ.

With these definitions, we now list all the known results for extensions
to Coppersmith’s bivariate integer polynomial methods in the following the-
orem.

Theorem 2.12. For every ǫ > 0 there exists an N0 such that the following
holds: Let N > N0 be an integer with unknown factorization.

Let f(x1, . . . , xn) be one of the polynomials listed below, let X1, . . . , Xn

be positive integers and let W = ‖f(x1X1, . . . , xnXn)‖∞.
Let (y1, . . . , yn) satisfy f(y1, . . . , yn) = 0, where |yi| < Xi for 1 ≤ i ≤ n.
For each (y1, . . . , yn), if the enabling equation accompanying the given

polynomial is satisfied (for any τ > 0, if applicable), then we can construct
n− 1 linearly independent polynomials g1, . . . , gn−1 ∈ Z[x1, . . . , xn], in time
polynomial in log2(N), such that gi(y1, . . . , yn) = 0 for each 1 ≤ i ≤ n− 1.

Further, if these polynomials are also algebraically independent then we
can compute each solution (y1, . . . , yn) in time polynomial in log2(N).

1. [Blömer and May [10]]: f(x1, x2) is an upper triangle with parameters
D and λ, with enabling equation

X1
(λ+τ)2X2

2(λ+τ) < W
(λ+2τ)

D
−ǫ. (2.27)

2. [Blömer and May [10]]: f(x1, x2) is an extended rectangle with param-
eters D, γ and λ, with enabling equation

X1
λ2+3γλ+2τλ+4τγ+τ2+3γ2

X2
λ+3γ+2τ < W

(λ+2γ+2τ)
D

−ǫ. (2.28)
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3. [Ernst, Jochemsz, May and de Weger [46]]:
f(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3, with enabling equation

X1
1+3τX2

2+3τX3
1+3τ+3τ2

< W 1+3τ−ǫ. (2.29)

4. [Ernst, Jochemsz, May and de Weger [46]]:
f(x1, x2, x3) = a0+a1x1+a2x2+a3x3+a4x2x3, with enabling equation

X1
2+3τX2

3+3τX3
3+6τ+3τ2

< W 2+3τ−ǫ. (2.30)

5. [Jochemsz and May [70]]:
f(x1, x2, x3) = a0 + a1x1 + a2x1

2 + a3x2 + a4x3 + a5x1x2 + a6x1x3 +
a7x2x3, with enabling equation

X1
7+9τ+3τ2

X2
5+ 9

2
τX3

5+ 9
2
τ < W 3+3τ−ǫ. (2.31)

6. [Jochemsz and May [69]]: f(x1, . . . , xn) is a generalized rectangle with
parameters D and λi for 0 ≤ i ≤ n, with enabling equation

n∏

i=1

Xi
λi < W

2
(n+1)D

−ǫ
. (2.32)

7. [Jochemsz and May [69]]: f(x1, . . . , xn) is a generalized lower triangle
with parameters D, λi and ki for 0 ≤ i ≤ n, with enabling equation

n∏

i=1

Xi
λi < N

1
D
−ǫ. (2.33)

2.5.3 Optimizing the Lattice Construction

Choosing which polynomials to include as basis vectors to obtain the optimal
enabling equation (and hence optimal bounds) is a tedious and non-trivial
task. Until recently, there has been no general strategy for constructing
good lattices (i.e., lattices that lead to good bounds). In 2005, Blömer and
May [10] presented a method of computing optimal bounds for finding small
integer roots of any bivariate polynomial. In 2006, Jochemsz and May [68]
presented a heuristic strategy that applies to all multivariate polynomials
having either modular or integer roots. Their strategy can be used to com-
pute a bound (which is not necessarily optimal) and it can be extended in
some cases to compute better bounds.
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In Theorems 2.10 and 2.12, notice that some of the enabling equations
contain a parameter τ . The parameter arises because of an optimization to
the lattice construction. Instead of just using one parameter (m) to generate
the lattice, another parameter t = τm is also used. The parameter t is used
to include more polynomials of a certain form. When only one parameter
is used, the enabling equation can generally be written as a polynomial in
the parameter m. For large enough N , only the coefficient of the largest
power of m is used in the final version of the enabling equation. When m
and t are both used in the construction the enabling equation is generally
a complicated bivariate polynomial in m and t. In this case, to simplify the
optimization process, we let t = τm, so that we are reduced to the single
parameter problem. The resulting enabling equation has τ as a variable and
this enabling equation then needs to be optimized with respect to the choice
for τ .

2.5.4 The Algebraic Independence Issue

The results of Theorems 2.8 (univariate modular polynomial) and 2.11 (bi-
variate integer polynomial) provide provable methods of computing small
roots of polynomials. The results of 2.10 and 2.12, on the other hand, only
provide a method of constructing ℓ linearly independent polynomials (in ℓ
variables) each with a common root over the integers (for some ℓ > 1). If
these ℓ polynomials are also algebraically independent we can compute the
common root. For most problems arising from cryptographic application,
it is assumed that these polynomials are algebraically independent. In the
remainder of this thesis, we will use the following well accepted assumption.

Assumption 2.13. The polynomials found by lattice basis reduction in The-
orems 2.10 and 2.12 are algebraically independent.

While this assumption is usually true for applications in cryptography,
there have been some instances where it is false. For example, Blömer
and May [7] show a class of lattices that whose LLL-reduced basis vectors
are always algebraically dependent. Also, Hinek [59, 61] has observed that
the likelihood that the smallest two polynomials obtained are algebraically
dependent increases as the actual parameters approach the experimental
limits for the attack for some lattices.

For the attacks presented in this thesis, we have found that Assump-
tion 2.13 holds in our experimental investigations.
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2.6 A Note on Proofs

In the remainder of this thesis, we present many results on the security of
several variants of RSA. A result is labelled a theorem if it can be rigorously
proven. For example, results based on Theorem 2.1 (continued fractions)
are generally theorems. Any results that cannot be proven are labelled as
attacks. Thus, any result that uses a multivariate extension of Coppersmith’s
methods are attacks since they rely on Assumption 2.13. Similarly, results
that are based on Heuristic 2.6 are also attacks since they cannot be proven.
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Chapter 3

Cryptanalysis of RSA with
Certain Private Exponents

In this chapter we consider instances of RSA with private exponent close to
a rational multiple of λ(N) = lcm(p − 1, q − 1). In particular, we consider
instances in which |d − a

b λ(N)| is small for some integers a ≥ 0 and b ≥ 1.
The attacks presented in this chapter illustrate the dangers of using such
private exponents.

The use of small private exponents (i.e., a = 0) was an early suggestion to
reduce the computational costs for decryption (consisting of a single modular
exponentiation). Using a small private exponent reduces the total number
of modular multiplications needed in the modular exponentiation and hence
reduces the overall decryption costs. Choosing a private exponent to be too
small, of course, is completely insecure (as Wiener has shown and which we
outline below).

Unlike the use of a small private exponent, however, there are no known
practical reasons for choosing a private exponent that is close to a

b λ(N), for
positive integers a and b.

3.1 Background

When a = 0 and the private exponent is positive, d > 0, we have the familiar
small private exponent RSA, which is well studied. In 1990, Wiener [123]
showed that any instance of RSA with parameters satisfying

kdg <
pq

3
2(p + q)

,
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is completely insecure, where k is the constant in the key equation

ed = 1 + kλ(N),

and g = gcd(p − 1, q − 1). Using information obtained from the continued
fraction expansion of e/N , Wiener showed how to efficiently factor the mod-
ulus N for these instances. When the primes are balanced and g is small
(e.g., 2) this simplifies to the bound d < cN0.25, where c is a small con-
stant that is independent of N . In 1999, Boneh and Durfee [13] extended
Coppersmith’s lattice-based technique for finding small solutions of modu-
lar univariate polynomials [33] to modular bivariate polynomials, in order
to increase the bound on insecure private exponents to d < N0.292. This
bound on d is found in the limiting case of large N and infinite computing
power, and it also relies on a heuristic about lattice basis reduction (see
Assumption 2.13). However, it works well in practice, and has been shown
experimentally to work up to N0.280 for a 1000-bit modulus (see [13, §8]).
In 2001, Blömer and May [7] presented a refined lattice-based attack which
simplifies the analysis, but it did not improve Boneh and Durfee’s bound.

When a = 0 and d < 0 we have small negative private exponents. Nega-
tive exponents correspond to large exponents when considered modulo λ(N)
(or φ(N)). In 2004, Hinek [60] showed that all of the attacks on small pri-
vate exponent RSA also work for small negative private exponents, yielding
the same bounds. That is, if d < N δ is vulnerable to one of the small pri-
vate exponent attacks, then so is any |d| < N δ. Thus, private exponents
satisfying |d| < N0.292 should be considered unsafe.

The problem of large private exponents (a > 1) was first considered
in 1996 by Chen, Chang and Yang [23], who applied Wiener’s continued
fraction attack to private exponents close to rational multiples of λ(N). It
was shown that instances of RSA with private exponent d satisfying |d −
a
b λ(N)| < cN0.25, where c is some small number depending only on b, are
insecure when the public exponent is smaller than the modulus and b is
small.

In 2005, Chen, Ku and Yen [24] presented a new lattice-based attack
on the special case of private exponents close to λ(N). It was shown that
instances of RSA with private exponent d satisfying |d− λ(N)| < N0.25 are
insecure, provided that the modulus is large enough.
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3.2 Assumptions and Notation

For the remainder of this chapter, we assume that N = pq is an n-bit
balanced RSA modulus, d = N δ is a valid private exponent close to some
rational multiple of λ(N) = lcm(p−1, q−1) and e = Nα is its corresponding
public exponent defined modulo λ(N). We also assume that the public
exponent is computed after the private exponent is chosen. Thus, the public
exponent will satisfy 0 ≤ e < λ(N) and, with high probability, also satisfy
e ≈ λ(N). Since the public and private exponents are defined modulo λ(N),
we know there exists a positive integer k satisfying

ed = 1 + kλ(N). (3.1)

Finally, since e < λ(N), we know that k < d.

3.3 Continued Fraction Attack

In this section we show how Wiener’s continued fraction attack on small
private exponent RSA can be applied to instances of RSA with private
exponent close, but not too close, to a rational multiple of λ(N).

In [23, Section 3.3], Chen, Chang and Yang analyzed this problem and
showed that RSA is insecure when the private exponent satisfies

N

e
<
∣∣∣
a

b
λ(N)− d

∣∣∣ <
N1/4

b2
, (3.2)

for a small positive integer b and non-negative integer a < b. Their attack
is a generalization of Wiener’s continued fraction attack on small private
exponent RSA [123].

Upon first inspection, this attack seems to be very strong since for any
private exponent d it is possible to choose integers a < b to make |ab λ(N)−d|
arbitrarily small. A careful look at the upper and lower bounds, however,
illustrate the limits of the attack. The choice of b cannot be too large
otherwise the upper bound becomes too restrictive (since the upper bound
depends on the inverse of b2). The choice of b must also ensure that the
difference between a

b λ(N) and d is not too small.
We revisit this problem and refine the analysis of Chen et al., to obtain an

improved bound for unsafe private exponents. The main result is contained
in the following theorem.

Theorem 3.1. Let N = pq be an RSA modulus with balanced primes, let
(e,N) be a valid public key and (d, p, q) be its corresponding private key,
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where ed ≡ 1 (mod λ(N)). Given the public key, if g = gcd(p − 1, q − 1)
and the private exponent d satisfies

φ(N)

e
<
∣∣∣
a

b
λ(N)− d

∣∣∣ <
N1/4

2
√

g b
, (3.3)

for some integers a ≥ 0 and b ≥ 1, then the modulus N can be factored in
time polynomial in log2(N).

Proof: We begin by letting D = a
b λ(N)−d, and assuming that the condition

on the private exponent, (3.3), holds. Thus, we assume that

φ(N)

e
< |D| < N1/4

2
√

g b
. (3.4)

Using the key equation ed = 1 + kλ(N), notice that multiplying D by the
public exponent e yields

eD = e
(a

b
λ(N)− d

)

=
ea

b
λ(N)−

(
1 + kλ(N)

)

=
(ea− kb)

b
λ(N)− 1

=
k′

b
λ(N)− 1, (3.5)

where k′ = ea− kb. Since e < λ(N), it follows from (3.5) that |k′/b| < |D|,
or

|k′| < |Db|. (3.6)

Let g = gcd(p−1, q−1). Since λ(N) can be written as φ(N)/g = (N−Λ)/g,
we can write (3.5) as

eD =
k′

b
λ(N)− 1

=
k′

b

φ(N)

g
− 1

=
k′

b

(N − Λ)

g
− 1

=
k′

0N

bg0
− k′

0Λ

bg0
− 1, (3.7)
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where k′
0 = k′/ gcd(k′, g) and g0 = g/ gcd(k′, g). Dividing this equation by

DN then gives

e

N
=

k′
0

Dbg0
− k′

0Λ

Dbg0N
− 1

DN
. (3.8)

Since |k′
0| ≤ |k′| < |Db|, where the latter inequality comes from (3.6), we

can rearrange (3.8) to obtain
∣∣∣∣

e

N
− k′

0

Dbg0

∣∣∣∣ =
∣∣∣∣−

k′
0Λ

Dbg0N
− 1

DN

∣∣∣∣

≤
∣∣∣∣

k′
0Λ

Dbg0N

∣∣∣∣+
∣∣∣∣

1

DN

∣∣∣∣

<

∣∣∣∣
Λ

g0N

∣∣∣∣+
∣∣∣∣

1

DN

∣∣∣∣ . (3.9)

Let’s consider the two terms in the right-hand side of the last inequality.
Since Λ = p + q − 1 > p and g0 ≤ g = gcd(p − 1, q − 1) < p, it follows
that |Λ/g0| > 1 and so the first term is greater than 1/N . From the original
assumption in the proof, (3.4), we know e|D| > φ(N), which implies that
|D| > 1, since φ(N) > e. Thus, the second term is less than 1/N and the
sum of both terms must be less than twice the first. Combining this with
Λ < 3N1/2, it follows that

∣∣∣∣
e

N
− k′

0

Dbg0

∣∣∣∣ <
∣∣∣∣

Λ

g0N

∣∣∣∣+
∣∣∣∣

1

DN

∣∣∣∣

<
2Λ

g0N

<
6

g0N1/2
. (3.10)

Since g0 ≤ g, notice that the upper bound |D| in the original assumption,
(3.4), satisfies

|D| < N1/4

√
12g b

≤ N1/4

√
12g0 b

, (3.11)

which is sufficient to ensure that

6

g0N1/2
≤ 1

2(Dbg0)2
. (3.12)
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Combining this inequality with the inequality in (3.10), then yields
∣∣∣∣

e

N
− k′

0

Dbg0

∣∣∣∣ <
1

2(Dbg0)2
. (3.13)

Now, even though D is not necessarily an integer, notice that

Db = aλ− kb,

is an integer. Therefore, from Theorem 2.1 (continued fractions), we know
that k′

0/(Dbg0), in lowest terms, is one of the convergents in the continued
fraction expansion of e/N .

Letting µi/ηi denote the ith convergent of e/N , we will assume that the
mth convergent yields k0/(Dbg0). That is, we assume µm/ηm = k0/(Dbg0).
From the derivation of (3.5), recall that

eD =
k′

bg
φ(N)− 1, (3.14)

which can be rewritten as

φ(N) =
eDbg

k′ +
bg

k′

=
eDbg0

k′
0

+
bg0

k′
0

=
eηm

µm
+

bg0

k′
0

. (3.15)

Since |D| > φ(N)/e, from (3.4), it follows from (3.14) that |k′/bg| > 1.
Thus, the last term in (3.15) satisfies

∣∣∣∣
bg0

k′
0

∣∣∣∣ =
∣∣∣∣
bg

k′

∣∣∣∣

< 1. (3.16)

Therefore, given µm and ηm we can compute φ(N) as

φ(N) =






⌈
eηm

µm

⌉
if k′

0 > 0,
⌊

eηm

µm

⌋
if k′

0 < 0.
(3.17)

Once φ(N) is known, the modulus N is easily factored by solving the system
of equations {φ(N) = (p− 1)(q− 1), N = pq} for p and q. Thus, the correct
convergent yields the factorization of N .
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To find the correct convergent, we simply compute and test each con-
vergent, in order, until we are able to factor the modulus N . In particu-
lar, for each convergent ηi/µi, we compute candidates for φ(N) given by
X = ⌊eηi/µi⌋ and X = ⌈eηi/µi⌉. We then try to factor N by trying to
solve the system of equations {X = (p− 1)(q − 1), N = pq} for p and q. As
shown above, the correct convergent will yield φ(N), which then yields the
factorization of N . Since the total number of convergents in the continued
fraction expansion of e/N is polynomial in log2(N) and all operations are
polynomial in log2(N), the result follows. ❏

The result of Attack 3.1 is an improvement to that presented by Chen,
Chang and Yang, given in (3.2), in two ways. First, the upper bound on
|ab λ(N)− d| is increased by a factor b. Second, the effects of g are explicitly
included in the bound.

3.3.1 Toy Example

We demonstrate Attack 3.1 with the following toy example. Consider an
instance of RSA with public key

(e,N) = (243608017, 2613354137).

Given the public key we compute the continued fraction expansion of e/N ,

[0, 10, 1, 2, 1, 2, 18, 1, 9, 4, 3, 2, 1, 3, 54, 13],

and the first few convergents

0,
1

10
,

1

11
,

3

32
,

4

43
,

11

118
,

202

2167
,

213

2285
, . . . .

The first five convergents do not yield the factorization of N , so let’s consider
the 6th convergent, µ6/η6 = 11/118. Let

X =

⌊
eη6

µ6

⌋

=

⌊
243608017×118

11

⌋

= 2613249636.

Solving the system

X = (p− 1)(q − 1)

N = pq,
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for integer solutions yields p = 41443 and q = 63059, both being prime.
Thus, N = 41443×63059, is the factorization of the modulus N . Using this
information, we can compute g = 2, λ(N) = 1306624818, and the private
exponent d = 522649939.

In this example, the private key was chosen to be close to 2λ(N)/5. No-
tice that, when substituting the appropriate values, the sufficient condition
for success of Attack 3.1, given by (3.3), becomes

10.73 < |D| < 15.99,

which is satisfied in this instance since

|D| =
∣∣∣
a

b
λ− d

∣∣∣

=

∣∣∣∣
2

5
1306624818− 522649939

∣∣∣∣

= 11.8.

3.3.2 Very Small |D|

It is interesting to note that while Attack 3.1 (and the attack by Chen,
Chang and Yang) works quite well when the private exponent is close to a
rational multiple of λ, it does not necessarily work well when it is extremely
close. In particular, when e|D| < φ(N), the attack no longer terminates in
polynomial time. To see this recall that given the correct convergent µm/ηm,
the formula for φ(N), from (3.15), is given by

φ(N) =
eηm

µm
+

bg0

k′
0

. (3.18)

As shown above, when e|D| > φ(N), the absolute value of the last term in
(3.18) is less than 1. This ensures that the number of candidates for φ(N)
that we need to test for each convergent is only two (i.e., the floor or ceiling
of eηi/µi). When e|D| < φ(N), however, this is no longer the case.

Let’s assume that e|D| < φ(N) and let ℓ be the smallest integer such that
e2ℓ > λ(N). Since e < λ(N) we know that ℓ ≥ 1. With high probability the
actual value of ℓ will be rather small, since it is expected that e will be large
(since e is computed after d is chosen). Since a, b, λ(N), d ∈ Z, it follows
from

D =
a

b
λ(N)− d,

that |D| ≥ 1/b. To see this, notice that |D| < 1/b implies that |D| = 0,
which in turn implies that either gcd(d, λ(N)) > 1 or d = a = 0, and each

48



of these conditions contradict the requirement that d be invertible in Zλ(N)

(as specified in the key generation algorithm). Thus, |D| ≥ 1/b, and with
high probability we will have eD > 1. From (3.5), eDb = k′λ(N)+b, it then
follows that k′ satisfies

|k′| =
∣∣∣∣
eDb + b

λ

∣∣∣∣

>

∣∣∣∣
eDb

λ

∣∣∣∣

>

∣∣∣∣
Db

2ℓ

∣∣∣∣ . (3.19)

Using this bound for |k′| and 1/|D| ≤ b, as shown above, notice that the
last term in (3.18) satisfies

∣∣∣∣
bg0

k′
0

∣∣∣∣ =
∣∣∣∣
bg

k′

∣∣∣∣

<

∣∣∣∣
bg2ℓ

Db

∣∣∣∣

=

∣∣∣∣
g2ℓ

D

∣∣∣∣

≤
∣∣∣bg2ℓ

∣∣∣ . (3.20)

Therefore, for each convergent in the continued fraction expansion of e/N ,
we need to compute 2bg2ℓ candidates for φ(N). For small b, g and ℓ this
may be feasible. However, when b = Nβ for some

log2 log2(N)

log2(N)
≪ β <

1

4
,

this corresponds to a search space that is exponential in the bitlength of
N . For example, a 1024-bit modulus with b > N0.078125, corresponds to a
search space greater than 280, which is currently believed to be infeasible.

3.4 Lattice-Based Attacks

In this section we consider lattice-based attacks on RSA with a private
exponent close to a rational multiple of λ(N). Rather than focusing on
special cases, as was done in [60] and [24], we consider the general case
where |ab λ(N) − d| is small for some integers a ≥ 0 and b ≥ 1. The main
result is contained in the following theorem.
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Attack 3.2. For every ǫ > 0 there exists N0 such that for every N > N0 the
following holds: Let N be an RSA modulus with balanced primes, let (e,N)
be a valid public key and let (d, p, q) be its corresponding private key, where
ed ≡ 1 (mod λ(N)) and the private exponent satisfies |ab λ(N)−d| < N δ for
some integers a ≥ 0 and b ≥ 1. Given the public key (e = Nα, N), if the
private exponent d, g = gcd(p− 1, q − 1) = Nγ and b = Nβ satisfy

(i) γ + β < α + 1/4 (or gb < eN1/4) and

(ii) δ <
1

4
+ α− γ − 2β − 1

4

√
12α− 12γ − 12β + 3 − ǫ,

then the modulus can be factored in time polynomial in log2(N), provided
that Assumption 2.13 holds.

The method of solution in our proof is an extension of Boneh and Dur-
fee’s method for solving the small inverse problem [14].

Justification: Let D = a
b λ(N)−d. Since D is not necessarily an integer we

consider the equation Db = aλ(N) − db, where Db ∈ Z. Recalling the key
equation ed = 1+kλ(N), notice that multiplying Db by the public exponent
e yields

eDb = e(aλ(N)− db)

= eaλ(N)− edb

= eaλ(N)− (1 + kλ(N))b

= (ea− kb)λ(N)− b

= k′λ(N)− b, (3.21)

where k′ = ea− kb. If follows from (3.21) and e < λ(N) that k′ satisfies

|k′| < (|D|+ 1)|b|
< 2N δ+β. (3.22)

Replacing λ(N) with φ(N)/g = (N − Λ)/g and multiplying through by g,
(3.21) becomes

eDbg = k′(N − Λ)− bg. (3.23)

This suggests we look for small solutions, modulo the public exponent e, of
the polynomial

fe(x, y, z) = x + Ny − yz, (3.24)
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since (x0, y0, z0) = (−gb, k′,Λ) satisfies fe(x0, y0, z0) ≡ 0 (mod e). We define
the bounds

X = Nβ+γ

Y = 2N δ+β

Z = 3N1/2.

(3.25)

Recalling that g = Nγ , b = Nβ , |k′| < 2N δ+β and Λ < 3N1/2, notice that
x0 = −gb, y0 = k′ and z0 = Λ satisfy |x0| < X, |y0| < Y and |z0| < Z. From
Theorem 2.10, we know that we can recover (x0, y0, z0) provided that N is
sufficiently large, Assumption 2.13 holds and

X1+4τY 2+4τZ1+4τ+6τ2
< e1+4τ , (3.26)

for some τ > 0. Substituting the values for the bounds X, Y , Z, the modulus
e = Nα, and neglecting all factors that do not depend on N , inequality (3.26)
is satisfied when

(β + γ)(1 + 4τ) + (δ + β)(2 + 4τ) + 1
2(1 + 4τ + 6τ2)− α(1 + 4τ) < 0,

or, collecting in terms of τ , when

3 τ2 − 2 (2α− 2γ − 2δ − 4β − 1) τ + 3β + γ + 2 δ − α + 1
2 < 0.

For any fixed non-negative α, γ, δ and β, the left-hand side of this inequality
is minimized when τ = 1

3(2α − 2γ − 2δ − 4β − 1). Substituting this value
of τ into the last inequality and solving for δ we see that (3.26) is satisfied
when

δ <
1

4
+ α− γ − 2β − 1

4

√
12α− 12γ − 12β + 3 − ǫ,

where the ǫ term is added to correct for all the negligible and low order terms
ignored in the methods implicit in Theorem 2.10. Thus, we have derived
condition (ii) of the attack.

In order for the square root in this enabling equation to be real, notice
that we require 12α− 12γ− 12β + 3 > 0. This simplifies to γ + β < α + 1/4
(or gb < eN1/4), which motivates condition (i) in the attack statement.

Therefore, for sufficiently large N , we can recover (x0, y0, z0) = (−bg, k′,Λ)
provided that conditions (i) and (ii) and Assumption 2.13 hold. Once z0 = Λ
is known we can compute φ(N) = N −Λ, which lets us compute the factor-
ization of N . Since all computations are polynomial in log2(N), the result
follows. ❏
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3.4.1 Attack with known g and b

In this section we consider a lattice-based attack on RSA with private expo-
nent close to a

b λ(N), for some integer a ≥ 0 and b > 0, when the values of
b and g = gcd(p− 1, q − 1) are both known. In this scenario, we show that
the bound on δ in Attack 3.2 can be significantly increased.

The relevance of this attack, of course, depends on the availability of b
and g. At this time, we can only suggest that b and g be determined by an
exhaustive search if they are both small enough. For each guess, we mount
the following attack until it succeeds in factoring the modulus.

Attack 3.3. For every ǫ > 0 there exists N0 such that for every N > N0 the
following holds: Let N be an RSA modulus with balanced primes, let (e,N)
be a valid public key and let (d, p, q) be its corresponding private key, where
ed ≡ 1 (mod λ(N)) and |ab λ(N) − d| < N δ for some integers a ≥ 0 and
b ≥ 1. Given the public key (e = Nα, N), g = gcd(p − 1, q − 1) = Nγ, and
b = Nβ, if the private exponent d satisfies

δ <
1

6
+ α + γ − 1

3

√
1 + 6α + 6β + 6γ − ǫ,

then the modulus can be factored in time polynomial in log2(N), provided
Assumption 2.13 holds.

Justification: Let D = a
b λ(N)− d, and again consider the equation

Db = aλ(N)− db,

where Db ∈ Z. Following in the same manner as in the proof of Theorem 3.2,
we have

eDbg = k′(N − Λ)− bg,

where k′ = ea − kb satisfies |k′| < 2N δ+β. As b and g are now known, this
this suggests that we look for small solutions, modulo ebg, of the polynomial

febg(x, y) = Nx− xy − gb,

since (x0, y0) = (k′,Λ) satisfies febg(x0, y0) ≡ 0 (mod ebg). Define the
bounds

X = 2N δ+β

Y = 3N1/2,
(3.27)
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notice that x0 = k′ and y0 = Λ satisfy |x0| < X and |y0| < Y . Therefore,
from Theorem 2.10, we know that for sufficiently large N we can recover
(x0, y0) provided that

X2+3τY 1+3τ+3τ2
< (ebg)1+3τ , (3.28)

for some τ > 0 and Assumption 2.13 holds. Substituting the values for the
bounds X, Y and the modulus ebg = Nα+β+γ , inequality (3.28) is satisfied
when (collected in terms of τ)

3

2
τ2 + (

3

2
+ 3δ − 3α− 3γ)τ + 2δ + β − α− γ +

1

2
< 0,

where we have neglected all terms that do not depend on N . For any fixed
non-negative α, β, γ and δ, the left-hand side of this inequality is minimized
when τ = α+γ− δ− 1

2 . Substituting this value for τ into the last inequality
and solving for δ we see that (3.28) is satisfied when

δ <
1

6
+ α + γ − 1

3

√
1 + 6α + 6β + 6γ − ǫ,

where the ǫ term is added to correct for all the negligible and low order terms
ignored in the methods implicit in Theorem 2.10. Thus, for sufficiently large
N , we can compute (x0, y0) = (k′,Λ) provided that Assumption 2.13 holds.
Like the previous attack, once Λ is known we can compute φ(N) = N−Λ and
factor the modulus N . Since all computations are polynomial in log2(N),
the result follows. ❏

3.4.2 Toy Example

To demonstrate the lattice-based attacks presented in this chapter, we mount
the method in Attack 3.3 (known b and g) on the same toy example from
Section 3.3.1. The basic methodology is the same for both attacks. The
only significant difference is that the first attack looks for small solutions
of a trivariate polynomial while the second looks for small solutions of a
bivariate polynomial. We chose to illustrate the second attack to reduce the
space needed for the presentation.

Consider, once again, an instance of RSA with public key

(e,N) = (243608017, 2613354137).
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Suppose also that we know g = 2 and b = 5. Letting M = egb, we will try
to find small solutions, modulo M , of

fM (x, y) = Nx− xy − gb,

since (x0, y0) = (k′,Λ) satisfies fM (x0, y0) ≡ 0 (mod M), and (k′,Λ) is small
in some sense. For some positive integer m (lattice parameter), we consider
polynomials of the form

fi,j,k(x, y) = xiykfM (x, y)jMm−j ,

where i, k ≥ 0 and 0 ≤ j ≤ m. For simplicity, we let k = 0 (i.e, fM is
not multiplied by any monomial that is a multiple of y). Notice that each
polynomial has the root (x0, y0) modulo Mm. For m = 2, we choose the six
polynomials corresponding to

(i, j) = {(0, 2), (1, 1), (0, 1), (2, 0), (1, 0), (0, 0)}, (3.29)

with k = 0 in for each. Using the bounds X and Y (for x0 and y0) given by
(3.27), we have

X = 20

Y = 153363.
(3.30)

With these bounds we consider the coefficient vectors fi,j,k(xX, yY ) for each
(i, j, 0) pair in (3.29). The six coefficient vectors are each used as a lattice
basis vector for a lattice L, whose every element corresponds to a polynomial
with root (x0, y0) modulo M2. The basis matrix for L, where each row is a
basis vector, is given by

M =





X2Y 2 −2NX2Y 2gbXY N2X2 −2NgbX g2b2

MX2Y −NMX2 gbMX
MXY −NMX gbM

M2X2

M2X
M2




,

where the columns correspond to the coefficients of the monomials

x2y2, x2y, xy, x2, x, 1,

in that order. Using the LLL algorithm, we find that the two smallest vectors
in the new basis correspond to the polynomials

p1 = 3025x2y2 − 632225550x2y + 60500xy

+ 33033813725025x2 − 6322255500x + 302500
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p2 = 8305x2y2 + 700333660x2y + 166100xy

− 163877765181765x2 + 7003336600x + 830500.

If these polynomials were algebraically independent, we would simply solve
the system {p1(x, y) = 0, p2(x, y) = 0} for all integer solutions and test
each solution. These polynomials are, in fact, not algebraically independent
though. They have the common factor

p1,2(x, y) = gcd(p1(x, y), p2(x, y))

= 550 + 55xy − 5747505x.

It turns out that all polynomials corresponding to the vectors in the new
lattice basis that are small enough to have (x0, y0) as a root over the integers
have this common factor. Thus, Assumption 2.13 fails with this particular
lattice1. While it seems that the attack has failed, there is still the common
factor p1,2(x, y) to consider. Since this polynomial has such a simple struc-
ture (linear in each variable) we try to solve p1,2(x, y) = 0 for any integer
solutions. We find two integer solutions

(x, y) = {(−11, 104501), (110, 104500)}.

Notice that the first solution, (y0, x0) = (−11, 104501), yields the correct
value for y0 = Λ (and x0 = k′). That is,

N − y0 = 2613354137− 104501

= 2613249636

= φ(N).

We then solve the system {φ(N) = (p − 1)(q − 1), N = pq}, for p and q,
which yields the desired solution p = 41443 and q = 63059.

3.5 Typical Instances

In a typical instance of RSA with a specially chosen private exponent it is
very likely that the public exponent will be roughly the same size as the
modulus. Thus, the approximation α ≈ 1 (i.e., e ≈ N) will often be valid.
In addition, if the balanced primes p and q are chosen randomly we expect

1This is actually expected. For the particular structure of the polynomial fM (x, y),
Blömer and May [7, §5] showed that all reduced basis vectors are algebraically dependent
when none of the basis vectors correspond to polynomials multiplied by a multiple of y.

55



that g = gcd(p − 1, q − 1) will be a very small even integer such as 2, 4 or
6. If p and q were simply random odd integers, we could easily compute the
expected distribution of g and prove that it is very likely that g is a small
even integer. Being odd primes, though, p and q have additional structure.
For example, the distribution of primes modulo fixed integers is not uniform
(e.g., see [52]). Computing the expected distribution of g when p and q are
odd primes seems to be a difficult problem and is beyond the scope of this
work. We have, however, carried out some experiments to approximate this
distribution when p and q are random primes with the same bitlength. In
our experiments, we find that g = 2 with probability almost 1/2 and that
g ≤ 6 with probability roughly 3/4. Further, these probabilities were found
to be independent of the bitlength of the primes (when the primes ranged
from 128 to 1024 bits). For more information about these observations, see
Appendix A.

Based on this experimental evidence we use the approximation γ ≈ 0
(i.e., we assume that g is very small). Using the approximations α ≈ 1 and
γ ≈ 0 in the result of the continued fraction attack in Section 3.3, condition
(ii) of Attack 3.1 simplifies to |D| < cN1/4−β , where c is a small positive
constant that is independent of N . Thus, the sufficient condition for the
continued fraction attack is given by

δ < 1/4− β − ǫ, (3.31)

where ǫ can be made arbitrarily small by considering sufficiently large N .
For the first lattice-based attack in Section 3.4, condition (ii) of Attack 3.2
simplifies to

δ <
5

4
− 2β − 1

4

√
15− 12β − ǫ, (3.32)

and the result of the second lattice-based attack (with known g and b)
reduces to

δ <
7

6
− 1

3

√
7 + 6β − ǫ. (3.33)

We illustrate these results in the plots in Figure 3.1, where we show the
bound on the size of the private exponent δ as a function of the size of b
(given by β). Figure 3.1(a) compares the bound for the first two attacks
(without knowledge of b and g). Notice that the lattice-based attack is
superior to the continued fraction attack for small values of b while it is
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(a) Unknown b and g (b) Known b and g

Figure 3.1: Bounds for δ when α ≈ 1 and γ ≈ 0. Plot (a) shows bounds
from Theorem 3.1 (continued fractions) and Attack 3.2 (lattice-based). Plot
(b) shows the bound from Attack 3.3 (lattice-based) with known b and g
along with the bounds from plot (a).

inferior for larger values of b, with a crossover point at

β =
5

8
−
√

21

8
≈ 0.052.

In Figure 3.1(b), we show the bound on the private exponent for At-
tack 3.3 when b and g are known. Also included in the plot are the bounds
for the attacks with unknown b and g to illustrate the strength of knowing b
and g. It is quite clear that the second lattice-based attack (known b and g)
is significantly superior to the other attacks for large values of b. It should
be pointed out though, that while the second lattice attack is much superior
for larger values of b, it is not known how knowledge of such a large b can
be obtained.

3.6 Discussion

In this chapter, we improved Chen, Chang and Yang’s bound for private
exponents close to a rational multiple of λ(N) using Wiener’s continued
fraction method (cf. [23]). We also presented new, stronger, bounds using
lattice-based techniques based on Boneh and Durfee’s small private exponent
attack.

Consider the two sets, C1 and C2, as defined below.
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1. For any ǫ > 0, let C1(ǫ) be the set of RSA public keys (e,N) such that
there exist integers d, a, b = Nβ satisfying

ed ≡ 1 (mod λ(N))

∣∣∣
a

b
λ− d

∣∣∣ < N δ1−ǫ

δ1 =
1

4
+ α− γ − 2β − 1

4

√
12α− 12γ − 12β + 3,

where a ≥ 0, b ≥ 1, e = Nα and g = gcd(p− 1, q − 1) = Nγ .

2. For any ǫ > 0, let C2(ǫ) be the set of RSA public keys (e,N) such that
there exist integers d, a, b = Nβ satisfying

ed ≡ 1 (mod λ(N))

∣∣∣
a

b
λ− d

∣∣∣ < N δ2−ǫ

δ2 <
1

6
+ α + γ − 1

3

√
1 + 6α + 6β + 6γ

g = Nγ < logc
2(N)

b = Nβ < logc
2(N),

where a ≥ 0, b ≥ 1, e = Nα, g = gcd(p− 1, q− 1) = Nγ and c > 0 is a
small constant (the size of g and b are each polynomial in the bitlength
of N).

Using the notion of weak keys, as defined by Blömer and May [9], the results
of this chapter show that these sets of RSA public keys are classes of weak
keys. The size of these classes (for sufficiently small ǫ) are each greater
than N1/4−ε, since the subclass defined by private exponents vulnerable to
Wiener’s original attack (letting a = 0, d > 0) already has size N1/4−ε.
Here, ε > 0 is a small real number that accounts for the fact that private
exponents must be relatively prime to λ(N). The actual sizes of C1 and C2

are currently unknown.
In [9], Blömer and May present the class of weak keys defined by the set

CBM (ǫ) defined by the following: for any ǫ > 0, let CBM (ǫ) be the set of
RSA public keys (e,N) such that there exist integers x, y, k satisfying

ex + y = kφ(N)

x < 1
3N1/4−ǫ
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|y| < exN−3/4.

This class of weak keys has size N3/4−ε when there is no restriction on the
RSA primes (i.e., they are not restricted to be balanced). One practical
difficulty with the definition of this class of weak keys, though, is that it
is difficult to determine whether or not a public key is in the class or not,
even when we know the value of each of the parameters in the key equation
ed = 1 + kφ(N).

In contrast, notice that determining membership in Ci is very straight-
forward. Letting d = a

b λ(N), we simply solve the key equation for a
b , giving

a

b
=

1 + kλ(N)

eλ(N)
.

Since all of the quantities on the right-hand side are known in the key gen-
eration algorithm, we can simply test a and b for membership in Ci (i.e.,
test if |ab λ(N) − d| < N δi). Thus, it is easier for a modified key generation
algorithm to avoid producing a weak key defined by C1 or C2 than it is to
produce one that avoids a weak key in CBM . Some of the weak keys in CBM

are easy, however, to detect. This follows since C1 ⊂ CBM .

Open Problems/Future Work: While it is clear that C1 ⊂ CBM , it is
not known if there is any relationship, between C2 and CBM . More work
on the relationship and differences between the attacks in this Chapter and
Blömer and May’s may lead to a better characterization of known weak
keys. The sizes of the weak key classes C1 and C2 are currently unknown.
Computing lower bounds on these sizes would an interesting exercise.
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Chapter 4

Common Small Private
Exponents

In this chapter we show that Wiener’s small private exponent attack, when
viewed as a lattice-based attack, is easily extended to many instances of
RSA with the same small private exponent. The new attack, while only
a heuristic, works well in practice and can recover private exponents much
larger than previously possible when at least two instances of RSA have the
same private exponent. In the limiting case of many RSA instances with
large moduli and common private exponent, the attack can recover private
exponents approaching N1/2.

4.1 Background

The problem of multiple instances of RSA with a common (small) private
exponent has, to our knowledge, only been considered in the special case
of Dual RSA (see [114] or Chapter 7) where two instances of RSA share a
common private and public exponent. In Chapter 7, we show a heuristic
lattice-based attack that can recover the common private exponent provided
that it is smaller than N1/3. The attacks in this section are a direct general-
ization of this attack to multiple instances of RSA (without the restriction
of having a common public exponent).

There are also some other problems consisting of multiple instances of
RSA with some common property that have been considered. In particular,
the instances may share a common (small) public exponent or a common
modulus. We give a brief overview of the research done for each of these
below.
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Common Public Exponent

There are no known attacks on multiple instances of RSA with the same
small public exponent that lead to a total break of any of the instances.
There are, however, some known protocol failures.

The first known protocol failure occurs when the same plaintext m is
encrypted with several public keys (e,Ni), each having the same public ex-
ponent e and a different modulus Ni. The attack on this protocol failure
was published in 1985 by H̊astad [56], who mentions, without reference, that
the attack was already known to at least Blum, Lieberherr and Williams. In
fact, the attack was mentioned as early as 1983 by Blum [11]. Essentially,
when the number of ciphertexts exceeds the common public exponent, the
attack combines the ciphertexts together with the Chinese Remainder The-
orem to obtain me, which yields m since e is known.

The next protocol failure occurs when ℓ related plaintexts m1, . . . ,mℓ,
are each encrypted with the same public exponent e, but different modulus
Ni. That is, the plaintext mi is encrypted with the public key (e,Ni),
where each modulus Ni, is unique. In this context, the plaintexts mi are
related if mi = fi(m) for known polynomials fi(·), for some unknown m.
Here, m is the actual secret part of the plaintext. In 1985, H̊astad [56, 57]
presented a lattice-based method that recovers m provided that ℓ > 1

2e(e+1)
ciphertexts are known. This bound on the number of ciphertexts needed can
be reduced to ℓ > e, when Coppersmith’s method for finding small solutions
of univariate modular equations [33], is used instead of H̊astad’s method for
solving simultaneous modular equation (e.g., see [12]).

Collectively, the attacks on these protocol failures are often referred to
as the H̊astad broadcast attack.

Common Modulus

The common modulus protocol was an early, recurrent1, proposal in which
a central key authority (i.e., a trusted third party) would generate an RSA
modulus and distribute valid public/private key pairs, all with the same
modulus, to users within the system. Only the central key authority would
have knowledge of the factorization of the common modulus.

In 1983, Simmons [109] showed that a protocol failure existed when
the same plaintext was encrypted with two different public keys, having
the same modulus and relatively prime public exponents. Given the two

1It is mentioned, without reference, in [56], [39], and [90], that this type of protocol
had been reinvented several times.
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ciphertexts and the two public keys, he showed that the plaintext can be
easily computed. This attack can be mounted by anyone that has access to
the ciphertext and public keys.

In 1984, DeLaurentis [39] showed that the protocol was completely inse-
cure. Given one public/private key pair (e1, N)/(d1, N), and another public
key (e2, N), he showed that an integer d′2 satisfying e2d

′
2 ≡ 1 (mod φ(N)),

can be deterministically computed in time polynomial in log2(N). The inte-
ger d′2 can then be used as a decryption exponent for the encryption exponent
e2. Therefore, any user with a valid public/private key can compute a valid
decryption exponent for any other user given their public key, without re-
quiring knowledge of the factorization of the modulus N . In addition, using
an idea attributed to Simmons, DeLaurentis showed that given a valid pub-
lic/private exponent pair, the modulus can be factored with a probabilistic
polynomial time Las Vegas algorithm using the results of Miller [88]. A
deterministic polynomial time algorithm, using Coppersmith’s method for
finding small roots of bivariate integer equations, was presented in 2004 by
May [81], and later refined by Coron and May [36]. All of these attacks
can be mounted by any user in the group (i.e., anyone possessing a valid
public/private key pair with the common modulus).

When a single user generates many instances of RSA with the same
modulus, the attacks of DeLaurentis and May are no longer relevant. There
is, however, a small private exponent attack for this scenario. In 1999,
Howgrave-Graham and Seifert [67] extended Wiener’s small private expo-
nent attack to many instances of RSA, each having the same modulus N .
When all of the private keys are sufficiently small, their heuristic lattice-
based attack can factor the modulus in time polynomial in log2(N). In the
limiting case of infinitely many public keys, an infinite modulus and infi-
nite computing power the method can factor the modulus provided that
each private exponent is smaller than N1−ǫ, where ǫ is some small positive
quantity.

4.2 Notation and Assumptions

In this chapter we assume that a single user has generated r instances of
RSA, each with the same small private exponent d. Thus, we have r key
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equations

e1d = 1 + k1φ(N1)

...

erd = 1 + krφ(Nr),

(4.1)

where φ(Ni) = Ni − Λi for each i = 1, . . . , r. Since the (common) private
exponent is small, we also have ki < d for each i = 1, . . . , r. All of the
moduli are assumed to be the same size and we arbitrarily order them so
that N1 < N2 < · · · < Nr < 2N1. Further, we assume that each modulus

Ni is balanced so that |Λi| < 3N
1/2
i for each i = 1, . . . , r.

4.3 Wiener’s Attack and Lattices

We briefly outline the relationship between Wiener’s continued fraction at-
tack and computing reduced lattice bases for a certain 2-dimensional lattice.
For more detail, see [7, Theorem 5], where Blömer and May show the equiv-
alence of the two methods, using a slightly different lattice basis.

Since computing continued fractions and lattice basis reduction in two
dimensions are equivalent, we can reformulate Wiener’s attack as a lattice-
based problem. We begin by writing the key equation, ed = 1 + k(N − Λ),
along with the trivial equation dN1/2 = dN1/2, as the following vector-
matrix equation

(d, k)

[
N1/2 e

−N

]
= (dN1/2, 1− kΛ), (4.2)

where empty entries in a matrix denote zeroes. Since (d, k) ∈ Z2, we know
that (dN1/2, 1 − kΛ) is a vector in the lattice L, generated by the rows of
the matrix

B =

[
N1/2 e

−N

]
.

Using the LLL algorithm, with B as input, we find that the smallest re-
duced basis vector is (dN1/2, 1−kΛ) whenever d satisfies the bound given in
Wiener’s continued fraction attack (d < cN1/4, where c is a small constant
that does not depend on N). Recovering the vector (dN1/2, 1 − kΛ) yields
the private exponent d (and allows the modulus to be factored easily).
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4.4 Heuristic Attack

When two or more instances of RSA share a common small private exponent,
the lattice-based version of Wiener’s small private exponent attack is easily
extended. The main result is the following attack.

Attack 4.1. For any integer r ≥ 1, let N1, N2, . . . , Nr be balanced n-bit RSA
moduli satisfying N1 < N2 < · · · < Nr < 2N1. Let (e1, N1), . . . , (er, Nr) be
valid RSA public keys each with the same private exponent d < N δ

r . If

δ <
1

2
− 1

2(r + 1)
− logNr

(6), (4.3)

then there exists a heuristic lattice-based algorithm that reveals d in time
polynomial in log2(Nr) and r.

Justification: Given the r public keys (e1, N1), . . . , (er, Nr), we begin by
considering the r key equations, eid = 1+ki(Ni−Λi), along with the trivial
equation d = d, written as

d = d
e1d −N1k1 = 1− k1Λ1

e2d −N2k2 = 1− k2Λ2
...

. . .
...

...
erd −Nrkr = 1− krΛr.

(4.4)

Notice that this system of r+1 equations can be written as the vector-matrix
equation

(d, k1, . . . , kr)B0 = (d, 1− k1Λ1, . . . , 1− krΛr)

where

B0 =





1 e1 e2 · · · er

−N1

−N2

. . .

−Nr




. (4.5)

Letting x = (d, k1, . . . , kr) and v0 = (d, 1 − k1Λ1, . . . , 1 − krΛr), we can
further simplify this to xB0 = v0. Notice that the components of v0 are not
equally sized. In particular, the first coordinate is much smaller than each
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of the rest. However, multiplying the first column of B0 by M = ⌊N1/2
r ⌋, we

can construct a new matrix

B =





M e1 e2 · · · er

−N1

−N2

. . .

−Nr




, (4.6)

so that xB yields a vector with components that are, roughly, the same size.
In particular,

(d, k1, . . . , kr)B = (dM, 1− k1Λ1, . . . , 1− krΛr),

where each component of the vector on the right-hand side of the equation

has size, in absolute value, roughly equal to N
δ+1/2
r . Letting

v = (dM, 1− k1Λ1, . . . , 1− krΛr),

we see that

‖v‖22 = (dM)2 + (1− k1Λ1)
2 + · · ·+ (1− krΛr)

2

≤
(
N δ+1/2

r

)2
+ r
(
3N δ+1/2

r

)2

= (9r + 1)
(
N δ+1/2

r

)2
,

so that the size of v is bounded by

‖v‖2 ≤
√

9r + 1 N δ+1/2
r . (4.7)

Since xB = v and x ∈ Zr+1, we know that v is an integer linear combi-
nation of the rows of B. Letting L be the lattice generated by the rows of B
(i.e., B is a basis matrix), we then have v ∈ L. When δ < 1/2, notice that
the size of v is small compared to the size of each of the basis vectors, whose
absolute size is roughly Nr. This suggests that we look for small vectors in
L with the hope that v is found. From Minkowski’s bound on a smallest
vector in a lattice, Theorem 2.3, we know that a smallest vector in L is
smaller than

√
r + 1vol(L)1/(r+1),
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with respect to the Euclidean norm. From (4.6), it is easy to see that the
determinant of L satisfies

vol(L) =

∣∣∣∣∣M
r∏

i=1

(−Ni)

∣∣∣∣∣

=
⌊
N1/2

r

⌋ r∏

i=1

Ni

> N
1/2
1 N r

1 ,

since ⌊N1/2
r ⌋ ≥ N

1/2
1 and Ni > N1, for all i = 2, . . . , r. Combining this with

Nr < 2N1, we then have

vol(L) >

(
Nr

2

)r+1/2

. (4.8)

From the bounds on v and vol(L), given by (4.7) and (4.8), it follows that a
sufficient condition for v to satisfy Minkowski’s bound for a smallest vector
is given by

√
9r + 1N δ+1/2

r ≤
√

r + 1

(
Nr

2

) r+1/2
r+1

.

Looking at the exponents of Nr, this is equivalent to

δ +
1

2
+ logNr

(√
9r + 1

)
≤ r + 1

2

r + 1
+ logNr

(√
r + 1

2
r+1/2
r+1

)
,

or simply

δ <
1

2
− 1

2(r + 1)
+ logNr

(√
r + 1

9r + 1

1

2
r+1/2
r+1

)

=
1

2
− 1

2(r + 1)
− logNr

(√
9r + 1

r + 1
2

r+1/2
r+1

)
. (4.9)
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Now, since

logNr

(√
9r + 1

r + 1
2

r+1/2
r+1

)
= logNr

(√
9r + 1

r + 1

)
+ logNr

(
2

r+1/2
r+1

)

= logNr

(√
9r + 1

r + 1

)
+

(
r + 1/2

r + 1

)
logNr

(2)

< logNr
(
√

9) + logNr
(2)

= logNr
(6),

for all r ≥ 1, it follows that

δ <
1

2
− 1

2(r + 1)
− logNr

(6),

is a sufficient condition to ensure that v satisfies Minkowski’s bound for a
smallest vector in L. From Heuristic 2.6, it is then likely that v is a smallest
vector in L (we know that v cannot be the smallest vector since −v ∈ L).
Using the LLL algorithm, with B as input, we compute a reduced basis. Let
b be the smallest reduced basis vector returned by LLL. If v and −v are the
smallest vectors in L and if the next smallest vector is significantly larger
than v, then we expect LLL to compute v (or −v) as the smallest basis
vector. When this is the case, we simply divide the absolute value of the
first component of b by M to reveal the common private exponent d. Since
the dimension of L is linear in r and all components of the basis vectors in
L are polynomial in log2(Nr), the result follows. ❏

4.5 Toy Example

To illustrate the lattice-based method of Attack 4.1, we mount the attack
on the three RSA public keys

(e1, N1) = (587438623, 2915050561)

(e2, N2) = (2382816879, 3863354647)

(e3, N3) = (2401927159, 3943138939).
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Letting M = ⌊N1/2
3 ⌋ = 62794, we construct the basis matrix

B =





M e1 e2 e3

0 −N1 0 0
0 0 −N2 0
0 0 0 −N3





=





62794 587438623 2382816879 2401927159
0 −2915050561 0 0
0 0 −3863354647 0
0 0 0 −3943138939



 .

Applying the LLL algorithm, with B as input, we obtain the reduced basis




−41130070 14375987 50221643 50147516
−164834250 35361394 −123133882 20371086

56702982 −82125533 −204896642 213808127
−172055560 −473917348 151104970 −181526469



 ,

whose smallest basis vector is

b = (−41130070, 14375987, 50221643, 50147516) .

Dividing the first component of b by M and taking the absolute value yields
∣∣∣∣
−41130070

62794

∣∣∣∣ = 655,

which is the common private exponent d. Here, δ = logN3
(d) ≈ 0.2935.

For this example, notice that the sufficient condition on the size of δ for
the attack to succeed, (4.3), is given by

δ <
1

2
− 1

2(r + 1)
− logN3

(6)

=
1

2
− 1

8
− log3943138939(6)

≈ 0.3189434953,

which is satisfied in this example since δ ≈ 0.2935.

4.6 Practical Effectiveness

Since Attack 4.1 is only a heuristic, its true value lies in its effectiveness in
practice. In Figures 4.1 and 4.2, we show the success rate of mounting the
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attack on random instances of RSA with 1024-bit moduli when a common
small private is shared among several moduli. For several values of r ranging
from 2 to 35, we show the success rate as a function of ∆ = δ − δ0, where δ
is the size of the private exponent and

δ0 =
1

2
− 1

2(r + 1)
− logNr

(6),

is the maximum δ allowed by Attack 4.1, which ensures success. Each data
point in each plot represents the average taken over several repeated random
instances. The number of experiments for each data point ranged from 1,500
when r = 2 (here the time for lattice reduction was very small) to 150 when
r = 35 (here the time for lattice reduction was much larger).

If Heuristic 2.6 holds, we expect a success rate of 100% for each ∆ < 0
and a sucess rate near 100% when ∆ ≈ 0 (when the target vectors are close
to Minkowski’s bound). Any success rate greater than 0% when ∆ > 0 is
an added bonus since Attack 4.1 does not apply to this region.

Figure 4.1: Effectiveness of Attack 4.1 for 1024-bit moduli and 2 ≤ r ≤ 5.

As can be seen in Figures 4.1 and 4.2, the attack works extremely well un-
til ∆ is approximately equal to zero, at which point the success rate rapidly
descends to 0%. As the number of instances increases (i.e., r increases),
the effectiveness of the attack seems to diminish more rapidly when ∆ is
close to and greater than zero. Independent of the number of instances, we
have observed that every experiment resulted in a successful attack when
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∆ < −0.0025. Thus, we conclude that Heuristic 2.6 holds for the lattices
used in Attack 4.1. Further, we conclude that Attack 4.1 is effective in
practice for multiple instances of RSA with 1024-bit moduli.

Figure 4.2: Effectiveness of Attack 4.1 for 1024-bit moduli and 10 ≤ r ≤ 35
(in multiples of 5).

In Figure 4.3, we illustrate the effectiveness of the attack for different
modulus sizes when three instances of RSA share a common small private
exponent (i.e., r = 3). As can be seen in the plot, the attack remains very
effective for each modulus size that we considered. As the size of the moduli
increase, the sharpness of the cut-off point between a successful attack and
an unsuccessful attack becomes much pronounced (seemingly tending to-
wards a step function). From this experimental evidence, we conclude that
Attack 4.1 is effective in practice for three instances of RSA whose moduli
range from 512- to 4096-bits.

Based on all the experimental evidence that we acquired, we conclude
that Attack 4.1 is extremely effective in practice for any reasonable number
of instances and size of moduli.

4.7 Discussion

In this chapter, we extended Wiener’s small private exponent attack, when
viewed as a lattice-based attack, to sets of RSA instances having a common
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Figure 4.3: Effectiveness of Attack 4.1 for r = 3 with different modulus sizes
(512, 768, 1024, 2048, 4096).

small private exponent. The attack relies on an assumption about small
vectors in lattices and so it is only a heuristic. However, it turns out that
the assumption holds quite well in practice for the particular lattices consid-
ered and the attack works extremely well. In the limiting case of many RSA
instances with large moduli sharing a common private exponent, the attack
is expected to recover private exponents approaching 1/2 the bitlength of
the moduli.

Open Problems/Future Work: The next step for research in this par-
ticular problem is to prove that (dM, 1 − k1Λ1, . . . , 1 − krΛr) is a smallest
vector in the lattices considered here or to construct a different provable
attack.
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Chapter 5

Multi-prime RSA

In this chapter we investigate the security of multi-prime RSA, a variant of
RSA in which the modulus has three or more distinct prime factors.

5.1 Background

Multi-prime RSA is, essentially, as old as RSA itself. The idea of using
more than two primes in the modulus appears in the patent for RSA [103],
which was filed in 1977. Even though the idea of multi-prime RSA was
already contained in the patent for RSA, a patent for multi-prime RSA was
granted in 1998 to Collins, Hopkins, Langford and Sabin [29]. Multi-prime
RSA gained some credibility as a public key cryptosystem in 2000, when
RSA Security Inc.1 entered into an agreement with Compaq Computer
Corporation to use Compaq’s patented MultiPrime technology [30] in their
RSA BSAFE product line. The patent is actually that of Collins et al.

The appeal of multi-prime RSA is that decryption costs can be reduced
compared to RSA. Like RSA, decryption computations can be done modulo
each prime and then combined with the Chinese Remainder Theorem. The
overall cost for decryption decreases as the number of primes in the modulus
increases.

While multi-prime RSA had been known for as long as RSA and was
being used in commercial software, there had been very little research into
the security of it until fairly recently.

In 2002, Boneh and Shacham [19] considered the security of multi-prime
RSA with respect to factoring the modulus with the NFS and ECM.

1Now RSA, The Security Division of EMC.

73



In 2002, Hinek, Low and Teske [64] extended some small private exponent
and partial key exposure attacks on RSA to multi-prime RSA.

In 2002, Ciet, Koeunne, Laguillaumie and Quisquater [25] extended the
main small private exponent attacks on RSA to several variants of RSA
including multi-prime RSA.

In 2004, Hinek [59] extended some partial key exposure attacks on RSA,
by Blömer and May [8], to multi-prime RSA.

In 2005, Hinek [61] presented some new small private exponent partial
key exposure attacks on multi-prime RSA. In 2006, we improved these at-
tacks in [63].

5.2 Multi-prime RSA

Multi-prime RSA is a simple extension of RSA in which the modulus has
more than two primes. Throughout this chapter, though, we will assume
that RSA is a special case of multi-prime RSA in which there are only two
primes. We will, also, often refer to multi-prime RSA having r primes in
the modulus as “r-prime RSA”. Most of the notation and assumptions that
we use in this chapter are direct extensions of those used for RSA.

For multi-prime RSA with r primes, the modulus, N =
∏r

i=1 pi , is simply
the product of r distinct primes. As with RSA, we only consider multi-prime
RSA with balanced primes. That is, if we label the primes so that pi < pi+1

for i = 1, . . . , r − 1, then we assume that

4 <
1

2
N1/r < p1 < N1/r < pr < 2N1/r. (5.1)

The key generation algorithm for multi-prime RSA is essentially the same
as for RSA, except that the modulus requires r random distinct balanced
primes instead of two. We will assume that the public and private exponents
are defined modulo φ(N) =

∏r
i=1(pi − 1). Thus, e and d must satisfy

ed ≡ 1 (mod φ(N)), (5.2)

which we call the key relation. From this equivalence, we have the key
equation

ed = 1 + kφ(N), (5.3)

where k is some positive integer. As with RSA, we use Λ to denote the
difference between the modulus N and Euler’s totient function φ(N). That
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is, N = φ(N)− Λ. Expanding φ(N), we see that Λ can be written as

Λ = N − φ(N)

= N −
r∏

i=1

(pi − 1)

=
r∑

i=1

N

pi
−

r∑

i,j=1
i<j

N

pipj
+

r∑

i,j,k=1
i<j<k

N

pipjpk
+ · · ·+ (−1)r. (5.4)

As is shown in [64], a simple computation using this expression for Λ and
5.1 (condition for balanced primes) shows that Λ satisfies

|Λ| < (2r − 1)N1−1/r.

Thus, φ(N) and N have roughly an (r−1)/r fraction of their most significant
bits in common.

The encryption algorithm for multi-prime RSA is identical to that of
RSA. The public (encrypting) exponent will usually be denoted by e = Nα.

Just as with RSA, there are two kinds of decryption algorithms. Text-
book decryption for multi-prime RSA is identical that of RSA. In this case,
the private exponent is denoted by d = Nβ or d = N δ, depending on the
context. For partial key exposure attacks we let d = Nβ and use δ as an
estimate of the unknown part of d. For example, if d̂ is a known approx-
imation to d, we let the unknown part satisfy |d − d̂| ≤ N δ. In all other
scenarios, we let d = N δ. We will refer to this case as textbook multi-prime
RSA, or simply multi-prime RSA.

When decryption uses the Chinese Remainder Theorem, the decryption
algorithm for multi-prime RSA is the obvious extension to the decryption
algorithm for RSA when using the Chinese Remainder Theorem (we simply
compute r partial decryptions before the combining stage instead of two).
In this case, the private exponent is denoted by d = Nβ and the CRT-
exponents, di = d mod (pi − 1), each satisfy di < N δ. We will refer to this
case as CRT multi-prime RSA, multi-prime RSA with CRT decryption.

The public key is simply (e,N) and the private key is (d, p1, . . . , pr)
2.

Efficiency of Multi-prime RSA

The efficiency of multi-prime RSA compared to RSA varies greatly depend-
ing on the decryption method used.

2Other possibilities for the private key exist which contain information that can be
used to speed up decryption computations (see PKC #1 [104]).
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When textbook decryption is used, the encryption and the decryption
algorithms for multi-prime RSA are identical to RSA. Thus, the computa-
tional costs of encryption and decryption are the same. The key genera-
tion algorithm, however, is different. For multi-prime RSA the key gener-
ation algorithm needs to generate r random primes each of size N1/r. For
RSA, the algorithm needs to generate two primes each size N1/2. Using
the Miller-Rabin primality test with trial division, we can generate an n-bit
random (probable) prime with expected runtime O(n4/ log(n) + tn3) (see
Shoup [107]). Here, the method mistakenly outputs a composite number
instead of a prime number with probability at most 4−t. Since this com-
plexity of finding primes is not linear3 in the bitlength of the desired prime,
multi-prime RSA key generation will be more efficient than the RSA key
generation algorithm (when generating a modulus of the same size). While
this may be desirable for some (constrained) applications that require the
generation of many key pairs, this is not, in general, the reason for the
interest in multi-prime RSA.

When the Chinese Remainder Theorem is used for decryption, not only
is the key generation algorithm for multi-prime RSA more efficient than
that for RSA, but so is the decryption algorithm. Using basic quadratic
complexity for multiplication, the ratio of the worst case cost for multi-
prime decryption to the worst case cost for RSA decryption is 4/r2 when
computed sequentially and 8/r3 when computed in parallel. (We measure
the cost by the number of bit operations and ignore the combining stage
of the Chinese Remainder Theorem.) Therefore, the cost for decryption
decreases with each additional prime in the modulus. Of course, as we shall
see in the next section, the number of primes cannot be too large. As the
number of primes increases (for a fixed modulus size) the size of each prime
decreases, making the modulus easier to factor with the ECM method for
factoring.

Multi-prime RSA is always implemented using the Chinese Remainder
Theorem for decryption in practice. As we shall see below, all of the known
attacks on multi-prime RSA (except simply factoring the modulus) apply to
textbook multi-prime RSA (which uses the normal decryption method).

3This complexity estimation is using the classical quadratic-time algorithms. Faster
algorithms are known, but the complexity of generating a random (probable) prime is still
super-linear with these algorithms.
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5.3 Factoring the Modulus

The security of multi-prime RSA, just as with RSA, is based on the difficulty
of factoring the modulus. For a given modulus size, the estimated security
of r-prime RSA should be no less than the estimated security of RSA with
the same modulus size. Thus, the number of primes in the modulus must
be small enough so that the expected complexity of the ECM is not less
than the expected complexity of the NFS. Any value of r that satisfies this
is considered a “safe” value for that given modulus size.

In Table 5.1, we list the estimated maximum number of balanced primes
that are considered safe for various popular modulus sizes. The data in the
table is taken from [30], and was determined by the crossover point of the
expected runtimes of the NFS and ECM (see equations (1.1) and (1.2)).

Table 5.1: Estimated maximum number of safe primes allowed for multi-
prime RSA various modulus sizes.

Modulus size (bitlength) 1024 2048 4096 8192

Maximum number of primes (r′) 3 3 4 5

For a given modulus size, if r ≤ r′, then the minimum expected com-
plexity of factoring an r-prime RSA modulus (using either NFS or ECM) is
no less than factoring an RSA modulus with the same size. Once r > r′, the
expected complexity of factoring an r-prime RSA modulus with the ECM
is less than factoring an RSA modulus of the same size. And since the sizes
of the primes decrease with increasing number of primes, the expected com-
plexity of factoring an r-prime RSA modulus with r > r′ decreases with
increasing number of primes. Thus, the strength of the factoring attack
(i.e., ECM) increases with each addition prime (when r > r′).

As will be illustrated in the remainder of this chapter, this correspon-
dence of security with number of primes is unique. In all other known attacks
on multi-prime RSA, for r > 2, the attacks decrease in strength with each
additional prime in the modulus.

5.4 Small Private Exponent Attacks

All of the small exponent attacks on textbook RSA have been extended to
multi-prime RSA. In this section we list the main results.
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Wiener’s continued fraction attack was extended to multi-prime RSA by
Hinek, Low and Teske [64] and also by Ciet et al. [25]. The result of the
attack on multi-prime RSA, [64, Theorem 2], is given below.

Theorem 5.1. For every integer r ≥ 2 the following holds: Let N be an
r-prime RSA modulus with balanced primes. Given a valid public key (e,N)
with corresponding private key (d, p1, . . . , pr), if

d <
N1/(2r)

√
2(2r − 1)

,

then the private exponent can be computed in time polynomial in log2(N).

Letting r = 2 recovers the condition d < N1/4/
√

6, obtained by Boneh [12],
which is the same as Wiener’s original result [123] up to a multiplicative con-
stant. A proof of Theorem 5.1 can be found in [64, §4.1].

Blömer and May’s lattice-based attack was extended to multi-prime RSA
(as well as to arbitrary public exponent) by Hinek, Low and Teske [64,
equation 18]. The result is as follows4.

Attack 5.2. For every ǫ > 0 and integer r ≥ 2 there exists an N0 such that,
for every N > N0, the following holds: Let N be an r-prime RSA modulus
with balanced primes, let (e,N) be a valid public key and let (d, p1, . . . , pr) be
its corresponding private key, where e = Nα and d = N δ. Given the public
key, if the private exponent satisfies

δ ≤ 6

5r
− 1

5
− 3α

5
+

2

5r

√
α2r2 − αr(r − 1) + 4(r − 2)2 − ǫ,

then d can be recovered in time polynomial in log2(N), provided that As-
sumption 2.13 holds.

Letting r = 2 and α = 1 recovers the bound δ < (
√

6 − 1)/5 ≈ 0.290,
originally obtained by Blömer and May [7, §4]. A proof of the result in
Attack 5.2 can be found in [64, §4.2].

The strongest small private exponent attack on RSA, Boneh and Durfee’s
lattice-based attack with geometrically progressive matrices, was extended
to multi-prime RSA by Ciet et al. [25]. The result of this extension is as
follows.

4The notation used in [64] is slightly different as they use the variable ar = (1 − r)/r
to simplify their presentation.
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Attack 5.3. For every ǫ > 0 and integer r ≥ 2 there exists an N0 such that
for every N > N0 the following holds: Let N be an r-prime RSA modulus
with balanced primes, let (e,N) be a valid public key and let (d, p1, . . . , pr)
be its corresponding private key, d = N δ. Given the public key, if e ≈ N
and the private exponent satisfies

δ ≤ 1−
√

1− 1

r
− ǫ,

then the private exponent d can be recovered in time polynomial in log2(N),
provided that Assumption 2.13 holds.

Letting r = 2 recovers the bound δ ≤ 1 −
√

1/2 ≈ 0.292, originally
obtained by Boneh and Durfee [13, §5]. A proof of the result in Attack 5.3
can be found in [25, §4.2.1].

5.5 Partial Key Exposure Attacks:
Known MSB

In this and the next two subsections, we consider partial key exposure at-
tacks. These attacks assume that the adversary has knowledge of some of
the bits of the private key. Typically, it is assumed that some of the most or
least significant bits of the private exponent are known. While these attacks
may seem, at first, quite contrived and unrealistic, they can be quite rele-
vant in certain practical settings in which side-channel attacks can be used to
extract exactly this information. For more information about side-channel
attacks, see [122, 96, 91, 1].

In this section we assume that the adversary has an approximation to
the high order bits of the private exponent d = Nβ. That is, for a given
public key (e,N), the adversary knows d̂ such that

|d− d̂| < N δ,

for some 0 ≤ δ ≤ β.
The two main lattice-based results for known partial key exposure at-

tacks on RSA when either the public or private exponent is small are by
Ernst, Jochemsz, May and de Weger [46]. We extend their results here to
obtain new attacks on multi-prime RSA. The first attack uses the key equa-
tion with the approximation d̂ to compute d. We have the following new
attack.
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Attack 5.4. For every ǫ > 0 and integer r ≥ 2 there exists an N0 such that
for every N > N0 the following holds: Let N be an r-prime RSA modulus
with balanced primes, let (e,N) be a valid public key and let (d, p1, . . . , pr) be
its corresponding private key, where e = Nα and d = Nβ. Given the public
key and d̂ satisfying |d− d̂| ≤ N δ, if

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1)(3αr + 3βr − 2r − 1)− ǫ, (5.5)

then the private exponent d can be recovered in time polynomial in log2(N),
provided that Assumption 2.13 holds.

Justification: Starting with the key equation ed = 1 + kφ(N), we replace
d with d̂ + d0 and φ(N) with N − Λ, to obtain

e(d̂ + d0) = 1 + k(N − Λ).

Here d0, k and Λ are the only unknowns. This suggests that we look for
small integer solutions of the polynomial

f(x, y, z) = ex−Ny + yz + (ed̂− 1) ∈ Z[x, y, z], (5.6)

since (x0, y0, z0) = (d0, k,Λ) is a root of f(x, y, z) over the integers. Since

|d0| = |d− d̂| < N δ

|k| =
∣∣∣∣
ed− 1

φ(N)

∣∣∣∣ < 2Nα+β−1

|Λ| = |N − φ(N)| < (2r − 1)N1−1/r,

(5.7)

we define the bounds

X = N δ

Y = 2Nα+β−1

Z = (2r − 1)N1−1/r,

(5.8)

so that |x0| < X, |y0| < Y , |z0| < Z and

W = ‖f(xX, yY, zX)‖∞
= max(eX,NY, Y Z, ed̂− 1)

= NY

= 2Nα+β.

(5.9)

80



From Theorem 2.12, we then know that for sufficiently large N we can
recover (x0, y0, z0) provided that

X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ , (5.10)

and that Assumption 2.13 holds. Substituting the values for X, Y , Z and
W , this inequality reduces to

(r − 1) τ2 + (δ r − 1) τ +
1

3
(δ r + α r + β r − r − 1) ≤ 0, (5.11)

where we have ignored all factors that are independent of N . We can mini-
mize the left-hand side of this inequality for any choice of α, δ and r ≥ 2 by
letting τ = −1

2(δr − 1)/(r − 1). Using this value for τ and solving for δ, we
find a sufficient condition for inequality 5.10 to hold is given by

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1)(3αr + 3βr − 2r − 1)− ǫ, (5.12)

where we have added the ǫ term to correct for all lower order terms ne-
glected in the methods implicit in Theorem 2.12. Since all computations
can be done in time polynomial in log2(N), the result follows. ❏

The second attack uses the partial knowledge of the private exponent
to compute an approximation of the constant k in the key equation. In
some instances (i.e., for particular sizes of public and private exponents),
using the approximations of both d and k improve the result of the previous
attack. We have the following new attack.

Attack 5.5. For every ǫ > 0 and integer r ≥ 2 there exists an N0 such that
for every N > N0 the following holds: Let N be an r-prime RSA modulus
with balanced primes, let (e,N) be a valid public key and let (d, p1, . . . , rr) be
its corresponding private key, where e = Nα and d = Nβ. Given the public
key and d̂ satisfying |d− d̂| ≤ N δ, if

1. α > 1− δ, δ ≤ β − 1/r and

δ ≤ 3r2 + 6αr + 3− r2α2 − 6r − 2αr2

4αr2
− ǫ, or (5.13)

2. α > 1 + 1/r − β, δ ≥ β − 1/r and

δ ≤ α + β − 1

3
+

2

3r
− 2

3r

√
(αr + βr − r − 1)(αr + βr + 2r − 4)− ǫ,

(5.14)
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then the private exponent d can be recovered in time polynomial in log2(N),
provided that Assumption 2.13 holds.

Justification: First we use N , e and d̂ to compute an approximation k̂ of
the constant k in the key equation ed = 1 + kφ(N). Letting

k̂ =

⌊
ed̂− 1

N

⌋
, (5.15)

notice that

|k − k̂| =
∣∣∣∣∣
ed− 1

φ(N)
− ed̂− 1

N
+ ν

∣∣∣∣∣

=

∣∣∣∣∣
(ed− 1)N − (ed̂− 1)φ(N)

φ(N)N
+ ν

∣∣∣∣∣

=

∣∣∣∣∣
(ed− 1)N − (ed̂− 1)(N − Λ)

φ(N)N
+ ν

∣∣∣∣∣

≤
∣∣∣∣∣
e(d− d̂)

φ(N)

∣∣∣∣∣+

∣∣∣∣∣
(ed̂− 1)Λ

φ(N)N

∣∣∣∣∣+ 1

≤ e

φ(N)

∣∣∣(d− d̂)
∣∣∣+

e

φ(N)

d̂Λ

N
+ 1

=
e

φ(N)

(∣∣∣(d− d̂)
∣∣∣+

d̂Λ

N

)
+ 1

≤ e

φ(N)

(
N δ + (2r − 1)d̂N−1/r

)
+ 1, (5.16)

where |ν| < 1 is the discrepancy introduced by the floor operation in the k̂.
Letting γ = max(α + δ − 1, α + β − 1− 1

r ), we then have that

|k ± 1− k̂| < 2rNγ . (5.17)

Using this approximation for k (or perhaps k±1) we can then write the key
equation as

e(d̂ + d0) = 1 + (k̂ + k0)(N − Λ), (5.18)

where d0 = d − d̂, k0 = k − k̂ and Λ are the only unknowns. This suggests
that we look for small integer solutions of the polynomial

g(x, y, z) = ex− yN + k̂z + yz + ed̂− 1− k̂N ∈ Z[x, y, x], (5.19)
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since (x0, y0, z0) = (d0, k0,Λ) is a root of g(x, y, z) over the integers. Since

|d0| = |d− d̂| < N δ

|k0| = |k − k̂| < 2rNγ

|Λ| = |N − φ(N)| < (2r − 1)N1−1/r,

(5.20)

we define the bounds

X = N δ

Y = 2rNγ

Z = (2r − 1)N1−1/r,

(5.21)

so that |x0| < X, |y0| < Y , |z0| < Z and

W = ‖g(xX, yY, zX)‖∞
= max(eX,NY , k̂Z, Y Z, ed̂− 1− k̂N)

= NY

= 2rNγ+1.

(5.22)

From Theorem 2.12, we then know that, for sufficiently large N , we can
recover (x0, y0, z0) provided that

X2+3τY 3+6τ+3τ2
Z3+3τ ≤W 2+3τ , (5.23)

and that Assumption 2.13 holds. Substituting the values for X, Y , Z and
W , this inequality reduces to

(γr)τ2 + (γr + δr − 1)τ + 1
3 (2δr + r − 3 + γr) < 0, (5.24)

where we have ignored all factors that are independent of N . When γ > 0,
we can minimize the left-hand side of this inequality for any choice of α, δ
and r ≥ 2 by letting τ = −1

2(γr + δr − 1)/(γr). Using this value for τ and
solving for δ, we find that a sufficient condition for inequality 5.23 to hold
is given by

δ ≤ γ

3
+

1

r
− 2

3r

√
γ2r2 − 3γr + 3γr2 − ǫ, (5.25)

where the ǫ term is added to correct for all the lower order terms neglected
in the methods implicit in Theorem 2.12.

We now consider the two cases for γ separately. That is, we consider
γ = α + δ − 1 and γ = α + β − 1− 1/r. The cases can be distinguished by
the values of δ and β − 1/r (the cases overlap when δ = β − 1/r). For each
case, we must ensure that γ > 0 so that the optimization of τ given above
holds.
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1. When δ ≤ β− 1/r and hence γ = α + δ− 1, inequality (5.25) becomes

δ ≤ 3r2 + 6αr + 3− r2α2 − 6r − 2αr2

4αr2
− ǫ. (5.26)

For this case, in order to ensure γ > 0, we must have α > 1− δ.

2. When δ ≥ β − 1/r and hence γ = α + β − 1 − 1/r, inequality (5.25)
becomes

δ ≤ α + β − 1

3
+

2

3r
− 2

3r

√
(αr + βr − r − 1)(αr + βr + 2r − 4)− ǫ.

(5.27)
In order to ensure that γ = α + β − 1 − 1/r > 0, we must have that
α > 1 + 1/r − β in this case.

Since all computations can be done in time polynomial in log2(N), the result
follows. ❏

While it is possible to have public and private exponents both signifi-
cantly smaller than φ(N) (see Sun and Yang [115] for example), it is much
more common that only one of the exponents is small. We consider the
strongest attacks for these typical instances (when only one exponent is
small) below. The attacks are summarized in Figure 5.1 for the first few
values of r. Notice that the effectiveness of each attack decreases with each
additional prime in the modulus.

5.5.1 Small Private Exponent

In typical RSA, when the private exponent is chosen to be small, the public
exponent is roughly the same order of magnitude as the modulus N . Thus,
in this scenario we can approximate the public exponent by e ≈ N (i.e.,
α ≈ 1). Using this approximation in Attack 5.4, we have that for sufficiently
large N the private exponent can be computed if

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1)(r + 3βr − 1)− ǫ, (5.28)

Similarly, in Attack 5.5, we have that, for sufficiently large N , the private
exponent can be computed if

δ ≤ 3

4r2
− ǫ, (5.29)
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(a) Small private exponent (α ≈ 1). (b) Small public exponent (β ≈ 1).

Figure 5.1: Partial key exposure attacks with known MSB and small private
exponent. Plot (a) shows fraction (β− δ)/β of MSBs of d required. Plot (b)
shows fraction (1− δ) of MSBs of d required.

when β ≤ (3 + 4r)/(4r2), or if

δ ≤ β

3
+

2

3r
− 2

3

√
(rβ − 1) (rβ − 4 + 3r)− ǫ, (5.30)

when β ≥ (3 + 4r)/(4r2). Since α ≈ 1, we have γ > 0 for both cases.
Letting r = 2 in the preceding three equations recovers the original results
for RSA by Ernst et al. [46, Theorem 1]. In particular, when r = 2, the
private exponent can be recovered if:

1. δ ≤ 5
6 − 1

3

√
1 + 6β − ǫ, or

2. β ≤ 11
16 and δ ≤ 3

16 − ǫ, or

3. β ≥ 11
16 and δ ≤ 1

3 + 1
3β − 1

3

√
4β2 + 2β − 2− ǫ.

In addition to Attacks 5.4 and 5.5, both of the small private exponent
attacks (Wiener [123] and Boneh and Durfee [13]) can be considered as
partial key exposure attacks with known MSB and small private exponent.
In this case, zero bits of the private key are required to successfully mount
the attack (i.e., δ = 0).

We illustrate the partial key exposure attacks with small private expo-
nent for the first few values of r when α ≈ 1 in Figure 5.1(a). For each
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value of β, the fraction of bits of the private exponent required for the at-
tack to succeed is given (i.e., (β − δ)/β). For each value of r, Attack 5.3
is strongest for small β, Attack 5.4 is strongest for intermediate values of β
and Attack 5.5 is strongest for larger values of β.

5.5.2 Small Public Exponent

When the public exponent is chosen to be small, the private exponent is,
with high probability, roughly the same order of magnitude as the modulus
N . Thus, in this scenario we can approximate the private exponent by
d ≈ N (i.e., β ≈ 1). Using this approximation in Attack 5.5, we have
that for sufficiently large N the private exponent can be computed when
e > N1/r (α > 1/r to ensure γ > 0) and

δ ≤ α

3
+

2

3r
− 2

3r

√
(αr − 1)(αr + 3r − 4)− ǫ. (5.31)

Letting r = 2 recovers the original RSA result obtained by Ernst et al. [46,
Theorem 2]. Namely, δ ≤ 1

3 + 1
3α− 1

3

√
4α2 + 2α− 2− ǫ.

When the public exponent is smaller than N1/r, an attack that is not
based on lattice basis reduction can be used. The original attack on RSA
is by Boneh, Durfee and Frankel [16] and was extended to the multi-prime
case by Hinek, Low and Teske [64]. The main result of the attack follows.

Attack 5.6. For every integer r ≥ 2 there exists an N0 such that for every
N > N0 the following holds: Let N be an r-prime RSA modulus with bal-
anced primes, let (e,N) be a valid public exponent and let (d, p1, . . . , rr) be
its corresponding private key, where e ≤ N1/r and k = (ed− 1)/φ(N) > ηe
for some 0 < η < 1. Given (e,N) and an approximation d̂ of d satisfying
|d − d̂| < e, the private exponent can be computed in time polynomial in r,
log2(N) and 1/η.

For a justification of Attack 5.6, see [64, §5.2].
In Figure 5.1(b), we illustrate the partial key exposure attacks with small

public exponent for the first few values of r when β ≈ 1. For each value
of α, the fraction of bits of the private exponent required for the attack to
succeed is given (i.e., 1 − δ). In addition to Attacks 5.5 and 5.6, we have
included two additional partial key exposure attacks by Boneh, Durfee and
Frankel [16] that only apply to RSA. We include these attacks to give a
complete picture of the best partial key exposure attacks on multi-prime
RSA (including RSA). The results of these attacks are given below. For
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arguments that these attacks cannot be extended to the multi-prime case,
see Hinek, Low and Teske [64, §5.2].

The first attack applies to instances of RSA with public exponent in the
range 1/4 ≤ α ≤ 1/2. It is the strongest known partial key exposure attack
with known MSB against RSA, occurring when e ≈ N1/4. The main result
of the attack follows (see [16, Theorem 4.3] for more details, including a
proof of the result).

Attack 5.7. For every ǫ > 0 there exists an N0 such that for every N > N0

the following holds: Let N be an RSA modulus with balanced primes, let
(e,N) be a valid public key with prime public exponent and let (d, p1, . . . , rr)
be its corresponding private key, where e = Nα. Given (e,N) where 1

4 ≤
α ≤ 1

2 and d̂ satisfying |d− d̂| < Nα−ǫ, the private exponent can be computed
in time polynomial in log2(N) and 1/ǫ.

This attack requires that the public exponent be prime. If e is not prime,
the attack can still be mounted provided that the factorization of e is known.
If e has t distinct prime factors then the runtime of the modified attack is
polynomial in log2(N), 1/ǫ and 2t. For details, see [16, Corollary 4.4]. For
a 1024-bit modulus and randomly chosen e < N1/2, it should be possible to
completely factor e using the ECM.

The second attack, observed by Blömer and May [8, §1], is not explicitly
mentioned by Boneh, Durfee and Frankel but follows from two of their results
[16, Theorems 3.3 and 4.1]. The main result of the attack, which applies to
instances of RSA with public exponent smaller than N1/4, is as follows.

Attack 5.8. For every ǫ > 0 there exists an N0 such that for every N > N0

the following holds: Let N be an RSA modulus with balanced primes, let
(e,N) be a valid public key and let (d, p1, . . . , rr) be its corresponding private
key. Given (e,N) where 0 ≤ α ≤ 1

2 and d̂ satisfying |d − d̂| < N1/4−ǫ, the
private exponent can be computed in time polynomial in log2(N) and 1/ǫ.

5.6 Partial Key Exposure Attacks:
Known LSB

In this section we consider attacks in which some of the least significant
bits of the private exponent are known. In particular, we assume that the
adversary knows d̂ for some (known) M such that d ≡ d̂ (mod M). Thus,
we can write the private exponent as d = d0M + d̂ where d0 is the only
unknown. We will let M = Nβ−δ so that the size of the unknown part of
the private exponent satisfies |d0| < N δ.
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The most general partial key exposure attack on RSA with known LSB
is due to Ernst et al. [46]. We extend their result to multi-prime RSA here
to obtain the following new attack.

Attack 5.9. For every ǫ > 0 there exists an N0 such that for every N > N0

the following holds: Let N be an r-prime RSA modulus with balanced primes,
let (e,N) be a valid public exponent and let (d, p1, . . . , rr) be its corresponding
private key, where e = Nα and d = Nβ. Given (e,N), d̂ and M where
d ≡ d̂ mod M and M = Nβ−δ, if

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1) (3rβ + 3rα− 2r − 1)− ǫ, (5.32)

then the private exponent can be recovered in time polynomial in log2(N),
provided that Assumption 2.13 holds.

Justification: Beginning with the key equation, ed = 1 + kφ(N), we sub-
stitute d = d0M + d̂ and φ(N) = N − Λ to obtain

eMd0 + ed̂ = 1 + kN − kΛ,

where d0, k and Λ are the only unknowns. This suggests that we look for
small integer solutions of the polynomial

f(x, y, z) = (eM)x−Ny + yz + ed̂− 1 ∈ Z[x, y, z], (5.33)

since (x0, y0, z0) = (d0, k,Λ) is a root of f(x, y, z) over the integers.
Since

|d0| =
∣∣∣∣∣
d− d̂

M

∣∣∣∣∣ < N δ

|k| =
∣∣∣∣
ed− 1

φ(N)

∣∣∣∣ < 2Nα+β−1

|Λ| = |N − φ(N)| < (2r − 1)N1−1/r,

(5.34)

we define the bounds

X = N δ

Y = 2Nα+β−1

Z = (2r − 1)N1−1/r,

(5.35)
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so that |x0| < X, y0| < Y , |z0| < Z and

W = ‖f(xX, yY, zX)‖∞
= max(eMX, NY, Y Z, ed̂− 1)

= NY

= 2Nα+β.

(5.36)

Notice that the polynomial f(x, y, z) has the same set of monomials as the
polynomial in the proof of Attack 5.4 and that the bounds X, Y , Z and
W = max(eMX, NY, Y Z, ed0 − 1) = NY = 2Nα+β, are also the same.
From the proof of Attack 5.4, we can then conclude that the root (x0, y0, z0)
can be computed for sufficiently large N when

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1)(3αr + 3βr − 2r − 1)− ǫ,

provided Assumption 2.13 holds. Since all computations can be done in time
polynomial in log2(N), the result follows. ❏

As with the known MSB attacks, we consider the best partial key ex-
posure attacks with known LSB on multi-prime RSA when only one of the
private and public exponent is small. In Figure 5.2, we summarize these
attacks for the first few values of r. As with the attacks with known MSB,
we see that the effectiveness of each attack decreases with each additional
prime in the modulus.

5.6.1 Small Private Exponent

When the private exponent is small and the keys have been chosen in the
standard way then the public exponent can be approximated, with high
probability, by e ≈ N (i.e., α ≈ 1). Using this approximation in Attack 5.9,
we see that, for sufficiently large N , the private exponent can be computed
if

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1) (3βr + r − 1)− ǫ. (5.37)

Letting r = 2 recovers the original result δ ≤ 5
6 − 1

3

√
1 + 6β, obtained by

Ernst et al. [46, Theorem 3]. Combining this attack with Boneh and Durfee’s
small private exponent attack gives the strongest attacks with known least
significant bits. Again, we can consider Boneh and Durfee’s small private
exponent attack as a partial key exposure attack in which zero of the LSB
of the private exponent are needed (δ = 0). We illustrate these attacks for
the first few values of r in Figure 5.2(a).
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(a) Small private exponent (α ≈ 1). (b) Small public exponent (β ≈ 1).

Figure 5.2: Partial key exposure attacks with known LSB. Plot (a) shows
fraction (β − δ)/β of LSBs of d required. Plot (b) shows fraction (1− δ) of
LSBs of d required.

5.6.2 Small Public Exponent

When the public exponent is small and the keys have been chosen in the
standard way, then with high probability, the private exponent can be ap-
proximated by d ≈ N (i.e., β ≈ 1). Using this approximation in Attack 5.9,
we see that, for sufficiently large N , the private exponent can be computed
if

δ ≤ 2

3
+

1

3r
− 2

3r

√
(r − 1) (3αr + r − 1)− ǫ. (5.38)

Letting r = 2 recovers the original result δ ≤ 5
6 − 1

3

√
1 + 6α, obtained by

Blömer and May [8, Theorem 11], and again by Ernst et al. [46, §4.3]. In
Figure 5.2(b), we illustrate the best known partial key exposure attacks with
known LSB for instances of multi-prime RSA with small public exponent and
large private exponent (d ≈ 1) for r ∈ {2, 3, 4}. In addition to Attack 5.9,
we have included Boneh, Durfee and Frankel’s small public exponent partial
key exposure attack on RSA [16, Theorem 3.1], as given below.

Attack 5.10. Let N be an n-bit RSA modulus with balanced primes such
that N = 3 mod 4. Let (e,N) be a valid public key and (d, p, q) be its cor-
responding private key defined modulo φ(N). If the public exponent satisfies
e < 2(n/4)−3 then there is an algorithm that given (e,N) and the n/4 least
significant bits of d computes all of d in time polynomial in n and linear in
e log2(e).

When the public exponent is very small, this attack on RSA gives the
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strongest partial key exposure attack with known LSB. It was argued by
Hinek, Low and Teske [64, §5.1], that this attack most likely cannot be
extended to multi-prime RSA.

5.7 Partial Key Exposure Attacks:
Known Partial Factorization

In this section, we extend the notion of partial key exposure attacks to
include attacks in which any part of the private key, which is meant to be
secret, is known. We allow the adversary to know some of the least or most
significant bits of one or more of the primes in the modulus in addition to
zero or more of the most or least significant bits of the private exponent. In
particular, for balanced r-prime RSA we assume that the adversary knows
v of the r primes in N , for some 1 ≤ v ≤ r − 2, in addition to zero or more
of the most or least significant bits of the remaining unknown primes and
the private exponent.

We begin this section with some factoring results and then present two
attacks on multi-prime RSA that recover the private exponent. The fac-
toring attacks are simple applications of the lattice-based factoring results
of Coppersmith [32] and Boneh, Durfee and Howgrave-Graham [17]. The
attacks apply to any composite integer having the same form as a balanced
r-prime RSA modulus. Of the attacks that recover the private exponent,
the first attack recovers sufficiently small private exponents using only the
public key and the partial factorization. This attack can be seen as an ex-
tension of Wiener’s continued fraction attack. The second attack uses lattice
basis reduction techniques based on Coppersmith’s methods to improve the
results of the first. This attack, like all of the other lattice-based attacks on
multi-prime RSA, rely on Assumption 2.13 and so it is only heuristic.

5.7.1 Factoring r-prime RSA Moduli

Boneh, Durfee and Howgrave-Graham presented a lattice-based factoring
method for composite integers of the form N = prq in [17, Theorem 3.1].
Based on their method, we present a new method to factor composite inte-
gers with the same form as multi-prime RSA moduli with balanced primes.
The main result is as follows.

Theorem 5.11. There exists an N0 such that for every N > N0 the follow-
ing holds: Let N be a balanced r-prime RSA modulus. For any s ∈ [2, r],
given r− s of the primes in the factorization of N , (s− 1)/s of the most or
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least significant bits of one of the unknown primes, (s−2)/(s−1) of the most
or least significant bits of another one of the unknown primes, . . . , 2/3 of
the most or least significant bits of another one of the unknown primes and
1/2 of the most or least significant bits of one of the two remaining unknown
primes, then N can be factored in time linear in r and polynomial log2(N).

Proof: First we relabel the primes so that P = p1p2 · · · ps is the product
of the s unknown primes. And, without loss of generality, we assume that
we know the (s − i)/(s − i + 1) most or least significant bits of pi for i =
1, . . . , s − 1. For each unknown prime pi we compute p̂i (and possibly ℓ)
from the known most or least significant bits of pi so that

pi =

{
p̂i + pi,0 for known MSB
pi,02

ℓ + p̂i for known LSB,

where pi,0 is unknown and satisfies

|pi,0| < pi
1−(s−i)/(s−i+1) < ((2N)1/r)1−(s−i)/(s−i+1). (5.39)

We now compute the unknown primes one at a time; always computing
the prime with the most known information first and then redefining P
accordingly. Thus, we first compute p1, then p2, . . . , until we compute ps−1

which then yields ps. In particular, for i = 1, . . . , s−1, let p0 = 1 and define

Pi = P ×
i−1∏

j=1

pj
−1 (5.40)

=
p0p1 · · · ps

p0 · · · pi−1
(5.41)

= pipi+1 · · · ps. (5.42)

For each i, we consider the polynomial

fi(x) = x + c, (5.43)

where c is a constant given by

c =

{
p̂i if the MSB of pi are known,

p̂i(2
−ℓ mod Pi) if the LSB of pi are known.

(5.44)

Since Pi is the product of odd primes, the inverse of 2ℓ is guaranteed to
exist. We consider this polynomial since x0 = pi,0 is a root of fi(x) modulo
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pi. Since Pi is a multiple of pi, we can use the results of Theorem 2.10, to
find all small solutions of fi(x) modulo pi, even though we do not know pi.
Finding all such small solutions will yield pi,0, which allows us to simply
compute the entire prime pi.

Now, for each i, notice that the size of the prime pi is roughly Pi

1
s−i+1 .

From Theorem 2.10, since fi(x) is linear, we know that we can compute all
x0 such that fi(x0) ≡ 0 mod pi provided that

|x0| < Pi
( 1

s−i+1
)2

= (N
s−i+1

r )(
1

s−i+1
)2

= (N
1
r )

1
s−i+1

= pi

1
s−i+1 . (5.45)

Therefore, we need to know the

1− 1

s− i + 1
=

s− i

s− i + 1
, (5.46)

fraction of bits of pi in order to be able to compute it using this method.
Since all computations can be done in time polynomial in log2(N) and there
are fewer than r functions fi(x) that need to be considered, the result fol-
lows. ❏

Notice that Theorem 5.11 implies an upper bound on the minimum frac-
tion of bits needed to factor a balanced r-prime RSA modulus. In particular,
sufficiently large balanced r-prime RSA moduli N can be factored given r−s
of the primes in N and an additional fraction of bits, relative to the size of
N , given by5

1

r
×
(

s− 1

s
+

s− 2

s− 1
+ · · ·+ 1

2

)
. (5.47)

The actual number of bits is then roughly log2 N times this bound. We
illustrate this bound for the first few values of r and each possible choice of
s in the Table 5.2. The table shows the fraction of bits which is the sum
of the contributions of the known primes and the partially known primes.
The fraction is relative to the size of the modulus. Of course, it should be
pointed out that these values are only an estimate and are not a proven
sufficient bound. The bound obtained here is in the limiting case of large

5This sum can also be written as 1
r

(s − Ψ(s + 1) − γ), where Ψ(·) is the digamma
function and γ is Euler’s constant.
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moduli and is optimistic for fixed size moduli. However, the asymptotic
bounds obtained in most applications of Coppersmith’s methods seem to be
good estimates for the actual bounds obtained in practice.

Table 5.2: Fraction of bits required to factor N . Fractions are sum of the
contributions of known primes and partially known primes rounded to three
decimal places.

Number of known primes (r − s) 0 1 2 3
Fraction of bits for r = 2 0.250
Fraction of bits for r = 3 0.389 0.500
Fraction of bits for r = 4 0.479 0.542 0.625
Fraction of bits for r = 5 0.543 0.583 0.633 0.700

Setting r = 2 and s = r in (5.47) recovers the well known result of
Coppersmith [32]; that an RSA modulus can be factored with knowledge of
1/4 of the bits of the factorization of N . In particular, 1/2 of the most or
least significant bits of one of the primes is needed. The same result can
also be obtained using Boneh, Durfee and Howgrave-Graham’s factoring
method. This result for RSA can be used to attack certain proposals that
fix the most significant bits of the modulus in order to reduce the memory
requirements for the public keys (e.g., see [119] and [71]).

5.7.2 Small Private Exponent Attacks

Here we present two small private exponent partial key exposure attacks on
multi-prime RSA. We presented the first attack in [61, Lemma 1]. The main
result of the attack and a proof are given below.

Theorem 5.12. Let N be a balanced r-prime RSA modulus, let (e,N) be
a valid r-prime public key and let (d, p1, . . . , pr) be its corresponding private
key where d = N δ. Given the public key and any 1 ≤ v ≤ r−2 of the primes
in the factorization of N , if

δ <
v

r
− v + 1

log2 N
,

then d can be computed in time polynomial in log2(N).

Proof: Let P be the product of the v known primes and define Q = N/P .
Since the primes in N are pairwise distinct we can write Euler’s totient
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function of N as φ(N) = φ(Q)φ(P ). This allows the key equation, ed =
1 + kφ(N), to be written as

ed = 1 + kφ(Q)φ(P ), (5.48)

where e and φ(P ) are known quantities. Now, reducing this equation modulo
φ(P ) yields

d ≡ e−1 mod φ(P ), (5.49)

and so whenever d < φ(P ) it follows that d = e−1 mod φ(P ). Since

φ(P ) > 1
2 P > 1

2
×

1
2v Nv/r, (5.50)

a sufficient condition that d < φ(P ) is given by d = N δ < 1
2
×

1
2v Nv/r, or

simply

δ <
v

r
− v + 1

log2 N
. (5.51)

The result follows since computing the inverse of e modulo φ(P ) where
e, φ(P ) < N can be done in time polynomial in log2 N . ❏

The second attack that we consider is new and has yet to be published
elsewhere. It uses zero or more of the most significant bits of d in addition
to the known factors of N to fully recover d. This attack is a generalization
of Attack 5.4 and is an improvement of the attack found in [61, Theorem 2].
The details of the attack are as follows.

Attack 5.13. For every ǫ > 0 there exists an N0 such that for every N > N0

the following holds: Let N be a balanced r-prime RSA modulus, let (e,N)
be a valid public exponent and let (d, p1, . . . , rr) be its corresponding private
key, where e = Nα and d = Nβ. Given (e,N), 1 ≤ v ≤ r − 2 of the primes
in the factorization of N , and d̂ such that |d− d̂| ≤ N δ for some 0 ≤ δ ≤ β,
if

δ ≤ 2

3
+

v + 1

3r
− 2

3r

√
(r − v − 1) (3rα + 3rβ − 2r − v − 1)− ǫ, (5.52)

then the private exponent can be recovered in time polynomial in log2(N).
provided Assumption 2.13 holds.

Justification: Let P be the product of the known v primes and define
Q = N/P . As in the proof of the last attack, we write the key equation
as ed = 1 + kφ(P )φ(Q), since all the primes are distinct. Next, we replace
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the private key d with d2 + d1φ(P ) + d0 where d0 = e−1 mod φ(P ) and
d2 = d̂−

(
d̂ mod φ(P )

)
. This ensures that d ≡ d0 (mod φ(P )). We can also

replace ϕ(Q) with Q− ΛQ, where

ΛQ < (r − v)2r−v−1N1− v
r
− 1

r ,

since the primes are balanced. Thus, we have

e(d2 + d1φ(P ) + d0) = 1 + kφ(P )(Q− ΛQ),

where d1, k and ΛQ are the only unknowns. This suggests that we look for
small integer roots of the polynomial

f(x, y, z) = ex− φ(P )Qy + φ(P ) yz + d2φ(P ) + d0 − 1 ∈ Z[x, y, z], (5.53)

since (x0, y0, z0) = (d1, k,ΛQ) is a root of f(x, y, z) over the integers. Since

|d1| =
∣∣∣∣
d− d2 − d0

φ(P )

∣∣∣∣ < 2v+1N δ−v/r

|k| =
∣∣∣∣
ed− 1

φ(N)

∣∣∣∣ < 2Nα+β−1

|ΛQ| = |Q− φ(Q)| < (r − v)2r−v−1N1− v
r
− 1

r ,

(5.54)

we define the bounds

X = 2v+1N δ−v/r

Y = 2Nα+β−1

Z = (r − v)2r−v−1N1− v
r
− 1

r ,

(5.55)

so that |x0| < X, |y0| < Y , |z0| < Z and

W = ‖f(xX, yY, zX)‖∞
= max(eφ(P )X, (ed2 + ed0 − 1), φ(P )QY, φ(P )Y Z)

= φ(P )QY

= 2Nα+β. (5.56)

From Theorem 2.12, we then know that for sufficiently large N we can
recover (x0, y0, z0) provided that

X1+3τY 2+3τZ1+3τ+3τ2 ≤W 1+3τ , (5.57)
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and provided that Assumption 2.13 holds. Substituting the values for X,
Y , Z and W , this inequality reduces to

(r − v − 1) τ2 + (δr − 2v − 1) τ +
1

3
(δr + rβ − 2v + rα− r − 1) ≤ 0,

(5.58)

where we have ignored all factors that are independent of N . We can mini-
mize the left-hand side of this inequality for any choice of α, δ, r and v ≤ r−2
by letting τ = −1

2(δr−2v−1)/(r−v−1). Using this value for τ and solving
for δ, we find that a sufficient condition for inequality 5.57 to hold is given
by

δ ≤ 2

3
+

v + 1

3r
− 2

3r

√
(r − v − 1) (3rα + 3rβ − 2r − v − 1)− ǫ, (5.59)

where the ǫ term is added to correct for all the lower order terms neglected.
Since all the computations can be done in time polynomial in log2(N), the
result follows. ❏

5.7.3 Small Private Exponent

When a small private exponent is chosen we can expect that α ≈ 1 with
high probability. Using this approximation in Attack 5.13, we see that for
sufficiently large N , the private exponent can be recovered when

δ ≤ 2

3
+

v + 1

3r
− 2

3r

√
(r − v − 1)(3βr + r − v − 1)− ǫ. (5.60)

We illustrate this bound for all valid values of v for the few values of r in
Figure 5.3. Also included in the figure is Attack 5.12 which gives a superior
bound to Attack 5.13 for small enough private exponents. Notice that for
fixes v (number of known primes) that the attacks are less effective with
each additional prime in the modulus.

5.7.4 Small Public Exponent

When a small public exponent is used, we can approximate the private
exponent with β ≈ 1 with high probability. Using this approximation in
Attack 5.13, we see that for sufficiently large N , the private exponent can
be recovered when

δ ≤ 2

3
+

v + 1

3r
− 2

3r

√
(r − v − 1)(3αr + r − v − 1)− ǫ. (5.61)
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Figure 5.3: Fraction of MSB, (β − δ)/β, of the private exponent needed for
Attack 5.13 with small private exponents. The plots, from left to right, are
for v = 1, 2, 3.

We illustrate this bound for all valid values of v for the first few values of r
in Figure 5.4. Notice that for fixed values of v (number of known primes)
the feasible region of the attack decreases with increasing number of primes
in the modulus.

Figure 5.4: Fraction of MSB, 1 − δ, of the private exponent needed for
Attack 5.13 with small public exponents. The plots, from left to right, are
for v = 1, 2, 3.

Similar to Attack 5.5 with small public exponents, one can compute an
approximation of k and try to find small solutions of a polynomial with
monomials {x, y, z, yz}. In particular, one can compute

k̂ =

⌈
e(d2φ(P ) + d0)− 1

φ(P )Q

⌉
,

so that k = k̂ + k0 where |k0| ≤ max(α + δ − 1, α + β − 1− 1
r ). It turns out

that using this approximation for k does not lead to an improvement over
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the results of Attack 5.13.
It is interesting to notice that when β ≈ 1 and the public exponent

approaches 3 (α ≈ 0), the total number of bits required to mount the attack,
including both the MSB of d and the known factors of N is (1− 1

r ) log2(N).
This is the same number of bits of the factorization of the modulus that
knowing all but one prime in the factorization would give.

5.8 Chinese Remainder Theorem Attack

There is currently only one known attack on multi-prime RSA with CRT
decryption, other than simply factoring the modulus. In [12], Boneh gives
the result of an attack on RSA with small CRT-exponents (with unknown
origin). This attack uses Fast Fourier Transforms to evaluate a large degree
polynomial that will reveal a prime factor of N . The attack was extended
to multi-prime RSA by Hinek, Low and Teske [64, §4.3]. The main result is
given in the following theorem.

Theorem 5.14. Let N = p1 · · · pr be an r-prime RSA modulus with bal-
anced primes, let (e,N) be a valid public key and let (d, p1, . . . , pr) be its
corresponding private exponent key. For i = 1, . . . , r, let di = d mod (pi−1)
be the CRT exponents and let dSL be the second largest CRT exponent with
bitlength m. If di 6≡ dj (mod 2m/2) for all i 6= j then N can be factored in
time O(r

√
dSL log2 N).

The size of the CRT-exponents, therefore, should be chosen large enough
so that the complexity of Attack 5.14 matches the complexity of factoring
the modulus using the methods in Section 5.3.

5.9 Experimental Results: Partial Key Exposure
Attacks

Here we present some experimental results to illustrate the effectiveness of
the attacks from Sections 5.5 and 5.6 in practice. All computations were
done with Maple [78], except for the lattice basis reduction which was done
with Shoup’s NTL [106]. The experiments were carried out on either a Sun
Fire V100 server with one UltraSPARC IIe processor with 2GB of memory
running at 550 MHz, or on a Sun Fire V440 server with four UltraSPARC
IIIi processors with 8 GB of memory each running at 1.062 GHz.

For each data point obtained, we used a binary search approach to find
the smallest fraction of bits needed for a successful attack for each size of
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the private or public exponent considered. Each individual experiment (in
the binary search) used a randomly chosen modulus with private or public
exponent chosen to be a specific size. Also, unless otherwise stated, all
experimental results for r-prime RSA with r = 2, 3 used 1024-bit moduli
and all results with r = 4 used 2048-bit moduli. The choice of modulus
size was based on Table 5.1 when r = 2, 3. While Table 5.1 suggests using
a 4096-bit modulus when r = 4, we instead used a 2048-bit modulus to
decrease the time for the lattice basis reduction. It is expected that general
trend will be the same for a 4096-bit modulus.

5.9.1 Known MSB

Here we show experimental results for the attacks that exploit knowledge
of some of the most significant bits in the private exponent, as given in
Section 5.5. For the first few values of r, the effectiveness of the attacks
are illustrated in Figures 5.5 and 5.6 for r-prime RSA with small private
exponent and small public exponent, respectively. Notice that the scale in
Figure 5.6 has been modified.

Figure 5.5: Experimental fraction of MSB, (β − δ)/β, of the private expo-
nent needed to attack small private exponent multi-prime RSA with limited
resources. Lower line corresponds to theoretical bound when N →∞.

All of the attacks in Figure 5.5 are lattice-based. In each of the experi-
ments the lattice used has dimension 20, which is one of the smallest lattice
sizes allowed by the attacks. Already with this small lattice dimension, that
attack is fairly successful compared to the theoretical bound (lower line in
the plots). The lattice basis reduction took between 1–3 minutes for the ex-
periments with r = 2, 3 (1024-bit moduli) and about 5–6 minutes for r = 4
(2048-bit moduli).

There are both latticed-based and non-lattice-based attacks illustrated
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Figure 5.6: Experimental fraction of MSB, (1 − δ), of the private expo-
nent needed to attack small public exponent multi-prime RSA with limited
resources. Lines correspond to theoretical bound when N →∞.

in Figure 5.6. The non-lattice-based attacks that apply to multi-prime RSA
with public exponents smaller than N1/r are in practice just as effective as
the theory predicts. In addition, these attacks are very efficient, requiring
a few seconds of work with Maple. For the lattice-based attacks, each ex-
periment for r = 2, 3 (1024-bit moduli) used a lattice with dimension 20,
with the lattice basis reduction taking roughly 1–3 minutes. Like the known
MSB experiments, the attack is fairly successful compared to the theoretical
bounds. When r = 4, however, the lattice-based attack with such a small
dimension was not very successful at all. The results shown in Figure 5.6
for r = 4 are for experiments using lattices with dimension 32 with 256-bit
moduli. The lattice basis reduction for these experiments required about 10
minutes. Based on other experiments, we have found that the effectiveness
of the attacks is almost independent of the modulus size, so the results for
r = 4 should be indicative of the results with same lattice dimension and
2048-bit moduli.

We did not implement the two attacks by Boneh, Durfee and Frankel
that apply only to RSA (i.e., Attacks 5.7 and 5.8).

5.9.2 Known LSB

Here we show experimental results for the attacks which exploit knowledge
of some of the least significant bits in the private exponent, as given in
Section 5.6. For the first few values of r, the effectiveness of the attacks
is illustrated in Figures 5.7 and 5.8 for r-prime RSA with small private
exponent and small public exponent, respectively.

In Figure 5.7, we demonstrate the effectiveness of Attack 5.9 when the
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Figure 5.7: Experimental fraction of LSB, (β − δ)/β, of the private expo-
nent needed to attack small private exponent multi-prime RSA with limited
resources. Lower line corresponds to theoretical bound when N →∞.

Figure 5.8: Experimental fraction of LSB, (1 − δ), of the private exponent
needed to attack small public exponent multi-prime RSA with limited re-
sources. Lower line corresponds to theoretical bound when N →∞.

private exponent is small. In each of the experiments, a lattice with di-
mension 16 was used. The experimental bounds with such a small lattice
dimension are fairly close to the theoretical bounds. The lattice basis reduc-
tion took between 1–3 minutes for the experiments with r = 2, 3 (1024-bit
moduli) and between 5–8 minutes when r = 4 (2048-bit moduli). We did
not investigate the effectiveness of the extension of Boneh and Durfee’s small
private exponent attack, as it only applies to a very small range of private
exponents not covered by the lattice-based attack in Section 5.6.1 and the
extension of Wiener’s attack (which is much more efficient that the lattice-
based attacks).

In Figure 5.8, we demonstrate the effectiveness of Attack 5.9 when the
public exponent is small. In each of the experiments, a lattice with dimension
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16 was used. The experimental bounds with such a small lattice dimension
are fairly close to the theoretical bounds. Even when r = 4 (2048-bit mod-
uli), such a small lattice yields a good experimental bound unlike the case
for known MSB. The lattice basis reduction took between 1–3 minutes for
the experiments with r = 2, 3 (1024-bit moduli) and between 3–8 minutes
when r = 4 (2048-bit moduli).

We did not implement Boneh, Durfee and Frankel’s small public expo-
nent attack on RSA (i.e., Attack 5.10).

5.9.3 Known Partial Factorization

We did not perform any experiments for the attacks in Section 5.7. The
direct computation method, Attack 5.12, simply involves computing a mod-
ular inverse. And, since the lattice-based attack, Attack 5.13, uses the
same lattice methods as the known LSB partial key exposure attacks from
Section 5.6, the effectiveness is expected to be same as the results shown
Figures 5.7 and 5.8.

5.10 Discussion

In this chapter, we analyzed the security of multi-prime RSA with respect to
algebraic attacks. There are essentially three types of algebraic attacks on
multi-prime RSA: The factoring attacks of Section 5.3; attacks on textbook
multi-prime RSA; and attacks on multi-prime RSA using CRT decryption.

The factoring attacks from Section 5.3 compute the prime factorization
of N given only N . These are the only attacks that become stronger with
increasing number of primes in the modulus. Because of this, the number of
primes in the modulus cannot be chosen to be too large. When the number
of primes is chosen properly, the security of multi-prime RSA is therefore no
less than the security of RSA, with respect to the NFS and ECM factoring
methods.

All of the attacks on textbook multi-prime RSA, Sections 5.4–5.7, exploit
the key equation ed = 1 + kφ(N). In each of these attacks, the effectiveness
of the attack decreases with increasing number of primes for a fixed modulus
size. Thus, for each of these attacks, multi-prime RSA is more secure than
RSA.

The only known attack on multi-prime RSA with CRT decryption shows
that the CRT-exponents should not be chosen too small. The complexity of
the attack is linear in the number of primes in the modulus, so multi-prime
RSA is more secure than RSA with respect to this attack. Further, there
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have recently been some new attacks on RSA by Jochemsz and May [70],
that can factor the modulus in polynomial time if the CRT-exponents are
smaller than N0.073. If this attack can be extended to multi-prime RSA, the
bound is expected to be much smaller. (So much smaller in fact, that an
exhaustive search for larger CRT-exponents will be feasible.)

Considering all of the known attacks on multi-prime RSA (with or with-
out CRT decryption), the evidence suggests that multi-prime RSA with a
safe number of primes is no less secure than RSA. Because of the reduced
decryption costs when using the Chinese Remainder Theorem, using multi-
prime RSA with r > 2 seems a viable alternative to RSA.

Open Problems/Future Work: While the attacks collected in this work
represent the current state of the art in attacks against multi-prime RSA,
more research needs to be done if it to be used a replacement for RSA. There
are many unanswered questions about the security of multi-prime RSA. In
particular, it is unknown if any partial key exposure attacks for full sized
exponents exists for r > 2 (cf. [46] for r = 2), if there exist any attacks,
other than factoring, that become more effective with increasing number of
primes for a fixed modulus size and, most importantly, if any other attacks
on multi-prime RSA CRT decryption exist.
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Chapter 6

Common Prime RSA

In this chapter we consider a variant of RSA whose private exponent can
be chosen smaller than N1/4 and resists all known small private exponent
attacks such as Wiener’s continued fraction attack and Boneh and Durfee’s
lattice-based attack.

In this variant, called Common Prime RSA, the public and private ex-
ponents are inverses of each other modulo λ(N) = lcm(p− 1, q − 1), where
the primes p and q have the added structure that p− 1 and q− 1 must have
a common large prime factor (i.e, gcd(p−1, q−1) has a large prime factor).

6.1 Background

The idea of using RSA primes with gcd(p − 1, q − 1) having a large prime
factor is not new. Since 1990, it has been suggested several times with
different purposes.

In 1990, it was suggested by Wiener [123] as a defence to his continued
fraction attack on small private exponent RSA. Also in 1990, Girault [50]
proposed an identity-based identification scheme using such primes where
the common prime factor is made public.

In 1995, it was used by Lim & Lee [75] to improve server-aided RSA
computations. This proposal, however, was later shown to be insecure by
McKee & Pinch [83].

In 2006, Hinek [62] introduced Common Prime RSA, showing that in-
stances of RSA with private exponents smaller than N1/4 are secure against
all known attacks provided that the size of the common prime factor is cho-
sen properly. Later in 2006, Jochemsz [68] showed that the region of safe
prime factors (admitting private exponents d < N1/4) is smaller than pro-
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posed by Hinek, due to a new lattice-based attack. This new attack was
subsequently presented by Jochemsz and May [69].

6.2 Common Prime RSA

Common Prime RSA was introduced by Hinek in [62], as an investigation
into Wiener’s suggestion that using a large common factor can be used to
reduce his attack. In particular, the motivation was to determine whether
instances of RSA with private exponents smaller than N1/4 can be secure.

Common Prime RSA is a variant of RSA in which the primes have a very
special structure. For some large prime g let p = 2ga+1 and q = 2gb+1 be
balanced primes with the restrictions that gcd(a, b) = 1 and h = 2gab+a+b
is prime. The first restriction ensures that gcd(p− 1, q − 1) = 2g while the
second ensures that (pq−1)/2 = gh is a semiprime1 roughly the same size as
N = pq. We will call primes p and q satisfying the above properties common
primes, since p− 1 and q − 1 share a large common prime factor. From the
structure of the common primes, we can write the modulus N = pq as

N = pq

= (2ga + 1)(2gb + 1)

= 2g(2gab + a + b) + 1,

and N − 1 as

N − 1 = 2g(2gab + a + b)

= 2gh.

We define Common Prime RSA to be any instance of RSA that uses bal-
anced common primes along with public and private exponents that are
inverses of each other modulo λ(N) = lcm(p − 1, q − 1) = 2gab. For nota-
tional convenience, we define γ ∈ R so that g = Nγ . Since we only consider
instances of RSA with balanced primes we know that g < N1/2 and so
0 < γ < 1/2.

To generate common primes we can use Algorithm 6.1. Given n and γ,
the algorithm generates balanced common primes p and q with a common
factor g = Nγ and such that gcd(a, b) = 1.

One drawback of using Common Prime RSA, however, is that the com-
putational cost of generating the primes is significantly larger than with
typical RSA, as can be seen in Table 6.1. Here the average time needed to

1A semiprime is a natural number that is the product of two (not necessarily distinct)
primes.

106



Algorithm 6.1 Common Prime Generation

Input: (n, γ) such that 0 < γ < 1/2.
1: g ← random⌈γn⌉-bit prime
2: a, b← random ⌈(1

2 − γ)n− 1⌉-bit positive integers
3: p← 2ga + 1, q ← 2gb + 1, h← 2gab + a + b
4: If p, q, h are not all prime OR gcd(a, b) 6= 1

then go back to step 2.
Output: Return the primes p and q

generate common primes for various modulus sizes are computed. For each
modulus size, the average is computed by generating 100 common prime
pairs for each value of the 8 values of g given by

γ ∈ {0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45, 0.475}.

We also show the ratio of the average time needed to generate common
primes pairs to the average time needed to generate two random primes of
the same size (as would be used by RSA). As can be seen, the time needed to
generate common primes is significantly longer than that needed to generate
typical RSA primes. The computations were done on a Sun Fire V440 server
with four UltraSPARC IIIi processors with 8 GB of memory each running
at 1.062 GHz.

When generating instances of Common Prime RSA we are interested in
instances with small private exponent. Thus, we first generate a random
private exponent of desired size that is relatively prime to λ(N) = 2gab.
When computing the private exponent’s associated public exponent, we can
simply use e = d−1 mod λ(N), or we can add multiples of λ(N) to this value
to generate larger public exponents. When the public exponent is simply
the inverse of d modulo λ(N), the size of the public exponent e will be, with
high probability, roughly the same size as λ(N). Letting e = Nα, we then
have that α ≈ 1− γ with high probability. When adding multiples of λ(N)

Table 6.1: Average time needed to generate Common Prime RSA moduli for
several modulus sizes. Also included is the ratio of common prime generation
to random prime generation used in RSA.

Modulus Size (bits) 256 512 768 1024
Time (sec) 1.3± 1.2 16.7± 17.5 85.2± 84.0 272.6± 271.9

Common Prime / RSA 50.0 164.3 568.7 349.0
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to generate larger public exponents, we only consider public exponents that
have size roughly the same as the modulus N (i.e., α ≈ 1). In this situation,
the public exponent is the same size as a typical instance of RSA with small
private exponent.

The analysis in [62] focused on small private exponent Common Prime
RSA with public exponent satisfying α ≈ 1−γ. In this chapter, we improve
this analysis and also consider instances when α ≈ 1.

6.3 Attacks on Common Prime Moduli

In this section we consider attacks that exploit the special structure of the
common primes to help factor common prime moduli. Each of the attacks
make use of either the equation for the modulus

N = 2g(2gab + a + b) + 1,

or the related equation

N − 1 = 2gh,

where g and h are primes.

6.3.1 Factoring N

It has been shown by McKee and Pinch [83], that the special structure of the
Common Prime RSA primes p and q lead to an efficient factoring method
for N = pq if g is large enough. We restate their result in the following
attack.

Attack 6.1 (McKee & Pinch). Let N be a valid Common Prime RSA
modulus with g = Nγ. There exists a method that factors N with O(N1/4−γ/2)
expected operations, each requiring time polynomial in log2(N).

Their method is a modification of Pollard’s rho method (the result is
an attack since the rho method has not yet been rigorously proved). In
particular, the usual map x 7→ x2 + 1 mod N is replaced with x 7→ xN−1 +
3 mod N . Since N−1 = 2gh and p−1 = ga there can be at most a values of
xN−1 mod p. Thus the expected number of steps is O(

√
a) = O(N1/4−γ/2).

To obtain an expected complexity of at least 2ℓ, it follows that g should be
chosen so that

γ <
1

2
− 2ℓ

log2(N)
.

Since the common primes are balanced, we know that γ < 1/2. Thus, this
attack shows that γ should not be chosen too close to its upper limit.
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6.3.2 Factoring N with known a and b

Here we show that knowledge of both a and b leads to a very efficient method
of factoring a common prime modulus N . The main result is given in the
following theorem.

Theorem 6.2. Let N be a valid Common Prime RSA modulus. Given the
modulus N , a and b, we can factor N in time polynomial in log2(N).

Proof: Given a, b and N , notice that g is the only unknown in the equation
for the modulus N = 2g(2gab + a + b) + 1. Rearranging this equation we
obtain the quadratic equation

4abg2 + 2(a + b)g −N + 1 = 0,

which has solutions

g =
−2(a + b)±

√
4(a + b)2 − 4(4ab)(−N + 1)

2(4ab)
.

Since g is positive, we conclude that (after some simplification)

g =
−(a + b) +

√
a2 + (4N − 2) ab + b2

4ab
.

Once g has been computed, we easily compute the factorization of N since
p = 2ga + 1 and q = 2gb + 1. Since all computations can be done in time
polynomial in log2(N), the result follows. ❏

While this is a very strong result, it is unclear how a and b might be
obtained from N (and possibly from a public exponent e) other than by
simply guessing. For an exhaustive search on a and b to have an expected
complexity of at least 2ℓ, it follows that g should be chosen so that

γ <
1

2
− ℓ

2 log2(N)
,

since a and b each has bitlength (1/2− γ) log2(N).

6.3.3 Factoring N with known g

Here we show that knowledge of g leads to methods for factoring a common
prime modulus. Unlike in the previous section (known a and b), however,
the efficiency of the methods depend on size of the additional information.
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There are two scenarios that we must consider. The first, when g ≥
a + b, always leads to an efficient method for factoring N . This scenario
is equivalent to g ≥ N1/4. The main result is contained in the following
theorem.

Theorem 6.3. Let N be a valid Common Prime RSA modulus with g ≥
a + b. Given the modulus N and g, we can factor N in time polynomial in
log2(N).

Proof: We consider two cases: g > a + b and g = a + b.
First we assume that g > a + b. Given N and g, let m = (N − 1)/(2g)

and c = a + b so that the equation for the modulus

N = 2g(2gab + a + b) + 1,

can be written as
m = 2gab + c.

Since c = a + b < g, by assumption, reducing this equation modulo g gives

c = m mod g.

Thus, we know the numerical value of c. Substituting b = c − a back into
the equation for the modulus N = 2g(2gab + a + b) + 1 yields, after some
rearrangement, the quadratic equation

2ga2 − 2gca + (N − 1)/(2g)− c = 0,

which has solutions

2gc±
√

4g2c2 − 4(2g)
(

N−1
2g − c

)

2(2g)
,

or more simply
gc±

√
2g2c2 − (N − 1) + 2gc

2g
.

These two solutions correspond to a and b. Computing 2ga + 1 and 2gb + 1
thus yields the factorization of N .

In the next case, we assume that g = a + b. Again, starting with the
equation for the modulus

N = 2g(2gab + a + b) + 1,
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we replace a + b with g to obtain, after some manipulation,

N − 1

4g2
= ab +

1

2
.

We next replace b with g − a to obtain, after some rearrangement, the
quadratic equation

a2 − ga +
N − 1

4g2
− 1

2
,

which has solutions

g ±
√

g2 − 4
(

N−1
4g2 − 1

2

)

2
.

These solutions correspond to a and b. Computing 2ga+1 and 2gb+1 thus
yields the factorization of N .

Since all computations, for each case considered, can be done in time
polynomial in log2(N), the result follows. ❏

The second scenario that we must examine is when g < a + b. Since
a and b are the same size this is equivalent to the scenario that g < N1/4,
which has already been considered by McKee and Pinch [83]. We restate
their result in the following theorem.

Theorem 6.4 (McKee & Pinch). Let N be a valid Common Prime RSA
modulus with g < a + b. Given the modulus N and g, there exists a method
that factors N with O(N1/4−γ) expected operations, where each operation
requires time polynomial in log2(N).

The method uses Shanks’ baby-step giant-step methodology (see [83] for
more details). As can be seen by the result, the efficiency of the factoring
method depends on the size of g. For the method to run in time polynomial
in log2(N), the size of g should satisfy γ ≈ 1

4 − c log2(log2(N)) for some con-
stant c (i.e., γ should be very close to 1

4). To obtain an expected complexity
of at least 2ℓ, it follows that g should be chosen so that

γ <
1

4
− ℓ

log2(N)
. (6.1)

As with the attack with known a and b, it remains to show how g might
be obtained. For an exhaustive search on g to have an expected complexity
of at least 2ℓ, it follows that g should be chosen so that

γ >
ℓ

log2(N)
. (6.2)
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In the next subsection we show that the special structure of the common
primes p and q leads to another method of obtaining g that is more efficient
than exhaustive search, but is still infeasible if g is chosen large enough.

6.3.4 Factoring N − 1 (or Computing g)

Starting with the equation for the common prime modulus

N = 2g(2gab + a + b) + 1, (6.3)

and recalling that h = 2gab + a + b, we have

N − 1 = 2gh. (6.4)

Therefore, we can obtain g (and h) by simply factoring (N − 1)/2.
Since (N − 1)/2 is essentially the same size as N , it is expected that the

NFS will factor (N −1)/2 in about the same time as factoring N . Factoring
(N − 1)/2 with the ECM might be more fruitful, however, depending on
how unbalanced g and h are. Clearly, if g is chosen too small, it will easily
be recovered by the ECM.

As a rough estimate of evaluating the minimum size of g for a given
modulus size, we equate the heuristic runtime of the ECM, given in equation
(1.2), with that of factoring the modulus with the NFS, given by equation
(1.1). For a given modulus size, let γecm denote the smallest value for γ
such that for any γ < γecm, the expected runtime of the ECM is less than
the expected runtime of the NFS for that size (of modulus). Some values
for γecm for some common modulus sizes are given in the following table.

log2(N) log2(γecm) γecm

1024 292 0.284
2048 529 0.258
4096 940 0.229
8192 1640 0.200

It should be pointed out that these bounds for γecm are just estimates.
While the formulas for the expected runtimes for the ECM and NFS give
a good indication of the asymptotic runtime of the methods, the current
factoring records should also be considered. For example, as of April 2005,
the largest factor obtained by the ECM is a 220-bit number. While this
record will be increased as experiments are continued, the bound for g for
1024-bit moduli will offer some security or at least a few years to come.
For the larger modulus sizes shown in the table, factoring (N − 1)/2 with
a minimum g as shown will be infeasible with the ECM for many years to
come.
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6.4 Small Private Exponent Attacks

In this section we consider attacks on Common Prime RSA having small
private exponents. In addition to exploiting the special structure of the
common primes the attacks in this section will also use the key equation

ed = 1 + k(2gab),

along with the fact that the private exponent may be small.

6.4.1 Attacks with known g

When the private exponent d is smaller than the common factor g, we can
very efficiently compute the private exponent. We state this result in the
following theorem.

Theorem 6.5. Let N be a valid Common Prime RSA modulus with g = Nγ.
Let (e,N) be a valid public key and let (d, p, q) be its corresponding private
key, where e = Nα and d = N δ. Given the public key and g, if the private
exponent satisfies

δ < γ, (6.5)

then d can be computed in time polynomial in log2(N) and N can be factored
in probabilistic time polynomial in log2(N).

Proof: Let N , e and g be known. We begin by reducing the key equation

ed = 1 + k(2gab),

modulo g to obtain
ed ≡ 1 (mod g),

which gives us
d ≡ e−1 (mod g).

If δ < γ, which is equivalent to d < g, this last relation becomes

d = e−1 mod g.

Thus, when δ < γ, we can simply compute the private exponent using this
last equation. Since we can compute this modular inverse in time polynomial
in log2(N), the first part of the result follows.
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Once d has been computed, notice that multiplying (ed − 1) by 2g (all
known quantities now) gives

2g(ed− 1) = 2g(k2gab)

= k(4g2ab)

= kφ(N).

Therefore, we can easily compute a multiple of φ(N) which allows us to
factor N with using Miller’s result [88]. Since all computations can be done
in time polynomial in log2(N), the second part of the result follows. ❏

The next attack allows us to factor the modulus N when the private
exponent d is larger than the common factor g, provided that g < N1/4.
This size restriction on g is not a drawback to the attack though, since we
have already seen in Section 6.3.3 that knowledge of g when g > N1/4 leads
to an efficient factoring method. The result is given in the following attack.

Attack 6.6. For every ǫ > 0 there exists N0 such that for every N > N0

the following holds: Let N be a valid Common Prime Modulus with common
factor g = Nγ < N1/4, let (e,N) be a valid public key, and let (d, p, q) be
its corresponding private key, where e = Nα and d = N δ. Given g, if the
private exponent satisfies

δ <
7

6
− 5γ

3
− 1

3

√
40γ2 − 38γ + 7 − ǫ, (6.6)

when α ≈ 1− γ, or

δ <
7

6
− 5γ

3
− 1

3

√
16γ2 − 32γ + 7 − ǫ, (6.7)

when α ≈ 1, then the modulus N can be factored in time polynomial in
log2(N), provided Assumption 2.13 holds.

Justification: Starting with the equation for the modulus, namely,

N = 2g(2gab + a + b) + 1,

we divide both sides by 4g2, and rearrange, to obtain

N − 1

4g2
= ab +

a + b

2g
.
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Letting M = ⌈(N−1)/(4g2)⌉, we see that M is a good (over) approximation
of ab. In particular, notice that

|M − ab| = a + b

2g

< N1/2−2γ . (6.8)

Letting m denote the difference between M and ab we then have m = M−ab,
where |m| < N1/2−2γ . Substituting M −m for ab in the key equation

ed = 1 + k(2gab), (6.9)

we obtain, after some rearrangement,

2gkM − 2gkm + 1 = ed, (6.10)

where only k, m and d are unknowns. This suggests that we look for small
solutions, modulo the public exponent e, of the polynomial

fe(x, y) = 2gMx− 2gxy + 1,

since (x0, y0) = (k, m) satisfies fe(x0, y0) ≡ 0 mod e. For bounds X and Y
such that |x0| < X and |y0| < Y , we know from Theorem 2.10, that if

X2+3τY 1+3τ+3τ2 ≤ e1+3τ , (6.11)

for some τ > 0, then x0 and y0 can be recovered for sufficiently large e. We
consider the cases α ≈ 1− γ and α ≈ 1 separately.

Let’s first assume that α ≈ 1− γ. From the key equation

ed = 1 + k(2gab),

notice that k < N δ. Also, we have already shown above that |m| < N1/2−2γ .
Thus, we define the bounds

X = N δ

Y = N1/2−2γ ,

so that x0 = k and y0 = m both satisfy |x0| < X and |y0| < Y . Substituting
these bounds and e = N1−γ , and neglecting all factors that do not depend
on N , inequality (6.11) is satisfied when

(
3

2
− 6γ

)
τ2 +

(
3δ − 3

2
− 3γ

)
τ + 2δ − 1

2
− γ < 0.
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For all γ < 1
4 , when all variables but τ are fixed, the left-hand side of this

inequality is minimized when

τ =
2γ + 1− 2δ

2(4γ − 1)
.

Substituting this value for τ into the last inequality and solving for δ, we
see that (6.11) is satisfied when

δ <
7

6
− 5γ

3
− 1

3

√
40γ2 − 38γ + 7 − ǫ,

where the ǫ term is added to correct for all the negligible and low order
terms ignored here and in the methods implicit in Theorem 2.10.

Next we assume that α ≈ 1. In this case, from the key equation

ed = 1 + k(2gab),

notice that k < Nα+δ−1+γ = N δ+γ . Again, we have |m| < N1/2−2γ . Thus,
we define the bounds

X = N δ+γ

Y = N1/2−2γ ,

so that x0 = k and y0 = m both satisfy |x0| < X and |y0| < Y . Substituting
these bounds and e = N , and neglecting all factors that do not depend on
N , inequality (6.11) is satisfied when

(
3

2
− 6γ

)
τ2 +

(
3δ − 3

2
− 3γ

)
τ + 2δ − 1

2
< 0.

For all γ < 1
4 , when all variables but τ are fixed, the left-hand side of this

inequality is minimized when

τ =
2γ + 1− 2δ

2(4γ − 1)
.

Substituting this value for τ into the last inequality and solving for δ, we
see that (6.11) is satisfied when

δ <
7

6
− 5γ

3
− 1

3

√
16γ2 − 32γ + 7,

where the ǫ term is added to correct for all the negligible and low order
terms ignored here and in the methods implicit in Theorem 2.10.
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In both cases, if Assumption 2.13 holds, we can compute (x0, y0) =
(k, m). With this, we can compute ab since

ab = M −m.

Furthermore, from N − 1 = 4g2ab + a + b we can compute a + b since

a + b = N − 1− 4g2ab

= N − 1− 4g2(M −m).

Thus, we have two equations with two unknowns (a and b). Combining the
two equations, we can generate a quadratic equation (in a or b) which can
be easily solved. The roots of either quadratic will correspond to a and b.
Once a and b are computed, we simply compute the factorization of N since
p = 2ga+1 and q = 2gb+1. Since all computations require time polynomial
in log2(N), the result follows. ❏

6.4.2 Continued Fraction Attack

In this section we reanalyze Wiener’s continued fraction attack when applied
to Common Prime RSA. The main result is the following theorem.

Theorem 6.7. Let N be a valid Common Prime RSA modulus with com-
mon factor g = Nγ, let (e,N) be a valid public key and let (d, p, q) be its
corresponding private key, where e = Nα and d = N δ. If the private key
satisfies

δ <
3

4
− α

2
− γ − logN (

√
24), (6.12)

then we can compute the private exponent d in time polynomial in log2(N).
In particular, when α ≈ 1− γ, this sufficient condition becomes

δ <
1

4
− γ

2
− logN (

√
24),

and when α ≈ 1, it becomes

δ <
1

4
− γ − logN (

√
24).
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Proof: First let’s assume that δ < 3
4− α

2 −γ− logN (
√

24). From this, notice
that

δ <
3

4
− α

2
− γ − logN (

√
24)

⇐⇒ 2δ <
3

2
− α− 2γ − logN (24)

⇐⇒ 2δ + α− 1 + γ <
1

2
− γ − logN (24)

⇐⇒ N2δ+α−1+γ <
1

24
N

1
2
−γ

⇐⇒ N δ+α−1+γN δ <
1

24
NN−γN− 1

2

⇐⇒ kd <
N

8g
×

1

3N
1
2

=⇒ kd <
N

8g
×

1

Λ

⇐⇒ kΛ

gdN
<

1

2(2gd)2
.

Therefore, we have

δ <
3

4
− α

2
− γ − logN (

√
24) =⇒ kΛ

gdN
<

1

2(2gd)2
. (6.13)

Next, we consider the key equation

ed = 1 + k(2gab).

Multiplying the last term by (2g)/(2g) yields

ed = 1 +
k

2g
(4g2ab)

= 1 +
k

2g
φ(N)

= 1 +
k

2g
(N − Λ),

where we have replaced φ(N) with N − Λ. Dividing both sides of this last
equation by N and d, yields, after some rearrangement,

e

N
− k

2gd
= − kΛ

2gdN
+

1

dN
.
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Since Λ > N1/2 and g < N1/2, we have that

∣∣∣∣−
kΛ

2gdN
+

1

dN

∣∣∣∣ <
∣∣∣∣−

kΛ

2gdN

∣∣∣∣+
∣∣∣∣

1

dN

∣∣∣∣

< 2

∣∣∣∣
kΛ

2gdN

∣∣∣∣

=
kΛ

gdN
,

and so
∣∣∣∣

e

N
− k

2gd

∣∣∣∣ <
kΛ

gdN
.

Combining this inequality with (6.13) then gives

∣∣∣∣
e

N
− k

2gd

∣∣∣∣ <
1

2(2gd)2
, (6.14)

and so from Theorem 2.1 (continued fractions), we know that k/(2gd), in
lowest terms, will be one of the convergents in the continued fraction expan-
sion of e/N .

Next, we test each convergent until we find the one that yields the private
exponent d. Let ui/vi denote the ith convergent in the continued fraction
expansion of e/N . Notice that the correct convergent, uj/vj say, satisfies

uj

vj
=

k

2gd
.

It follows from the key equation, ed = 1 + kλ(N), that gcd(k, d) = 1.
Therefore, we know that vj = cjd, where cj = (2g)/ gcd(k, 2g). Therefore,
to extract cj from vj , we simply compute

gcd(vj , N − 1) = gcd(cjd, 2gh)

= cj .

This follows since gcd(d, h) = 1 (as d < N1/4 < h and h is prime), and
gcd(d, gcd(k, 2g)) = 1 (as gcd(d, k) = 1). Therefore, we compute

di =
vi

gcd(vi, N − 1)
,
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until we have determined the private exponent d (when i = j). We test
for the correct d by encrypting and decrypting a few random plaintexts.
Alternatively, notice that multiplying the right-hand side of the key equation

ed = 1 + k(2gab),

by (2g)/(2g) yields

ed = 1 +
k

2g
4g2ab

= 1 +
k

2g
φ(N).

Since k
2g =

uj

vj
dj , we can compute φ(N) using

edj − 1
uj

vj
dj

= 4g2ab.

The correct convergent will then give us φ(N), which we can use to factor
N . Since the number of convergents is polynomial in log2(N) and all com-
putations require time polynomial in log2(N), the result follows. ❏

Applying the techniques of Verheul and van Tilborg [120] and Dujella [43],
we can extend the bound on the private exponent at the expense of an ex-
haustive search on each convergent in the continued fraction expansion of
e/N . For a search space of 2ℓ, the bound on the private exponent can be
increased by 2ℓ/2. The result is given in the following corollary.

Corollary 6.8. Let N be a valid Common Prime RSA modulus with com-
mon factor g = Nγ, let (e,N) be a valid public key and let (d, p, q) be its
corresponding private key, where e = Nα and d = N δ. Let m be given by

m = 2

(
δ −

(
3

4
− α

2
− γ − logN (

√
24)

))
log2(N).

There exists a method to compute a list that contains the value k/(2gd), in
lowest terms, in time linear in 2m and polynomial in log2(N). Further, the
size of the list is linear in 2m and the size of the elements in the list are
polynomial in log2(N).

Thus, to ensure that the complexity of computing this list is at least 2ℓ,
it follows that the private exponent should satisfy

δ >
3

4
− α

2
− γ − logN (

√
24) +

ℓ

2 log2(N)
. (6.15)
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6.4.3 Some Lattice-Based Attacks

In this section we present some attacks based on Coppersmith’s method for
finding small solutions to univariate modular equations. In particular, we
make use of Theorem 2.10 and Assumption 2.13. As with most lattice-based
attacks on RSA, we begin with the key equation.

The first attack is motivated by a technique used by May (see [82, §3]).
The result, which computes sufficiently small private exponents, is contained
in the following theorem.

Theorem 6.9. For every ǫ > 0 there exists N0 such that for every N > N0

the following holds: Let N be a valid Common Prime RSA modulus with
g = Nγ, let (e,N) be a valid public key and let (d, p, q) be its corresponding
private key with d = N δ. If the private exponent satisfies

δ < γ2 − ǫ, (6.16)

then d can be computed in time polynomial in log2(N).

Proof: We begin by computing the inverse of the public exponent e modulo
gh, which we denote by ê. Thus, we have

ê = e−1 mod gh,

where hg = (N − 1)/2. If the inverse does not exist, we have factored
(N − 1)/2 = gh and can apply Theorem 6.5 (with known g) to compute the
private exponent if δ < γ. Therefore, we assume without loss of generality
that the inverse exists and so there must also exist an integer K such that

eê = 1 + Kgh.

Multiplying the key equation,

ed = 1 + k(2gab),

by ê then gives

êed = ê + ê(k2gab).

Replacing êe with 1+Kgh, this equation, after some rearrangement, can be
written as

d− ê = (2kab−Khd)g.
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This equation suggests that we look for small solutions, modulo g, of the
polynomial

fg(x) = x− ê,

since (x0) = d satisfies fg(x0) ≡ 0 mod g. Even though we do not know g, we
do know a multiple of it (i.e., (N−1)/2 = gh). Thus we can use Theorem 2.8
to find all small solutions of fg(x). In this case, we have the parameters σ = 1
(degree of the polynomial) and β = γ (since g = Nγ >

(
N−1

2

)γ
). Therefore,

applying the result of Theorem 2.8, we can compute x0 = d for sufficiently
large N provided that

d < N
β2

σ
−ǫ

= Nγ2−ǫ.

Since all computations can be done in time polynomial in log2(N), the result
follows. ❏

If in addition to the private exponent satisfying δ < γ2 − ǫ, the public
exponent is also sufficiently small then we can factor the modulus N . We
formalize this result in the following corollary.

Corollary 6.10. For every ǫ > 0 there exists N0 such that for every N > N0

the following holds: Let N be a valid Common Prime RSA modulus with
g = Nγ, let (e,N) be a valid public key and let (d, p, q) be its corresponding
private key with d = N δ. If the private and public exponents satisfy

δ < γ2 − ǫ

α < 2− δ − 2γ,
(6.17)

then the modulus N can be factored in probabilistic time polynomial in
log2(N).

Proof: We first observe that the condition on the public exponent implies
that k < h. To see this, notice that

α < 2− δ − 2γ

⇐⇒ α + δ − 1 + γ < 1− γ

⇐⇒ k < h.

Thus, when α < 2 − δ − 2γ we know that k < h. Also, since h > N1/2 we
know that a, b < h.
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When the private exponent satisfies δ < γ2 − ǫ, we know from Theo-
rem 6.9 that we can compute the private exponent d. With e, d and N
known we can then compute g since

gcd(ed− 1, N − 1) = gcd(k(2gab), 2gh)

= 2g.

This gcd computation must yield 2g since a, b, k < h and h is a prime. Once
2g is known, we compute

2g(ed− 1) = k(4g2ab)

= kφ(N),

which is a multiple of φ(N). Using Miller’s result [88], we can use kφ(N)
and N to factor N in probabilistic time polynomial in log2(N). ❏

The attack in Theorem 6.9 also leads to a simple partial key-exposure
attack. If the private exponent is written as

d = d22
ℓ2 + d12

ℓ1 + d0,

where everything is known except d1, then we can compute d1 (and hence
compute the private exponent) provided that d1 is small enough. The result
is given in the following corollary.

Corollary 6.11. For every ǫ > 0 there exists N0 such that for every N > N0

the following holds: Let N be a valid Common Prime RSA modulus with
g = Nγ, let (e,N) be a valid public key and let (d, p, q) be its corresponding
private key. Let the private exponent be written as d = d22

ℓ2 + d12
ℓ1 + d0,

where everything is known except d1 = N δ1. If the unknown part of the
private exponent, d1, satisfies

δ1 < γ2 − ǫ, (6.18)

then the private exponent d can be computed in time polynomial in log2(N).

Proof: Let d = d22
ℓ2 + d12

ℓ1 + d0, where everything is known except d1, so
that the equation can be written

e(d22
ℓ2 + d12

ℓ1 + d0) = 1 + k2gab,

or, more simply as

e1d1 = c1 + k2gab,
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where e1 = e2ℓ1 and c1 = 1 − (d22
ℓ2 + d0). Using this key equation we

proceed identically as in the proof of Theorem 6.9. ❏

The second lattice-based attack we consider was suggested to us by an
anonymous referee for what eventually resulted in [62]. The main result is
given in the following attack.

Attack 6.12. For every ǫ > 0, there exists N0 such that for every N > N0,
the following holds: Let N be a valid Common Prime RSA modulus with
common factor g = Nγ, let (e,N) be a valid public key and let (d, p, q) be
its corresponding private key, where e = Nα and d = N δ. If α ≈ 1− γ and
the private exponent satisfies

δ <
2γ

5
− ǫ, (6.19)

then d can be computed in time polynomial in log2(N), provided that As-
sumption 2.13 holds.

Justification: We begin with the observation that lcm(p− 1, q− 1) = 2gab
can be written can be as (p− 1)b and also as (q− 1)a, since p− 1 = 2ga and
q − 1 = 1gb. Thus, we can write the key equation as both

ed = 1 + k(p− 1)b

ed = 1 + k(q − 1)a.
(6.20)

Writing these equations as

ed− 1 + kb = kpb

ed− 1 + ka = kqa,
(6.21)

we can multiply them together to obtain

e2d2 + e(ka + kb− 2)d− k2ab(N − 1)− k(a + b)− 1 = 0. (6.22)

This suggests that we look for small integer solutions of the polynomial

f(x, y, z, u) = e2x + ey − (N − 1)z − u− 1, (6.23)

since (x0, y0, z0, u0) = (d2, (ka+kb−2)d, k2ab, k(a+b)) is a root of f(x, y, z, u)
over the integers. Recalling that

e = Nα

d = N δ

k = Nα+δ−1+γ

a = N1/2−γ

b = N1/2−γ ,

(6.24)
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we define the bounds

X = N2δ

Y = Nα+2δ−1/2

Z = N2α+2δ−1

U = Nα+δ−1/2,

(6.25)

so that |x0| < X, |y0| < Y , |z0| < Z, |u0| < U and

W = ‖f(xX, yY, zZ, uU)‖∞
= max(e2X, eY, (N − 1)Z,U, 1)

= e2X

= N2α+2δ.

(6.26)

From Theorem 2.12, we then know that for sufficiently large N we can
recover (x0, y0, z0, u0) provided that

XY ZU < W, (6.27)

and Assumption 2.13 holds. Substituting the values for X, Y , Z, U and W ,
this is inequality is satisfied when

4α + 7δ − 2 < 2α + 2δ.

Letting α ≈ 1− γ, this simplifies to

δ <
2γ

5
− ǫ,

where we have added the ǫ term to correct for all lower order terms ne-
glected in the methods implicit in Theorem 2.12. Thus, for sufficiently large
N , if Assumption 2.13 holds, we can compute x0 = d2 which immediately
gives the private exponent d. Since all computations can be done in time
polynomial in log2(N), the result follows. ❏

When the public exponent e is roughly the same size as the modulus (i.e.
α ≈ 1), this attack is no longer meaningful. Working through the details,
one finds that the sufficient condition for the attack to succeed when α ≈ 1
is given by δ < 0.
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6.4.4 Jochemsz-May Attack

In 2006, Jochemsz [68] and Jochemsz and May [69] presented a lattice-based
attack on small private exponent Common Prime RSA when the public
exponent satisfies α ≈ 1− γ. This attack is stronger than the lattice-based
attacks of the previous section. We restate their result in the following
attack.

Attack 6.13 (Jochemsz-May). For every ǫ > 0, there exists N0 such that
for every N > N0, the following holds: Let N be a valid Common Prime
RSA modulus with common factor g = Nγ, let (e,N) be a valid public
key and let (d, p, q) be its corresponding private key, where e = N1−γ and
d = N δ. If the private exponent satisfies

δ <
1

4

(
4 + 4γ −

√
13 + 20γ + 4γ2

)
− ǫ, (6.28)

then d can be computed in time polynomial in log2(N), provided that As-
sumption 2.13 holds.

The attack is actually stronger since we can also factor the modulus N
if the attack is successful. This follows since the lattice-based method com-
putes the root (x0, y0, z0) = (d, ka, kb). Since the key generation algorithm
ensures that gcd(a, b) = 1, we can compute gcd(ka, kb) = k which immedi-
ately reveals both a and b. With a and b known, we can simply compute
the factorization of N using Theorem 6.3 (factoring with known a and b).
Thus, we have the following corollary to Attack 6.13.

Corollary 6.14. In addition to computing the private exponent d, if At-
tack 6.13 is successful, then the modulus N can be factored in time polyno-
mial in log2(N).

When the public exponent is roughly the same size as the modulus (i.e.
α ≈ 1), then the effectiveness of Attack 6.13 is significantly reduced. We
give the details in the following attack.

Attack 6.15. For every ǫ > 0, there exists N0 such that for every N > N0,
the following holds: Let N be a valid Common Prime RSA modulus with
common factor g = Nγ, let (e,N) be a valid public key and let (d, p, q) be its
corresponding private key, where e ≈ N and d = N δ. If the private exponent
satisfies

δ < 1−
√

13

4
− ǫ (6.29)

≈ 0.0986− ǫ, (6.30)
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then N can be factored in time polynomial in log2(N), provided that As-
sumption 2.13 holds.

Justification: Beginning with (6.22), from the proof in Attack 6.12, we
have that

e2d2 + e(ka + kb− 2)d− k2ab(N − 1)− k(a + b)− 1 = 0.

Instead of linearizing each of the unknown terms, (e.g., d2, k2ab, etc.), At-
tack 6.13 considers each variable d, k, a and b individually. Thus, we look
for small integer solutions to the polynomial

f(x, y, z) = e2x2 + ex(y + z − 2)− (y + z + 1)− (N − 1)yz, (6.31)

which has the integer root (x0, y0, z0) = (d, ka, kb). When the public expo-
nent satisfies α ≈ 1 we have d = N δ, k < N δ, and a, b < N1/2−γ . Defining
the bounds

X = N δ

Y = N δ+1/2−γ

Z = N δ+1/2−γ ,

(6.32)

we then have |x0| < X, |y0| < Y , |z0| < Z and

W = ‖f(xX, yY, zZ)‖∞
= e2X2

= N2+2δ.

From Theorem 2.12, we then know that for sufficiently large N we can
recover (x0, y0, z0, u0) provided that

X7+9τ (Y Z)5+
9
2 τ < W 3+3τ ,

for some τ > 0 and Assumption 2.13 holds. Substituting the values for X,
Y , Z and W , we see that this inequality is satisfied when

3δτ2 +

(
12δ +

3

2

)
τ + 11δ − 1 < 0.

For all fixed δ > 0, the left-hand side of this inequality is minimized when

τ =
1− 8δ

4δ
.
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Substituting this value for τ and solving for δ, we find a sufficient condition
to recover (x0, y0, z0) is given by

δ < 1− 1

4

√
13 − ǫ

≈ 0.0986− ǫ,

where we have added the ǫ term to correct for all lower order terms ignored
in the methods implicit in Theorem 2.12. Thus, for sufficiently large N , if
Assumption 2.13 holds, we can compute (x0, y0, z0) = (d, ka, kb) and com-
pute the factorization of N as in Corollary 6.14. Since all computations can
be done in time polynomial in log2(N), the result follows. ❏

6.5 Summary of Security

Here we summarize all of the conditions on the Common Prime RSA pa-
rameters (α, δ and γ) to avoid all known attacks.

In order to avoid the factoring attacks from Section 6.3, the common
factor g should be chosen so that

γecm < γ <
1

2
− 2ℓ

log2(N)
, (6.33)

where the first inequality prevents factoring of (N − 1)/2 with the ECM
and the second prevents McKee and Pinch’s factoring method from running
with expected time less than 2ℓ.

For the attacks on small private exponent, we will consider the two sizes
of public exponents separately. When the public exponent satisfies α ≈ 1−γ
(i.e., when the public exponent is simply computed as the inverse of the
private exponent modulo λ(N)), the private exponent should satisfy

δ >






1
4 −

γ
2 − logN (

√
24) Theorem 6.7 (continued fractions)

γ2 − ǫ Theorem 6.9 (lattice-based)
2
5γ − ǫ Attack 6.12 (lattice-based)

1 + γ − 1
4

√
4γ2 + 20γ + 13 − ǫ Attack 6.13 (lattice-based),

to avoid the various attacks presented in this chapter. In Figure 6.1(a),
we illustrate these bounds in the limit of large N . The region below any
of the curves (shaded regions) are insecure. As can be seen, there is a
significant region in which no known attacks exist and the private exponent
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is significantly below N1/4. Of course, for a finite modulus size, the factoring
attacks must be considered. In Figure 6.1(b), we include the bounds imposed
by the factoring attacks for some common modulus sizes (1024, 2048, 4096
and 8192). Notice that the region of safe parameters2 is significantly reduced
as the size of the modulus decreases.

(a) N →∞ (b) Finite N

Figure 6.1: Unsafe private exponent choices when α ≈ 1 − γ. Plot (a)
corresponds to the limit N → ∞. Plot (b) corresponds to common finite
modulus sizes 1024, 2048, 4096 and 8192.

When the public exponent satisfies α ≈ 1, the private exponent should
satisfy

δ >






1
4 − γ − logN (

√
24) Theorem 6.7 (continued fractions)

γ2 Theorem 6.9 (lattice-based)

1−
√

13
4 Attack 6.15 (Jochemsz and May),

in order avoid the various attacks presented in this chapter. In Figure 6.2(a),
we illustrate these bounds in the limit of large N . Again, the region below
any of the curves (shaded regions) are insecure. As can be seen, when e
is roughly the same size as the modulus N , the region in which there are
no known attacks is significantly larger than when e is roughly the same
size as λ(N). In Figure 6.2(b), we show the bounds imposed by the fac-
toring attacks for the same four common modulus sizes. While the region
of safe parameters does decrease with decreasing modulus size (as in the
previous case), notice that is still an appreciable region of parameters with
no known attacks having private exponent smaller than N1/4. In fact, for

2By safe parameters, we mean that no known attack exists.
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2048-bit (or greater) modulus sizes, there is still a large region in which
private exponents as small as about N0.1 resist all known attacks. Recently,
however, Jochemsz and May [70] developed a lattice-based attack that can
recover small CRT-exponents (and hence small private exponents) which
are smaller than N0.073. While this bound is smaller than N0.1, they have
observed that the bound is pessimistic in practice when the public expo-
nent is smaller than the modulus (the experimental bounds increase with
decreasing public exponent sizes).

(a) N →∞ (b) Finite N

Figure 6.2: Unsafe private exponent choices when α ≈ 1. Plot (a) corre-
sponds to the limit N →∞, plot (b) corresponds to common finite modulus
sizes 1024, 2048, 4096 and 8192.

6.6 Discussion

In this chapter, we analyzed the security of Common Prime RSA with two
different public exponent sizes. For instances generated from the key gener-
ation method in Algorithm 6.1, the public exponent is roughly the same size
as λ(N) since e = d−1 mod λ(N) (thus, α ≈ 1−γ). For these instances, pri-
vate exponents that are somewhat smaller than N1/4 can be used that resist
all known attacks. For instances with public exponents α ≈ 1 (which cor-
responds to typical RSA with a small private exponent), private exponents
significantly smaller than N1/4 can be used that resist all known attacks. In
fact, private exponents as small as roughly N0.1 can be used.

Open Problems/Future Work: As suggested by an anonymous referee,
it might be possible to improve the efficiency of the key generation algorithm
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using sieving techniques (rather then simply generating numbers with the
hope that all the conditions for p, q, g and h are satisfied).

Another way to improve the efficiency of the key generation algorithm
would be to relax the restriction that h = 2gab + a + b be a prime. Since
h ≈ N1/2+γ , if we assume that h is a random number then h will very likely
have a large prime factor. If this prime factor is the same size as g (or larger)
then the factoring attacks on N − 1 will be more efficient. Thus, we can
significantly reduce the key generation time without decreasing the (known)
security.

The analysis here (and by Jochemsz and May [69]) shows that instances
of RSA with private exponents smaller than N1/4 exist that resist all known
attacks. It remains to be shown if any new attacks can be found on private
exponents smaller than N1/4, independent of the choice of parameters.
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Chapter 7

Cryptanalysis of Dual RSA

In this chapter we analyze the security of Dual RSA, a variant of RSA
designed to reduce the key storage requirements when two instances of RSA
are required.

7.1 Background

There has been some work done in trying to reduce the storage requirements
for RSA. In 1995, Vanstone and Zuccherato [119] proposed some methods
to reduce the storage requirements of RSA moduli. One of these methods,
using the high order bits of N to encode the user’s name, was shown to be
insecure by Coppersmith [32].

In 1998, Lenstra [71] presented some methods for generating n-bit RSA
moduli that can be stored with only n/2 bits. The main idea has, apparently,
been reinvented many times since at least 1984. We refer the reader to [71]
for more detail.

In 2005, Lenstra and de Weger [73] introduced Twin RSA, which consists
of pairs of RSA moduli differing by a fixed small even number such as ±2.
This allows the storage of only one RSA modulus for each pair that might
be required.

In 2006, Sun, Wu, Ting and Hinek [114] introduced another variant of
RSA called Dual RSA. Dual RSA is essentially two distinct instances of RSA
that share the same public and private exponents. When two instances of
RSA are required, Dual RSA allows for reduced key storage requirements
since only one public and private exponent need to be stored.
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7.2 Dual RSA

Dual RSA is essentially two distinct instances of RSA that share the same
public and private exponents. Combining these two instances one obtains
a single Dual RSA instance with public key (e,N1, N2) and private key
(d, p1, q1, p2, q2), where e and d satisfy both

ed ≡ 1 (mod φ(N1))

ed ≡ 1 (mod φ(N2)).

From these two relations, it follows that there exists positive integers k1 and
k2 such that

ed = 1 + k1ϕ(N1) = 1 + k1(N1 − Λ1)
ed = 1 + k2ϕ(N2) = 1 + k2(N2 − Λ2).

(7.1)

These are called the Dual RSA key equations or simply the key equations.
When small CRT-exponents are used, such as in Rebalanced- and Gen-

eralized Rebalanced-RSA (see Appendix B.1 and B.2), the Dual version has
public key (e,N1, N2) and private key (dp, dq, p1, q1, p2, q2), where e, dp and
dq satisfy edp ≡ 1 (mod (pi − 1)) and edq ≡ 1 (mod (qi − 1)) for i = 1, 2.
From these four relations, it follows that there exists four positive constants
kp1 ,kq1 , kp2 and kq2 such that

edp = 1 + kp1(p1 − 1) edp = 1 + kp2(p2 − 1)
edq = 1 + kq1(q1 − 1)
︸ ︷︷ ︸

for N1

, edq = 1 + kq2(q2 − 1)
︸ ︷︷ ︸

for N2

, (7.2)

which are called the Dual RSA-CRT equations, or simply the CRT equa-
tions.

To simplify notation, we will simply use

{(e,N1, N2), (d, p1, q1, p2, q2)},

to denote a valid public/private key pair for schemes I and II and

{(e,N1, N2), (dp, dq, p1, q1, p2, q2)},

to denote a valid public/private key pair for scheme III. In addition, we
assume that both moduli, N1 and N2, are comprised of balanced primes.

There are three schemes (or variants) of Dual RSA presented in [114],
which correspond to different variants of RSA. Below, we describe the schemes
and then present some attacks for each.
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Throughout the remainder of the chapter, we will assume that N1, N2

and N = (N1 + N2)/2 are all n-bit integers, unless otherwise stated. Also,
we use real α ≤ 0 to represent the size of the public exponent (e = Nα)
and δ ≥ 0 to represent the size of the private exponent (d = N δ) or CRT-
exponents (dp, dq < N δ).

7.2.1 Small Public Exponent Dual RSA (Scheme I)

The first scheme is Dual RSA with small public exponent, called Dual RSA-
Small-e or simply Scheme I. The key generation algorithm takes (ne, n) as
input, with ne < n/2, and outputs a valid public/private key pair with an
ne-bit public exponent e = nα and two n-bit moduli. The private exponent
d will, with very high probability, have the same bitlength as the moduli.
The key generation method is restated in Algorithm 7.1.

Algorithm 7.1 Key Generation : Small Public Exponent Dual RSA.

Input: (ne, n) such that ne < n/2.
1: Randomly select an ne-bit integer x1 and an (n/2 − ne)-bit integer x2

such that p1 = x1x2 + 1 is prime.
2: Randomly select an (n/2− ne)-bit integer y2 such that p2 = x2y2 + 1 is

prime.
3: Randomly select an ne-bit integer y1 such that q1 = y1y2 + 1 is prime.
4: Randomly select an ne-bit integer e such that gcd(x1x2y1y2, e) = 1.

Compute d and k1 satisfying ed = 1 + k1(p1 − 1)(q1 − 1).
5: If q2 = k1x2 + 1 is not prime then go back to step 4.
6: Let N1 = p1q1, N2 = p2q2, and k2 = y1.

Output: The public key (e,N1, N2) and the private key (d, p1, q1, p2, q2).

From the key generation algorithm, we see that N1 = p1q1 and N2 =
p2q2, where p1 = x1x2 + 1, q1 = y1y2 + 1, p2 = x1y2 + 1, q2 = k1x2 + 1 and
y1 = k2. This allows us to write N1 − 1 and N2 − 1 as the following system
of equations with five unknowns:

N1 − 1 = x1x2k2y2 + x1x2 + k2y2

N2 − 1 = x1x2k1y2 + k1x2 + x1y2,

where x1, k1 and k2 are ne-bit numbers and x2 and y2 are (n/2 − ne)-bit
numbers. In particular, we have |x1|, |k1|, |k2| ≤ Nα and |x2|, |y2| ≤ N1/2−α.

Instances of RSA with public exponents as small as e = 3 are considered
safe when used properly. In Section 7.3, we show that this is not the case
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for Dual RSA. In particular, Dual RSA is insecure when public exponents
smaller than (roughly) N1/4 are used.

7.2.2 Small Private Exponent Dual RSA(Scheme II)

The second scheme is Dual RSA with small private exponent, called Dual
RSA-Small-d or simply Scheme II. The key generation algorithm for this
scheme is in fact identical to Algorithm 7.1, except that the roles of the
public and private exponent are interchanged. Thus, the key generation
algorithm takes (nd, n) as input, with nd < n/2, and outputs a valid pub-
lic/private key pair with an nd-bit private exponent d = N δ and two n-bit
moduli. The public exponent e will, with very high probability, have the
same bitlength as the moduli.

Instances of RSA with private exponents smaller than N0.292 are consid-
ered unsafe (cf. Boneh and Durfee’s small private exponent attack [13]). In
Section 7.4, we show that this bound is increased to N0.333 for Dual RSA.

7.2.3 Dual Generalized Rebalanced-RSA (Scheme III)

The third, and last, scheme is an extension of Generalized Rebalanced-RSA
to the Dual RSA setting, called Dual Generalized Rebalanced-RSA or simply
Scheme III. The key generation algorithm takes (ne, nd, nk, n) as input, with
ne < n/2 and ne + nd = n/2 + nk, and outputs a valid public/private key
pair with an ne-bit public exponent (e = Nα), two nd-bit CRT-exponents
(dp, dq < N δ) and two n-bit moduli (N1 and N2). The value nk is a security
parameter which is the bitlength of the constants kpi and kqi from (7.2).
Thus, we have |nk| < Nα+δ−1/2. The key generation algorithm is restated
in Algorithm 7.2 (page 137).

From the key generation algorithm, notice that the Dual RSA moduli
N1 and N2 satisfy

N1 = p1q1 N2 = p2q2

p1 = papb + 1 p2 = pa′pb + 1
q1 = qaqb + 1 q2 = qa′qb + 1
pa = pa1pa2 · · · pa(k−1)

pak
pa′ = pakp1/pai′

qa = qa1qa2 · · · qa(k−1)
qak

qa′ = qakq1/qaj′
,

(7.3)

for some i′ and j′, where k = ⌈(n/2− ne)/nk⌉; pai , qai , kp1 , and kq1 are all
nk-bit numbers for all i; and pb and qb are ne-bit numbers. In particular, we
have

|pai |, |qai |, |kq1 |, |kp1 | < Nα+δ−1/2,
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for all i, and

|pb|, |qb| < Nα.

In Section 7.5, we present some attacks on Dual Generalized Rebalanced-
RSA. It is shown that the number of insecure parameters (public and CRT-
exponents) is increased when using Dual Generalized Rebalanced-RSA, as
compared to using two independent instances of Generalized Rebalanced-
RSA.

Algorithm 7.2 Key Generation : Dual Generalized Rebalanced-RSA

Input: (ne, nd, nk, n) such that ne < n/2 and ne + nd = n/2 + nk.
1: Randomly select an ne-bit integer e and set k to be the smallest integer

larger than (n/2− ne)/nk (i.e., k = ⌈(n/2− ne)/nk⌉).
2: Randomly select k − 1 nk-bit integers pa1 , . . . , pa(k−1)

and an even inte-
ger pak

such that pa = pa1 · · · pa(k−1)
pak

has bitlength (n/2 − ne) and
gcd(e, pa) = 1.

3: Randomly select an nk-bit integer kp1 such that gcd(e, kp1) = 1.
4: Compute dp and pb such that edp = (kp1pa)pb + 1, where e < pb < 2e

and kp1pa < dp < 2kp1pa. If p1 = papb + 1 is not prime then go back to
step 3.

5: If (kp1papb/pai′
) + 1 is prime for some 1 ≤ i′ ≤ k − 1 then let p2 =

(kp1papb/pai′
) + 1. Otherwise, go back to step 3.

6: Randomly select k − 1 nk-bit integers qa1 , . . . , qa(k−1)
and an even in-

teger qak
such that qa = qa1 · · · qa(k−1)

qak
has bitlength (n/2 − ne) and

gcd(e, qa) = 1.
7: Randomly select an nk-bit integer kq1 such that gcd(e, kq1) = 1.
8: Compute dq and qB such that edq = (kq1qa)qb + 1, where e < qb < 2e

and kq1qa < dq < 2kq1qa If q1 = qaqb + 1 is not prime then go back to
Step 7.

9: If (kq1qaqb/qaj′
) + 1 is prime for some 1 ≤ j′ ≤ k − 1 then let q2 =

(kq1qaqb/qa′

j
) + 1. Otherwise, go back to step 7.

10: Let N1 = p1q1, N2 = p2q2, kp2 = pai′
and kq2 = qaj′

.
Output: The public key (e,N1, N2) and the private key

(dp, dq, p1, q1, p2, q2).
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7.3 Cryptanalysis of Small Public Exponent Dual
RSA

In this section we consider the security of Dual RSA when the public key
e is small (e < N1/2) and the private key d is large (likely the size of the
moduli). That is, we consider the security of Scheme I.

Many of the attacks on Scheme I exploit the special structure of the Dual
RSA moduli N1 and N2. In particular, recall that

N1 − 1 = x1x2k2y2 + x1x2 + k2y2

N2 − 1 = x1x2k1y2 + k1x2 + x1y2,
(7.4)

where x1, k1 and k2 are ne-bit numbers and x2 and y2 are (n/2 − ne)-bit
numbers. More specifically, |x1|, |k1|, |k2| ≤ Nα and |x2|, |y2| ≤ N1/2−α.

7.3.1 Very Small Public Exponent Attack

When the Dual RSA public exponent is very small we can factor the moduli
with a simple brute force attack. The main result is in the following attack.

Theorem 7.1. For any integer ℓ > 0, let {(e,N1, N2), (d, p1, q1, p2, q2)} be
a valid instance of Dual RSA with public exponent e = Nα. If the public
exponent satisfies

α <
ℓ

3 log2(N)
, (7.5)

then the both N1 and N2 can be factored in time polynomial in log2(N) and
linear in 2ℓ.

Proof: We begin by noticing that three of the unknown values in (7.4), the
equations for N1− 1 and N2− 1, are ne-bit numbers. In particular, we have
|x1|, |k1|, |k2| ≤ Nα. We simply perform an exhaustive search on the values
of x1, k1 and k2. For each guess, the triple (x′

1, k1
′, k2

′), is tested by substi-
tuting the values into (7.4) and solving the remaining system for x′

2 and y′2.
If x′

2 and y′2 are integers and p′1 = x′
1x

′
2 + 1, q′1 = y′1y

′
2 + 1, p′2 = x′

1y
′
2 + 1

and q′2 = k′
1x

′
2 +1 are all primes then (x′

1, x
′
2, y

′
2, k1

′, k2
′) = (x1, x2, y2, k1, k2)

and we have successfully factored N1 and N2. Since α < ℓ/(3 log2(N)), we
only need to test at most N3α = 2ℓ triples. Since all computations can be
done in time polynomial in log2(N), the result follows. ❏

Using 1024-bit Dual RSA moduli and a search space of 280, the bound
in (7.5) becomes α < 5/192 ≈ 0.026, which corresponds to public exponents
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e < 227. Thus, for 1024-bit moduli, we expect the brute force method of
Theorem 7.1 to be able to factor both moduli faster than simply factoring
one of the moduli using the best known factoring techniques (NFS) when
using a public exponent e < 227.

The commonly used small public exponents for RSA, such as e = 3 and
e = 216+1, are completely insecure in the Dual RSA setting for any modulus
size. When e = 216 +1, the size of the search space is only 248. When e = 3,
the size of the search space is less than 10.

7.3.2 Finding k1
′ and k2

′

Recall that k1 and k2 are the constants in the key equations ed = 1+k1ϕ(N1)
and ed = 1 + k2ϕ(N2). In this section we present two attacks that can
recover k1

′ = k1/ gcd(k1, k2) and k2
′ = k + 2/ gcd(k1, k2). These attacks are

important, since knowledge of k1
′ and k2

′ lead to other attacks, shown in
Sections 7.3.3 and 7.3.4, that can factor the Dual RSA moduli.

Continued Fraction Method

The first method of obtaining k1
′ and k2

′ uses continued fractions. The main
result is in the following theorem.

Theorem 7.2. Let {(e,N1, N2), (d, p1, q1, p2, q2)} be a valid instance of Dual
RSA with n-bit moduli and public exponent e = Nα and let k1 and k2 be the
constants in the key equations. If n > 14 and

α <
1

4
− logN (19), (7.6)

then we can generate a list that contains k2/k1, in lowest terms, in time
polynomial in log2(N). The size of the list is also polynomial in log2(N).

Proof: Let the bitlength of the moduli be greater than 14 (i.e., n > 14).
Starting with (7.4), the equations for N1 − 1 and N2 − 1, observe that

N1 − 1

x1x2k1y2
=

k2

k1
+

x1x2 + k2y2

x1x2k1y2
, (7.7)

and

N2 − 1

x1x2k1y2
= 1 +

k1x2 + x1y2

x1x2k1y2
. (7.8)
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Letting A = (x1x2 + k2y2)/(x1x2k1y2) and B = (k1x2 + x1y2)/(x1x2k1y2),
we then have

N1 − 1

x1x2k1y2
=

k2

k1
+ A, (7.9)

N2 − 1

x1x2k1y2
= 1 + B. (7.10)

Since x1, k1 and k2 are ne-bit integers and x2 and y2 are (n/2 − ne)-bit
numbers, it follows that A satisfies

|A| =
∣∣∣∣
x1x2 + k2y2

x1x2k1y2

∣∣∣∣

<
(2n/2)(2n/2−ne) + (2n/2)(2n/2−ne)

(1
22n/2−ne)(1

22ne)(1
22n/2−ne)(1

22ne)

=
2×2n/2

(1
2)4×2n/2×2n/2

=
25

2n/2
, (7.11)

and similarly B satisfies

|B| =
∣∣∣∣
k1x2 + x1y2

x1x2k1y2

∣∣∣∣

<
(2n/2)(2n/2−ne) + (2n/2)(2n/2−ne)

(1
22n/2−ne)(1

22ne)(1
22n/2−ne)(1

22ne)

=
25

2n/2
. (7.12)

Since n > 14, by assumption, we have that |A|, |B| < 1, or simply A,B < 1
as both are positive numbers. Using this bound for B, notice that (7.9)
divided by (7.10) can be written as

N1 − 1

N2 − 1
=

k2
k1

+ A

1 + B

=

(
k2

k1
+ A

)(
1−B + B2 −B3 + · · ·

)

=
k2

k1
+ A−

(
k2

k1
+ A

)(
B −B2 + B3 − · · ·

)
,
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so that

N1 − 1

N2 − 1
− k2

k1
= A−

(
k2

k1
+ A

)(
B −B2 + B3 − · · ·

)
. (7.13)

Since N1 and N2 have the same bitlength, we know that 1/2 < N1/N2 < 2,
which implies that 1/2 < k2/k1 < 2. To see this, recall that in Dual RSA,
ed − 1 = k1(N1 − Λ1) = k2(N2 − Λ2). Using this bound for k2/k1, and
|A| < 1, we see that

∣∣∣∣
k2

k1
+ A

∣∣∣∣ ≤
∣∣∣∣
k2

k1

∣∣∣∣+ |A|

< 3. (7.14)

Taking the absolute value of both sides of (7.13), repeatedly using the tri-
angle inequality, and using the bound shown above gives

∣∣∣∣
N1 − 1

N2 − 1
− k2

k1

∣∣∣∣ =
∣∣∣∣A−

(
k2

k1
+ A

)(
B −B2 + B3 − · · ·

)∣∣∣∣

≤ |A|+ 3
∣∣B −B2 + B3 − · · ·

∣∣

≤ |A|+ 3 |B|+ 3
(∣∣B2

∣∣+ 3
∣∣B4
∣∣+ · · ·

)
. (7.15)

To simplify the right-hand side of this inequality, notice that since n > 14
we have

|B2|+ |B3|+ |B4|+ · · · =
∞∑

i=2

|B|i

<

∞∑

i=2

∣∣∣∣
25

2n/2

∣∣∣∣
i

=
2n/2+10

2n
(
2n/2 − 25

)

<
1

3
×

25

2n/2
, (7.16)
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so that (7.15) simplifies to
∣∣∣∣
N1 − 1

N2 − 1
− k2

k1

∣∣∣∣ ≤ |A|+ 3 |B|+ 3
(∣∣B2

∣∣+ 3
∣∣B4
∣∣+ · · ·

)

<
25

2n/2
+ 3×

25

2n/2
+

25

2n/2

< 5×

25

2n/2

<
160√

N
. (7.17)

Letting α < 1/4− logN (19), we have k1 < N1/4/19 since |k1| < Nα and k1

is positive. Using this bound for k1, we see that
∣∣∣∣
N1 − 1

N2 − 1
− k2

k1

∣∣∣∣ <
160√

N

<
1

2k1
2 . (7.18)

Therefore, from Theorem 2.1 (Continued Fractions), we know that k2/k1,
in lowest terms, will be one of the convergents in the continued fraction ex-
pansion of (N1− 1)/(N2− 1). Simply computing each convergent generates
a list of size polynomial in log2(N) that will contain k2/k1 in lowest terms.
Since all computations are polynomial in log2(N), the result follows. ❏

Applying Verheul and van Tilborg’s extension of Wiener’s attack (see
[120]) or Dujella’s refinement [43], adding an exhaustive search of size 2ℓ

to each convergent allows us to increase the bound in Theorem 7.2 by ℓ/2.
This also increases both the size of the list and the time needed to compute
the list. The result is given in the following corollary.

Corollary 7.3. Let {(e,N1, N2), (d, p1, q1, p2, q2)} be a valid instance of
Dual RSA with public exponent e = Nα and let k1 and k2 be the constants
in the key equations. If the bitlength of the moduli is greater than 14 and

α <
1

4
+

ℓ

2
− logN (19), (7.19)

then we can generate a list that constraints k2/k1, in lowest terms, in time
polynomial in log2(N) and linear in 2ℓ. The size of the list is also polynomial
in the log2(N) and linear in 2ℓ.

Using 1024-bit moduli and search space of 280, a list containing k2/k1,
in lowest terms, can be generated, provided that the public exponent has
bitlength less than 332.
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Lattice-Based Method

We now show that k1
′ and k2

′ can be obtained from a lattice-based method.
The main result is the following attack.

Attack 7.4. For every ǫ > 0 there exists N0 such that for every N1, N2 > N0

the following holds: Let {(e,N1, N2), (d, p1, q1, p2, q2)} be a valid instance of
Dual RSA with public exponent e = Nα and private exponent d = N δ. Let
k1 and k2 be the constants in the key equations and let k1

′ = k1/ gcd(k1, k2)
and k2

′ = k2/ gcd(k1, k2). If the public and private exponents satisfy

α + δ <
5

4
+

ℓ

2 log2(N)
− ǫ, (7.20)

then k1
′ and k2

′ can be computed in time polynomial in log2(N) and linear
in 2ℓ, provided that Assumption 2.13 holds.

Justification: In the following, let m = log2(N). Notice that dividing
the difference between the key equations, ed = 1 + k1(N1 − Λ1) and ed =
1 + k2(N2 − Λ2), by gcd(k1, k2) gives

k1
′(N1 − Λ1) = k2

′(N2 − Λ2). (7.21)

Let k2 be a known approximation of k2
′ such that k2

′ = k2 + k2
′′, where

|k2
′′| < Nα+δ−1−ℓ/m. Thus, the ℓ most significant bits of k2 and k2

′ are the
same. Substituting this representation for k2 in (7.21), and rearranging, we
obtain

k1
′N1 − k2

′′N2 + (k2Λ2 + k2
′′Λ2 − k1

′Λ1)− k2N2 = 0, (7.22)

which suggests we look for small solutions of the polynomial

f(x, y, z) = N1x−N2y + z − k2N2, (7.23)

since (x0, y0, z0) = (k1
′, k2

′′, k2Λ2 + k2
′′Λ2 − k1

′Λ1) is a root of f(x, y, z).
Defining the bounds

X = Nα+δ−1,

Y = Nα+δ−1−ℓ/m,

Z = Nα+δ−1/2,

(7.24)
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we have that |x0| ≤ X, |y0| ≤ Y and |z0| ≤ Z. From Theorem 2.12, noting
that

W = ‖f(xX, yY, zZ)‖∞
= max (|N1X|, |N2Y |, |Z|, |k2N2|)
= |N1X|
= Nα+δ, (7.25)

we can recover (x0, y0, z0) whenever XY Z < W , provided that N is suffi-
ciently large and Assumption 2.13 holds. The bound XY Z < W is satisfied
when 3α + 3δ − 5/2 − ℓ/m < α + δ, or simply α + δ < 5/4 + ℓ/(2m). The
ǫ term is added to correct for all lower order terms ignored in the methods
implicit in Theorem 2.12. Once x0 and y0 are known, we know k1

′ and k2
′

since k1
′ = x0 and k2

′ = k2 + y0.
The arguments above relied on the knowledge of k2. Since k2 is not

known, we carry out an exhaustive search performing the lattice-based
method above for each guess. Since we require that the ℓ most signifi-
cant bits of k2 and k2

′ must agree, we must try at most 2ℓ guesses. Since
all computations, including lattice-basis reduction and integer root finding,
require time that is polynomial in m, the result follows. ❏

The size of the private exponent in this scheme is, with very high prob-
ability, the same size as the moduli (i.e., δ ≈ 1). Using this approximation,
this lattice based method is expected to work whenever

α <
1

4
+

ℓ

2 log2(N)
, (7.26)

which is very similar to the bound obtained using continued fractions with
an exhaustive search for each convergent.

Using 1024-bit moduli and search space of 280, it is expected that k1
′

and k2
′ can be computed for public exponents with bitlengths approaching

296.

7.3.3 Small Public Exponent Attack with k1 and k2

Here we show that knowledge of k1 and k2 leads to a simple attack if the
bitlength of the public exponent is very small or very close to n/2. The
main result is the following theorem.
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Theorem 7.5. Let {(e,N1, N2), (d, p1, q1, p2, q2)} be a valid instance of Dual
RSA with public exponent e = Nα < N1/2 and let k1 and k2 be the constants
in the key equations. If k1 and k2 are known then N1 and N2 can be factored
in time polynomial in log2(N) and linear in min{e,N1/2/e}.

Proof: Let k1 and k2 be known. Notice that the system of equations for
N1 − 1 and N2 − 1 given by (7.4) is now reduced to only three unknown
variables: x1, x2, and y2. If ne is smaller than n/2 − ne, we perform an
exhaustive search for x1 and solve the resulting system of two unknowns.
Since |x1| < Nα = e, we need at most e values for x1. Similarly, if n/2− ne

is smaller than ne, we perform a brute force search on x2 (or y2) and solve
the resulting system of two unknowns. Since both x2 and y2 are bounded in
size by N1/2−α, we need at most

√
N/e values for either value. In both sce-

narios, for each guess (of x1, x2 or y2) we solve the resulting system for the
remaining unknowns and test if the solution yields the desired factorization
of N1 and N2. Since all computations can be done in time polynomial in
log2(N), the result follows. ❏

Using 1024-bit moduli and allowing an exhaustive search of size 280, the
moduli can be factored if the bitlength of the public exponent is less than
80 or greater than 432.

This attack assumes that k1 and k2 are known. The attacks in the
previous two subsections, however, only recover k1

′ and k2
′. If we make

the assumption that k1 and k2 behave like random numbers, then with
high probability k = gcd(k1, k2) will be very small. Given k1

′ and k2
′, we

simply perform an exhaustive search for k. For each guess k′, we compute
candidates k′k1

′ and k′k2
′ for k1 and k2 and try to factor N1 and N2 with

the attack in Attack 7.5.

7.3.4 Lattice-Based Attack with k1
′ and k2

′

The simple brute force attack of the previous section required knowledge
of both k1 and k2. In this section, we present a lattice-based attack that
can be used to factor the Dual RSA moduli given k1

′ and k2
′, which is the

information gained from Theorem 7.2 and Attack 7.4. The main result is
the following attack.

Attack 7.6. For every ǫ > 0 there exists N0 such that for every N1, N2 > N0

the following holds: Let {(e,N1, N2), (d, p1, q1, p2, q2)} be a valid instance of
Dual RSA with public exponent e = Nα < N1/2 and private exponent d =
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N δ. Let k1 and k2 be the constants in the key equations and let k1
′ = k1/k

and k2
′ = k2/k, where k = gcd(k1, k2) = Nγ. Given k1

′ and k2
′, if

α + δ > 1 + γ − ǫ, (7.27)

then N1 and N2 can be factored in time polynomial in log2(N) provided that
N is sufficiently large and Assumption 2.13 holds.

Justification: Let k1
′ and k2

′ be known. Recall that dividing the difference
between the key equations, ed = 1 + k1(N1−Λ1) and ed = 1 + k2(N2−Λ2),
by gcd(k1, k2) yields

k′
1(N1 − Λ1) = k′

2(N2 − Λ2), (7.28)

where Λ1 and Λ2 are the only unknowns in this case. Since gcd(k1
′, k2

′) =
1, we can reduce this equation modulo k2

′ to obtain Λ1 ≡ N1 (mod k2
′).

Letting σ1 = N1 mod k2
′, we can write Λ1 = σ1 + τ1k2

′, where τ1 is the only
unknown part. Substituting Λ1 in (7.28) we obtain

k′
1(N1 − σ1 − τ1k

′
2) = k′

2(N2 − Λ2), (7.29)

which suggests that we look for small solutions, modulo N1, of the polyno-
mial

fN1(x, y) = k′
1k

′
2x− k′

2y + k′
2N2 − k′

1σ1,

since (x0, y0) = (τ1,Λ2) is a root of fN1(x, y) modulo N1. Since |Λ1| = N1/2

and |k1
′| = Nα+δ−1−γ , we have |τ1| = N1/2−(α+δ−1−γ). Defining the bounds

X = N3/2−α−δ+γ

Y = 3N1/2,
(7.30)

notice that |x0| ≤ X and |y0| ≤ Y . From Theorem 2.10, for sufficiently
large N1, we can compute (x0, y0) = (τ1, Λ2) provided that XY < N1 and
Assumption 2.13 holds. Ignoring all terms that do not depend on N , this
inequality is satisfied whenever (3/2−α−δ +γ)+1/2 < 1. Thus, we obtain
the sufficient condition

α + δ > 1 + γ − ǫ,

where ǫ is added to correct for all lower order terms ignored in the methods
implicit in Theorem 2.10 and for the factor of 3 in Y . Once τ1 and Λ2 are
known we can easily compute ϕ(N1) and ϕ(N2) which then allow us to fac-
tor N1 and N2. Since all computations can be done in time polynomial in
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log2(N), the result follows. ❏

Since the size of the public exponent is smaller than N1/2 we expect,
with high probability, that the private exponent will be roughly the same
size as the moduli. Thus, with this assumption, the condition in Attack 7.6
simplifies to

α > γ − ǫ.

Therefore, when the public exponent is greater than gcd(k1, k2), it is ex-
pected that the moduli can be factored given k1

′ and k2
′ when the moduli

are sufficiently large.

7.4 Cryptanalysis of Small Private Exponent Dual
RSA

In this section we consider the security of Dual RSA when the private key d
is small (d < N1/2) and public key e is large (likely the size of the moduli).

All of the known small private exponent attacks on RSA also apply
to Dual RSA (scheme II). These include Wiener’s continued fraction at-
tack [123], Boneh and Durfee’s lattice-based attack [14] and Blömer and
May’s lattice-based attack [7]. We summarize the strongest results, by
Boneh and Durfee, here. From [14, Section 6], we see that, in general,
RSA is considered unsafe when the size of the private exponent satisfies

δ <
7

6
− 1

3

√
1 + 6α− ǫ. (7.31)

When the public exponent is the same size as the modulus a stronger result
is known, see Boneh and Durfee [14, Section 5], which shows that RSA is
unsafe when the size the of private exponent satisfies

δ < 1− 1√
2
− ǫ

≈ 0.292− ǫ.

(7.32)

In addition to these lattice-based attacks, notice that each of the attacks
on Scheme I from Section 7.3 can also be mounted against Scheme II. Thus,
Dual RSA with small private exponent should be considered insecure when
the size of the private (and public) exponent satisfies

δ > γ, (7.33)
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and

δ + α <
5

4
+

ℓ

2m
, (7.34)

where γ = logN (gcd(k1, k2)) and m = log2(N). These last conditions corre-
spond to mounting the attack in Attack 7.4 to obtain k1

′ and k2
′ for use in

the attack in Attack 7.6. As the size of the public exponent decreases, this
attack is stronger than the attack behind (7.31). Below, we present a new
heuristic attack on Scheme II that is stronger than all of these attacks.

7.4.1 Lattice-Based Attack

The attack on Dual RSA with small private exponent that we present is
only a heuristic. Since it is only a heuristic, we provide an argument for
the validity of the attack instead of a proof. The main result is given in the
following attack.

Attack 7.7. Let {(e,N1, N2), (d, p1, q1, p2, q2)} be a valid instance of Dual
RSA with small private exponent d = N δ < N1/2 and large public exponent
e = Nα. If the private and public exponents satisfy

δ +
2

3
α < 1, (7.35)

then there is a heuristic lattice-based algorithm that recovers the private ex-
ponent d in time polynomial in log2(N).

Justification: The justification is similar to that for Attack 4.1. Essen-
tially, we construct a lattice with a known small vector that reveals the
private exponent d. If that small vector is also a smallest vector in the
lattice then we hope that it can be recovered with the LLL algorithm.

Given the Dual RSA public key (e,N1, N2), consider the following three
equations:

Ad = Ad
ed −k1N1 = 1 + k1Λ1

ed −k2N2 = 1 + k2Λ2.
(7.36)

This is simply the key equations along with the trivial equation Ad = Ad.
Letting

B =




A e e
0 −N1 0
0 0 −N2



 , (7.37)

we can write the system of equations (7.36) as the vector-matrix equation

(d, k1, k2)B = (Ad, 1− k1Λ1, 1− k2Λ2). (7.38)
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Letting v = (Ad, 1 − k1Λ1, 1 − k2Λ2) we can force each component of v to
be of similar size by letting A = eN−1/2 = Nα−1/2. Thus, each component
of v is now bound by Nα+δ−1/2, and so ‖v‖2 <

√
3N δ+α−1/2. The hope

is that v will be the smallest vector in the lattice L generated by the rows
in B. If this is true then we can easily compute the private exponent d by
simply finding the smallest vector in L and dividing the first component by
A = eN−1/2.

From Theorem 2.3 (Minkowski), we know that a smallest vector in
L is bounded in size by

√
3 det(L)1/3 =

√
3N (α+3/2)/3, since det(L) =

eN−1/2N1N2. Therefore, a necessary condition for v to be a smallest vector
in L is that √

3N δ+α−1/2 <
√

3N (α+3/2)/3,

which simplifies to

δ +
2

3
α < 1. (7.39)

When the size of the private and public exponents satisfies this bound, we
run the LLL algorithm with input B. If ±v is the smallest reduced basis
vector obtained, we can simply compute the private exponent by dividing
the first component of v by A = eN−1/2. Since all computations are poly-
nomial in log2(N), the result follows. ❏

When the public exponent is the same size as the moduli, which is ex-
pected with high probability, we can use the approximation α ≈ 1 to further
simplify this condition to

δ <
1

3
. (7.40)

Thus, Dual RSA with a private exponent d < N1/3 should be considered
unsafe, provided that Attack 7.7 works in practice.

Since we cannot prove that ±v is a smallest vector in L, we rely on
experiments to demonstrate the effectiveness of the attack. In Table 7.1
we show some experimental results of this attack using 1024-bit Dual RSA
moduli and 1000 trials for each private exponent size. As can be seen, the
attack is quite successful until the bitlength of the private exponent satisfies
nd > 339 (approximately δ > 0.331) at which point it quickly becomes very
ineffective. Since 1024/3 = 341 + 1/3, we see that the attack (for 1024-bit
moduli) is successful for private exponents slightly smaller than the heuristic
bound δ < 1/3 in practice.

The key generation algorithm for Scheme II, Algorithm 7.1 with e and d
interchanged, computes the public key after choosing the private key. Since
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Table 7.1: Experimental results for Attack 7.7 on Dual RSA with 1024-bit
moduli for various private exponent bitlengths.

nd 336 337 338 339 340 341 342 343

success rate (%) 100.0 100.0 98.5 83.6 17.4 0.2 0.0 0.0

the public exponent is computed as the inverse of the private exponent
modulo ϕ(N1), it is expected that the size of the public exponent will be
roughly the same size as the moduli. Because of this, it is difficult to generate
instances of Dual RSA-Small-d with public exponents smaller than N , and is
the reason for only testing the attack on instances where the public exponent
is roughly the same size as the moduli. Based on the success of the attack
in this case, we believe that the attack will work when e is smaller than N .

7.5 Cryptanalysis of Dual Generalized
Rebalanced-RSA

All of the attacks on Generalized Rebalanced-RSA also apply to Dual Gen-
eralized Rebalanced-RSA. Thus, as given in Appendix B.2, instances of Gen-
eralized Rebalanced-RSA with parameters satisfying

4α + 14δ < 5− ǫ, (7.41)

can be broken in time polynomial log2(N) with an attack by Jochemsz and
May [70]. It should be noted that this attack has been experimentally shown
to be more effective than the bounds suggest. Also, if the CRT-exponents
satisfy

δ <
2ℓ

log2(N)
, (7.42)

then the Dual RSA moduli can be factored in time linear in 2ℓ.
In the rest of this section we present two new attacks on Dual Generalized

Rebalanced-RSA. The first attack is similar to the heuristic lattice-based
attack on Dual RSA with small private exponent (Section 7.4.1) while the
second attack uses continued fractions in the same way as one of the attacks
on Dual RSA with small public exponent (Section 7.3.2). Both new attacks
are stronger than those given by 7.41 for public exponents smaller than N3/8

(i.e., α < 3/8).
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7.5.1 Small Exponent Attack

The first attack on Scheme III consists of two parts. The first part, which
recovers dpdq, kp1kq1 and kp2kq2 , is due to Mu-En Wu. Like Attack 7.7, this
first part is a heuristic. The second part of the attack uses the information
gained from the first part to factor N1 and N2. The main result is given
below.

Attack 7.8. For every ǫ > 0 there exists N0 such for every N1, N2 > N0 the
following holds: Let {(e,N1, N2), (dp, dq, p1, q1, p2, q2)} be a valid instance of
Dual Generalized Rebalanced-RSA with public exponent e = Nα and CRT-
exponents dp, dq < N δ.

If the public and private exponents satisfy

4α + 6δ < 3, (7.43)

then there exists a heuristic lattice-based computation that computes dpdq,
kp1kq1 and kp2kq2 in time polynomial in log2(N).

With these quantities known, if

δ <
1

2
− ǫ, (7.44)

then N1 and N2 can be factored in time polynomial in log2(N) provided
Assumption 2.13 holds.

Justification: The first part of the attack begins with the two RSA-CRT
equations (7.2):

edp = 1 + kp1(p1 − 1) edp = 1 + kp2(p2 − 1)
edq = 1 + kq1(q1 − 1)
︸ ︷︷ ︸

for N1

, edq = 1 + kq2(q2 − 1)
︸ ︷︷ ︸

for N2

.

Multiplying together the two RSA-CRT equations for each moduli we obtain,
after some rearrangement,

e2dpdq −N1kp1kq1 = e(dp + dq)− 1− kp1kq1Λ1

e2dpdq −N2kp2kq2 = e(dp + dq)− 1− kp2kq2Λ2.
(7.45)

Combining these equations with the trivial equation dpdq = dpdq, we have
the following system of three equations:

dpdq = dpdq

e2dpdq −N1kp1kq1 = e(dp + dq)− kp1kq1Λ1 − 1
e2dpdq −N2kp2kq2 = e(dp + dq)− kp2kq2Λ2 − 1,

(7.46)
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which can be written as the vector-matrix equation xB = v0, where

x = (dpdq, kp1kq1 , kp2kq2),

B0 =




1 e2 e2

0 −N1 0
0 0 −N2



 ,

and

v0 =
(
dpdq, e(dp + dq)− Λ1kp1kq1 − 1, e(dp + dq)− Λ2kp2kq2 − 1

)
.

As in Section 7.4.1, we would like each component of v0 to be roughly the
same size. Multiplying the first column B0 by e2 and the last two columns
by N1/2 gives a new matrix

B =




e2 e2N1/2 e2N1/2

0 −N1N
1/2 0

0 0 −N2N
1/2



 , (7.47)

such that xB = v, where

v =
(
dpdqe

2, (e(dp+dq)−Λ1kp1kq1−1)N1/2, (e(dp+dq)−Λ2kp2kq2−1)N1/2
)
.

Notice that each component of v has size at most N2α+2δ and that the size
of v is bounded by ‖v‖2 ≤

√
3N2α+2δ. From Theorem 2.3 (Minkowski),

we know that a smallest vector in the lattice L spanned by the columns of
B is bounded by

√
3 det(L)1/3 =

√
3N (2α+3)/3, since det(L) = e2NN1N2.

Thus, a necessary condition for v to be a smallest vector in L is given by
2α + 2δ < (2α + 3)/3, which simplifies to

4α + 6δ < 3. (7.48)

Assuming that v is the smallest vector and that LLL finds it, knowledge of
v only provides knowledge of dpdq. Of course, since xB = v, we can easily
solve this vector-matrix equation for x, which then yields kp1kq1 and kp2kq2 .

With dpdq, kp1kq1 and kp2kq2 known, we now show how Λ1 and Λ2 can
be computed. With Λ1 and Λ2 known, we can easily factor N1 and N2. We
begin by considering the first equation in (7.45):

e2dpdq −N1kp1kq1 = e(dp + dq)− 1− kp1kq1Λ1.
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Everything in this equation is known except for dp + dq and Λ1, which are
both small compared to N1. This suggests we look for small solutions,
modulo N1, of the polynomial

fN1(x, y) = ex− kp1kq1y − 1 + e2dpdq,

since (x0, y0) = (dp + dq, Λ1) is a root of fN1(x, y) modulo N1. Defining the
bounds

X = 2N δ

Y = 3N1/2,
(7.49)

notice that |x0| < X and |y0| < Y . Therefore, from Theorem 2.10, we
can compute (x0, y0) = (dp + dq,Λ1) provided N1 is sufficiently large and
XY < N1. The last condition is satisfied when δ < 1/2−ǫ, where the ǫ term
corrects for the neglected constant terms in X and Y as well as the lower
order terms ignored in the methods implicit in Theorem 2.10. We repeat
the same process using the second equation in (7.45) to compute Λ2. With
Λ1 and Λ2 known, we compute the factorization of N1 and N2. Since all
computations can be done in time polynomial in log2(N), the result follows.
❏

When the public exponent is smaller than N3/8 (i.e., α < 3/8), this
attack is stronger than Jochemsz and May’s attack given by (7.41).

7.5.2 Small nk Attack

In this section, we present an attack on Dual Generalized Rebalanced-RSA
when the security parameter in the key generation algorithm is small (i.e.,
nk is small). The attack uses continued fractions and is very similar to
Attack 7.2. The main result is given in the following attack.

Attack 7.9. For every ǫ > 0 there exists N0 such that for every N1, N2 > N0

the following holds: Let {(e,N1, N2), (dp, dq, p1, q1, p2, q2)} be a valid in-
stance of Dual Generalized Rebalanced-RSA with public exponent e = Nα,
CRT-exponents dp, dq < N δ and moduli having bitlength n ≥ 16. Let
kp2 , kq2 , kp1 , kq1 be the constants in the CRT equations.

If the public and private exponents satisfy

α + δ <
5

8
− logN (8

√
7)

2
, (7.50)
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we can compute a list containing kp1kq2/kp1kq1, in lowest terms. The length
of this list is polynomial in log2(N).

With kp1kq2/kp1kq1, in lowest terms, known, if the public and private
exponents also satisfy

α + δ >
1

2
+ logN (K ′)− ǫ, (7.51)

where K ′ = gcd(kp2kq2 , kp1kq1), then N1 and N2 can be factored in time
polynomial in log2(N), provided that Assumption 2.13 holds.

Justification: Recall from the key generation algorithm, Algorithm 7.2,
that the Dual RSA moduli (for Generalized Rebalanced-RSA) satisfy

N1 = p1q1 N2 = p2q2

p1 = papb + 1 p2 = pa′pb + 1
q1 = qaqb + 1 q2 = qa′qb + 1
pa = pa1pa2 · · · pa(k−1)

pak
pa′ = pakp1/pai′

qa = qa1qa2 · · · qa(k−1)
qak

qa′ = qakq1/qaj′
,

(7.52)

for some i′ and j′, where k = ⌈(n/2− ne)/nk⌉, and

kp2 = pai′

kq2 = qaj′
.

(7.53)

Further, the size of each parameter is as shown in the following table.

Parameters Bitlength Size

p1, q1, p2, q2 n/2 N1/2

pai , qai , kp1 , kq1 nk Nα+δ−1/2

pa, pa′ , qa,qa′ n/2− ne N1/2−α

pb, qb ne Nα

We proceed in the same way as the proof of Attack 7.2. Let n ≥ 16.
From the structure of N1 and N2, we observe that

N1 − 1

pa′pbqa′qb
=

papbqaqb + papb + qaqb

pa′pbqa′qb

=
pai′

qaj′

kp1kq1

+
papb + qaqb

pa′pbqa′qb
,
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and

N2 − 1

pa′pbqa′qb
=

pa′pbqa′qb + pa′pb + qa′qb

pa′pbqa′qb

= 1 +
pa′pb + qa′qb

pa′pbqa′qb
.

Letting A = (papb + qaqb)/(pa′pbqa′qb), B = (pa′pb + qa′qb)/(pa′pbqa′qb), and
noting that pai′

= kp2 and qaj′
= kq2 , we then have

N1 − 1

pa′pbqa′qb
=

kp2kq2

kp1kq1

+ A, (7.54)

N2 − 1

pa′pbqa′qb
= 1 + B. (7.55)

Since pa, pa′ , qa and qa′ are all (n/2 − ne)-bit numbers and pb and qb are
ne-bit numbers, it follows that A satisfies

|A| =
∣∣∣∣
papb + qaqb

pa′pbqa′qb

∣∣∣∣

<
(2n/2−ne)(2ne) + (2n/2−ne)(2ne)

(1
22n/2−ne)(1

22ne)(1
22n/2−ne)(1

22ne)

=
2×2n/2

(1
2)4×2n/2×2n/2

=
25

2n/2
. (7.56)

Similarly, |B| < 25−n/2. Therefore, |A|, |B| < 1 when n > 10. Letting
K = (kp2kq2)/(kp1kq1), it then follows that dividing (7.54) by (7.55) yields

N1 − 1

N2 − 1
=

K + A

1 + B

= (K + A)(1−B + B2 −B3 + · · · ) (7.57)

= K + A− (K + A)(B −B2 + B3 − · · · ),

so that
∣∣∣∣
N1 − 1

N2 − 1
−K

∣∣∣∣ =
∣∣A− (K + A)(B −B2 + B3 − · · · )

∣∣ . (7.58)

Let’s consider the size of the terms in the right-hand side of this equation.
Since all the Dual RSA primes are balanced (i.e., p1, q1, p2, q2 all have the
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same bitlength), it follows that 1/2 < kp2/kp1 < 2 and 1/2 < kq2/kq1 < 2,
which gives the bound 1/4 < K < 4. Combining this with |A| < 1, we have

|K + A| < 5,

as K is positive. Also, since n ≥ 16, we have

|B2|+ |B3|+ |B4|+ · · · <
∞∑

i=2

∣∣∣∣
25

2n/2

∣∣∣∣
i

=
2n/2+10

2n
(
2n/2 − 25

)

<
1

5
×

25

2n/2
. (7.59)

Using these bounds, along with |A| < 25−n/2, we apply the triangle inequal-
ity twice to (7.58) to obtain

∣∣∣∣
N1 − 1

N2 − 1
−K

∣∣∣∣ =
∣∣∣A− (K + A)(B −B2 + B3 − · · · )

∣∣∣

≤ |A|+ |K + A| ×
∣∣B −B2 + B3 − · · ·

∣∣

≤ |A|+ |K + A| ×|B|+ |K + A| ×
∣∣−B2 + B3 − · · ·

∣∣

<
25

2n/2
+ 5

25

2n/2
+ 5

1

5

25

2n/2

=
7×25

2n/2

<
224√

N
. (7.60)

Letting α + δ < 5/8− logN (8
√

7)/2, so that

kp1kq1 = N2α+2δ−1

<
N1/4

8
√

7
,

it follows that
∣∣∣∣
N1 − 1

N2 − 1
− kp2kq2

kp1kq1

∣∣∣∣ <
224√

N

<
1

2(kp1kq1)
2
. (7.61)

156



Therefore, by Theorem 2.1 (continued fractions), we know that kp2kq2/kp1kq1 ,
in lowest terms, will appear as one of the convergents in the continued
fraction expansion of (N1 − 1)/(N2 − 1). Let k1

′ = kp2kq2/K ′ and k2
′ =

kp1kq1/K ′, where K ′ = gcd(kp2kq2 , kp1kq1). Thus, one of the convergents in
(N1− 1)/(N2− 1) will yield k1

′ and k2
′ (appearing as k2

′/k1
′). We compute

each convergent as a candidate for k2
′/k1

′ and try to factor N1 and N2 using
a lattice-based method.

Let’s assume that we have the correct convergent (i.e., we know k′
1 and

k′
2). The lattice-based method we use to factor the moduli is the same as

that used in Attack 7.6 in Section 7.3.4. We briefly outline the method
below.

Multiplying together the two RSA-CRT equations for each moduli, as
was done in the previous attack, yields

e2dpdq −N1kp1kq1 = e(dp + dq)− 1− kp1kq1Λ1

e2dpdq −N2kp2kq2 = e(dp + dq)− 1− kp2kq2Λ2.
(7.62)

Subtracting these equations, and rearranging gives

kp1kq1(N1 − Λ1) = kp2kq2(N2 − Λ2),

which when divided by K ′ yields

k1
′(N1 − Λ1) = k2

′(N2 − Λ2),

where everything but Λ1 and Λ2 are known. Notice that except for the size
of k1

′ and k2
′ (compared to k1

′ and k2
′), this is the same starting point for

the proof of Attack 7.6. Here we have

|k1
′|, |k2

′| < N2α+2δ−1−logN (K′),

instead of
|k1

′|, |k2
′| < Nα+δ−1−logN (k′).

Adapting the result of Attack 7.6 to include this change, we find that both
Λ1 (indirectly through τ1) and Λ2 (directly) can be computed provided that
N is sufficiently large and

α + δ >
1

2
+ logN (K ′)− ǫ.

Thus, since all computations can be done in time polynomial in log2(N) and
the number of candidates (convergents) that we need to test is polynomial
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in log2(N), the result follows. ❏

Just as with the previous attack, when the public exponent is smaller
than N3/8 (i.e., α < 3/8), this attack is stronger than Jochemsz and May’s
attack given by (7.41). It is also stronger then the previous attack (At-
tack 7.8).

As shown by Verheul and van Tilborg [120] and Dujella [43], we can
include an exhaustive search on each convergent to increase the bound of
the sufficient condition. For an exhaustive search of size 2ℓ, the bound can
be increased by ℓ/2 (see [120] or [43] for details). Allowing such a search
gives us the following attack.

Attack 7.10. For every ǫ > 0 there exists N0 such that for every N1, N2 >
N0 the following holds: Let {(e,N1, N2), (dp, dq, p1, q1, p2, q2)} be a valid
instance of Dual Generalized Rebalanced-RSA with public exponent e =
Nα, CRT-exponents dp, dq < N δ and moduli with bitlength n ≥ 16. Let
kp2 , kq2 , kp1 , kq1 be the constants in the CRT equations. If the public and
private exponents satisfy

α + δ <
5

8
+

ℓ

2
− logN (8

√
7)

2
, (7.63)

then we can compute a list containing kp1kq2/kp1kq1, in lowest terms. The
size of the list is 2ℓ.

Given kp1kq2/kp1kq1, in lowest terms, if the public and private exponents
also satisfy

α + δ >
1

2
+ logN (K ′)− ǫ, (7.64)

where K ′ = gcd(kp2kq2 , kp1kq1), then N1 and N2 can be factored in time
polynomial in m = log2(N) provided Assumption 2.13 holds. The overall
runtime is polynomial in log2(N) and linear in 2ℓ.

The strongest attacks on Dual Generalized Rebalanced-RSA, in the limit
of large moduli, are shown in Figure 7.1. All key choices (α and δ pairs)
that lie below and the to the left the curves in the plot are unsafe. When
the public key is greater than N3/8, the strongest attack is Jochemsz and
May’s attack [70], which is the same for Dual Generalized Rebalanced-RSA
and as it is for a single instance of Generalized Rebalanced-RSA. When
the public exponent is smaller than N3/8, the strongest result is given by
Attack 7.9. Here, the special structure of the Dual RSA moduli allows for
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a stronger attack on Dual Generalized Rebalanced-RSA than on a single
instance of Generalized Rebalanced-RSA. The area between the dotted and
straight lines illustrates this difference in security. The result of Attack7.8,
although not shown in the plot lies between the dotted and straight lines
for public exponents smaller then N3/8.

Figure 7.1: Unsafe parameter choices for Scheme III.

7.6 Summary of Attacks

In Table 7.2, we summarize all unsafe parameter choices, public and private
exponents pairs, for the strongest known attacks against each of the three
Dual RSA schemes. When the parameter restrictions are satisfied, an attack
against Dual RSA exists that requires time polynomial in log2(N) and linear
in 2ℓ.

7.7 Discussion

As discussed in [114], Dual RSA can be used in certain applications to reduce
the key storage requirements. This reduction in memory requirements comes
at the expense of increased time complexity for the key generation algorithms
(see [114] for a discussion on this) and somewhat reduced security. As is
demonstrated in this chapter, the number of parameter choices, public and
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Table 7.2: Summary of unsafe Dual RSA parameters.

Scheme Restrictions Comments
I α < 5/4 + ℓn/2− δ δ < 1 (§7.3.2, 7.3.4), Large N

α < 1/4 + ℓn/2 δ ≈ 1 (§7.3.2, 7.3.4), Large N
α > 1/2− ℓn known k1 and k2 (§7.3.2)

II δ < 5/4 + ℓn/2− α α < 1 (§7.3.2, 7.3.4), Large N
δ < 7/6−

√
1 + 6α/3 α < 1 (from [14]), Large N

δ < 1/3 α ≈ 1 (§7.4.1)
III α + δ < 5/8 + ℓ/2− 2/ log

2
(N) α ≤ 3/8 (§7.5.2), Large N

4α + 14δ < 5 3/8 ≤ α < 1/2 (from [70]), Large N
δ < 2ℓ/ log

2
(N) Baby-step Giant-step (from [98])

private exponent pairs, that are insecure is greater when using Dual RSA
as compared to using two different instances of RSA. This is due to the
significant amount of structure imposed on the Dual RSA moduli, as is
evidenced by attacks presented above that specifically exploit the special
structure of the moduli.

As Dual RSA is a recently developed cryptosystem, more cryptanalysis
is needed to properly assess its security.
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Chapter 8

Conclusions

8.1 Summary and Discussion

In this thesis, we have analyzed the security of five different variants of RSA.
In particular, using known factoring methods (ECM and NFS), continued
fractions and lattice basis reduction techniques we have provided detailed
analyses of the best attacks known (including some new attacks) on in-
stances of RSA with certain special private exponents, multiple instances of
RSA sharing a common small private exponent, Multi-prime RSA, Common
Prime RSA and Dual RSA.

In Table 8.1, we give a high level summary of the security of each vari-
ant as compared to RSA for different types of attacks. In the table, we
differentiate four types of attacks. Factoring attacks are attacks that factor
the modulus given only the modulus and perhaps knowledge of any special
structure that the primes might have. Both small d and partial key attacks

Table 8.1: Summary of security of each variant compared to RSA for various
attack types. We use n/a to indicate that we did not consider this type of
attack or that the type of attack was not applicable.

Ch. Variant Factoring Small d Partial Key Special

3. Small |d− a
b λ(N)| same same n/a weaker

4. Many keys, small d same weaker n/a n/a
5. Multi-prime RSA weaker stronger stronger n/a
6. Common Prime RSA weaker stronger n/a n/a
7. Dual RSA weaker weaker n/a weaker
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are attacks that exploit the key equation. Small d attacks can be mounted
on instances with small private exponents while partial key attacks require
some knowledge of the private key. All other attacks are labelled as special.
In the table, we only indicate whether the variant is stronger or weaker than
RSA for a given type of attack. We do not indicate by how much the variant
is stronger or weaker. Below, we give a brief summary for each variant.

In Chapter 3, we have shown that RSA with a private exponent that
is sufficiently close to a rational multiple of λ(N) is insecure. For private
exponents satisfying |d− a

b λ(N)| < N δ, the attacks presented show that the
private exponent d can be computed for δ as large as 0.284 when b = 1 or
a = 0 (corresponding to Boneh and Durfee’s lattice-based attack [13]). The
bound on δ decreases with increasing b until it reaches zero when b = 0.25.
The results of this chapter illustrate a class of weak keys for RSA.

In Chapter 4, we have shown that Wiener’s small private exponent at-
tack, when viewed as a lattice-based attack, becomes stronger when applied
to multiple instances of RSA with the same small private exponent. In
particular, a private exponent satisfying

d <
1

6
N

1
2
− 1

2(r+1) ,

can be recovered when r instances of RSA use this exponent. The lattice-
based attack is only a heuristic, but it has been shown to work well in
practice.

In Chapter 5, we have collected the best known attacks on Multi-prime
RSA, including some new attacks appearing for the first time in this thesis.
With the lone exception of factoring the modulus with the ECM, we find
that all attacks on Multi-prime RSA become weaker as the number of primes
in the modulus increases. Combining this with the reduced decryption costs,
Multi-prime RSA seems to be a promising candidate as a replacement for
RSA.

In Chapter 6, we have shown the existence of RSA instances that are
more resistant to all the known small private exponent attacks (Wiener’s
continued fraction and Boneh and Durfee’s lattice-based attacks). This vari-
ant of RSA, which we call Common Prime RSA, achieves this resistance at
the cost of adding more structure to the RSA primes. In particular, the
primes are constructed so that gcd(p − 1, q − 1)/2 is a large prime. With
a proper choice of parameters, we have shown that Common Prime RSA
with private exponents as small as N0.1 exist and are immune to all known
attacks. Due to the significant additional structure imposed on the RSA
primes, however, it is conceivable that stronger attacks may be found in the
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future.
Finally, in Chapter 7, we have analyzed the security of Dual RSA. In

this variant, we have shown that the very special structure of the primes
leads to several attacks that would, otherwise, not affect the security of two
independent instances of RSA. In particular, we show that private exponents
smaller than N1/3 and public exponents smaller than N1/4 are insecure
(when the other exponent is the size of the modulus). Since the motivation
for Dual RSA is to reduce memory requirements for the keys rather than to
reduce computational costs, these restrictions on the exponent sizes may be
acceptable in some circumstances.

8.2 Future Work

As mentioned in the Open Problems/Future Work part in several chapters
in this thesis, there is a significant amount of additional work that can be
done with respect to the variants considered here.

One promising direction is to re-examine the lattice-based attacks that
use extensions of Coppersmith’s methods to ensure that the optimal poly-
nomials are considered. Until recently, the polynomials used in extensions
of Coppersmith’s methods were of small degree (e.g., linear in each variable)
and relatively simple. For example, the polynomial used by Boneh and Dur-
fee [13] only had monomials {1, x, xy}. It was thought that more complex
polynomials with higher degree would lead to bounds for the solutions that
were meaningless (i.e., negative or extremely small). The works of Ernst
et al. [46] and Jochemsz and May [69, 70], however, have shown that more
complex polynomials with higher degree sometimes lead to meaningful at-
tacks. For example, the polynomial used by Jochemsz and May in [69] has
monomials

{1, x, x2, y, z, xy, xz, yz}.

Using the methods developed by Jochemsz and May [69] to compute bounds
for any polynomial, all of the known lattice-based attacks should be re-
examined to see if a more complex polynomial might improve the bounds.
This process is, unfortunately, very tedious and time consuming at present.

In addition to the continued research into the security of the five variants
of RSA in this thesis, we would like to highlight three research areas that
extend beyond this thesis. In particular, the algebraic independence issue,
sub-lattice optimization and Multi-power RSA. We consider each below.
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Algebraic Independence

All multivariate extensions of Coppersmith’s methods (for both integer and
modular solutions) are only heuristic. This is due to the fact that there
is no guarantee that the polynomials obtained from lattice basis reduction
are algebraically independent. Indeed, it is an open question whether or
not anything can be said about the algebraic independence of polynomials
obtained from reduced basis vectors, given the original polynomials (original
basis vectors).

While most experimental evidence in cryptographic applications shows
that the polynomials are algebraically independent, it is not always the case
(see [61] for example). As a first step in trying to answer this open problem,
we feel that more experimental evidence needs to be acquired and analyzed.
In particular, the lattices in which algebraically dependent polynomials oc-
cur with some frequency should be investigated.

Sub-lattice Optimizations

When using Coppersmith’s methods, it is sometimes possible to obtain im-
proved bounds by considering certain sub-lattices instead of the full lat-
tice. Recall from Chapter 2 that the enabling equations for Coppersmith’s
methods (ensuring that the smallest polynomials are small enough to use
Howgrave-Graham’s result) can be written as

vol(L) < cNd,

where c and d depend on the lattice dimension and the number of required
small polynomials. The goal of using sub-lattices is to reduce the volume of
the lattice vol(L) more than the term cNd might be reduced. Unfortunately,
computing the volume of the sub-lattice is non-trivial. This is because the
sub-lattice is itself a lattice that is not full dimensional.

Boneh and Durfee [13] used geometrically progressive matrices to bound
the volume of certain sub-lattices obtained by removing certain basis vec-
tors (those that contributed to the volume more than others). Another
technique, by Blömer and May [7], also removes basis vectors that signifi-
cantly contribute to the volume of the lattice. But, instead of working with
a non-full dimensional sub-lattice, they also remove corresponding columns
in the basis matrix. The resulting lattice is not a sub-lattice of the orig-
inal but it is full dimensional and admits a simple volume determination.
Blömer and May then show that small vectors obtained by lattice reduction
of the new lattice correspond to small vectors in the original lattice and they
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provide a bound on the difference in their sizes (based on the volume of the
new full dimensional lattice). Both of these methods were only applied to
one polynomial (with monomials {1, x, xy}).

To our knowledge, there has been no further work on using sub-lattices
to improve the bounds of solutions to any other polynomial. Thus, it is
an open problem if the bounds found using Jochemsz and May’s technique
for computing bounds for any polynomial (see [69]) are optimal, or if sub-
lattices can be used to improve them. Many cryptographic attacks might
be strengthened if the latter is true.

Multi-power RSA

In this thesis we have considered five variants of RSA. There are, of course,
more variants. Another variant that is perhaps a good candidate to replace
RSA is Takagi’s variant (see [116, 117] or Appendix B.3), which is now
referred to as Multi-power RSA (see [19]). This variant differs from RSA in
several ways. First, the modulus is composed of two balanced primes with
one prime having multiplicity greater than 1. That is, the modulus has the
form N = pkq for some k > 1. Second, the public and private exponents
are defined as inverses modulo lcm(p− 1, q − 1) instead of modulo φ(N) or
φ(N)/ gcd(p−1, q−1). Thus, both e and d are bounded by N2/3. And last,
decryption uses Hensel lifting and Chinese remaindering which makes the
cryptosystem much more efficient than RSA.

The security of Multi-power RSA, when only considering factoring at-
tacks, is the same as Multi-prime RSA with k + 1 primes in the modulus.
Unlike Multi-prime RSA, however, there are no known small private expo-
nent or partial key exposure attacks for Multi-power RSA. Since most of
these attacks on RSA (and Multi-prime RSA) exploit the fact that N is a
good approximation of φ(N), they do not carry over to Multi-power RSA
(where N = pkq is not a good approximation of lcm(p−1, q−1)). It remains
an open question whether there exists a small private exponent or partial
key exposure attack better than exhaustive search for Multi-power RSA.
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Appendix A

Distribution of
g = gcd(p − 1, q − 1)

We have carried some experiments to determine (approximate) the distri-
bution of g = gcd(p − 1, q − 1) for random primes p and q of the same
bitlength. For several bitlengths of primes, we computed 100,000 random
pairs of primes and computed gcd(p−1, q−1). The results (given as percent-
ages) are given in Table A.1 for g ≤ 20 and in Table A.2 for 20 < g ≤ 100.

Bitlength of primes
g 128 256 384 512 1024 average
2 49.5 49.7 49.8 49.5 49.5 49.6
4 12.4 12.4 12.4 12.3 12.4 12.4
6 14.7 14.6 14.6 14.7 14.8 14.7
8 3.1 3.1 3.0 3.2 3.15 3.1

10 3.1 3.2 3.1 3.2 3.1 3.2
12 3.8 3.5 3.6 3.5 3.6 3.6
14 1.4 1.3 1.4 1.3 1.4 1.4
16 0.7 0.7 0.8 0.8 0.8 0.8
18 1.6 1.6 1.6 1.7 1.6 1.6
20 0.7 0.7 0.8 0.8 0.8 0.8

Table A.1: Distribution of 2 ≤ g ≤ 20. Percentages are rounded to one
decimal place.

From the tables, we see that g = 2 with probability almost 50/100, g ≤ 6
with probability about 76/100, g ≤ 20 with probability about 91/100 and
g ≤ 100 with probability about 98/100.

167



Bitlength of primes
g 128 256 384 512 1024 average

22 0.477 0.513 0.508 0.522 0.4575 0.4955
24 0.954 0.955 0.897 0.897 0.935 0.9276
26 0.35 0.368 0.327 0.343 0.3225 0.3421
28 0.343 0.378 0.341 0.311 0.29 0.3326
30 0.934 0.967 0.945 0.967 0.9325 0.9491
32 0.17 0.193 0.22 0.186 0.2325 0.2003
34 0.192 0.183 0.193 0.209 0.1725 0.1899
36 0.442 0.433 0.417 0.428 0.4475 0.4335
38 0.157 0.166 0.164 0.125 0.1475 0.1519
40 0.217 0.2 0.199 0.18 0.195 0.1982
42 0.407 0.419 0.393 0.421 0.4125 0.4105
44 0.142 0.128 0.126 0.113 0.1575 0.1333
46 0.137 0.091 0.103 0.096 0.0925 0.1039
48 0.225 0.242 0.241 0.245 0.2275 0.2361
50 0.128 0.14 0.142 0.133 0.11 0.1306
52 0.089 0.081 0.072 0.072 0.0825 0.0793
54 0.187 0.186 0.182 0.169 0.175 0.1798
56 0.076 0.092 0.072 0.067 0.0775 0.0769
58 0.063 0.062 0.051 0.072 0.065 0.0626
60 0.232 0.235 0.217 0.265 0.2175 0.2333
62 0.054 0.061 0.054 0.064 0.0625 0.0591
64 0.044 0.064 0.045 0.051 0.04 0.0488
66 0.143 0.139 0.155 0.151 0.1625 0.1501
68 0.041 0.051 0.053 0.043 0.0525 0.0481
70 0.078 0.087 0.077 0.092 0.115 0.0898
72 0.112 0.109 0.105 0.098 0.09 0.1028
74 0.045 0.048 0.042 0.052 0.03 0.0434
76 0.029 0.044 0.043 0.03 0.025 0.0342
78 0.081 0.109 0.107 0.115 0.105 0.1034
80 0.06 0.052 0.05 0.057 0.0275 0.0493
82 0.027 0.034 0.034 0.026 0.0325 0.0307
84 0.092 0.115 0.114 0.095 0.135 0.1102
86 0.036 0.025 0.03 0.03 0.02 0.0282
88 0.032 0.04 0.032 0.031 0.045 0.036
90 0.084 0.113 0.095 0.091 0.1075 0.0981
92 0.025 0.022 0.034 0.036 0.02 0.0274
94 0.024 0.022 0.014 0.03 0.0125 0.0205
96 0.055 0.049 0.062 0.064 0.0525 0.0565
98 0.03 0.025 0.029 0.023 0.035 0.0284

100 0.036 0.033 0.032 0.025 0.035 0.0322

Table A.2: Distribution of 20 < g < 100.
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Appendix B

Some RSA Variants

Here we collect (and discuss) some variants of RSA which are relevant to
this thesis but not directly considered.

B.1 Rebalanced RSA

RSA is typically used with a very small public and a very large private
exponent. Thus, encryption costs are significantly smaller than decryption
costs. Even when CRT decryption is used, the CRT-exponents dp and dq

are, with high probability, very large modulo the primes.
In order to decrease decryption costs, Wiener [123] suggested that instead

of choosing a small public exponent and computing the corresponding large
private exponent (or CRT-exponents) that one can instead first choose small
CRT-exponents and then compute the corresponding large public exponent.
Thus, decryption costs are lowered at the cost of maximizing encryption
costs. This variant is commonly referred to as Rebalanced RSA (e.g., see
[12, 19]), since there is a rebalancing of the encryption and decryption costs.

The first attack on Rebalanced RSA was by Qiao and Lam in 1998 [98].
The attack uses a Baby-Step Giant-Step method to factor the modulus with
O(min{

√
dp,
√

dq}) comparisons (i.e., exponential in the bitlength of the
modulus). The attack was for the special case of dp = dq + 2, but works for
any instance of Rebalanced RSA.

In 2002, May [80] presented some polynomial time lattice-based attacks
on Rebalanced RSA with small CRT-exponents when the RSA primes are
unbalanced (i.e., when p is significantly smaller than N1/2). In particular,
all of the attacks require that p < N0.382.

In 2006, Bleichenbacher and May [6] presented an improved polynomial
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time attack on Rebalanced RSA with small CRT-exponents and unbalanced
primes that works when one of the primes is smaller than N0.468.

In 2006, Jochemsz and May [69] presented a polynomial time attack on
Rebalanced RSA with small CRT-exponents and balanced primes when the
difference between the CRT-exponents is known (attacking Qiao and Lam’s
scheme [98], which has a difference of two). The attack factors the modulus
when dp < N0.099.

In 2007, Jochemsz and May [70] presented a polynomial time attack on
Rebalanced RSA with balanced primes and arbitrary small CRT-exponents.
The attack can factor the modulus when the CRT-exponents dp, dq < N δ

satisfy

δ <
5− 4α + 20τ − 16ατ + 18τ2 − 12ατ2

14 + 56τ + 66τ2 + 24τ3
− ǫ, (B.1)

for any ǫ > 0 and τ ≥ 0. For α ≈ 1, which is expected if the CRT-exponents
are chosen before computing e, the right-hand side of this inequality is max-
imized when τ ≈ 0.381788, which leads to the bound

δ < 0.0734− ǫ. (B.2)

In practice, Jochemsz and May have observed that this bound is actually
pessimistic.

B.2 Generalized Rebalanced-RSA

Rebalanced RSA, as suggested by Wiener, allows for low decryption costs
at the expense of high encryption costs. Building on the ideas of Sun and
Yang [115], it is possible to have small CRT-exponents and a small public
exponent (i.e., δ, α < N1/2). This notion of Rebalanced RSA with small
public and CRT-exponents was independently introduced in 2005 by Sun
and Wu [113, 112] and Galbraith, Heneghan and McKee [47]. Essentially,
Sun and Wu, and Galbraith, Heneghan and McKee proposed key generation
algorithms for Rebalanced RSA that can create instances with public expo-
nents significantly smaller than N and CRT-exponents smaller than N1/2.
We call this variant Generalized Rebalanced-RSA.

The original security analyses in [112] and [47] both led to parameter
suggestions that were insecure. The security was re-analyzed in 2005, inde-
pendently by Galbraith, Heneghan and McKee in [48] and by Sun, Hinek
and Wu in [111].
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In 2006, Bleichenbacher and May [6] presented an attack on Generalized
Rebalanced-RSA that can be factor the modulus when the CRT-exponents
dp, dq < N δ satisfy

δ ≤ min

(
2

5
− 2

5
α,

1

4

)
. (B.3)

In 2007, Jochemsz and May [70] presented an attack on Rebalanced RSA
which can also be mounted on Generalized Rebalanced-RSA. The attack
factors the modulus when the public exponent e = Nα satisfies α < 1/2 and
the CRT-exponents dp, dq < N δ satisfy

δ <
5− 4α + 20τ − 16ατ + 27τ2 − 30ατ2 + 12τ2 − 24ατ3

14 + 56τ + 66τ2 + 24τ3
− ǫ, (B.4)

for any ǫ > 0 and τ ≥ 0. Since the key generation for Generalized Rebalanced-
RSA ensures that α+ δ < 1/2, we find that τ = 0 maximizes the right-hand
side of (B.4) for all relevant α. In this case, the bound on the CRT-exponents
simplifies to

δ <
5− 4α

14
− ǫ, (B.5)

or

4α + 14δ < 5− ǫ. (B.6)

This is the strongest known attack on Generalized Rebalanced-RSA.

B.3 Multi-power RSA

In the patent for RSA [103], Rivest, Shamir and Adleman comment that

In alternative embodiments, the present invention may use a
modulus n which is a product of three or more primes (not nec-
essarily distinct). Decoding may be performed modulo each of
the prime factors of n and the results combined using “Chinese
remaindering” or any equivalent method to obtain the result
modulo n.

Thus, the most general form of an RSA modulus, from their description, is
given by

N = pγ1
1 pγ2

2 · · · pγr
r ,
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where r ≥ 2 and γi ≥ 1 for i = 1, . . . , r. Depending on the number of primes
and their multiplicities, we have different variants of RSA. When r = 2 and
γ1 = γ2 = 1 we have RSA. When the total number of primes in the modulus,
including multiplicities, is greater than 2 we have Multi-factor RSA. Notice
that Multi-prime RSA is a special case of Multi-power RSA (in which r > 2
and γi = 1 for each of the primes). Another special case of Multi-factor
RSA is when r = 2 and γi > 1 for at least one of the primes. We call this
Multi-power RSA.

In 1998, Takagi [116, 117] proposed the first Multi-power RSA variant
with a modulus of the form

N = psq,

where s > 1. Using Hensel lifting and Chinese remaindering, Takagi showed
that decryption can be done much more efficiently as compared to normal
RSA decryption.

In 2000, Lim, Kim, Yie and Lee [76] extended Takagi’s cryptosystem to
include moduli of the form

N = psqt,

where s > 1 and t = 1, 2, or 4 (depending on the value of s + t).
In all of the Multi-power variants, the public and private exponents are

defined as inverses modulo lcm(p−1, q−1). Thus, we have the key equation

ed = 1 + k lcm(p− 1, q − 1),

where k is some positive integer. Notice that both the public and private
exponents are smaller than N1/(s+t).

Like RSA, the security of all of the Multi-power RSA variants is based on
factoring the modulus. The size of the multiplicities (s and t) is determined
by matching the expected runtime of the NFS and ECM to factor the mod-
ulus. Unlike RSA, however, there are very few known specialized attacks
on Multi-power RSA (e.g., small private exponent or partial key exposure
attacks).

In 2002, Ciet et al. [25] extended all known small private attacks on RSA
to small private exponent Multi-power RSA. However, all the attacks require
that the public and private exponents be defined modulo φ(N) rather than
lcm(p− 1, q − 1). Thus, the attacks are not relevant to Multi-power RSA.

In 2004, May [82] presented new attacks on small private exponent Multi-
power RSA with moduli of the form N = psq. These attacks, like those of
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Ciet et al., also require that the public and private exponents be defined
modulo φ(N) rather than lcm(p − 1, q − 1). In addition to these attacks,
May also presents some lattice-based partial key exposure attacks for the
CRT-exponent dp when the public exponent is small. The attacks require
knowledge of a 1

s+1 -fraction of the MSB or LSB of dp. Other than factoring,
this is the only known attack on Multi-power RSA.
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